Skip to content
Permalink
5cd042b6c2
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
290 lines (259 sloc) 7.02 KB
#ifndef __COLOR_GRADING__
#define __COLOR_GRADING__
#include "ACES.cginc"
#include "Common.cginc"
// Set to 1 to use more precise but more expensive log/linear conversions. I haven't found a proper
// use case for the high precision version yet so I'm leaving this to 0.
#define COLOR_GRADING_PRECISE_LOG 0
//
// Alexa LogC converters (El 1000)
// See http://www.vocas.nl/webfm_send/964
// It's a good fit to store HDR values in log as the range is pretty wide (1 maps to ~58.85666) and
// is quick enough to compute.
//
struct ParamsLogC
{
half cut;
half a, b, c, d, e, f;
};
static const ParamsLogC LogC =
{
0.011361, // cut
5.555556, // a
0.047996, // b
0.244161, // c
0.386036, // d
5.301883, // e
0.092819 // f
};
half LinearToLogC_Precise(half x)
{
half o;
if (x > LogC.cut)
o = LogC.c * log10(LogC.a * x + LogC.b) + LogC.d;
else
o = LogC.e * x + LogC.f;
return o;
}
half3 LinearToLogC(half3 x)
{
#if COLOR_GRADING_PRECISE_LOG
return half3(
LinearToLogC_Precise(x.x),
LinearToLogC_Precise(x.y),
LinearToLogC_Precise(x.z)
);
#else
return LogC.c * log10(LogC.a * x + LogC.b) + LogC.d;
#endif
}
half LogCToLinear_Precise(half x)
{
half o;
if (x > LogC.e * LogC.cut + LogC.f)
o = (pow(10.0, (x - LogC.d) / LogC.c) - LogC.b) / LogC.a;
else
o = (x - LogC.f) / LogC.e;
return o;
}
half3 LogCToLinear(half3 x)
{
#if COLOR_GRADING_PRECISE_LOG
return half3(
LogCToLinear_Precise(x.x),
LogCToLinear_Precise(x.y),
LogCToLinear_Precise(x.z)
);
#else
return (pow(10.0, (x - LogC.d) / LogC.c) - LogC.b) / LogC.a;
#endif
}
//
// White balance
// Recommended workspace: ACEScg (linear)
//
static const half3x3 LIN_2_LMS_MAT = {
3.90405e-1, 5.49941e-1, 8.92632e-3,
7.08416e-2, 9.63172e-1, 1.35775e-3,
2.31082e-2, 1.28021e-1, 9.36245e-1
};
static const half3x3 LMS_2_LIN_MAT = {
2.85847e+0, -1.62879e+0, -2.48910e-2,
-2.10182e-1, 1.15820e+0, 3.24281e-4,
-4.18120e-2, -1.18169e-1, 1.06867e+0
};
half3 WhiteBalance(half3 c, half3 balance)
{
half3 lms = mul(LIN_2_LMS_MAT, c);
lms *= balance;
return mul(LMS_2_LIN_MAT, lms);
}
//
// Luminance (Rec.709 primaries according to ACES specs)
//
half AcesLuminance(half3 c)
{
return dot(c, half3(0.2126, 0.7152, 0.0722));
}
//
// Offset, Power, Slope (ASC-CDL)
// Works in Log & Linear. Results will be different but still correct.
//
half3 OffsetPowerSlope(half3 c, half3 offset, half3 power, half3 slope)
{
half3 so = c * slope + offset;
so = so > (0.0).xxx ? pow(so, power) : so;
return so;
}
//
// Lift, Gamma (pre-inverted), Gain
// Recommended workspace: ACEScg (linear)
//
half3 LiftGammaGain(half3 c, half3 lift, half3 invgamma, half3 gain)
{
//return gain * (lift * (1.0 - c) + pow(max(c, kEpsilon), invgamma));
//return pow(gain * (c + lift * (1.0 - c)), invgamma);
half3 power = invgamma;
half3 offset = lift * gain;
half3 slope = ((1.0).xxx - lift) * gain;
return OffsetPowerSlope(c, offset, power, slope);
}
//
// Saturation (should be used after offset/power/slope)
// Recommended workspace: ACEScc (log)
// Optimal range: [0.0, 2.0]
//
half3 Saturation(half3 c, half sat)
{
half luma = AcesLuminance(c);
return luma.xxx + sat * (c - luma.xxx);
}
//
// Basic contrast curve
// Recommended workspace: ACEScc (log)
// Optimal range: [0.0, 2.0]
//
half3 ContrastLog(half3 c, half con)
{
return (c - ACEScc_MIDGRAY) * con + ACEScc_MIDGRAY;
}
//
// Hue, Saturation, Value
// Ranges:
// Hue [0.0, 1.0]
// Sat [0.0, 1.0]
// Lum [0.0, HALF_MAX]
//
half3 RgbToHsv(half3 c)
{
half4 K = half4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
half4 p = lerp(half4(c.bg, K.wz), half4(c.gb, K.xy), step(c.b, c.g));
half4 q = lerp(half4(p.xyw, c.r), half4(c.r, p.yzx), step(p.x, c.r));
half d = q.x - min(q.w, q.y);
half e = EPSILON;
return half3(abs(q.z + (q.w - q.y) / (6.0 * d + e)), d / (q.x + e), q.x);
}
half3 HsvToRgb(half3 c)
{
half4 K = half4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
half3 p = abs(frac(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * lerp(K.xxx, saturate(p - K.xxx), c.y);
}
half RotateHue(half value, half low, half hi)
{
return (value < low)
? value + hi
: (value > hi)
? value - hi
: value;
}
//
// Remaps Y/R/G/B values
//
half3 YrgbCurve(half3 c, sampler2D curveTex)
{
const float kHalfPixel = (1.0 / 128.0) / 2.0;
// Y
c += kHalfPixel.xxx;
float mr = tex2D(curveTex, float2(c.r, 0.75)).a;
float mg = tex2D(curveTex, float2(c.g, 0.75)).a;
float mb = tex2D(curveTex, float2(c.b, 0.75)).a;
c = saturate(float3(mr, mg, mb));
// RGB
c += kHalfPixel.xxx;
float r = tex2D(curveTex, float2(c.r, 0.75)).r;
float g = tex2D(curveTex, float2(c.g, 0.75)).g;
float b = tex2D(curveTex, float2(c.b, 0.75)).b;
return saturate(half3(r, g, b));
}
//
// (X) Hue VS Hue - Remaps hue on a curve according to the current hue
// Input is Hue [0.0, 1.0]
// Output is Hue [0.0, 1.0]
//
half SecondaryHueHue(half hue, sampler2D curveTex)
{
half offset = saturate(tex2D(curveTex, half2(hue, 0.25)).x) - 0.5;
hue += offset;
hue = RotateHue(hue, 0.0, 1.0);
return hue;
}
//
// (Y) Hue VS Saturation - Remaps saturation on a curve according to the current hue
// Input is Hue [0.0, 1.0]
// Output is Saturation multiplier [0.0, 2.0]
//
half SecondaryHueSat(half hue, sampler2D curveTex)
{
return saturate(tex2D(curveTex, half2(hue, 0.25)).y) * 2.0;
}
//
// (Z) Saturation VS Saturation - Remaps saturation on a curve according to the current saturation
// Input is Saturation [0.0, 1.0]
// Output is Saturation multiplier [0.0, 2.0]
//
half SecondarySatSat(half sat, sampler2D curveTex)
{
return saturate(tex2D(curveTex, half2(sat, 0.25)).z) * 2.0;
}
//
// (W) Luminance VS Saturation - Remaps saturation on a curve according to the current luminance
// Input is Luminance [0.0, 1.0]
// Output is Saturation multiplier [0.0, 2.0]
//
half SecondaryLumSat(half lum, sampler2D curveTex)
{
return saturate(tex2D(curveTex, half2(lum, 0.25)).w) * 2.0;
}
//
// Channel mixing (same as Photoshop's and DaVinci's Resolve)
// Recommended workspace: ACEScg (linear)
// Input mixers should be in range [-2.0;2.0]
//
half3 ChannelMixer(half3 c, half3 red, half3 green, half3 blue)
{
return half3(
dot(c, red),
dot(c, green),
dot(c, blue)
);
}
//
// LUT grading
// scaleOffset = (1 / lut_width, 1 / lut_height, lut_height - 1)
//
half3 ApplyLut2d(sampler2D tex, half3 uvw, half3 scaleOffset)
{
// Strip format where `height = sqrt(width)`
uvw.z *= scaleOffset.z;
half shift = floor(uvw.z);
uvw.xy = uvw.xy * scaleOffset.z * scaleOffset.xy + scaleOffset.xy * 0.5;
uvw.x += shift * scaleOffset.y;
uvw.xyz = lerp(tex2D(tex, uvw.xy).rgb, tex2D(tex, uvw.xy + half2(scaleOffset.y, 0)).rgb, uvw.z - shift);
return uvw;
}
half3 ApplyLut3d(sampler3D tex, half3 uvw)
{
return tex3D(tex, uvw).rgb;
}
#endif // __COLOR_GRADING__