Determine the Cholesky factorization, C, of the following matrices, where
+\(C_{ii}=\sqrt{a_{ii}-\sum_{k=1}^{i-1}C_{ki}^{2}}\)
+\(C_{ij}=\frac{a_{ij}-\sum_{k=1}^{i-1}C_{ki}C_{kj}}{C_{ii}}\).
+
+A=\(\left[ \begin{array}{cc} 3 & 2 \\ 2 & 1 \end{array} \right]\)
+A=\(\left[ \begin{array}{cc} 10 & 5 \\ 5 & 20 \end{array} \right]\)
+A=\(\left[ \begin{array}{ccc} 10 & -10 & 20 \\ -10 & 20 & 10 \\ 20 & 10 & 30 \end{array} \right]\)
+A=\(\left[ \begin{array}{cccc} 21 & -1 & 0 & 0 \\ -1 & 21 & -1 & 0 \\ 0 & -1 & 21 & -1 \\ 0 & 0 & -1 & 1 \end{array} \right]\)
+
+