diff --git a/HW4/README.md b/HW4/README.md
new file mode 100644
index 0000000..0b8a5f8
--- /dev/null
+++ b/HW4/README.md
@@ -0,0 +1,37 @@
+# Homework #3
+## due 3/1/17 by 11:59pm
+
+
+1. Use your repository 'roots_and_optimization'. Document all the HW4 work under the
+heading `# Homework #4` in your `README.md` file
+
+ a. Create a function called 'collar_potential_energy' that computes the total
+ potential energy of a collar connected to a spring and sliding on a rod. As shown in
+ the figure given a position, xc, and angle, theta:
+
+ ![Collar-mass on an inclined rod](collar_mass.png)
+
+ The spring is unstretched when x_C=0.5 m. The potential energy due to gravity is:
+
+ PE_g=m x_C\*g\*sin(theta)
+
+ where m=0.5 kg, and g is the acceleration due to gravity,
+
+ and the potential energy due to the spring is:
+
+ PE_s=1/2\*K \*(DL)^2
+
+ where DL = 0.5 - sqrt(0.5^2+(0.5-x_C)^2)
+
+ b. Use the `goldmin.m` function to solve for the minimum potential energy at xc when
+ theta=0. *create an anonymous function with `@(x) collar_potential_energy(x,theta)` in
+ the input for goldmin. Be sure to include the script that solves for xc*
+
+ c. Create a for-loop that solves for the minimum potential energy position, xc, at a
+ given angle, theta, for theta = 0..90 degrees.
+
+ d. Include a plot of xc vs theta. `plot(theta,xc)` with
+
+ `![Steady-state position of collar on rod at angle theta](plot.png)`
+
+3. Commit your changes to your repository. Sync your local repository with github.
diff --git a/HW4/collar_mass.png b/HW4/collar_mass.png
new file mode 100644
index 0000000..f9b2836
Binary files /dev/null and b/HW4/collar_mass.png differ
diff --git a/HW4/collar_mass.svg b/HW4/collar_mass.svg
new file mode 100644
index 0000000..cc18c3d
--- /dev/null
+++ b/HW4/collar_mass.svg
@@ -0,0 +1,270 @@
+
+
+
+
diff --git a/lecture_10/lecture_10.aux b/lecture_10/lecture_10.aux
index 14a6f0d..d8d4c62 100644
--- a/lecture_10/lecture_10.aux
+++ b/lecture_10/lecture_10.aux
@@ -28,13 +28,13 @@
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Springs-masses\relax }}{4}{figure.caption.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Automate Gauss Elimination}{6}{subsection.1.2}}
\newlabel{automate-gauss-elimination}{{1.2}{6}{Automate Gauss Elimination}{subsection.1.2}{}}
-\@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Problem (Diagonal element is zero)}{6}{subsection.1.3}}
-\newlabel{problem-diagonal-element-is-zero}{{1.3}{6}{Problem (Diagonal element is zero)}{subsection.1.3}{}}
-\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.1}Spring-Mass System again}{8}{subsubsection.1.3.1}}
-\newlabel{spring-mass-system-again}{{1.3.1}{8}{Spring-Mass System again}{subsubsection.1.3.1}{}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Problem (Diagonal element is zero)}{7}{subsection.1.3}}
+\newlabel{problem-diagonal-element-is-zero}{{1.3}{7}{Problem (Diagonal element is zero)}{subsection.1.3}{}}
+\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.1}Spring-Mass System again}{9}{subsubsection.1.3.1}}
+\newlabel{spring-mass-system-again}{{1.3.1}{9}{Spring-Mass System again}{subsubsection.1.3.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Springs-masses\relax }}{9}{figure.caption.2}}
-\@writefile{toc}{\contentsline {subsection}{\numberline {1.4}Tridiagonal matrix}{9}{subsection.1.4}}
-\newlabel{tridiagonal-matrix}{{1.4}{9}{Tridiagonal matrix}{subsection.1.4}{}}
\gdef \LT@i {\LT@entry
- {2}{67.64778pt}\LT@entry
+ {2}{61.69104pt}\LT@entry
{1}{261.39424pt}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {1.4}Tridiagonal matrix}{10}{subsection.1.4}}
+\newlabel{tridiagonal-matrix}{{1.4}{10}{Tridiagonal matrix}{subsection.1.4}{}}
diff --git a/lecture_10/lecture_10.ipynb b/lecture_10/lecture_10.ipynb
index 78e529d..46d4f00 100644
--- a/lecture_10/lecture_10.ipynb
+++ b/lecture_10/lecture_10.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 1,
"metadata": {
"collapsed": true
},
@@ -13,7 +13,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 2,
"metadata": {
"collapsed": true
},
@@ -58,7 +58,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 3,
"metadata": {
"collapsed": false
},
@@ -223,6 +223,30 @@
"plot(x11,x21,x21,x22)"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ans =\n",
+ "\n",
+ " 0.40000\n",
+ " 0.20000\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "A=[1,3;2,1]; y=[1;1];\n",
+ "A\\y % matlab's Ax=y solution for x"
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {},
@@ -251,20 +275,11 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "error: 'X22' undefined near line 1 column 16\n",
- "error: 'X13' undefined near line 1 column 14\n",
- "error: evaluating argument list element number 3\n"
- ]
- },
{
"data": {
"image/svg+xml": [
@@ -312,282 +327,357 @@
"\n",
"\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t-2\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t-1.5\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t-1\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t-0.5\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t0\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t0.5\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t1\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t1.5\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t2\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t-2\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t-1.5\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t-1\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t-0.5\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t0\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t0.5\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t1\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t1.5\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t2\n",
"\t\n",
"\n",
"\n",
"\n",
+ "\n",
+ "\t\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\t\n",
- "\t\t-6\n",
+ "\t\t\n",
+ "\t\t-30\n",
"\t\n",
"\n",
"\n",
"\n",
"\n",
- "\t\n",
+ "\t\n",
+ "\n",
+ "\t\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\t\n",
- "\t\t-4\n",
+ "\t\t\n",
+ "\t\t-20\n",
"\t\n",
"\n",
"\n",
"\n",
"\n",
- "\t\n",
+ "\t\n",
+ "\n",
+ "\t\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\t\n",
- "\t\t-2\n",
+ "\t\t\n",
+ "\t\t-10\n",
"\t\n",
"\n",
"\n",
"\n",
"\n",
- "\t\n",
+ "\t\n",
+ "\n",
+ "\t\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t0\n",
"\t\n",
"\n",
"\n",
"\n",
"\n",
- "\t\n",
+ "\t\n",
+ "\n",
+ "\t\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\t\n",
- "\t\t2\n",
+ "\t\t\n",
+ "\t\t10\n",
"\t\n",
"\n",
"\n",
"\n",
"\n",
- "\t\n",
+ "\t\n",
+ "\n",
+ "\t\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\t\n",
- "\t\t4\n",
+ "\t\t\n",
+ "\t\t20\n",
"\t\n",
"\n",
"\n",
"\n",
"\n",
- "\t\n",
+ "\t\n",
+ "\n",
+ "\t\n",
+ "\n",
+ "\t\n",
"\n",
- "\t\t\n",
- "\t\t6\n",
+ "\t\t\n",
+ "\t\t30\n",
"\t\n",
"\n",
"\n",
"\n",
"\n",
- "\t\n",
- "\n",
- "\t\t\n",
- "\t\t8\n",
+ "\t\t\n",
+ "\t\tx3\n",
"\t\n",
"\n",
"\n",
"\n",
- "\n",
- "\t\n",
"\tgnuplot_plot_1a\n",
- "\n",
+ "\n",
"\n",
"\n",
- "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n",
+ "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n",
"\t\n",
"\tgnuplot_plot_2a\n",
"\n",
- "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n",
+ "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n",
"\t\n",
"\tgnuplot_plot_3a\n",
- "\n",
+ "\n",
+ "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n",
+ "\t\n",
+ "\tgnuplot_plot_4a\n",
+ "\n",
"\n",
"\n",
- "\t\n",
"\t\n",
"\n",
"\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\n",
"\n",
- "\t\n",
+ "\t\t\n",
+ "\t\tx1\n",
+ "\t\n",
+ "\n",
"\n",
- "\t\n",
+ "\t\n",
+ "\t\tx2\n",
+ "\t\n",
+ "\n",
+ "\n",
+ "\t\n",
+ "\t\tx3\n",
+ "\t\n",
+ "\n",
"\n",
- "\t\n",
+ "\n",
"\n",
""
],
@@ -600,18 +690,19 @@
}
],
"source": [
- "x11=linspace(-2,2,5);\n",
- "x12=linspace(-2,2,5);\n",
+ "N=25;\n",
+ "x11=linspace(-2,2,N);\n",
+ "x12=linspace(-2,2,N);\n",
"[X11,X12]=meshgrid(x11,x12);\n",
- "X13=1-10*X11-2*X22;\n",
+ "X13=1-10*X11-2*X12;\n",
"\n",
- "x21=linspace(-2,2,5);\n",
- "x22=linspace(-2,2,5);\n",
+ "x21=linspace(-2,2,N);\n",
+ "x22=linspace(-2,2,N);\n",
"[X21,X22]=meshgrid(x21,x22);\n",
"X23=1-2*X11-X22;\n",
"\n",
- "x31=linspace(-2,2,5);\n",
- "x32=linspace(-2,2,5);\n",
+ "x31=linspace(-2,2,N);\n",
+ "x32=linspace(-2,2,N);\n",
"[X31,X32]=meshgrid(x31,x32);\n",
"X33=1/10*(1-X31-2*X32);\n",
"\n",
@@ -621,7 +712,10 @@
"mesh(X31,X32,X33)\n",
"x=[10,2, 1;2,1, 1; 1, 2, 10]\\[1;1;1];\n",
"plot3(x(1),x(2),x(3),'o')\n",
- "view(45,45)"
+ "xlabel('x1')\n",
+ "ylabel('x2')\n",
+ "zlabel('x3')\n",
+ "view(10,45)"
]
},
{
@@ -676,7 +770,7 @@
"\n",
"then, $3/5x_{2}+4/5(-1/5)=1$ so $x_{2}=\\frac{8}{5}$\n",
"\n",
- "finally, $10x_{1}+2(8/5)"
+ "finally, $10x_{1}+2(8/5)+1(-\\frac{1}{5})=1$"
]
},
{
@@ -720,7 +814,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 10,
"metadata": {
"collapsed": false
},
@@ -759,7 +853,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 11,
"metadata": {
"collapsed": false
},
@@ -785,7 +879,7 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 12,
"metadata": {
"collapsed": false
},
@@ -811,7 +905,7 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 13,
"metadata": {
"collapsed": false
},
@@ -836,7 +930,7 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 14,
"metadata": {
"collapsed": false
},
@@ -862,7 +956,7 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 15,
"metadata": {
"collapsed": false
},
@@ -898,7 +992,7 @@
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 16,
"metadata": {
"collapsed": false
},
@@ -962,7 +1056,7 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 17,
"metadata": {
"collapsed": false
},
@@ -1000,7 +1094,7 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 32,
"metadata": {
"collapsed": false
},
@@ -1031,7 +1125,7 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 33,
"metadata": {
"collapsed": false
},
@@ -1062,7 +1156,7 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 34,
"metadata": {
"collapsed": false
},
@@ -1096,6 +1190,28 @@
"format short"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ans = -3.0000\n",
+ "ans = 3.0000\n"
+ ]
+ }
+ ],
+ "source": [
+ "% determinant is (-1)^(number_of_pivots)*diagonal_elements\n",
+ "det(Ab)\n",
+ "Aug(1,1)*Aug(2,2)"
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {},
@@ -1138,7 +1254,7 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 24,
"metadata": {
"collapsed": false
},
@@ -1211,13 +1327,13 @@
"\n",
"|method |Number of Floating point operations for n$\\times$n-matrix|\n",
"|----------------|---------|\n",
- "| Naive Gauss | n-cubed |\n",
+ "| Gauss | n-cubed |\n",
"| Tridiagonal | n |"
]
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 25,
"metadata": {
"collapsed": false
},
@@ -1229,6 +1345,13 @@
"ans =\n",
"\n",
" 9.8100 27.4680 61.8030 101.0430\n",
+ "\n",
+ "ans =\n",
+ "\n",
+ " 9.8100\n",
+ " 27.4680\n",
+ " 61.8030\n",
+ " 101.0430\n",
"\n"
]
}
@@ -1237,12 +1360,13 @@
"e=[0;-5;-2;-1];\n",
"g=[-5;-2;-1;0];\n",
"f=[15;7;3;1];\n",
- "Tridiag(e,f,g,y)\n"
+ "Tridiag(e,f,g,y)\n",
+ "K\\y\n"
]
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 26,
"metadata": {
"collapsed": true
},
@@ -1265,7 +1389,7 @@
" x = GaussPivot(A,b);\n",
" t_GE(n) = toc;\n",
" tic;\n",
- " x = GaussPivot(Atd,b);\n",
+ " x = A\\b;\n",
" t_GE_tridiag(n) = toc;\n",
" tic;\n",
" x = Tridiag(e,f,g,b);\n",
@@ -1275,7 +1399,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 28,
"metadata": {
"collapsed": false
},
@@ -1329,26 +1453,31 @@
"\n",
"\n",
"\t\t\n",
+ "\t\t10-5\n",
+ "\t\n",
+ "\n",
+ "\n",
+ "\t\t\n",
"\t\t10-4\n",
"\t\n",
"\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t10-3\n",
"\t\n",
"\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t10-2\n",
"\t\n",
"\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t10-1\n",
"\t\n",
"\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t100\n",
"\t\n",
"\n",
@@ -1358,21 +1487,16 @@
"\t\n",
"\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t101\n",
"\t\n",
"\n",
"\n",
- "\t\t\n",
+ "\t\t\n",
"\t\t102\n",
"\t\n",
"\n",
"\n",
- "\t\t\n",
- "\t\t103\n",
- "\t\n",
- "\n",
- "\n",
"\n",
"\n",
"\t\n",
@@ -1388,19 +1512,38 @@
"\n",
"\n",
"\n",
- "\tgnuplot_plot_1a\n",
- "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\t\n",
+ "\tGauss elim\n",
+ "\n",
"\n",
"\n",
- "\t\n",
+ "\t\n",
+ "\t\tGauss elim\n",
"\t\n",
- "\tgnuplot_plot_2a\n",
+ "\n",
"\n",
- "\t\n",
+ "\t\n",
"\t\n",
- "\tgnuplot_plot_3a\n",
+ "\tMatlab \\\n",
+ "\n",
+ "\t\n",
+ "\t\tMatlab \n",
+ "\t\n",
+ "\n",
+ "\n",
+ "\t\n",
+ "\t\n",
+ "\tTriDiag\n",
"\n",
- "\t\n",
+ "\t\n",
+ "\t\tTriDiag\n",
+ "\t\n",
+ "\n",
+ "\n",
+ "\t\n",
"\t\n",
"\n",
"\n",
@@ -1422,12 +1565,92 @@
}
],
"source": [
- "n=1:200;\n",
+ "n=1:100;\n",
"loglog(n,t_GE,n,t_TD,n,t_GE_tridiag)\n",
+ "legend('Gauss elim','Matlab \\','TriDiag')\n",
"xlabel('number of elements')\n",
"ylabel('time (s)')"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x =\n",
+ "\n",
+ " 9.8100\n",
+ " 27.4680\n",
+ " 61.8030\n",
+ " 101.0430\n",
+ "\n",
+ "Aug =\n",
+ "\n",
+ " 15.00000 -5.00000 0.00000 0.00000 9.81000\n",
+ " 0.00000 5.33333 -2.00000 0.00000 22.89000\n",
+ " 0.00000 0.00000 2.25000 -1.00000 38.01375\n",
+ " 0.00000 0.00000 0.00000 0.55556 56.13500\n",
+ "\n",
+ "npivots = 0\n"
+ ]
+ }
+ ],
+ "source": [
+ "[x,Aug,npivots]=GaussPivot(K,y)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "A =\n",
+ "\n",
+ " 15.00000 -5.00000 0.00000 0.00000\n",
+ " 0.00000 5.33333 -2.00000 0.00000\n",
+ " 0.00000 0.00000 2.25000 -1.00000\n",
+ " 0.00000 0.00000 0.00000 0.55556\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "A=Aug(1:4,1:4)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ans = 100.00\n",
+ "detA = 100.00\n"
+ ]
+ }
+ ],
+ "source": [
+ "det(A)\n",
+ "detA=A(1,1)*A(2,2)*A(3,3)*A(4,4)"
+ ]
+ },
{
"cell_type": "code",
"execution_count": null,
diff --git a/lecture_10/lecture_10.log b/lecture_10/lecture_10.log
index 088d911..9e3113d 100644
--- a/lecture_10/lecture_10.log
+++ b/lecture_10/lecture_10.log
@@ -1,4 +1,4 @@
-This is pdfTeX, Version 3.14159265-2.6-1.40.16 (TeX Live 2015/Debian) (preloaded format=pdflatex 2017.1.11) 20 FEB 2017 17:21
+This is pdfTeX, Version 3.14159265-2.6-1.40.16 (TeX Live 2015/Debian) (preloaded format=pdflatex 2017.1.11) 21 FEB 2017 11:46
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.
@@ -772,28 +772,27 @@ Underfull \hbox (badness 10000) in paragraph at lines 323--324
[]
-[2 <./lecture_10_files/lecture_10_3_0.pdf>]
-LaTeX Font Info: Try loading font information for TS1+cmtt on input line 359
+LaTeX Font Info: Try loading font information for TS1+cmtt on input line 327
.
-
(/usr/share/texlive/texmf-dist/tex/latex/base/ts1cmtt.fd
File: ts1cmtt.fd 2014/09/29 v2.5h Standard LaTeX font definitions
-)
-
-File: lecture_10_files/lecture_10_5_1.pdf Graphic file (type pdf)
+) [2 <./lecture_10_files/lecture_10_3_0.pdf>]
+
+File: lecture_10_files/lecture_10_6_0.pdf Graphic file (type pdf)
-
-Package pdftex.def Info: lecture_10_files/lecture_10_5_1.pdf used on input line
- 371.
+
+Package pdftex.def Info: lecture_10_files/lecture_10_6_0.pdf used on input line
+ 382.
(pdftex.def) Requested size: 449.6789pt x 337.25917pt.
-Underfull \hbox (badness 10000) in paragraph at lines 373--374
+Underfull \hbox (badness 10000) in paragraph at lines 384--385
[]
+[3 <./lecture_10_files/lecture_10_6_0.pdf>]
LaTeX Font Info: Font shape `T1/ppl/bx/n' in size <12> not available
-(Font) Font shape `T1/ppl/b/n' tried instead on input line 378.
-[3 <./lecture_10_files/lecture_10_5_1.pdf>]
+(Font) Font shape `T1/ppl/b/n' tried instead on input line 389.
+
! LaTeX Error: Unknown graphics extension: .svg.
@@ -801,10 +800,10 @@ See the LaTeX manual or LaTeX Companion for explanation.
Type H for immediate help.
...
-l.433 ...egraphics{../lecture_09/mass_springs.svg}
+l.444 ...egraphics{../lecture_09/mass_springs.svg}
?
-[4] [5] [6] [7]
+[4] [5] [6] [7] [8]
! LaTeX Error: Unknown graphics extension: .svg.
@@ -812,45 +811,45 @@ See the LaTeX manual or LaTeX Companion for explanation.
Type H for immediate help.
...
-l.712 ...egraphics{../lecture_09/mass_springs.svg}
+l.735 ...egraphics{../lecture_09/mass_springs.svg}
?
-[8] [9]
+[9] [10]
LaTeX Font Info: Font shape `T1/cmtt/bx/n' in size <10.95> not available
-(Font) Font shape `T1/cmtt/m/n' tried instead on input line 812.
- [10]
-
-File: lecture_10_files/lecture_10_27_0.pdf Graphic file (type pdf)
-
-
-Package pdftex.def Info: lecture_10_files/lecture_10_27_0.pdf used on input lin
-e 839.
-(pdftex.def) Requested size: 449.6789pt x 337.25917pt.
+(Font) Font shape `T1/cmtt/m/n' tried instead on input line 843.
+
+File: lecture_10_files/lecture_10_29_0.pdf Graphic file (type pdf)
-Underfull \hbox (badness 10000) in paragraph at lines 841--842
+
+Package pdftex.def Info: lecture_10_files/lecture_10_29_0.pdf used on input lin
+e 871.
+(pdftex.def) Requested size: 449.6789pt x 337.25917pt.
+ [11]
+Underfull \hbox (badness 10000) in paragraph at lines 873--874
[]
-Package atveryend Info: Empty hook `BeforeClearDocument' on input line 852.
-[11 <./lecture_10_files/lecture_10_27_0.pdf>]
-Package atveryend Info: Empty hook `AfterLastShipout' on input line 852.
+[12 <./lecture_10_files/lecture_10_29_0.pdf>]
+Package atveryend Info: Empty hook `BeforeClearDocument' on input line 933.
+ [13]
+Package atveryend Info: Empty hook `AfterLastShipout' on input line 933.
(./lecture_10.aux)
-Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 852.
-Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 852.
+Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 933.
+Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 933.
Package rerunfilecheck Info: File `lecture_10.out' has not changed.
(rerunfilecheck) Checksum: F41F49C8B1F4406369908EBDD24F2572;629.
LaTeX Warning: There were multiply-defined labels.
-Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 852.
+Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 933.
)
Here is how much of TeX's memory you used:
- 10939 strings out of 493029
- 163764 string characters out of 6136234
- 273062 words of memory out of 5000000
- 14225 multiletter control sequences out of 15000+600000
- 35480 words of font info for 90 fonts, out of 8000000 for 9000
+ 10943 strings out of 493029
+ 163805 string characters out of 6136234
+ 273063 words of memory out of 5000000
+ 14226 multiletter control sequences out of 15000+600000
+ 35779 words of font info for 91 fonts, out of 8000000 for 9000
1141 hyphenation exceptions out of 8191
36i,8n,77p,494b,465s stack positions out of 5000i,500n,10000p,200000b,80000s
{/usr/share/texmf/fonts/enc/dvips/cm-super/cm-super-ts1.enc}{/usr/share/texli
@@ -863,10 +862,10 @@ fb>
-Output written on lecture_10.pdf (11 pages, 162693 bytes).
+Output written on lecture_10.pdf (13 pages, 190161 bytes).
PDF statistics:
- 165 PDF objects out of 1000 (max. 8388607)
- 133 compressed objects within 2 object streams
- 27 named destinations out of 1000 (max. 500000)
+ 176 PDF objects out of 1000 (max. 8388607)
+ 142 compressed objects within 2 object streams
+ 29 named destinations out of 1000 (max. 500000)
80 words of extra memory for PDF output out of 10000 (max. 10000000)
diff --git a/lecture_10/lecture_10.pdf b/lecture_10/lecture_10.pdf
index 447bbe2..d75909f 100644
Binary files a/lecture_10/lecture_10.pdf and b/lecture_10/lecture_10.pdf differ
diff --git a/lecture_10/lecture_10.tex b/lecture_10/lecture_10.tex
index 1131881..633c945 100644
--- a/lecture_10/lecture_10.tex
+++ b/lecture_10/lecture_10.tex
@@ -277,11 +277,11 @@
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}14}]:} \PY{c}{\PYZpc{}plot \PYZhy{}\PYZhy{}format svg}
+{\color{incolor}In [{\color{incolor}1}]:} \PY{c}{\PYZpc{}plot \PYZhy{}\PYZhy{}format svg}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}15}]:} \PY{n}{setdefaults}
+{\color{incolor}In [{\color{incolor}2}]:} \PY{n}{setdefaults}
\end{Verbatim}
\section{Gauss Elimination}\label{gauss-elimination}
@@ -310,11 +310,11 @@ \subsubsection{Solving sets of equations with matrix
lines:
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}16}]:} \PY{n}{x21}\PY{p}{=}\PY{p}{[}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{:}\PY{l+m+mi}{2}\PY{p}{]}\PY{p}{;}
- \PY{n}{x11}\PY{p}{=}\PY{l+m+mi}{1}\PY{o}{\PYZhy{}}\PY{l+m+mi}{3}\PY{o}{*}\PY{n}{x21}\PY{p}{;}
- \PY{n}{x21}\PY{p}{=}\PY{p}{[}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{:}\PY{l+m+mi}{2}\PY{p}{]}\PY{p}{;}
- \PY{n}{x22}\PY{p}{=}\PY{l+m+mi}{1}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{o}{*}\PY{n}{x21}\PY{p}{;}
- \PY{n+nb}{plot}\PY{p}{(}\PY{n}{x11}\PY{p}{,}\PY{n}{x21}\PY{p}{,}\PY{n}{x21}\PY{p}{,}\PY{n}{x22}\PY{p}{)}
+{\color{incolor}In [{\color{incolor}3}]:} \PY{n}{x21}\PY{p}{=}\PY{p}{[}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{:}\PY{l+m+mi}{2}\PY{p}{]}\PY{p}{;}
+ \PY{n}{x11}\PY{p}{=}\PY{l+m+mi}{1}\PY{o}{\PYZhy{}}\PY{l+m+mi}{3}\PY{o}{*}\PY{n}{x21}\PY{p}{;}
+ \PY{n}{x21}\PY{p}{=}\PY{p}{[}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{:}\PY{l+m+mi}{2}\PY{p}{]}\PY{p}{;}
+ \PY{n}{x22}\PY{p}{=}\PY{l+m+mi}{1}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{o}{*}\PY{n}{x21}\PY{p}{;}
+ \PY{n+nb}{plot}\PY{p}{(}\PY{n}{x11}\PY{p}{,}\PY{n}{x21}\PY{p}{,}\PY{n}{x21}\PY{p}{,}\PY{n}{x22}\PY{p}{)}
\end{Verbatim}
\begin{center}
@@ -322,7 +322,21 @@ \subsubsection{Solving sets of equations with matrix
\end{center}
{ \hspace*{\fill} \\}
- For a $3\times3$ matrix, the solution is the intersection of the 3
+ \begin{Verbatim}[commandchars=\\\{\}]
+{\color{incolor}In [{\color{incolor}4}]:} \PY{n}{A}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{1}\PY{p}{,}\PY{l+m+mi}{3}\PY{p}{;}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{]}\PY{p}{;} \PY{n}{y}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{1}\PY{p}{;}\PY{l+m+mi}{1}\PY{p}{]}\PY{p}{;}
+ \PY{n}{A}\PY{o}{\PYZbs{}}\PY{n}{y} \PY{c}{\PYZpc{} matlab\PYZsq{}s Ax=y solution for x}
+\end{Verbatim}
+
+ \begin{Verbatim}[commandchars=\\\{\}]
+ans =
+
+ 0.40000
+ 0.20000
+
+
+ \end{Verbatim}
+
+ For a \(3\times3\) matrix, the solution is the intersection of the 3
planes.
\(10x_{1}+2x_{2}+x_{3}=1\)
@@ -331,44 +345,41 @@ \subsubsection{Solving sets of equations with matrix
\(x_{1}+2x_{2}+10x_{3}=1\)
-$\left[ \begin{array}{ccc} 10 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 10\end{array} \right]
+$\left[ \begin{array}{ccc} 10 & 2 & 1\\ 2 & 1 & 1 \\ 1 & 2 & 10\end{array} \right]
\left[\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \end{array}\right]=
\left[\begin{array}{c} 1 \\ 1 \\ 1\end{array}\right]$
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}17}]:} \PY{n}{x11}\PY{p}{=}\PY{n+nb}{linspace}\PY{p}{(}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{5}\PY{p}{)}\PY{p}{;}
- \PY{n}{x12}\PY{p}{=}\PY{n+nb}{linspace}\PY{p}{(}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{5}\PY{p}{)}\PY{p}{;}
- \PY{p}{[}\PY{n}{X11}\PY{p}{,}\PY{n}{X12}\PY{p}{]}\PY{p}{=}\PY{n+nb}{meshgrid}\PY{p}{(}\PY{n}{x11}\PY{p}{,}\PY{n}{x12}\PY{p}{)}\PY{p}{;}
- \PY{n}{X13}\PY{p}{=}\PY{l+m+mi}{1}\PY{o}{\PYZhy{}}\PY{l+m+mi}{10}\PY{o}{*}\PY{n}{X11}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{o}{*}\PY{n}{X22}\PY{p}{;}
-
- \PY{n}{x21}\PY{p}{=}\PY{n+nb}{linspace}\PY{p}{(}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{5}\PY{p}{)}\PY{p}{;}
- \PY{n}{x22}\PY{p}{=}\PY{n+nb}{linspace}\PY{p}{(}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{5}\PY{p}{)}\PY{p}{;}
- \PY{p}{[}\PY{n}{X21}\PY{p}{,}\PY{n}{X22}\PY{p}{]}\PY{p}{=}\PY{n+nb}{meshgrid}\PY{p}{(}\PY{n}{x21}\PY{p}{,}\PY{n}{x22}\PY{p}{)}\PY{p}{;}
- \PY{n}{X23}\PY{p}{=}\PY{l+m+mi}{1}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{o}{*}\PY{n}{X11}\PY{o}{\PYZhy{}}\PY{n}{X22}\PY{p}{;}
-
- \PY{n}{x31}\PY{p}{=}\PY{n+nb}{linspace}\PY{p}{(}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{5}\PY{p}{)}\PY{p}{;}
- \PY{n}{x32}\PY{p}{=}\PY{n+nb}{linspace}\PY{p}{(}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{5}\PY{p}{)}\PY{p}{;}
- \PY{p}{[}\PY{n}{X31}\PY{p}{,}\PY{n}{X32}\PY{p}{]}\PY{p}{=}\PY{n+nb}{meshgrid}\PY{p}{(}\PY{n}{x31}\PY{p}{,}\PY{n}{x32}\PY{p}{)}\PY{p}{;}
- \PY{n}{X33}\PY{p}{=}\PY{l+m+mi}{1}\PY{o}{/}\PY{l+m+mi}{10}\PY{o}{*}\PY{p}{(}\PY{l+m+mi}{1}\PY{o}{\PYZhy{}}\PY{n}{X31}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{o}{*}\PY{n}{X32}\PY{p}{)}\PY{p}{;}
-
- \PY{n+nb}{mesh}\PY{p}{(}\PY{n}{X11}\PY{p}{,}\PY{n}{X12}\PY{p}{,}\PY{n}{X13}\PY{p}{)}\PY{p}{;}
- \PY{n+nb}{hold} \PY{n}{on}\PY{p}{;}
- \PY{n+nb}{mesh}\PY{p}{(}\PY{n}{X21}\PY{p}{,}\PY{n}{X22}\PY{p}{,}\PY{n}{X23}\PY{p}{)}
- \PY{n+nb}{mesh}\PY{p}{(}\PY{n}{X31}\PY{p}{,}\PY{n}{X32}\PY{p}{,}\PY{n}{X33}\PY{p}{)}
- \PY{n}{x}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{10}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{;}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{;} \PY{l+m+mi}{1}\PY{p}{,} \PY{l+m+mi}{2}\PY{p}{,} \PY{l+m+mi}{10}\PY{p}{]}\PY{o}{\PYZbs{}}\PY{p}{[}\PY{l+m+mi}{1}\PY{p}{;}\PY{l+m+mi}{1}\PY{p}{;}\PY{l+m+mi}{1}\PY{p}{]}\PY{p}{;}
- \PY{n}{plot3}\PY{p}{(}\PY{n}{x}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{)}\PY{p}{,}\PY{n}{x}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{,}\PY{n}{x}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{)}\PY{p}{,}\PY{l+s}{\PYZsq{}}\PY{l+s}{o\PYZsq{}}\PY{p}{)}
- \PY{n+nb}{view}\PY{p}{(}\PY{l+m+mi}{45}\PY{p}{,}\PY{l+m+mi}{45}\PY{p}{)}
+{\color{incolor}In [{\color{incolor}9}]:} \PY{n}{N}\PY{p}{=}\PY{l+m+mi}{25}\PY{p}{;}
+ \PY{n}{x11}\PY{p}{=}\PY{n+nb}{linspace}\PY{p}{(}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,}\PY{n}{N}\PY{p}{)}\PY{p}{;}
+ \PY{n}{x12}\PY{p}{=}\PY{n+nb}{linspace}\PY{p}{(}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,}\PY{n}{N}\PY{p}{)}\PY{p}{;}
+ \PY{p}{[}\PY{n}{X11}\PY{p}{,}\PY{n}{X12}\PY{p}{]}\PY{p}{=}\PY{n+nb}{meshgrid}\PY{p}{(}\PY{n}{x11}\PY{p}{,}\PY{n}{x12}\PY{p}{)}\PY{p}{;}
+ \PY{n}{X13}\PY{p}{=}\PY{l+m+mi}{1}\PY{o}{\PYZhy{}}\PY{l+m+mi}{10}\PY{o}{*}\PY{n}{X11}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{o}{*}\PY{n}{X12}\PY{p}{;}
+
+ \PY{n}{x21}\PY{p}{=}\PY{n+nb}{linspace}\PY{p}{(}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,}\PY{n}{N}\PY{p}{)}\PY{p}{;}
+ \PY{n}{x22}\PY{p}{=}\PY{n+nb}{linspace}\PY{p}{(}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,}\PY{n}{N}\PY{p}{)}\PY{p}{;}
+ \PY{p}{[}\PY{n}{X21}\PY{p}{,}\PY{n}{X22}\PY{p}{]}\PY{p}{=}\PY{n+nb}{meshgrid}\PY{p}{(}\PY{n}{x21}\PY{p}{,}\PY{n}{x22}\PY{p}{)}\PY{p}{;}
+ \PY{n}{X23}\PY{p}{=}\PY{l+m+mi}{1}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{o}{*}\PY{n}{X11}\PY{o}{\PYZhy{}}\PY{n}{X22}\PY{p}{;}
+
+ \PY{n}{x31}\PY{p}{=}\PY{n+nb}{linspace}\PY{p}{(}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,}\PY{n}{N}\PY{p}{)}\PY{p}{;}
+ \PY{n}{x32}\PY{p}{=}\PY{n+nb}{linspace}\PY{p}{(}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,}\PY{n}{N}\PY{p}{)}\PY{p}{;}
+ \PY{p}{[}\PY{n}{X31}\PY{p}{,}\PY{n}{X32}\PY{p}{]}\PY{p}{=}\PY{n+nb}{meshgrid}\PY{p}{(}\PY{n}{x31}\PY{p}{,}\PY{n}{x32}\PY{p}{)}\PY{p}{;}
+ \PY{n}{X33}\PY{p}{=}\PY{l+m+mi}{1}\PY{o}{/}\PY{l+m+mi}{10}\PY{o}{*}\PY{p}{(}\PY{l+m+mi}{1}\PY{o}{\PYZhy{}}\PY{n}{X31}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{o}{*}\PY{n}{X32}\PY{p}{)}\PY{p}{;}
+
+ \PY{n+nb}{mesh}\PY{p}{(}\PY{n}{X11}\PY{p}{,}\PY{n}{X12}\PY{p}{,}\PY{n}{X13}\PY{p}{)}\PY{p}{;}
+ \PY{n+nb}{hold} \PY{n}{on}\PY{p}{;}
+ \PY{n+nb}{mesh}\PY{p}{(}\PY{n}{X21}\PY{p}{,}\PY{n}{X22}\PY{p}{,}\PY{n}{X23}\PY{p}{)}
+ \PY{n+nb}{mesh}\PY{p}{(}\PY{n}{X31}\PY{p}{,}\PY{n}{X32}\PY{p}{,}\PY{n}{X33}\PY{p}{)}
+ \PY{n}{x}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{10}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{;}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{;} \PY{l+m+mi}{1}\PY{p}{,} \PY{l+m+mi}{2}\PY{p}{,} \PY{l+m+mi}{10}\PY{p}{]}\PY{o}{\PYZbs{}}\PY{p}{[}\PY{l+m+mi}{1}\PY{p}{;}\PY{l+m+mi}{1}\PY{p}{;}\PY{l+m+mi}{1}\PY{p}{]}\PY{p}{;}
+ \PY{n}{plot3}\PY{p}{(}\PY{n}{x}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{)}\PY{p}{,}\PY{n}{x}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{,}\PY{n}{x}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{)}\PY{p}{,}\PY{l+s}{\PYZsq{}}\PY{l+s}{o\PYZsq{}}\PY{p}{)}
+ \PY{n+nb}{xlabel}\PY{p}{(}\PY{l+s}{\PYZsq{}}\PY{l+s}{x1\PYZsq{}}\PY{p}{)}
+ \PY{n+nb}{ylabel}\PY{p}{(}\PY{l+s}{\PYZsq{}}\PY{l+s}{x2\PYZsq{}}\PY{p}{)}
+ \PY{n+nb}{zlabel}\PY{p}{(}\PY{l+s}{\PYZsq{}}\PY{l+s}{x3\PYZsq{}}\PY{p}{)}
+ \PY{n+nb}{view}\PY{p}{(}\PY{l+m+mi}{10}\PY{p}{,}\PY{l+m+mi}{45}\PY{p}{)}
\end{Verbatim}
- \begin{Verbatim}[commandchars=\\\{\}]
-error: 'X22' undefined near line 1 column 16
-error: 'X13' undefined near line 1 column 14
-error: evaluating argument list element number 3
-
- \end{Verbatim}
-
\begin{center}
- \adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{lecture_10_files/lecture_10_5_1.pdf}
+ \adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{lecture_10_files/lecture_10_6_0.pdf}
\end{center}
{ \hspace*{\fill} \\}
@@ -416,13 +427,13 @@ \subsubsection{Solving sets of equations
10 & 2 & 1 & 1\\
0 & 3/5 & 4/5 & 4/5 \\
0 & 0 & 7.5 & -1.5\end{array}
-\right] $
+\right]$
now, \(7.5x_{3}=-1.5\) so \(x_{3}=-\frac{1}{5}\)
then, \(3/5x_{2}+4/5(-1/5)=1\) so \(x_{2}=\frac{8}{5}\)
-finally, \$10x\_\{1\}+2(8/5)
+finally, \(10x_{1}+2(8/5)+1(-\frac{1}{5})=1\)
Consider the problem again from the intro to Linear Algebra, 4 masses
are connected in series to 4 springs with K=10 N/m. What are the final
@@ -450,7 +461,7 @@ \subsubsection{Solving sets of equations
\(\left[ \begin{array}{cccc} 2k & -k & 0 & 0 \\ -k & 2k & -k & 0 \\ 0 & -k & 2k & -k \\ 0 & 0 & -k & k \end{array} \right] \left[ \begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{array} \right]= \left[ \begin{array}{c} m_{1}g \\ m_{2}g \\ m_{3}g \\ m_{4}g \end{array} \right]\)
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}18}]:} \PY{n}{k}\PY{p}{=}\PY{l+m+mi}{10}\PY{p}{;} \PY{c}{\PYZpc{} N/m}
+{\color{incolor}In [{\color{incolor}10}]:} \PY{n}{k}\PY{p}{=}\PY{l+m+mi}{10}\PY{p}{;} \PY{c}{\PYZpc{} N/m}
\PY{n}{m1}\PY{p}{=}\PY{l+m+mi}{1}\PY{p}{;} \PY{c}{\PYZpc{} kg}
\PY{n}{m2}\PY{p}{=}\PY{l+m+mi}{2}\PY{p}{;}
\PY{n}{m3}\PY{p}{=}\PY{l+m+mi}{3}\PY{p}{;}
@@ -479,7 +490,7 @@ \subsubsection{Solving sets of equations
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}19}]:} \PY{n}{K1}\PY{p}{=}\PY{p}{[}\PY{n}{K} \PY{n}{y}\PY{p}{]}\PY{p}{;}
+{\color{incolor}In [{\color{incolor}11}]:} \PY{n}{K1}\PY{p}{=}\PY{p}{[}\PY{n}{K} \PY{n}{y}\PY{p}{]}\PY{p}{;}
\PY{n}{K1}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{p}{=}\PY{n}{K1}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{o}{/}\PY{l+m+mi}{2}\PY{o}{+}\PY{n}{K1}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{,}\PY{p}{:}\PY{p}{)}
\end{Verbatim}
@@ -495,7 +506,7 @@ \subsubsection{Solving sets of equations
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}20}]:} \PY{n}{K2}\PY{p}{=}\PY{n}{K1}\PY{p}{;}
+{\color{incolor}In [{\color{incolor}12}]:} \PY{n}{K2}\PY{p}{=}\PY{n}{K1}\PY{p}{;}
\PY{n}{K2}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{p}{=}\PY{n}{K1}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{o}{*}\PY{l+m+mi}{2}\PY{o}{/}\PY{l+m+mi}{3}\PY{o}{+}\PY{n}{K1}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{,}\PY{p}{:}\PY{p}{)}
\end{Verbatim}
@@ -511,7 +522,7 @@ \subsubsection{Solving sets of equations
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}21}]:} \PY{n}{K2}\PY{p}{(}\PY{l+m+mi}{4}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{p}{=}\PY{o}{\PYZhy{}}\PY{n}{K2}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{o}{*}\PY{n}{K2}\PY{p}{(}\PY{l+m+mi}{4}\PY{p}{,}\PY{l+m+mi}{3}\PY{p}{)}\PY{o}{/}\PY{n}{K2}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{,}\PY{l+m+mi}{3}\PY{p}{)}\PY{o}{+}\PY{n}{K2}\PY{p}{(}\PY{l+m+mi}{4}\PY{p}{,}\PY{p}{:}\PY{p}{)}
+{\color{incolor}In [{\color{incolor}13}]:} \PY{n}{K2}\PY{p}{(}\PY{l+m+mi}{4}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{p}{=}\PY{o}{\PYZhy{}}\PY{n}{K2}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{o}{*}\PY{n}{K2}\PY{p}{(}\PY{l+m+mi}{4}\PY{p}{,}\PY{l+m+mi}{3}\PY{p}{)}\PY{o}{/}\PY{n}{K2}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{,}\PY{l+m+mi}{3}\PY{p}{)}\PY{o}{+}\PY{n}{K2}\PY{p}{(}\PY{l+m+mi}{4}\PY{p}{,}\PY{p}{:}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
@@ -526,7 +537,7 @@ \subsubsection{Solving sets of equations
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}22}]:} \PY{n}{yp}\PY{p}{=}\PY{n}{K2}\PY{p}{(}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{5}\PY{p}{)}\PY{p}{;}
+{\color{incolor}In [{\color{incolor}14}]:} \PY{n}{yp}\PY{p}{=}\PY{n}{K2}\PY{p}{(}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{5}\PY{p}{)}\PY{p}{;}
\PY{n}{x4}\PY{p}{=}\PY{n}{yp}\PY{p}{(}\PY{l+m+mi}{4}\PY{p}{)}\PY{o}{/}\PY{n}{K2}\PY{p}{(}\PY{l+m+mi}{4}\PY{p}{,}\PY{l+m+mi}{4}\PY{p}{)}
\PY{n}{x3}\PY{p}{=}\PY{p}{(}\PY{n}{yp}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{)}\PY{o}{+}\PY{l+m+mi}{10}\PY{o}{*}\PY{n}{x4}\PY{p}{)}\PY{o}{/}\PY{n}{K2}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{,}\PY{l+m+mi}{3}\PY{p}{)}
\PY{n}{x2}\PY{p}{=}\PY{p}{(}\PY{n}{yp}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{)}\PY{o}{+}\PY{l+m+mi}{10}\PY{o}{*}\PY{n}{x3}\PY{p}{)}\PY{o}{/}\PY{n}{K2}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{)}
@@ -542,7 +553,7 @@ \subsubsection{Solving sets of equations
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}23}]:} \PY{n}{K}\PY{o}{\PYZbs{}}\PY{n}{y}
+{\color{incolor}In [{\color{incolor}15}]:} \PY{n}{K}\PY{o}{\PYZbs{}}\PY{n}{y}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
@@ -565,7 +576,7 @@ \subsubsection{Solving sets of equations
\texttt{x=GaussNaive(A,y)}
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}24}]:} \PY{n}{x}\PY{p}{=}\PY{n}{GaussNaive}\PY{p}{(}\PY{n}{K}\PY{p}{,}\PY{n}{y}\PY{p}{)}
+{\color{incolor}In [{\color{incolor}16}]:} \PY{n}{x}\PY{p}{=}\PY{n}{GaussNaive}\PY{p}{(}\PY{n}{K}\PY{p}{,}\PY{n}{y}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
@@ -606,7 +617,7 @@ \subsubsection{Solving sets of equations
\end{enumerate}
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}25}]:} \PY{n}{format} \PY{n}{short}
+{\color{incolor}In [{\color{incolor}17}]:} \PY{n}{format} \PY{n}{short}
\PY{n}{Aa}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{3}\PY{p}{;}\PY{l+m+mi}{4}\PY{p}{,}\PY{l+m+mi}{6}\PY{p}{,}\PY{l+m+mi}{7}\PY{p}{;}\PY{l+m+mi}{2}\PY{p}{,}\PY{o}{\PYZhy{}}\PY{l+m+mi}{3}\PY{p}{,}\PY{l+m+mi}{6}\PY{p}{]}\PY{p}{;} \PY{n}{ya}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{8}\PY{p}{;}\PY{o}{\PYZhy{}}\PY{l+m+mi}{3}\PY{p}{;}\PY{l+m+mi}{5}\PY{p}{]}\PY{p}{;}
\PY{n}{GaussNaive}\PY{p}{(}\PY{n}{Aa}\PY{p}{,}\PY{n}{ya}\PY{p}{)}
\PY{n}{Aa}\PY{o}{\PYZbs{}}\PY{n}{ya}
@@ -634,7 +645,7 @@ \subsubsection{Solving sets of equations
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}26}]:} \PY{p}{[}\PY{n}{x}\PY{p}{,}\PY{n}{Aug}\PY{p}{,}\PY{n}{npivots}\PY{p}{]}\PY{p}{=}\PY{n}{GaussPivot}\PY{p}{(}\PY{n}{Aa}\PY{p}{,}\PY{n}{ya}\PY{p}{)}
+{\color{incolor}In [{\color{incolor}32}]:} \PY{p}{[}\PY{n}{x}\PY{p}{,}\PY{n}{Aug}\PY{p}{,}\PY{n}{npivots}\PY{p}{]}\PY{p}{=}\PY{n}{GaussPivot}\PY{p}{(}\PY{n}{Aa}\PY{p}{,}\PY{n}{ya}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
@@ -655,7 +666,7 @@ \subsubsection{Solving sets of equations
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}27}]:} \PY{n}{format} \PY{n}{long}
+{\color{incolor}In [{\color{incolor}33}]:} \PY{n}{format} \PY{n}{long}
\PY{n}{Ab}\PY{p}{=}\PY{p}{[}\PY{l+m+mf}{0.3E\PYZhy{}13}\PY{p}{,}\PY{l+m+mf}{3.0000}\PY{p}{;}\PY{l+m+mf}{1.0000}\PY{p}{,}\PY{l+m+mf}{1.0000}\PY{p}{]}\PY{p}{;}\PY{n}{yb}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{2}\PY{o}{+}\PY{l+m+mf}{0.1e\PYZhy{}13}\PY{p}{;}\PY{l+m+mf}{1.0000}\PY{p}{]}\PY{p}{;}
\PY{n}{GaussNaive}\PY{p}{(}\PY{n}{Ab}\PY{p}{,}\PY{n}{yb}\PY{p}{)}
\PY{n}{Ab}\PY{o}{\PYZbs{}}\PY{n}{yb}
@@ -676,7 +687,7 @@ \subsubsection{Solving sets of equations
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}28}]:} \PY{p}{[}\PY{n}{x}\PY{p}{,}\PY{n}{Aug}\PY{p}{,}\PY{n}{npivots}\PY{p}{]}\PY{p}{=}\PY{n}{GaussPivot}\PY{p}{(}\PY{n}{Ab}\PY{p}{,}\PY{n}{yb}\PY{p}{)}
+{\color{incolor}In [{\color{incolor}34}]:} \PY{p}{[}\PY{n}{x}\PY{p}{,}\PY{n}{Aug}\PY{p}{,}\PY{n}{npivots}\PY{p}{]}\PY{p}{=}\PY{n}{GaussPivot}\PY{p}{(}\PY{n}{Ab}\PY{p}{,}\PY{n}{yb}\PY{p}{)}
\PY{n}{Ab}\PY{o}{\PYZbs{}}\PY{n}{yb}
\PY{n}{format} \PY{n}{short}
\end{Verbatim}
@@ -699,6 +710,18 @@ \subsubsection{Solving sets of equations
0.666666666666667
+ \end{Verbatim}
+
+ \begin{Verbatim}[commandchars=\\\{\}]
+{\color{incolor}In [{\color{incolor}36}]:} \PY{c}{\PYZpc{} determinant is (\PYZhy{}1)\PYZca{}(number\PYZus{}of\PYZus{}pivots)*diagonal\PYZus{}elements}
+ \PY{n+nb}{det}\PY{p}{(}\PY{n}{Ab}\PY{p}{)}
+ \PY{n}{Aug}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{)}\PY{o}{*}\PY{n}{Aug}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{)}
+\end{Verbatim}
+
+ \begin{Verbatim}[commandchars=\\\{\}]
+ans = -3.0000
+ans = 3.0000
+
\end{Verbatim}
\subsubsection{Spring-Mass System again}\label{spring-mass-system-again}
@@ -729,7 +752,7 @@ \subsubsection{Solving sets of equations
\(\left[ \begin{array}{cccc} k_1+k_2 & -k_2 & 0 & 0 \\ -k_2 & k_2+k_3 & -k_3 & 0 \\ 0 & -k_3 & k_3+k_4 & -k_4 \\ 0 & 0 & -k_4 & k_4 \end{array} \right] \left[ \begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{array} \right]= \left[ \begin{array}{c} m_{1}g \\ m_{2}g \\ m_{3}g \\ m_{4}g \end{array} \right]\)
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}29}]:} \PY{n}{k1}\PY{p}{=}\PY{l+m+mi}{10}\PY{p}{;} \PY{n}{k2}\PY{p}{=}\PY{l+m+mi}{5}\PY{p}{;}\PY{n}{k3}\PY{p}{=}\PY{l+m+mi}{2}\PY{p}{;}\PY{n}{k4}\PY{p}{=}\PY{l+m+mi}{1}\PY{p}{;} \PY{c}{\PYZpc{} N/m}
+{\color{incolor}In [{\color{incolor}24}]:} \PY{n}{k1}\PY{p}{=}\PY{l+m+mi}{10}\PY{p}{;} \PY{n}{k2}\PY{p}{=}\PY{l+m+mi}{5}\PY{p}{;}\PY{n}{k3}\PY{p}{=}\PY{l+m+mi}{2}\PY{p}{;}\PY{n}{k4}\PY{p}{=}\PY{l+m+mi}{1}\PY{p}{;} \PY{c}{\PYZpc{} N/m}
\PY{n}{m1}\PY{p}{=}\PY{l+m+mi}{1}\PY{p}{;} \PY{c}{\PYZpc{} kg}
\PY{n}{m2}\PY{p}{=}\PY{l+m+mi}{2}\PY{p}{;}
\PY{n}{m3}\PY{p}{=}\PY{l+m+mi}{3}\PY{p}{;}
@@ -782,16 +805,17 @@ \subsubsection{Solving sets of equations
n\(\times\)n-matrix\tabularnewline
\midrule
\endhead
-Naive Gauss & n-cubed\tabularnewline
+Gauss & n-cubed\tabularnewline
Tridiagonal & n\tabularnewline
\bottomrule
\end{longtable}
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}30}]:} \PY{n+nb}{e}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{;}\PY{o}{\PYZhy{}}\PY{l+m+mi}{5}\PY{p}{;}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{;}\PY{o}{\PYZhy{}}\PY{l+m+mi}{1}\PY{p}{]}\PY{p}{;}
+{\color{incolor}In [{\color{incolor}25}]:} \PY{n+nb}{e}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{;}\PY{o}{\PYZhy{}}\PY{l+m+mi}{5}\PY{p}{;}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{;}\PY{o}{\PYZhy{}}\PY{l+m+mi}{1}\PY{p}{]}\PY{p}{;}
\PY{n}{g}\PY{p}{=}\PY{p}{[}\PY{o}{\PYZhy{}}\PY{l+m+mi}{5}\PY{p}{;}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{p}{;}\PY{o}{\PYZhy{}}\PY{l+m+mi}{1}\PY{p}{;}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{;}
\PY{n}{f}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{15}\PY{p}{;}\PY{l+m+mi}{7}\PY{p}{;}\PY{l+m+mi}{3}\PY{p}{;}\PY{l+m+mi}{1}\PY{p}{]}\PY{p}{;}
\PY{n}{Tridiag}\PY{p}{(}\PY{n+nb}{e}\PY{p}{,}\PY{n}{f}\PY{p}{,}\PY{n}{g}\PY{p}{,}\PY{n}{y}\PY{p}{)}
+ \PY{n}{K}\PY{o}{\PYZbs{}}\PY{n}{y}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
@@ -799,11 +823,18 @@ \subsubsection{Solving sets of equations
9.8100 27.4680 61.8030 101.0430
+ans =
+
+ 9.8100
+ 27.4680
+ 61.8030
+ 101.0430
+
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}12}]:} \PY{c}{\PYZpc{} tic ... t=toc }
+{\color{incolor}In [{\color{incolor}26}]:} \PY{c}{\PYZpc{} tic ... t=toc }
\PY{c}{\PYZpc{} is Matlab timer used for debugging programs}
\PY{n}{t\PYZus{}GE} \PY{p}{=} \PY{n+nb}{zeros}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{,}\PY{l+m+mi}{100}\PY{p}{)}\PY{p}{;}
\PY{n}{t\PYZus{}GE\PYZus{}tridiag} \PY{p}{=} \PY{n+nb}{zeros}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{,}\PY{l+m+mi}{100}\PY{p}{)}\PY{p}{;}
@@ -820,7 +851,7 @@ \subsubsection{Solving sets of equations
\PY{n}{x} \PY{p}{=} \PY{n}{GaussPivot}\PY{p}{(}\PY{n}{A}\PY{p}{,}\PY{n}{b}\PY{p}{)}\PY{p}{;}
\PY{n}{t\PYZus{}GE}\PY{p}{(}\PY{n}{n}\PY{p}{)} \PY{p}{=} \PY{n+nb}{toc}\PY{p}{;}
\PY{n+nb}{tic}\PY{p}{;}
- \PY{n}{x} \PY{p}{=} \PY{n}{GaussPivot}\PY{p}{(}\PY{n}{Atd}\PY{p}{,}\PY{n}{b}\PY{p}{)}\PY{p}{;}
+ \PY{n}{x} \PY{p}{=} \PY{n}{A}\PY{o}{\PYZbs{}}\PY{n}{b}\PY{p}{;}
\PY{n}{t\PYZus{}GE\PYZus{}tridiag}\PY{p}{(}\PY{n}{n}\PY{p}{)} \PY{p}{=} \PY{n+nb}{toc}\PY{p}{;}
\PY{n+nb}{tic}\PY{p}{;}
\PY{n}{x} \PY{p}{=} \PY{n}{Tridiag}\PY{p}{(}\PY{n+nb}{e}\PY{p}{,}\PY{n}{f}\PY{p}{,}\PY{n}{g}\PY{p}{,}\PY{n}{b}\PY{p}{)}\PY{p}{;}
@@ -829,17 +860,67 @@ \subsubsection{Solving sets of equations
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
-{\color{incolor}In [{\color{incolor}13}]:} \PY{n}{n}\PY{p}{=}\PY{l+m+mi}{1}\PY{p}{:}\PY{l+m+mi}{200}\PY{p}{;}
+{\color{incolor}In [{\color{incolor}28}]:} \PY{n}{n}\PY{p}{=}\PY{l+m+mi}{1}\PY{p}{:}\PY{l+m+mi}{100}\PY{p}{;}
\PY{n+nb}{loglog}\PY{p}{(}\PY{n}{n}\PY{p}{,}\PY{n}{t\PYZus{}GE}\PY{p}{,}\PY{n}{n}\PY{p}{,}\PY{n}{t\PYZus{}TD}\PY{p}{,}\PY{n}{n}\PY{p}{,}\PY{n}{t\PYZus{}GE\PYZus{}tridiag}\PY{p}{)}
+ \PY{n+nb}{legend}\PY{p}{(}\PY{l+s}{\PYZsq{}}\PY{l+s}{Gauss elim\PYZsq{}}\PY{p}{,}\PY{l+s}{\PYZsq{}}\PY{l+s}{Matlab \PYZbs{}\PYZsq{}}\PY{p}{,}\PY{l+s}{\PYZsq{}}\PY{l+s}{TriDiag\PYZsq{}}\PY{p}{)}
\PY{n+nb}{xlabel}\PY{p}{(}\PY{l+s}{\PYZsq{}}\PY{l+s}{number of elements\PYZsq{}}\PY{p}{)}
\PY{n+nb}{ylabel}\PY{p}{(}\PY{l+s}{\PYZsq{}}\PY{l+s}{time (s)\PYZsq{}}\PY{p}{)}
\end{Verbatim}
\begin{center}
- \adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{lecture_10_files/lecture_10_27_0.pdf}
+ \adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{lecture_10_files/lecture_10_29_0.pdf}
\end{center}
{ \hspace*{\fill} \\}
+ \begin{Verbatim}[commandchars=\\\{\}]
+{\color{incolor}In [{\color{incolor}29}]:} \PY{p}{[}\PY{n}{x}\PY{p}{,}\PY{n}{Aug}\PY{p}{,}\PY{n}{npivots}\PY{p}{]}\PY{p}{=}\PY{n}{GaussPivot}\PY{p}{(}\PY{n}{K}\PY{p}{,}\PY{n}{y}\PY{p}{)}
+\end{Verbatim}
+
+ \begin{Verbatim}[commandchars=\\\{\}]
+x =
+
+ 9.8100
+ 27.4680
+ 61.8030
+ 101.0430
+
+Aug =
+
+ 15.00000 -5.00000 0.00000 0.00000 9.81000
+ 0.00000 5.33333 -2.00000 0.00000 22.89000
+ 0.00000 0.00000 2.25000 -1.00000 38.01375
+ 0.00000 0.00000 0.00000 0.55556 56.13500
+
+npivots = 0
+
+ \end{Verbatim}
+
+ \begin{Verbatim}[commandchars=\\\{\}]
+{\color{incolor}In [{\color{incolor}30}]:} \PY{n}{A}\PY{p}{=}\PY{n}{Aug}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{:}\PY{l+m+mi}{4}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{:}\PY{l+m+mi}{4}\PY{p}{)}
+\end{Verbatim}
+
+ \begin{Verbatim}[commandchars=\\\{\}]
+A =
+
+ 15.00000 -5.00000 0.00000 0.00000
+ 0.00000 5.33333 -2.00000 0.00000
+ 0.00000 0.00000 2.25000 -1.00000
+ 0.00000 0.00000 0.00000 0.55556
+
+
+ \end{Verbatim}
+
+ \begin{Verbatim}[commandchars=\\\{\}]
+{\color{incolor}In [{\color{incolor}31}]:} \PY{n+nb}{det}\PY{p}{(}\PY{n}{A}\PY{p}{)}
+ \PY{n}{detA}\PY{p}{=}\PY{n}{A}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{)}\PY{o}{*}\PY{n}{A}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{)}\PY{o}{*}\PY{n}{A}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{,}\PY{l+m+mi}{3}\PY{p}{)}\PY{o}{*}\PY{n}{A}\PY{p}{(}\PY{l+m+mi}{4}\PY{p}{,}\PY{l+m+mi}{4}\PY{p}{)}
+\end{Verbatim}
+
+ \begin{Verbatim}[commandchars=\\\{\}]
+ans = 100.00
+detA = 100.00
+
+ \end{Verbatim}
+
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor} }]:}
\end{Verbatim}
diff --git a/lecture_10/lecture_10_files/lecture_10_29_0.pdf b/lecture_10/lecture_10_files/lecture_10_29_0.pdf
new file mode 100644
index 0000000..20bdd51
Binary files /dev/null and b/lecture_10/lecture_10_files/lecture_10_29_0.pdf differ
diff --git a/lecture_10/lecture_10_files/lecture_10_29_0.svg b/lecture_10/lecture_10_files/lecture_10_29_0.svg
new file mode 100644
index 0000000..eb8af2c
--- /dev/null
+++ b/lecture_10/lecture_10_files/lecture_10_29_0.svg
@@ -0,0 +1,148 @@
+
\ No newline at end of file
diff --git a/lecture_10/lecture_10_files/lecture_10_6_0.pdf b/lecture_10/lecture_10_files/lecture_10_6_0.pdf
new file mode 100644
index 0000000..53b6aa0
Binary files /dev/null and b/lecture_10/lecture_10_files/lecture_10_6_0.pdf differ
diff --git a/lecture_10/lecture_10_files/lecture_10_6_0.svg b/lecture_10/lecture_10_files/lecture_10_6_0.svg
new file mode 100644
index 0000000..73465c0
--- /dev/null
+++ b/lecture_10/lecture_10_files/lecture_10_6_0.svg
@@ -0,0 +1,397 @@
+
\ No newline at end of file
diff --git a/lecture_10/octave-workspace b/lecture_10/octave-workspace
index ba49ea8..8a9aba2 100644
Binary files a/lecture_10/octave-workspace and b/lecture_10/octave-workspace differ
diff --git a/linear_algebra/gauss_suggested.md b/linear_algebra/gauss_suggested.md
new file mode 100644
index 0000000..6b1f6b6
--- /dev/null
+++ b/linear_algebra/gauss_suggested.md
@@ -0,0 +1,71 @@
+# Linear Algebra Review
+## (Gauss Elimination) Suggested problems
+### No due date
+
+1. Solve for x when Ax=b for the following problems:
+
+ a. $A=\left[ \begin{array}{cc}
+ 1 & 3 \\
+ 2 & 1 \end{array} \right]
+ b=
+ \left[\begin{array}{c}
+ 1 \\
+ 1\end{array}\right]$
+
+ a. $A=\left[ \begin{array}{cc}
+ 1 & 1 \\
+ 2 & 3 \end{array} \right]
+ b=
+ \left[\begin{array}{c}
+ 3 \\
+ 4\end{array}\right]$
+
+ a. $A=\left[ \begin{array}{cc}
+ 1 & 1 \\
+ 2 & -2 \end{array} \right]
+ b=
+ \left[\begin{array}{c}
+ 4 \\
+ 2\end{array}\right]$
+
+ b. $A=\left[ \begin{array}{ccc}
+ 1 & 3 & 1 \\
+ -4 & -9 & 2 \\
+ 0 & 3 & 6\end{array} \right]
+ b=
+ \left[\begin{array}{c}
+ 0 \\
+ 0 \\
+ 0\end{array}\right]$
+
+ c. $A=\left[ \begin{array}{ccc}
+ 1 & 3 & 1 \\
+ -4 & -9 & 2 \\
+ 0 & 3 & 6\end{array} \right]
+ b=
+ \left[\begin{array}{c}
+ 1 \\
+ -1 \\
+ -3\end{array}\right]$
+
+ d. $A=\left[ \begin{array}{ccc}
+ 1 & 3 & -5 \\
+ 1 & 4 & -8 \\
+ -3 & -7 & 9\end{array} \right]
+ b=
+ \left[\begin{array}{c}
+ 1 \\
+ -1 \\
+ -3\end{array}\right]$
+
+ d. $A=\left[ \begin{array}{ccc}
+ 1 & 2 & -1 \\
+ 2 & 2 & 2 \\
+ 1 & -1 & 2\end{array} \right]
+ b=
+ \left[\begin{array}{c}
+ 2 \\
+ 12 \\
+ 5\end{array}\right]$
+
+2. Calculate the determinant of A from 1a-g.
diff --git a/linear_algebra/gauss_suggested.pdf b/linear_algebra/gauss_suggested.pdf
new file mode 100644
index 0000000..a78b277
Binary files /dev/null and b/linear_algebra/gauss_suggested.pdf differ