Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
\documentclass[10pt]{article}
\usepackage[margin=1in]{geometry}
\usepackage{amsmath,amsthm,amssymb,amsfonts}
\usepackage[makeroom]{cancel}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newtheorem{theorem}{Theorem}
\newtheorem{definition}{Definition}
\newtheorem{example}{Example}
\newenvironment{problem}[2][Problem]{\begin{trivlist}
\item[\hskip \labelsep {\bfseries #1}\hskip \labelsep {\bfseries #2.}]}{\end{trivlist}}
\begin{document}
\title{\textbf{Reusable Fuzzy Extractors}}
\author{Chloe Cachet}
%\maketitle
Let $(Gen, Rep)$ be a fuzzy extractor, such that for all $\omega_i \in \mathcal{M}$, $(R_i,P_i) \leftarrow Gen(\omega_i)$.
Let $\Delta$ be a family of perturbations such that for any $\delta_i \in \Delta$, $\delta_i(\omega) = \omega_i$.
Calling $Gen$ generates a partition $Part$ which splits the set of all possible inputs, $\mathcal{M}$ into two subsets of equal size, $Part_1$ and $Part_2$.
An unbounded adversary can then compute all possible values for P, and build a tree of all the P values for each possible $\omega_i = \delta(\omega)$, with the corresponding winning probabilities.\\
Boyen proposes an adaptive adversary for the information theoretic model, with perturbations restricted to shifts.
Canetti proposes a static adversary for the computational model, with arbitrary perturbations.
Putting aside the difference in models, can we write:
\textbf{Boyen's adversary $\Rightarrow$ Canetti's adversary}
Note: equivalent to NOT Canetti's $\Rightarrow$ NOT Boyen's, meaning. \\
%\textbf{Question: Does an adaptive adversary have any advantage over a non-adaptive one ?} \\
In other words, does building the tree of $P_i$ values in an adaptive way, such that $P_i = Gen(\delta_i(\omega_{i-1}))$, improves the probability of the adversary winning the game over building the tree in a non-adaptive way such that $P_i = Gen(\delta_i(\omega))$.
We assume $\delta_i \in \Delta$ is a deterministic function of $P_i$ such that for an arbitrary adversary $\mathcal{A}_{Boy}$, we have $\delta_i \leftarrow \mathcal{A}_{Boy}(P_i)$.
%missing transition here!
\begin{definition} Universal Hash function \\
$h: U \rightarrow R $ is a Universal hash function if, $\forall x,y \in U, x \neq y$:
$$ \Pr[h(x) = h(y)] = \frac{1}{|R|} $$
$h$ is also pairwise independent if, $\forall x,y \in U, x \neq y$, $\forall a,b \in R$:
\begin{equation*}
\begin{split}
\Pr[h(x) = a \wedge h(y)=b] & = \Pr[h(x) = a] \times \Pr[h(y)=b] \\
& = \frac{1}{|R|^2}
\end{split}
\end{equation*}
\end{definition}
\begin{definition} XOR-Universal Hash function \\
$h: U \rightarrow R $ is a XOR-Universal hash function if, $\forall x,y \in U, x \neq y$, $\forall c \in R$:
$$ \Pr[h(x) \oplus h(y) = c] = \frac{1}{|R|}$$
\end{definition}
\begin{example}
Let $W$ be the set of points such that $\forall \omega \in W, H(\omega) = a \textit{ mod } p$. The family of perturbations $\Delta$ is the set of perturbations such that $\forall \delta \in \Delta, \delta(x) = x \oplus c$. The partition is defined as follows:
\begin{equation*}
\begin{cases}
Part_1 = 1 & \textit{if } H(x) \textit{ is odd} \\
Part_0 = 0 & \textit{if } H(x) \textit{ is even.}
\end{cases}
\end{equation*}
According to definition, we have $\delta(x) \in Part_0$ if and only if $H(\delta(x))$ is even.
$$ H(\delta(x)) = H(x \oplus c) = H(x) + H(c) $$
$c$ is fixed and is either even or odd, as such, we can write:
\begin{equation*}
\begin{cases}
\exists c_0, \forall x, \textit{ s.t. } x \oplus c_0 \in Part_0 \\
\exists c_1, \forall x, \textit{ s.t. } x \oplus c_1 \in Part_1
\end{cases}
\end{equation*}
we then have the following probabilities:
\begin{equation*}
\begin{cases}
Pr[x \oplus c_0 \in Part_0] = 1 \textit{ and } Pr[x \oplus c_0 \in Part_1] = 0 \\
Pr[x \oplus c_1 \in Part_1] = 1 \textit{ and } Pr[x \oplus c_1 \in Part_0] = 0 \\
\end{cases}
\end{equation*}
\end{example}
Basing ourselves on this example, we ask the following question:
Given a partition with $|Part_0| = |Part_1|$, can we find a distribution such that
\begin{equation*}
\begin{cases}
\forall c, \forall x, Pr[x \oplus c \in Part_0] \ngtr \frac{1}{2} \\
\forall c, \forall x, Pr[x \oplus c \in Part_1] \ngtr \frac{1}{2}
\end{cases}
\end{equation*}
in other words, we want to find a distribution for which we cannot find $c_0, c_1$ such that :
\begin{equation*}
\begin{cases}
\exists c_0, \forall x, \textit{ s.t. } x \oplus c_0 \in Part_0 \\
\exists c_1, \forall x, \textit{ s.t. } x \oplus c_1 \in Part_1
\end{cases}
\end{equation*}
We consider an arbitrary distribution $B_{l,x}$ as a Hamming ball centered on $x$ and of radius $l$, such that:
$$ B_{l,x} = \sum_{i=0}^l \binom{n}{i} (q-1)^i = \sum_{i=0}^l \frac{n!}{i!(n-i)!} (q-1)^i \approx \binom{n}{l}(q-1)^l $$
with $q \geq 2$ and $n \geq r \geq 1$. %We then give an approximation of $\binom{n}{i}$, $\forall 1 \leq i \leq n $:
%$$ (\frac{n}{i})^i \leq \binom{n}{i} \leq 2^n $$
Let $\Delta$ be a shift such that $\Delta(x) = x + 1$, $\Delta$ then takes inputs in $B_{l,x}$ and its outputs are in $B_{l,x+1}$.
We then have:
$$ B_{l,x} \cap B_{l,x+1} \geq B_{l-1,x} $$
and
%\begin{equation*}
%\begin{split}
% \frac{B_{l-1,x}}{B_{l,x}} & = \frac{\sum_{i=0}^{l-1} \binom{n}{i} (q-1)^i}{\sum_{i=0}^l \binom{n}{i} (q-1)^i} \\
% & \leq \frac{\sum_{i=0}^{l-1} 2^n (q-1)^i}{\sum_{i=0}^l 2^n (q-1)^i} \\
%\end{split}
%\end{equation*}
\begin{equation*}
\begin{split}
\frac{B_{l-1,x}}{B_{l,x}} & = \frac{\sum_{i=0}^{l-1} \binom{n}{i} (q-1)^i}{\sum_{i=0}^l \binom{n}{i} (q-1)^i} \\
& \approx \frac{\binom{n}{l-1}(q-1)^{l-1}}{\binom{n}{l}(q-1)^l} \\
& \approx \frac{1}{(q-1)} \times \frac{\cancel{n!}}{(l-1)!(n-(l-1))!} \times \frac{l!(n-l)!}{\cancel{n!}} \\
& \approx \frac{1}{(q-1)} \times \frac{l\cancel{(l-1)!}\cancel{(n-l)!}}{\cancel{(l-1)!}(n-l+1)\cancel{(n-l)!}} \\
& \approx \frac{l}{(q-1) \times (n-l+1)} \\
\end{split}
\end{equation*}
\end{document}