diff --git a/06_roots-1/06_roots-1.ipynb b/06_roots-1/06_roots-1.ipynb index e95edef..1e1c23e 100644 --- a/06_roots-1/06_roots-1.ipynb +++ b/06_roots-1/06_roots-1.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": { "collapsed": true, "scrolled": true, @@ -53,7 +53,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": { "collapsed": false, "scrolled": true, @@ -64,155 +64,9 @@ "outputs": [ { "data": { - "image/svg+xml": [ - "\n", - "\n", - "Gnuplot\n", - "Produced by GNUPLOT 5.0 patchlevel 3 \n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t \n", - "\t \n", - "\t\n", - "\t\n", - "\t \n", - "\t \n", - "\t\n", - "\n", - "\n", - "\n", - "\n", - "\t\n", - "\t\t\n", - "\t\n", - "\n", - "\n", - "\n", - "\n", - "\t\t\n", - "\t\t-5\n", - "\t\n", - "\n", - "\n", - "\t\t\n", - "\t\t-4\n", - "\t\n", - "\n", - "\n", - "\t\t\n", - "\t\t-3\n", - "\t\n", - "\n", - "\n", - "\t\t\n", - "\t\t-2\n", - "\t\n", - "\n", - "\n", - "\t\t\n", - "\t\t-1\n", - "\t\n", - "\n", - "\n", - "\t\t\n", - "\t\t0\n", - "\t\n", - "\n", - "\n", - "\t\t\n", - "\t\t1\n", - "\t\n", - "\n", - "\n", - "\t\t\n", - "\t\t60\n", - "\t\n", - "\n", - "\n", - "\t\t\n", - "\t\t80\n", - "\t\n", - "\n", - "\n", - "\t\t\n", - "\t\t100\n", - "\t\n", - "\n", - "\n", - "\t\t\n", - "\t\t120\n", - "\t\n", - "\n", - "\n", - "\t\t\n", - "\t\t140\n", - "\t\n", - "\n", - "\n", - "\t\t\n", - "\t\t160\n", - "\t\n", - "\n", - "\n", - "\t\t\n", - "\t\t180\n", - "\t\n", - "\n", - "\n", - "\t\t\n", - "\t\t200\n", - "\t\n", - "\n", - "\n", - "\n", - "\n", - "\t\n", - "\n", - "\n", - "\tgnuplot_plot_1a\n", - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\tgnuplot_plot_2a\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAJNmlDQ1BkZWZhdWx0X3JnYi5pY2MA\nAHiclZFnUJSHFobP933bCwvssnRYepMqZQHpvUmvogJL7yxLEbEhYgQiiog0RZCggAGjUiRWRLEQ\nFBSxoFkkCCgxGEVUUPLDOxPn3vHHfX49884755yZA0ARBQBARQFSUgV8Pxd7TkhoGAe+IZKXmW7n\n4+MJ3+X9KCAAAPdWfb/zXSjRMZk8AFgGgHxeOl8AgOQCgGaOIF0AgBwFAFZUUroAADkLACx+SGgY\nAHIDAFhxX30cAFhRX30eAFj8AD8HABQHQKLFfeNR3/h/9gIAKNvxBQmxMbkc/7RYQU4kP4aT6edi\nz3FzcOD48NNiE5Jjvjn4/yp/B0FMrgAAwCEtfRM/IS5ewPmfoUYGhobw7y/e+gICAAh78L//AwDf\n9NIaAbgLANi+f7OoaoDuXQBSj//NVI8CMAoBuu7wsvjZXzMcAAAeKMAAFkiDAqiAJuiCEZiBJdiC\nE7iDNwRAKGwAHsRDCvAhB/JhBxRBCeyDg1AD9dAELdAOp6EbzsMVuA634S6MwhMQwhS8gnl4D0sI\nghAROsJEpBFFRA3RQYwQLmKNOCGeiB8SikQgcUgqkoXkIzuREqQcqUEakBbkF+QccgW5iQwjj5AJ\nZBb5G/mEYigNZaHyqDqqj3JRO9QDDUDXo3FoBpqHFqJ70Sq0ET2JdqFX0NvoKCpEX6ELGGBUjI0p\nYboYF3PAvLEwLBbjY1uxYqwSa8TasV5sALuHCbE57COOgGPiODhdnCXOFReI4+EycFtxpbga3Alc\nF64fdw83gZvHfcHT8XJ4HbwF3g0fgo/D5+CL8JX4Znwn/hp+FD+Ff08gENgEDYIZwZUQSkgkbCaU\nEg4TOgiXCcOEScICkUiUJuoQrYjexEiigFhErCaeJF4ijhCniB9IVJIiyYjkTAojpZIKSJWkVtJF\n0ghpmrREFiWrkS3I3uRo8iZyGbmJ3Eu+Q54iL1HEKBoUK0oAJZGyg1JFaadco4xT3lKpVGWqOdWX\nmkDdTq2inqLeoE5QP9LEado0B1o4LYu2l3acdpn2iPaWTqer023pYXQBfS+9hX6V/oz+QYQpoifi\nJhItsk2kVqRLZETkNYPMUGPYMTYw8hiVjDOMO4w5UbKouqiDaKToVtFa0XOiY6ILYkwxQzFvsRSx\nUrFWsZtiM+JEcXVxJ/Fo8ULxY+JXxSeZGFOF6cDkMXcym5jXmFMsAkuD5cZKZJWwfmYNseYlxCWM\nJYIkciVqJS5ICNkYW53txk5ml7FPsx+wP0nKS9pJxkjukWyXHJFclJKVspWKkSqW6pAalfokzZF2\nkk6S3i/dLf1UBiejLeMrkyNzROaazJwsS9ZSlidbLHta9rEcKqct5ye3We6Y3KDcgryCvIt8uny1\n/FX5OQW2gq1CokKFwkWFWUWmorVigmKF4iXFlxwJjh0nmVPF6efMK8kpuSplKTUoDSktKWsoByoX\nKHcoP1WhqHBVYlUqVPpU5lUVVb1U81XbVB+rkdW4avFqh9QG1BbVNdSD1Xerd6vPaEhpuGnkabRp\njGvSNW00MzQbNe9rEbS4Wklah7XuaqPaJtrx2rXad3RQHVOdBJ3DOsOr8KvMV6Wualw1pkvTtdPN\n1m3TndBj63nqFeh1673WV9UP09+vP6D/xcDEINmgyeCJobihu2GBYa/h30baRjyjWqP7q+mrnVdv\nW92z+o2xjnGM8RHjhyZMEy+T3SZ9Jp9NzUz5pu2ms2aqZhFmdWZjXBbXh1vKvWGON7c332Z+3vyj\nhamFwOK0xV+WupZJlq2WM2s01sSsaVozaaVsFWnVYCW05lhHWB+1Ftoo2UTaNNo8t1WxjbZttp22\n07JLtDtp99rewJ5v32m/6GDhsMXhsiPm6OJY7DjkJO4U6FTj9MxZ2TnOuc153sXEZbPLZVe8q4fr\nftcxN3k3nluL27y7mfsW934Pmoe/R43Hc09tT75nrxfq5e51wGt8rdra1LXd3uDt5n3A+6mPhk+G\nz6++BF8f31rfF36Gfvl+A/5M/43+rf7vA+wDygKeBGoGZgX2BTGCwoNaghaDHYPLg4Uh+iFbQm6H\nyoQmhPaEEcOCwprDFtY5rTu4bircJLwo/MF6jfW5629ukNmQvOHCRsbGyI1nIvARwRGtEcuR3pGN\nkQtRblF1UfM8B94h3qto2+iK6NkYq5jymOlYq9jy2Jk4q7gDcbPxNvGV8XMJDgk1CW8SXRPrExeT\nvJOOJ60kByd3pJBSIlLOpYqnJqX2pymk5aYNp+ukF6ULMywyDmbM8z34zZlI5vrMHgFLkC4YzNLM\n2pU1kW2dXZv9ISco50yuWG5q7uAm7U17Nk3nOef9tBm3mbe5L18pf0f+xBa7LQ1bka1RW/u2qWwr\n3Da13WX7iR2UHUk7fiswKCgveLczeGdvoXzh9sLJXS672opEivhFY7std9f/gPsh4YehPav3VO/5\nUhxdfKvEoKSyZLmUV3rrR8Mfq35c2Ru7d6jMtOzIPsK+1H0P9tvsP1EuVp5XPnnA60BXBaeiuOLd\nwY0Hb1YaV9YfohzKOiSs8qzqqVat3le9XBNfM1prX9tRJ1e3p27xcPThkSO2R9rr5etL6j8dTTj6\nsMGloatRvbHyGOFY9rEXTUFNAz9xf2pplmkuaf58PPW48ITfif4Ws5aWVrnWsja0Latt9mT4ybs/\nO/7c067b3tDB7ig5BaeyTr38JeKXB6c9Tved4Z5pP6t2tq6T2VnchXRt6prvju8W9oT2DJ9zP9fX\na9nb+aver8fPK52vvSBxoewi5WLhxZVLeZcWLqdfnrsSd2Wyb2Pfk6shV+/3+/YPXfO4duO68/Wr\nA3YDl25Y3Th/0+LmuVvcW923TW93DZoMdv5m8lvnkOlQ1x2zOz13ze/2Dq8ZvjhiM3LlnuO96/fd\n7t8eXTs6/CDwwcOx8DHhw+iHM4+SH715nP146cn2cfx48VPRp5XP5J41/q71e4fQVHhhwnFi8Ln/\n8yeTvMlXf2T+sTxV+IL+onJacbplxmjm/Kzz7N2X615OvUp/tTRX9KfYn3WvNV+f/cv2r8H5kPmp\nN/w3K3+XvpV+e/yd8bu+BZ+FZ+9T3i8tFn+Q/nDiI/fjwKfgT9NLOcvE5arPWp97v3h8GV9JWVn5\nBy6ikLxSF1/9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAAHXRFWHRTb2Z0d2FyZQBHUEwgR2hvc3Rz\nY3JpcHQgOS4xOJQFEHMAAA6+SURBVHic7d1BbuLm48dh+tdI7UjdMOtKrSz9TkCP4Cs4RyBHwKtK\nlbqA6QnwEeAI8RHGJ6jiRbeVwqZqVlX+CyQLkTRNOib5DnmeRQUJenmZBj74tQ1f3d3dTQDgtf3f\na08AACYTQQIghCABEEGQAIggSABEECQAIggSABEECYAIggRABEECIIIgARBBkACIIEgARBAkACKM\nH6Ttdnt5eTn6sACctzGD1Pf9xcVF3/cjjgnAG/FuxLGKothsNpPJpK7rEYcF4C2wDwmACGNuIf03\n33///ddff72//O7du/fv37/iZG5vb193Ap/D5F+Lyb8Wk38xf//9919//TVcvbi4+OWXX0a/l9cP\n0u+///7aUwDgGf74449TDGvJDoAIggRABEEC4Hm++eabUww75j6kvu+bpplMJl3X7Y/8LopiPp+P\neBcAvLrvvvvuFMOOfB7ScrkccUAA3g5LdgBEECQAnufm5uYUwwoSAM9zolN6BQmA5xEkAM6ZIAEQ\nQZAAiCBIAEQQJAAiCBIAEQQJgAiCBEAEQQIggiABEEGQAIggSABEECQAIggSABEECYAIggRABEEC\nIIIgARBBkACIIEgARBAkACIIEgARBAmACIIEQARBAiCCIAEQQZAAiCBIAEQQJAAiCBIAEQQJgAiC\nBEAEQQIggiABEEGQAIggSABEECQAIggSABEECYAIggRABEECIIIgARBBkACIIEgARBAkACIIEgAR\n3o0+Yl3X+wtVVc1ms9HHB+AsjRykpmmGDtV1LUgAPNHIS3Zd1w0Rms1m2+123PEBOFcjB2k6nQ6X\nq6rqum7c8QE4Vw5qAOB5+r4/xbCCBMDzFEVximEFCYAIIwdpt9sNl7fbraPsAHiikYM0m82GAxm6\nrquqatzxAThXI5+HNJ/P67reH+2tRgA83fif1LBcLkcfE4Cz56AGACIIEgARBAmACIIEQARBAiCC\nIAEQQZAAiCBIAEQQJAAiCBIAEQQJgAiCBEAEQQIggiABEEGQAIggSABEECQAIggSABEECYAIggRA\nBEECIIIgARBBkACIIEgARBAkACIIEgARBAmACIIEQARBAiCCIAEQQZAAiCBIAEQQJAAiCBIAEQQJ\ngAiCBEAEQQIggiABEEGQAIggSABEECQAIggSABEECYAIggRABEECIIIgARBBkACIIEgARBAkACII\nEgARxg/Sdru9vLwcfVgAztuYQer7/uLiou/7EccE4I14N+JYRVFsNpvJZFLX9YjDAvAW2IcEQARB\nAiDC85bs+r5vmub+z5fL5UjzASDd7e3tKYZ9XpCKotAegDfu/fv3pxjWkh0AEQQJgAhjHvY97GHq\num5/5HdRFPP5fMS7AOBcjXwekj1MAPw3luwAiCBIAEQQJAAiCBIAEQQJgAiCBEAEQQIggiABEEGQ\nAIggSABEECQAIggSABEECYAIggRABEECIIIgARBBkACIIEgARBAkACIIEgARBAmACIIEQARBAiCC\nIAEQQZAAiCBIAEQQJAAiCBIAEQQJgAiCBEAEQQIggiABEEGQAIggSABEECQAIggSABEECYAIggRA\nBEECIIIgARBBkACIIEgARBAkACIIEgARBAmACIIEQARBAiCCIAEQQZAAiCBIAEQQJAAivBt3uK7r\nmqaZTqeTyaQsy7Isxx0fgHM1ZpB2u91qtdpsNvurq9WqKIqiKEa8CwDO1ZhLdn3fz+fz4episWia\nZsTxAThjY24hzWazw6tt2+7X7gDgX428D2lwtHwHwNm4vb09xbDPC1Lf9w+uwi2Xy8Oru92uruvN\nZmMLCeD8vH///iTj3o3t+vq6LMvr6+sn3v4kjwqAk/n48ePo7bi7uxv/sO+Li4vNZuPgOgCeZcyj\n7Lqu26/UDUc3bLfbEccH4IyNuYVU1/VsNttut4cdqqpqxLsA4FyNGaSrq6sRRwPgTfFZdgBEECQA\nIggSABEECYAIggRABEECIIIgARBBkACIIEgARBAkACIIEgARBAmACIIEQARBAiCCIAEQQZAAiCBI\nAEQQJAAiCBIAEQQJgAiCBEAEQQIggiABEEGQAIggSABEECQAIggSABEECYAIggRABEECIIIgARBB\nkACIIEgARBAkACIIEgARBAmACIIEQARBAiCCIAEQQZAAiCBIAEQQJAAiCBIAEQQJgAiCBEAEQQIg\ngiABEEGQAIggSABEECQAIrwbd7iu65qmmU6nk8mkKIr5fD7u+ACcq5GDtN1u1+v1/nLbtm3blmU5\n7l0AcJZGXrJbLpfD5bIs27Ydd3wAztUJ9yHVdW3zCIAnOkmQ6rr+8OFDURSCBMATfXV3d/f0W/d9\n3zTN/Z8frtQNVqvVdDr91+Mavvrqq6dPAIBX9/PPP//000/jj3t3SovF4l9vM/5DAuCUPn78eIpk\nOA8JgAhjBqnrur7vh6uHlwHgcWOeh1QURV3X+7Ni9/99cN8SANw3ZpCm0+lwViwAPIt9SABEECQA\nIggSABEECYAIggRABEECIIIgARBBkACIIEgARBAkACIIEgARBAmACIIEQARBAiCCIAEQQZAAiCBI\nAEQQJAAiCBIAEQQJgAiCBEAEQQIggiABEEGQAIggSABEECQAIggSABEECYAIggRABEECIIIgARBB\nkACIIEgARBAkACIIEgARBAmACIIEQARBAiCCIAEQQZAAiCBIAEQQJAAiCBIAEQQJgAiCBEAEQQIg\ngiABEEGQAIggSABEECQAIggSABFOFaSLi4umaU40OADn5yRBquu6qqq+708xOABnafwg9X3f931V\nVaOPDMAZGz9IdV0vl8vRhwXgvI0cpLZti6IoimLcYQHIcXt7e4ph3z3r1n3fP3iowrBJtFqtNpvN\nCPMCINX79+9PMezzglQUxSPLcW3bTiaT1Wq1v9p1Xdu2ZVl+zvwAeCvuTmaxWDzlZq/9DwDA83z8\n+PEU1XBiLAARThKktm3rut4v2Z1ifADOz/P2IT1RWZZ2HQHwLJbsAIggSABEECQAIggSABEECYAI\nggRABEECIIIgARBBkACIIEgARBAkACIIEgARBAmACIIEQARBAiCCIAEQQZAAiCBIAEQQJAAiCBIA\nEQQJgAiCBEAEQQIggiABEEGQAIggSABEECQAIggSABEECYAIggRABEECIIIgARBBkACIIEgARBAk\nACIIEgARBAmACIIEQARBAiCCIAEQQZAAiCBIAEQQJAAiCBIAEQQJgAiCBEAEQQIggiABEEGQAIgg\nSABEeDfucHVdH14ty7Isy3HvAoDXdXNzc4phRw7SZDJZLpejjwlAjhMFyZIdABEECYAI4y/ZXVxc\nFEWxv7xYLKbT6eh3AcD5+eru7u7pt+77vmma+z9/cL/RbrdbrVb/ukvp119/HS5/++23//vf/54+\nHwBewJ9//vnbb78NV6uq+uGHH0a/l+cF6bnqunaMAwBPYR8SABHGDFLbtm3bDle7rhtxcADO28hL\ndk3T9H2/vzydTheLxYiDA3DGTrsPCQCeyD4kACIIEgARBAmACIIEQARBAiDC+J9l92U5PE798EMl\nuq7bbrf3fx5i/7FM+8tFUczn88PfBk5+u922bbter+//6vHZrlar3W43edWzCB6Z/PAFYNPpdD6f\nH31y4/Dbqqpms9mp53nfbrfbnx344OT3tttt0zRXV1dHP8+f/OEnmR09C8Inf/iyc/8DP1998vs/\n+P2s7s/h8afk507+7g1bLBafPn36p1/tL3z69Gm9Xr/gpJ5kPp/f3NzsLy+Xy6urq8PfRk3++vq6\nqqrlcjmfzx+8wSOzXa/Xw0O7urp6+cfy+OQXi8UwvZubm+GB7K3X6+Gv6+hXL+Pq6qqqqvV6/U//\n8nd3dzc3N2VZ3p9e/uQ/ffq0WCyGZ8Gh8MlfXV0tl8v95Zubm6PbJEz+cErr9fr6+vrw6iNPyc+f\n/NtdsmuapizLBxu+3W6Hn89ms8CPnJhOp8O7qsVicfgBGWmTL4pis9n80+e+Pz7bvu+Hbxwuy3J4\nU/liHp/8dDodpnf/Bl3XHT60YSvwxZRludls7m+3HVqtVg9ud+ZPfv/BzQ/+NnzybdsO/+aHT+S9\nV5983/eHCxXz+fzwA7Uff0p+/uTfbpAO/2WPdF1XVdVwNfAbNPabzHtt2x4+kPzJH/qyZnvk6KX8\n6Ml5+Fiqqnr1dwb3dV232+0efBaET75t28M/myPhky/L8vAd5OFzeRIw+aOOtm07fJ3Qv/r8yb/p\nfUi73a5pmt1u91prtf/ZfD7/8ccf9y8l9/ch8fLquv6n9zexVqvVI/uWku03MvY7aYqiqKrqC3or\nU5blarXabrfT6bTv++TPV+u6brVa3d+/eDpvdwtpt9tdXFzMZrPlctm27YPf8xRrv7N0uVxWVfXy\nC1kcaZrmi3tb0DTNbDb7gl7Hj+xf0xeLRVVVw272L8W+Q8vlMmFR/Z90XVfX9Wazeck7fbtBatt2\ns9ns39UuFosv6GW9aZphk242mx0t8vLCVqtV3/dfVo0mk8l2u93tdnVd13W9f+l57Rk9w3Q67bpu\nvV7v98HM5/OX39fynzVNs1gs9utgsa88Q41e+C3L212ye2Qzf787blikTnvz1ff94apuURSHf9Ph\nkz/yZc32vsvLy8lk8uDC1+FjOTx2I8ThOsz9L9IMn3xZloczPHoKhE/+6Pl7JGHybduuVqv/UKPP\nn/zb3UIqy3LYsDh6HTzcHXd43EiI+Xw+nIQ0mUxWq9Xh2/PwyR95fLZFUQy7f5+1c/VlXF5eTqfT\noUZHb9IPV2OOjt3IFz752WzW9/0QoaOnQPjkD5+/99+Bvfrkm6Y52jY6/MN+/Cn5+ZN/018/sd1u\nh3++o0N7A88tPXQ489lsdvQ/Pmryw9mLQ2+Odrcknxj7yOTbtj06kKHruqPdv697huPwhZnD5Muy\nvH/kxX7Jbr8z9ejn+wuZk3/83PDwySefGPvhw4f768+HfxsnPTH2TQcJgBxvd8kOgCiCBEAEQQIg\ngiABEEGQAIggSABEECQAIggSABEECYAIggRAhP8HJUscDjw38SYAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -349,7 +203,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "metadata": { "collapsed": false, "slideshow": { @@ -361,39 +215,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "'incsearch' is a function from the file /home/ryan/Documents/UConn/ME3255/course_git_F2017/06_roots and optimization/incsearch.m\n", - "\n", - " incsearch: incremental search root locator\n", - " xb = incsearch(func,xmin,xmax,ns):\n", - " finds brackets of x that contain sign changes\n", - " of a function on an interval\n", - " input:\n", - " func = name of function\n", - " xmin, xmax = endpoints of interval\n", - " ns = number of subintervals (default = 50)\n", - " output:\n", - " xb(k,1) is the lower bound of the kth sign change\n", - " xb(k,2) is the upper bound of the kth sign change\n", - " If no brackets found, xb = [].\n", - "\n", - "\n", - "Additional help for built-in functions and operators is\n", - "available in the online version of the manual. Use the command\n", - "'doc ' to search the manual index.\n", + "number of brackets: 1\n", + "ans =\n", "\n", - "Help and information about Octave is also available on the WWW\n", - "at http://www.octave.org and via the help@octave.org\n", - "mailing list.\n" + " 141.84 144.90\n", + "\n" ] } ], "source": [ - "help incsearch" + "incsearch(f_m,50,200)" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 4, "metadata": { "collapsed": false, "scrolled": true, @@ -627,7 +463,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 9, "metadata": { "collapsed": false, "scrolled": true, @@ -764,13 +600,13 @@ "\tgnuplot_plot_3a\n", "\n", "\t \n", - "\t\n", + "\t\n", "\n", "\t\n", "\tgnuplot_plot_4a\n", "\n", - "\t\t \n", - "\t\n", + "\t\t \n", + "\t\n", "\n", "\t\n", "\n", diff --git a/06_roots-1/octave-workspace b/06_roots-1/octave-workspace index 05454da..3a964d4 100644 Binary files a/06_roots-1/octave-workspace and b/06_roots-1/octave-workspace differ diff --git a/07_roots-2/octave-workspace b/07_roots-2/octave-workspace index 70eb62b..8c437bb 100644 Binary files a/07_roots-2/octave-workspace and b/07_roots-2/octave-workspace differ diff --git a/08_optimization/.ipynb_checkpoints/lecture_08-checkpoint.ipynb b/08_optimization/.ipynb_checkpoints/lecture_08-checkpoint.ipynb new file mode 100644 index 0000000..fa0f10b --- /dev/null +++ b/08_optimization/.ipynb_checkpoints/lecture_08-checkpoint.ipynb @@ -0,0 +1,2836 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [], + "source": [ + "%plot --format svg" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Optimization" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "Many problems involve finding a minimum or maximum based on given constraints. Engineers and scientists typically use energy balance equations to find the conditions of minimum energy, but this value may never go to 0 and the actual value of energy may not be of interest. " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Lennard-Jones potential" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "The Lennard-Jones potential is commonly used to model interatomic bonding. \n", + "\n", + "$E_{LJ}(x)=4\\epsilon \\left(\\left(\\frac{\\sigma}{x}\\right)^{12}-\\left(\\frac{\\sigma}{x}\\right)^{6}\\right)$\n", + "\n", + "Considering a 1-D gold chain, we can calculate the bond length, $x_{b}$, with no force applied to the chain and even for tension, F. This will allow us to calculate the nonlinear spring constant of a 1-D gold chain. \n", + "\n", + "![TEM image of Gold chain](au_chain.jpg)\n", + "\n", + "Computational Tools to Study and Predict the Long-Term Stability of Nanowires.\n", + "By Martin E. Zoloff Michoff, Patricio VĂ©lez, Sergio A. Dassie and Ezequiel P. M. Leiva " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "![Model of Gold chain, from molecular dynamics simulation](Auchain_model.png)\n", + "\n", + "[Single atom gold chain mechanics](http://www.uam.es/personal_pdi/ciencias/agrait/)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### First, let's find the minimum energy $\\min(E_{LJ}(x))$\n", + "\n", + "## Brute force" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.08\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t2.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t6\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "setdefaults\n", + "epsilon = 0.039; % kcal/mol\n", + "sigma = 2.934; % Angstrom\n", + "x=linspace(2.8,6,200); % bond length in Angstrom\n", + "\n", + "Ex = lennard_jones(x,sigma,epsilon);\n", + "\n", + "[Emin,imin]=min(Ex);\n", + "\n", + "plot(x,Ex,x(imin),Emin,'o')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ans = 3.2824\n", + "ans = 3.2985\n", + "ans = 3.3146\n" + ] + } + ], + "source": [ + "x(imin-1)\n", + "x(imin)\n", + "x(imin+1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Golden Search Algorithm\n", + "\n", + "We can't just look for a sign change for the problem (unless we can take a derivative) so we need a new approach to determine whether we have a maximum between the two bounds.\n", + "\n", + "Rather than using the midpoint of initial bounds, here the problem is more difficult. We need to compare the values of 4 function evaluations. The golden search uses the golden ratio to determine two interior points. \n", + "\n", + "![golden ratio](goldenratio.png)\n", + "\n", + "Start with bounds of 2.5 and 6 Angstrom. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current_min = -0.019959\r\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.08\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t2.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t6\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_3a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_4a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_5a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_6a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "% define Au atomic potential\n", + "epsilon = 0.039; % kcal/mol\n", + "sigma = 2.934; % Angstrom\n", + "Au_x= @(x) lennard_jones(x,sigma,epsilon);\n", + "\n", + "% calculate golden ratio\n", + "phi = 1/2+sqrt(5)/2;\n", + "% set initial limits\n", + "x_l=2.8; \n", + "x_u=6; \n", + "\n", + "% Iteration #1\n", + "d=(phi-1)*(x_u-x_l);\n", + "\n", + "x1=x_l+d; % define point 1\n", + "x2=x_u-d; % define point 2\n", + "\n", + "\n", + "% evaluate Au_x(x1) and Au_x(x2)\n", + "\n", + "f1=Au_x(x1);\n", + "f2=Au_x(x2);\n", + "plot(x,Au_x(x),x_l,Au_x(x_l),'ro',x2,f2,'rs',x1,f1,'gs',x_u,Au_x(x_u),'go')\n", + "hold on;\n", + "\n", + "if f2\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.08\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t2.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t6\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_3a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_4a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_5a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_6a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "% Iteration #2\n", + "d=(phi-1)*(x_u-x_l);\n", + "\n", + "x1=x_l+d; % define point 1\n", + "x2=x_u-d; % define point 2\n", + "\n", + "% evaluate Au_x(x1) and Au_x(x2)\n", + "\n", + "f1=Au_x(x1);\n", + "f2=Au_x(x2);\n", + "plot(x,Au_x(x),x_l,Au_x(x_l),'ro',x2,f2,'rs',x1,f1,'gs',x_u,Au_x(x_u),'go')\n", + "hold on;\n", + "\n", + "if f2\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.08\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t2.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t6\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_3a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_4a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_5a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_6a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "% Iteration #3\n", + "d=(phi-1)*(x_u-x_l);\n", + "\n", + "x1=x_l+d; % define point 1\n", + "x2=x_u-d; % define point 2\n", + "\n", + "% evaluate Au_x(x1) and Au_x(x2)\n", + "\n", + "f1=Au_x(x1);\n", + "f2=Au_x(x2);\n", + "plot(x,Au_x(x),x_l,Au_x(x_l),'ro',x2,f2,'rs',x1,f1,'gs',x_u,Au_x(x_u),'go')\n", + "hold on;\n", + "\n", + "if f2\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.08\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t2.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t6\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_3a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_4a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_5a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_6a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "% Iteration #3\n", + "d=(phi-1)*(x_u-x_l);\n", + "\n", + "x1=x_l+d; % define point 1\n", + "x2=x_u-d; % define point 2\n", + "\n", + "% evaluate Au_x(x1) and Au_x(x2)\n", + "\n", + "f1=Au_x(x1);\n", + "f2=Au_x(x2);\n", + "plot(x,Au_x(x),x_l,Au_x(x_l),'ro',x2,f2,'rs',x1,f1,'gs',x_u,Au_x(x_u),'go')\n", + "hold on;\n", + "\n", + "if f2\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.08\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t2.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t6\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_3a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_4a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_5a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "% define Au atomic potential\n", + "epsilon = 0.039; % kcal/mol\n", + "sigma = 2.934; % Angstrom\n", + "Au_x= @(x) lennard_jones(x,sigma,epsilon);\n", + "\n", + "% set initial limits\n", + "x_l=2.8; \n", + "x_u=3.5; \n", + "\n", + "% Iteration #1\n", + "x1=x_l;\n", + "x2=mean([x_l,x_u]);\n", + "x3=x_u;\n", + "\n", + "% evaluate Au_x(x1), Au_x(x2) and Au_x(x3)\n", + " \n", + "f1=Au_x(x1);\n", + "f2=Au_x(x2);\n", + "f3=Au_x(x3);\n", + "p = polyfit([x1,x2,x3],[f1,f2,f3],2);\n", + "x_fit = linspace(x1,x3,20);\n", + "y_fit = polyval(p,x_fit);\n", + "\n", + "plot(x,Au_x(x),x_fit,y_fit,[x1,x2,x3],[f1,f2,f3],'o')\n", + "hold on\n", + "if f2x2\n", + " plot(x4,f4,'*',[x1,x2],[f1,f2])\n", + " x1=x2;\n", + " f1=f2;\n", + " else\n", + " plot(x4,f4,'*',[x3,x2],[f3,f2])\n", + " x3=x2;\n", + " f3=f2;\n", + " end\n", + " x2=x4; f2=f4;\n", + "else\n", + " error('no minimum in bracket')\n", + "end\n", + "hold off" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.08\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t2.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t6\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_3a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_4a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_5a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = polyfit([x1,x2,x3],[f1,f2,f3],2);\n", + "x_fit = linspace(x1,x3,20);\n", + "y_fit = polyval(p,x_fit);\n", + "\n", + "plot(x,Au_x(x),x_fit,y_fit,[x1,x2,x3],[f1,f2,f3],'o')\n", + "hold on\n", + "if f2x2\n", + " plot(x4,f4,'*',[x1,x2],[f1,f2])\n", + " x1=x2;\n", + " f1=f2;\n", + " else\n", + " plot(x4,f4,'*',[x3,x2],[f3,f2])\n", + " x3=x2;\n", + " f3=f2;\n", + " end\n", + " x2=x4; f2=f4;\n", + "else\n", + " error('no minimum in bracket')\n", + "end\n", + "hold off\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.08\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t2.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t6\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_3a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_4a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_5a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = polyfit([x1,x2,x3],[f1,f2,f3],2);\n", + "x_fit = linspace(x1,x3,20);\n", + "y_fit = polyval(p,x_fit);\n", + "\n", + "plot(x,Au_x(x),x_fit,y_fit,[x1,x2,x3],[f1,f2,f3],'o')\n", + "hold on\n", + "if f2x2\n", + " plot(x4,f4,'*',[x1,x2],[f1,f2])\n", + " x1=x2;\n", + " f1=f2;\n", + " else\n", + " plot(x4,f4,'*',[x3,x2],[f3,f2])\n", + " x3=x2;\n", + " f3=f2;\n", + " end\n", + " x2=x4; f2=f4;\n", + "else\n", + " error('no minimum in bracket')\n", + "end\n", + "hold off\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "Parabolic interpolation does not converge in many scenarios even though it it a bracketing method. Instead, functions like `fminbnd` in Matlab and Octave use a combination of the two (Golden Ratio and Parabolic)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Using the solutions to minimization for the nonlinear spring constant\n", + "\n", + "Now, we have two routines to find minimums of a univariate function (Golden Ratio and Parabolic). Let's use these to solve for the minimum energy given a range of applied forces to the single atom gold chain\n", + "\n", + "$E_{total}(\\Delta x) = E_{LJ}(x_{min}+\\Delta x) - F \\cdot \\Delta x$\n", + "\n", + "$1 aJ = 10^{-18} J = 1~nN* 1~nm = 10^{-9}N * 10^{-9} m$" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "warning: Matlab-style short-circuit operation performed for operator |\n", + "warning: called from\n", + " goldmin at line 17 column 1\n", + "warning: Matlab-style short-circuit operation performed for operator |\n", + "warning: Matlab-style short-circuit operation performed for operator |\n", + "xmin = 0.32933\n", + "Emin = -2.7096e-04\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.0004\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.0002\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0002\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0004\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0006\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.2\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.6\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.7\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\t\n", + "\t\tLennard Jones Potential (aJ/atom)\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\tbond length (nm)\n", + "\t\n", + "\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epsilon = 0.039; % kcal/mol\n", + "epsilon = epsilon*6.9477e-21; % J/atom\n", + "epsilon = epsilon*1e18; % aJ/J\n", + "% final units for epsilon are aJ\n", + "\n", + "sigma = 2.934; % Angstrom\n", + "sigma = sigma*0.10; % nm/Angstrom\n", + "x=linspace(2.8,6,200)*0.10; % bond length in um\n", + "\n", + "Ex = lennard_jones(x,sigma,epsilon);\n", + "\n", + "%[Emin,imin]=min(Ex);\n", + "\n", + "[xmin,Emin] = goldmin(@(x) lennard_jones(x,sigma,epsilon),0.28,0.6)\n", + "\n", + "plot(x,Ex,xmin,Emin,'o')\n", + "ylabel('Lennard Jones Potential (aJ/atom)')\n", + "xlabel('bond length (nm)')\n", + "\n", + "Etotal = @(dx,F) lennard_jones(xmin+dx,sigma,epsilon)-F.*dx;\n" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0005\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.001\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0015\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.002\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0025\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.005\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.01\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.015\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.025\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.03\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.035\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\t\n", + "\t\tForce (nN)\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\tdx (nm)\n", + "\t\n", + "\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "N=50;\n", + "warning('off')\n", + "dx = zeros(1,N); % [in nm]\n", + "F_applied=linspace(0,0.0022,N); % [in nN]\n", + "for i=1:N\n", + " optmin=goldmin(@(dx) Etotal(dx,F_applied(i)),-0.001,0.035);\n", + " dx(i)=optmin;\n", + "end\n", + "\n", + "plot(dx,F_applied)\n", + "xlabel('dx (nm)')\n", + "ylabel('Force (nN)')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "For this function, it is possible to take a derivative and compare the analytical result:\n", + "\n", + "dE/dx = 0 = d(E_LJ)/dx - F\n", + "\n", + "F= d(E_LJ)/dx" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "F =\n", + "\n", + "@(dx) 4 * epsilon * 6 * (sigma ^ 6 ./ (xmin + dx) .^ 7 - 2 * sigma ^ 12 ./ (xmin + dx) .^ 13)\n", + "\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.0005\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0005\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.001\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0015\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.002\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0025\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.01\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.03\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.05\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dx_full=linspace(0,0.06,50);\n", + "F= @(dx) 4*epsilon*6*(sigma^6./(xmin+dx).^7-2*sigma^12./(xmin+dx).^13)\n", + "plot(dx_full,F(dx_full),dx,F_applied)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Curve-fitting\n", + "Another example is minimizing error in your approximation of a function. If you have data (now we have Force-displacement data) we can fit this to a function, such as:\n", + "\n", + "$F(x) = K_{1}\\Delta x + \\frac{1}{2} K_{2}(\\Delta x)^{2}$\n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "function SSE = sse_of_parabola(K,xdata,ydata)\n", + " % calculate the sum of squares error for a parabola given a function, func, and xdata and ydata\n", + " % output is SSE=sum of squares error\n", + " K1=K(1);\n", + " K2=K(2);\n", + " y_function = K1*xdata+1/2*K2*xdata.^2;\n", + " SSE = sum((ydata-y_function).^2);\n", + "end\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "The nonlinear spring constants are K1=0.16 nN/nm and K2=-5.98 nN/nm^2\n", + "The mininum sum of squares error = 7.35e-08\n" + ] + } + ], + "source": [ + "[K,SSE_min]=fminsearch(@(K) sse_of_parabola(K,dx,F_applied),[1,1]);\n", + "fprintf('\\nThe nonlinear spring constants are K1=%1.2f nN/nm and K2=%1.2f nN/nm^2\\n',K)\n", + "fprintf('The mininum sum of squares error = %1.2e',SSE_min)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0005\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.001\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0015\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.002\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0025\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.005\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.01\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.015\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.025\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.03\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.035\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot(dx,F_applied,'o',dx,K(1)*dx+1/2*K(2)*dx.^2)" + ] + } + ], + "metadata": { + "celltoolbar": "Slideshow", + "kernelspec": { + "display_name": "Octave", + "language": "octave", + "name": "octave" + }, + "language_info": { + "file_extension": ".m", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "octave", + "version": "0.19.14" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/08_optimization/Auchain_model.gif b/08_optimization/Auchain_model.gif new file mode 100644 index 0000000..2f8c78c Binary files /dev/null and b/08_optimization/Auchain_model.gif differ diff --git a/08_optimization/Auchain_model.png b/08_optimization/Auchain_model.png new file mode 100644 index 0000000..dce9cd7 Binary files /dev/null and b/08_optimization/Auchain_model.png differ diff --git a/08_optimization/au_chain.jpg b/08_optimization/au_chain.jpg new file mode 100644 index 0000000..492fee8 Binary files /dev/null and b/08_optimization/au_chain.jpg differ diff --git a/08_optimization/goldenratio.png b/08_optimization/goldenratio.png new file mode 100644 index 0000000..9493c8c Binary files /dev/null and b/08_optimization/goldenratio.png differ diff --git a/08_optimization/goldmin.m b/08_optimization/goldmin.m new file mode 100644 index 0000000..fb4ce0b --- /dev/null +++ b/08_optimization/goldmin.m @@ -0,0 +1,36 @@ +function [x,fx,ea,iter]=goldmin(f,xl,xu,es,maxit,varargin) +% goldmin: minimization golden section search +% [x,fx,ea,iter]=goldmin(f,xl,xu,es,maxit,p1,p2,...): +% uses golden section search to find the minimum of f +% input: +% f = name of function +% xl, xu = lower and upper guesses +% es = desired relative error (default = 0.0001%) +% maxit = maximum allowable iterations (default = 50) +% p1,p2,... = additional parameters used by f +% output: +% x = location of minimum +% fx = minimum function value +% ea = approximate relative error (%) +% iter = number of iterations +if nargin<3,error('at least 3 input arguments required'),end +if nargin<4|isempty(es), es=0.0001;end +if nargin<5|isempty(maxit), maxit=50;end +phi=(1+sqrt(5))/2; +iter=0; +while(1) + d = (phi-1)*(xu - xl); + x1 = xl + d; + x2 = xu - d; + if f(x1,varargin{:}) < f(x2,varargin{:}) + xopt = x1; + xl = x2; + else + xopt = x2; + xu = x1; + end + iter=iter+1; + if xopt~=0, ea = (2 - phi) * abs((xu - xl) / xopt) * 100;end + if ea <= es | iter >= maxit,break,end +end +x=xopt;fx=f(xopt,varargin{:}); diff --git a/08_optimization/lecture_08.ipynb b/08_optimization/lecture_08.ipynb new file mode 100644 index 0000000..fa0f10b --- /dev/null +++ b/08_optimization/lecture_08.ipynb @@ -0,0 +1,2836 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [], + "source": [ + "%plot --format svg" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Optimization" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "Many problems involve finding a minimum or maximum based on given constraints. Engineers and scientists typically use energy balance equations to find the conditions of minimum energy, but this value may never go to 0 and the actual value of energy may not be of interest. " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Lennard-Jones potential" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "The Lennard-Jones potential is commonly used to model interatomic bonding. \n", + "\n", + "$E_{LJ}(x)=4\\epsilon \\left(\\left(\\frac{\\sigma}{x}\\right)^{12}-\\left(\\frac{\\sigma}{x}\\right)^{6}\\right)$\n", + "\n", + "Considering a 1-D gold chain, we can calculate the bond length, $x_{b}$, with no force applied to the chain and even for tension, F. This will allow us to calculate the nonlinear spring constant of a 1-D gold chain. \n", + "\n", + "![TEM image of Gold chain](au_chain.jpg)\n", + "\n", + "Computational Tools to Study and Predict the Long-Term Stability of Nanowires.\n", + "By Martin E. Zoloff Michoff, Patricio VĂ©lez, Sergio A. Dassie and Ezequiel P. M. Leiva " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "![Model of Gold chain, from molecular dynamics simulation](Auchain_model.png)\n", + "\n", + "[Single atom gold chain mechanics](http://www.uam.es/personal_pdi/ciencias/agrait/)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### First, let's find the minimum energy $\\min(E_{LJ}(x))$\n", + "\n", + "## Brute force" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.08\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t2.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t6\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "setdefaults\n", + "epsilon = 0.039; % kcal/mol\n", + "sigma = 2.934; % Angstrom\n", + "x=linspace(2.8,6,200); % bond length in Angstrom\n", + "\n", + "Ex = lennard_jones(x,sigma,epsilon);\n", + "\n", + "[Emin,imin]=min(Ex);\n", + "\n", + "plot(x,Ex,x(imin),Emin,'o')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ans = 3.2824\n", + "ans = 3.2985\n", + "ans = 3.3146\n" + ] + } + ], + "source": [ + "x(imin-1)\n", + "x(imin)\n", + "x(imin+1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Golden Search Algorithm\n", + "\n", + "We can't just look for a sign change for the problem (unless we can take a derivative) so we need a new approach to determine whether we have a maximum between the two bounds.\n", + "\n", + "Rather than using the midpoint of initial bounds, here the problem is more difficult. We need to compare the values of 4 function evaluations. The golden search uses the golden ratio to determine two interior points. \n", + "\n", + "![golden ratio](goldenratio.png)\n", + "\n", + "Start with bounds of 2.5 and 6 Angstrom. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current_min = -0.019959\r\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.08\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t2.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t6\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_3a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_4a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_5a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_6a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "% define Au atomic potential\n", + "epsilon = 0.039; % kcal/mol\n", + "sigma = 2.934; % Angstrom\n", + "Au_x= @(x) lennard_jones(x,sigma,epsilon);\n", + "\n", + "% calculate golden ratio\n", + "phi = 1/2+sqrt(5)/2;\n", + "% set initial limits\n", + "x_l=2.8; \n", + "x_u=6; \n", + "\n", + "% Iteration #1\n", + "d=(phi-1)*(x_u-x_l);\n", + "\n", + "x1=x_l+d; % define point 1\n", + "x2=x_u-d; % define point 2\n", + "\n", + "\n", + "% evaluate Au_x(x1) and Au_x(x2)\n", + "\n", + "f1=Au_x(x1);\n", + "f2=Au_x(x2);\n", + "plot(x,Au_x(x),x_l,Au_x(x_l),'ro',x2,f2,'rs',x1,f1,'gs',x_u,Au_x(x_u),'go')\n", + "hold on;\n", + "\n", + "if f2\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.08\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t2.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t6\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_3a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_4a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_5a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_6a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "% Iteration #2\n", + "d=(phi-1)*(x_u-x_l);\n", + "\n", + "x1=x_l+d; % define point 1\n", + "x2=x_u-d; % define point 2\n", + "\n", + "% evaluate Au_x(x1) and Au_x(x2)\n", + "\n", + "f1=Au_x(x1);\n", + "f2=Au_x(x2);\n", + "plot(x,Au_x(x),x_l,Au_x(x_l),'ro',x2,f2,'rs',x1,f1,'gs',x_u,Au_x(x_u),'go')\n", + "hold on;\n", + "\n", + "if f2\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.08\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t2.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t6\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_3a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_4a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_5a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_6a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "% Iteration #3\n", + "d=(phi-1)*(x_u-x_l);\n", + "\n", + "x1=x_l+d; % define point 1\n", + "x2=x_u-d; % define point 2\n", + "\n", + "% evaluate Au_x(x1) and Au_x(x2)\n", + "\n", + "f1=Au_x(x1);\n", + "f2=Au_x(x2);\n", + "plot(x,Au_x(x),x_l,Au_x(x_l),'ro',x2,f2,'rs',x1,f1,'gs',x_u,Au_x(x_u),'go')\n", + "hold on;\n", + "\n", + "if f2\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.08\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t2.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t6\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_3a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_4a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_5a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_6a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "% Iteration #3\n", + "d=(phi-1)*(x_u-x_l);\n", + "\n", + "x1=x_l+d; % define point 1\n", + "x2=x_u-d; % define point 2\n", + "\n", + "% evaluate Au_x(x1) and Au_x(x2)\n", + "\n", + "f1=Au_x(x1);\n", + "f2=Au_x(x2);\n", + "plot(x,Au_x(x),x_l,Au_x(x_l),'ro',x2,f2,'rs',x1,f1,'gs',x_u,Au_x(x_u),'go')\n", + "hold on;\n", + "\n", + "if f2\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.08\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t2.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t6\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_3a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_4a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_5a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "% define Au atomic potential\n", + "epsilon = 0.039; % kcal/mol\n", + "sigma = 2.934; % Angstrom\n", + "Au_x= @(x) lennard_jones(x,sigma,epsilon);\n", + "\n", + "% set initial limits\n", + "x_l=2.8; \n", + "x_u=3.5; \n", + "\n", + "% Iteration #1\n", + "x1=x_l;\n", + "x2=mean([x_l,x_u]);\n", + "x3=x_u;\n", + "\n", + "% evaluate Au_x(x1), Au_x(x2) and Au_x(x3)\n", + " \n", + "f1=Au_x(x1);\n", + "f2=Au_x(x2);\n", + "f3=Au_x(x3);\n", + "p = polyfit([x1,x2,x3],[f1,f2,f3],2);\n", + "x_fit = linspace(x1,x3,20);\n", + "y_fit = polyval(p,x_fit);\n", + "\n", + "plot(x,Au_x(x),x_fit,y_fit,[x1,x2,x3],[f1,f2,f3],'o')\n", + "hold on\n", + "if f2x2\n", + " plot(x4,f4,'*',[x1,x2],[f1,f2])\n", + " x1=x2;\n", + " f1=f2;\n", + " else\n", + " plot(x4,f4,'*',[x3,x2],[f3,f2])\n", + " x3=x2;\n", + " f3=f2;\n", + " end\n", + " x2=x4; f2=f4;\n", + "else\n", + " error('no minimum in bracket')\n", + "end\n", + "hold off" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.08\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t2.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t6\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_3a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_4a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_5a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = polyfit([x1,x2,x3],[f1,f2,f3],2);\n", + "x_fit = linspace(x1,x3,20);\n", + "y_fit = polyval(p,x_fit);\n", + "\n", + "plot(x,Au_x(x),x_fit,y_fit,[x1,x2,x3],[f1,f2,f3],'o')\n", + "hold on\n", + "if f2x2\n", + " plot(x4,f4,'*',[x1,x2],[f1,f2])\n", + " x1=x2;\n", + " f1=f2;\n", + " else\n", + " plot(x4,f4,'*',[x3,x2],[f3,f2])\n", + " x3=x2;\n", + " f3=f2;\n", + " end\n", + " x2=x4; f2=f4;\n", + "else\n", + " error('no minimum in bracket')\n", + "end\n", + "hold off\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.08\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t2.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t3.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t4.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t6\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_3a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_4a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_5a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = polyfit([x1,x2,x3],[f1,f2,f3],2);\n", + "x_fit = linspace(x1,x3,20);\n", + "y_fit = polyval(p,x_fit);\n", + "\n", + "plot(x,Au_x(x),x_fit,y_fit,[x1,x2,x3],[f1,f2,f3],'o')\n", + "hold on\n", + "if f2x2\n", + " plot(x4,f4,'*',[x1,x2],[f1,f2])\n", + " x1=x2;\n", + " f1=f2;\n", + " else\n", + " plot(x4,f4,'*',[x3,x2],[f3,f2])\n", + " x3=x2;\n", + " f3=f2;\n", + " end\n", + " x2=x4; f2=f4;\n", + "else\n", + " error('no minimum in bracket')\n", + "end\n", + "hold off\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "Parabolic interpolation does not converge in many scenarios even though it it a bracketing method. Instead, functions like `fminbnd` in Matlab and Octave use a combination of the two (Golden Ratio and Parabolic)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Using the solutions to minimization for the nonlinear spring constant\n", + "\n", + "Now, we have two routines to find minimums of a univariate function (Golden Ratio and Parabolic). Let's use these to solve for the minimum energy given a range of applied forces to the single atom gold chain\n", + "\n", + "$E_{total}(\\Delta x) = E_{LJ}(x_{min}+\\Delta x) - F \\cdot \\Delta x$\n", + "\n", + "$1 aJ = 10^{-18} J = 1~nN* 1~nm = 10^{-9}N * 10^{-9} m$" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "warning: Matlab-style short-circuit operation performed for operator |\n", + "warning: called from\n", + " goldmin at line 17 column 1\n", + "warning: Matlab-style short-circuit operation performed for operator |\n", + "warning: Matlab-style short-circuit operation performed for operator |\n", + "xmin = 0.32933\n", + "Emin = -2.7096e-04\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.0004\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.0002\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0002\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0004\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0006\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.2\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.3\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.4\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.6\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.7\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\t\n", + "\t\tLennard Jones Potential (aJ/atom)\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\tbond length (nm)\n", + "\t\n", + "\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t \n", + "\t\n", + "\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epsilon = 0.039; % kcal/mol\n", + "epsilon = epsilon*6.9477e-21; % J/atom\n", + "epsilon = epsilon*1e18; % aJ/J\n", + "% final units for epsilon are aJ\n", + "\n", + "sigma = 2.934; % Angstrom\n", + "sigma = sigma*0.10; % nm/Angstrom\n", + "x=linspace(2.8,6,200)*0.10; % bond length in um\n", + "\n", + "Ex = lennard_jones(x,sigma,epsilon);\n", + "\n", + "%[Emin,imin]=min(Ex);\n", + "\n", + "[xmin,Emin] = goldmin(@(x) lennard_jones(x,sigma,epsilon),0.28,0.6)\n", + "\n", + "plot(x,Ex,xmin,Emin,'o')\n", + "ylabel('Lennard Jones Potential (aJ/atom)')\n", + "xlabel('bond length (nm)')\n", + "\n", + "Etotal = @(dx,F) lennard_jones(xmin+dx,sigma,epsilon)-F.*dx;\n" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0005\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.001\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0015\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.002\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0025\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.005\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.01\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.015\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.025\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.03\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.035\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\t\n", + "\t\tForce (nN)\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\tdx (nm)\n", + "\t\n", + "\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "N=50;\n", + "warning('off')\n", + "dx = zeros(1,N); % [in nm]\n", + "F_applied=linspace(0,0.0022,N); % [in nN]\n", + "for i=1:N\n", + " optmin=goldmin(@(dx) Etotal(dx,F_applied(i)),-0.001,0.035);\n", + " dx(i)=optmin;\n", + "end\n", + "\n", + "plot(dx,F_applied)\n", + "xlabel('dx (nm)')\n", + "ylabel('Force (nN)')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "For this function, it is possible to take a derivative and compare the analytical result:\n", + "\n", + "dE/dx = 0 = d(E_LJ)/dx - F\n", + "\n", + "F= d(E_LJ)/dx" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "F =\n", + "\n", + "@(dx) 4 * epsilon * 6 * (sigma ^ 6 ./ (xmin + dx) .^ 7 - 2 * sigma ^ 12 ./ (xmin + dx) .^ 13)\n", + "\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-0.0005\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0005\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.001\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0015\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.002\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0025\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.01\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.03\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.05\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.06\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dx_full=linspace(0,0.06,50);\n", + "F= @(dx) 4*epsilon*6*(sigma^6./(xmin+dx).^7-2*sigma^12./(xmin+dx).^13)\n", + "plot(dx_full,F(dx_full),dx,F_applied)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true, + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Curve-fitting\n", + "Another example is minimizing error in your approximation of a function. If you have data (now we have Force-displacement data) we can fit this to a function, such as:\n", + "\n", + "$F(x) = K_{1}\\Delta x + \\frac{1}{2} K_{2}(\\Delta x)^{2}$\n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "function SSE = sse_of_parabola(K,xdata,ydata)\n", + " % calculate the sum of squares error for a parabola given a function, func, and xdata and ydata\n", + " % output is SSE=sum of squares error\n", + " K1=K(1);\n", + " K2=K(2);\n", + " y_function = K1*xdata+1/2*K2*xdata.^2;\n", + " SSE = sum((ydata-y_function).^2);\n", + "end\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "The nonlinear spring constants are K1=0.16 nN/nm and K2=-5.98 nN/nm^2\n", + "The mininum sum of squares error = 7.35e-08\n" + ] + } + ], + "source": [ + "[K,SSE_min]=fminsearch(@(K) sse_of_parabola(K,dx,F_applied),[1,1]);\n", + "fprintf('\\nThe nonlinear spring constants are K1=%1.2f nN/nm and K2=%1.2f nN/nm^2\\n',K)\n", + "fprintf('The mininum sum of squares error = %1.2e',SSE_min)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0005\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.001\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0015\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.002\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.0025\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.005\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.01\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.015\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.02\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.025\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.03\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.035\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0.04\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot(dx,F_applied,'o',dx,K(1)*dx+1/2*K(2)*dx.^2)" + ] + } + ], + "metadata": { + "celltoolbar": "Slideshow", + "kernelspec": { + "display_name": "Octave", + "language": "octave", + "name": "octave" + }, + "language_info": { + "file_extension": ".m", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "octave", + "version": "0.19.14" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/08_optimization/lennard_jones.m b/08_optimization/lennard_jones.m new file mode 100644 index 0000000..d18a6ad --- /dev/null +++ b/08_optimization/lennard_jones.m @@ -0,0 +1,4 @@ +function E_LJ =lennard_jones(x,sigma,epsilon) + E_LJ = 4*epsilon*((sigma./x).^12-(sigma./x).^6); +end + diff --git a/08_optimization/octave-workspace b/08_optimization/octave-workspace new file mode 100644 index 0000000..8c437bb Binary files /dev/null and b/08_optimization/octave-workspace differ diff --git a/HW2/README.md b/HW2/README.md new file mode 100644 index 0000000..a3b064d --- /dev/null +++ b/HW2/README.md @@ -0,0 +1,99 @@ +# Homework #2 +## due 10/6/17 by 11:59pm + + +**1\.** Create a new github repository called '02_roots_and_optimization'. + + a. Add rcc02007 and zhs15101 as collaborators. + + b. submit the clone repository URL to: + [https://goo.gl/forms/svFKpfiCfLO9Zvfz1](https://goo.gl/forms/svFKpfiCfLO9Zvfz1) + + +**2\.** You're installing a powerline in a residential neighborhood. The lowest point on the +cable is 30 m above the ground, but 30 m away is a tree that is 35 m tall. Another +engineer informs you that this is a catenary cable problem with the following solution + + $y(x)=\frac{T}{w}\cosh\left(\frac{w}{T}x\right)+y_{0}-\frac{T}{w}$. + + where y(x) is the height of the cable at a distance, x, from the lowest point, $y_{0}$, + T is the tension in the cable, and w is the weight per unit length of the cable. Your + supervisor wants to know which numerical solver to use when they have to install these + powerlines in similar places. + + a. Use the three solvers `falsepos.m`, `bisect.m`, and `mod_secant.m` + to solve for the tension neededi, T, to reach y(30 m)=35 m, with w=10 N/m, and $y_{0}$=30 m. + + b. Compare the number of iterations that each function needed to reach an + accuracy of 0.00001%. Include a table in your README.md with: + + ``` + | solver | initial guess(es) | ea | number of iterations| + | --- | --- | --- | --- | + |falsepos | | | | + |mod_secant | | | | + |bisect | | | | + ``` + + + c. Add a figure to your README that plots the final shape of the powerline + ($y(x)~vs.~x$) from x=-10 to 50 m. + +**3\.** The Newton-Raphson method and the modified secant method do not always converge to a +solution. One simple example is the function f(x) = (x-1)*exp(-(x-1)^2). The root is at 1, but +using the numerical solvers, `newtraph.m` and `mod_secant.m`, there are certain initial +guesses that do not converge. + + a. Calculate the first 5 iterations for the Newton-Raphson method with an initial + guess of x_i=3 for f(x)=(x-1)*exp(-(x-1)^2). + + b. Add the results to a table in the `README.md` with: + + ``` + ### divergence of Newton-Raphson method + + | iteration | x_i | approx error | + | --- | --- | --- | + | 0 | 3 | n/a | + | 1 | | | + | 2 | | | + | 3 | | | + | 4 | | | + | 5 | | | + ``` + + c. Repeat steps a-b for an initial guess of 1.2. (But change the heading from + 'divergence' to 'convergence') + +![Model of Gold chain, from molecular dynamics simulation](../08_optimization/Auchain_model.png) + +**4\.** Determine the nonlinear spring constants of a single-atom gold chain. You can assume +the gold atoms are aligned in a one dimensional network and the potential energy is +described by the Lennard-Jones potential as such + + $E_{LJ}(x)=4\epsilon + \left(\left(\frac{\sigma}{x}\right)^{12}-\left(\frac{\sigma}{x}\right)^{6}\right)$. + + Where x is the distance between atoms in nm, $\epsilon$=2.71E-4 aJ, and $\sigma$=0.2934 + nm. The energy term that must be minimized is + + $E_{total}(\Delta x)=E_{LJ}(x_{0}+\Delta x)-F\Delta x$. + + Where $x_{0}$ is the distance between atoms with no force applied and $\Delta x$ is the + amount each gold atom has moved under a given force, F. + + a. Determine $x_{0}$ when F=0 nN using the golden ratio and parabolic methods. *Show + your script and output in your README and include your functions* + + b. Solve for $\Delta x$ for F=0 to 0.0022 nN with 30 steps. *Use the golden ratio + solver or the matlab/octave `fminsearch` + + c. create a sum of squares error function `sse_of_parabola.m` that calculates the sum of + squares error between a function $F(x)=K_{1}\Delta x+1/2K_{2}\Delta x^{2}$ and the + Forces used in part B for each $\Delta x$. + + d. Use the `fminsearch` matlab/octave function to determine $K_{1}$ and $K_{2}$. + + e. Plot the force vs calculated $\Delta x$ and the best-fit parabola using $K_{1}$ and + $K_{2}$ in part d. +