Skip to content
Permalink
3a5ec62874
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
177 lines (138 sloc) 3.89 KB
% ME 3255 Computational Mechanics
% Peter Joseph Damian, Group 9
% Part 4
clear; clc;
%% Please see issue "Derivation" on github for the derivations of these equations
%% Equation 7: Setting up eigenvalue problem to solve for natural frequencies
%% Equation 12: writing equations as an Ax = b problem for nontrivial solution of Ax = 0
% Material Properties
E = 70*(10^6); % Young's modulus, Pa
p = 2700; % Density, kg/m^3
% Geometry
b = 0.1; % base width, m
h = 0.01; % height, m
L = 1; % bar length, m
A = b*h; % area, m^2
I = (b*(h^3))/12; % second moment of inertia, m^4
% Frequency squared coefficient
EIpa = (E*I)/(p*A); % Inverse coefficient of omega^2
%% 6 Segment System of Equations
% Number of Segments
n = 6;
% Write w matrix coefficients in form Aw = lambda w = 0 where lambda is the
% natural frequency squared and the other coefficients, rho, A, E and I are
% shifted to the other side of the Aw = lambda w = 0 equation
[ w6 ] = Coefficients( n,EIpa,L );
% Calculate eigenvalues of system
Lambda6 = eig(w6);
% Calculate natural frequencies of system
omega6 = Lambda6.^(1/2);
%% 10 Segment System of Equations
% Number of Segments
n10 = 10;
% Write w coefficient matrix (see above for details)
[ w10 ] = Coefficients( n10,EIpa,L );
% Calculate eigenvalues of system
Lambda10 = eig(w10);
% Calculate natural frequencies of system
omega10 = Lambda10.^(1/2);
%% 20 Segment System of Equations
% Number of Segments
n20 = 20;
% Write w coefficient matrix (see above for details)
[ w20 ] = Coefficients( n20,EIpa,L );
% Calculate eigenvalues of system
Lambda20 = eig(w20);
% Calculate natural frequencies of system
omega20 = Lambda20.^(1/2);
%% Beam Shape Plotting for the first 3 natural frequencies
% Selection of evalutation time
t = 10;
% Set value of q (could write a function for this and loop through code
q = 100;
% 6 Segment System of Equation
omega61 = omega6(1);
[ W61 ] = LHS ( w6,EIpa,n,omega61,t );
[ RHS61 ] = RHS( w6,q,E,I );
W61solv = W61\RHS61;
omega62 = omega6(2);
[ W62 ] = LHS ( w6,EIpa,n,omega62,t );
[ RHS62 ] = RHS( w6,q,E,I );
W62solv = W62\RHS62;
omega63 = omega6(3);
[ W63 ] = LHS ( w6,EIpa,n,omega63,t );
[ RHS63 ] = RHS( w6,q,E,I );
W63solv = W63\RHS63;
% 10 Segment System of Equation
omega101 = omega10(1);
[ W101 ] = LHS ( w10,EIpa,n,omega101,t );
[ RHS101 ] = RHS( w10,q,E,I );
W101solv = W101\RHS101;
omega102 = omega10(2);
[ W102 ] = LHS ( w10,EIpa,n,omega102,t );
[ RHS102 ] = RHS( w10,q,E,I );
W102solv = W102\RHS102;
omega103 = omega10(3);
[ W103 ] = LHS ( w10,EIpa,n,omega103,t );
[ RHS103 ] = RHS( w10,q,E,I );
W103solv = W103\RHS103;
% 20 Segment System of Equation
omega201 = omega20(1);
[ W201 ] = LHS ( w20,EIpa,n,omega201,t );
[ RHS201 ] = RHS( w20,q,E,I );
W201solv = W201\RHS201;
omega202 = omega20(2);
[ W202 ] = LHS ( w20,EIpa,n,omega202,t );
[ RHS202 ] = RHS( w20,q,E,I );
W202solv = W202\RHS202;
omega203 = omega20(3);
[ W203 ] = LHS ( w20,EIpa,n,omega203,t );
[ RHS203 ] = RHS( w20,q,E,I );
W203solv = W203\RHS203;
%% Plotting
setdefaults
% 6 Segments
dx = L/(n+1);
x6 = linspace(dx,L-dx,n+1);
figure(1)
plot(x6,W61solv)
xlabel('x distance, m')
ylabel('Deflection')
figure(2)
plot(x6,W62solv)
xlabel('x distance, m')
ylabel('Deflection')
figure(3)
plot(x6,W63solv)
xlabel('x distance, m')
ylabel('Deflection')
% 10 Segments
dx10 = L/(n10+1);
x10 = linspace(dx10,L-dx10,n10+1);
figure(4)
plot(x10,W101solv)
xlabel('x distance, m')
ylabel('Deflection')
figure(5)
plot(x10,W102solv)
xlabel('x distance, m')
ylabel('Deflection')
figure(6)
plot(x10,W103solv)
xlabel('x distance, m')
ylabel('Deflection')
% 20 Segments
dx20 = L/(n20+1);
x20 = linspace(dx20,L-dx20,n20+1);
figure(7)
plot(x20,W201solv)
xlabel('x distance, m')
ylabel('Deflection')
figure(8)
plot(x20,W202solv)
xlabel('x distance, m')
ylabel('Deflection')
figure(9)
plot(x20,W203solv)
xlabel('x distance, m')
ylabel('Deflection')