Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
146 lines (134 sloc) 10.7 KB
\chapter{Conclusion}
\begin{quote}Harel and Sowder \cite[p. 277?] {harel1998students}by their natures, teaching experiments and interview studies do not give definitive conclusions. They can, however, offer indications of the state of affairs and a framework in which to interpret other work.\end{quote}
There is an amount of attention that students give to their coursework.
That level of attention is not necessarily even.
That level of attention could be influenced in multiple ways.
A student may pay attention in one way when having just heard that something will be on a quiz.
A student may pay attention in another way, when having just heard that something will not be on a quiz.
While a relatively relaxed, attentive, reflective mode might be deemed appropriate by an instructor, as a response to hearing that something will not be on a quiz,
and while some students respond that way, it can also happen that a student's response is to think beyond the class, such as wonder about missed telephone calls.
While it may seem obvious to an instructor that anything discussed in class deserves attention, interview results have shown that some students are not aware that anything to which class time is devoted should be regarded as worthy of attention.
Their prior experience could easily have trained students to think that instructors attach points towards a grade to important learning objectives.
There should be no surprise when students operate as if points imply importance.
Students can easily err, supposing that no points implies unimportant.
Instructors provide scaffolding to assist the development of student concepts.
Some students take advantage of such scaffolding.
That students sometimes take advantage of scaffolding implies that they can.
It is probably true that students will use the ability to take advantage of scaffolding, even using material that might not have been intended for scaffolding.
Some students learning about proof scaffold this new material with what they know about programming.
The graceful transition from mathematical proof to programming language semantics illustrated by structural operational semantics (see, e.g., H\"uttel \cite{huttel2010transitions}) shows that scaffolding proof learning in computer science and engineering by programming can have good results.
At the point in the curriculum at which proof is being taught, it could be that some students do not yet have the maturity of understanding of programming languages to afford this benefit on their own.
It might be that explicit scaffolding of proof with programming language examples would improve the results.
Are CS students' conceptualizations more like Harel and Sowder, or more like Tall?
Are the several schemes (Pirie Kieren, etc. complementary? reconcilable? Is one more likely than another based on cognitive neuroscience of language? (proofs are in a language after all))
This research suggests that suitable question for a larger study
\section{Recognizing an Endpoint}
A qualitative study is thought to be finished when an internally consistent
narrative, compatible with the data, both situating the data and explaining
them, has been produced.
For our research questions, a model, accompanied by a narrative combining
the information obtained from inquiry about these topics will complete the
work. Data from our extended student body, that provide a persuasive model
containing categories of conceptualizations, and that are closely enough related
that some insight about concepts differentiating adjacent categories can
be inferred, are thought sufficient to generate this narrative. The proposed
differentiating concepts are thought to have the potential to become material
for a larger survey, thereby providing a starting point for new work.
I expect to find a model similar to that of Harel and Sowder 1998[?], but
modified because of the different emphases on material in computer science
compared to mathematics. First, students of computer science should be very
familiar with the idea of consciously constructing, examining and evaluating a
process, from their study of algorithms. Because of this, the category internalization
might be subsumed by the category interiorization.
From empirical data, we know that there are students of computer science
who think that proofs might be irrelevant to their career; it would be hard to
imagine a mathematics student who thought so. CS students who do not think
proof is part of their career might be relatively content with conceptualizations
corresponding to outside sources of conviction. We found computer science
students whose conception of proof includes that a single example is sufficient
for proving a universally quantified statement. We found computer science
students whose conception of proof is that definitions are barely interesting,
and who find demonstrations based on definitions unconvincing. Because our
findings were not quantitative, we could not compare the population of categories.
Nevertheless, the relationships between categories, and the resulting
critical factors, might be different, especially in the area of Harel and Sowder's
internalization and interiorization.
Because the scope is broader, involving proof for deciding whether or not an
algorithm is suitable for a problem, I expect we will find more categories,
related to algorithms and their applicability.
The product of a phenomenographical investigation is categories of conceptualization
and critical aspects that distinguish one category from the previous.
One hopes that by identifying critical aspects, suggestions about what to emphasize
when teaching, and what to seek in assessments are also clarified. This
investigation is intended to develop insight into students understandings of
proofs, that are the meanings they have fashioned for themselves, based on how
they have interpreted what they have heard or read. By examining some of
these understandings, we might find directions in which to improve our teaching.
Moreover, observations about the conceptualizations of students early in
the curriculum can forewarn instructors, helping them recognize the preparation
of incoming students. Perhaps we could use this to prepare remediation
materials.
For example, we can use UML diagrams and ``trie'' data structures to emphasize
definitions for families of concepts. We can choose groups of examples,
and non-examples of proofs whose correctness turns on the qualification that
distinguishes a subclass from its immediate superclass.
Beyond this, one may hope that qualitative research suggests worthwhile questions
for larger scale investigations.
Application of findings about students
of mathematics to students of computer science is fraught by differences
in the preparation and interests related to algorithms. One likely difference is
motivation: students of mathematics know that proof is the principal means
of discourse in their community, but students of computer science might not
be aware of the importance of proof to their work. Not all differences favor
students of mathematics. In particular, the categories internalization and
interiorization of Harel and Sowder’s 1998 model\cite{harel1998students} are apt to be, in students
interested in algorithms, more closely related, than in students of mathematics.
There may be a difference regarding abstraction. Both mathematics and
computer science deal in abstraction, and students in both disciplines struggle
with it. \cite{mason1989mathematical,hazzan2003students}. In mathematics, following Vi\`ete, \cite{viete2006analytic}, single letter variable names
are used. These are thought to support the learning of abstraction, for example, Gray and Tall \cite[p. 121]{gray1994duality} observe ``we want to encompass the growing compressibility of knowledge characteristic of successful mathematicians. Here, not only is a single symbol viewed in a flexible way ''
and
in computer science abstraction, one way to exhibit abstraction is UML diagrams. Because the
``trie'' structure and International Standards Organization ISO standard 11179
are computer science approaches to management of definitions, it could be that
computer science students would be more accessible to noticing the desirability
of concept definitions over concept images (see R\"osken and Rolka, \cite{rosken2007integrating} and
Rasslan and Tall \cite{rasslan2002definitions}). It would be interesting to know whether any of several
approaches reported by Weber [?] could be used, perhaps in modified form, for
instruction of students of computer science. The Action Process Object Schema
approach of Dubinsky \cite{dubinsky2002apos} sounds compatible with computer science students'
interests. An approach due to Leron and Dubinsky uses computer programming
\cite{leron1983structuring}, another \cite{leron1995abstract} is directed more to learning group theory than to learning proof
construction. Also specific to students concerned with algorithms, we may
wish to extend the notion of social constructivism from that of Piaget \cite{}, [?] and
of Vygotsky, [?] where it was necessarily a person with whom the learner was
communicating, and therefore with whom it was necessary to share a basis for
communication, to include a compiler and runtime execution environment, as
students of computing disciplines must also comply with rules (e.g., syntax)
used in these systems. Recalling the work of Papert and Harel\cite{harel1991constructionism}, we might
call this constructivism with constructionism. Constructionism is an approach
to learning in which the person learns through design and programming.
A cluster of related problems exists, which includes what students conceptualizations
are, about some elements of proof they should understand:
\begin{itemize}
\item what internal representations do students use?
\item Is there a gamut of internal representations, and does that help with abstraction?
\item mathematization, which is the ability to represent problems in mathematical
notation
\item interiorization, which is the ability to examine and discuss the process of
creating proof
\item comprehension of simple proofs, which is the ability to see that, and why,
an argument is convincing
\item proof analysis, which includes the ability to analyze simple proofs to
recognize structure
\item problem recognition, which is the ability to see that a problem is one that
matches a known solution technique
\item transformational approach, which is considering the consequences of
varying features of the problem
\item axiomatic approach, which is the exploration of the consequences of
definitions
\item construction of valid arguments, which is to synthesize deductions with
component parts, including warrants
\end{itemize}
\section{Application of Findings}
\section{ Perspective on Future Directions}
You can’t perform that action at this time.