Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
compmech-project04/Linear_Algebra-project_revC.ipynb
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
1299 lines (1299 sloc)
551 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# CompMech04-Linear Algebra Project\n", | |
"# Practical Linear Algebra for Finite Element Analysis\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"In this project we will perform a linear-elastic finite element analysis (FEA) on a support structure made of 11 beams that are riveted in 7 locations to create a truss as shown in the image below. \n", | |
"\n", | |
"![Mesh image of truss](../images/mesh.png)\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The triangular truss shown above can be modeled using a [direct stiffness method [1]](https://en.wikipedia.org/wiki/Direct_stiffness_method), that is detailed in the [extra-FEA_material](./extra-FEA_material.ipynb) notebook. The end result of converting this structure to a FE model. Is that each joint, labeled $n~1-7$, short for _node 1-7_ can move in the x- and y-directions, but causes a force modeled with Hooke's law. Each beam labeled $el~1-11$, short for _element 1-11_, contributes to the stiffness of the structure. We have 14 equations where the sum of the components of forces = 0, represented by the equation\n", | |
"\n", | |
"$\\mathbf{F-Ku}=\\mathbf{0}$\n", | |
"\n", | |
"Where, $\\mathbf{F}$ are externally applied forces, $\\mathbf{u}$ are x- and y- displacements of nodes, and $\\mathbf{K}$ is the stiffness matrix given in `fea_arrays.npz` as `K`, shown below\n", | |
"\n", | |
"_note: the array shown is 1000x(`K`). You can use units of MPa (N/mm^2), N, and mm. The array `K` is in 1/mm_\n", | |
"\n", | |
"$\\mathbf{K}=EA*$\n", | |
"\n", | |
"$ \\left[ \\begin{array}{cccccccccccccc}\n", | |
" 4.2 & 1.4 & -0.8 & -1.4 & -3.3 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\\\\n", | |
" 1.4 & 2.5 & -1.4 & -2.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\\\\n", | |
" -0.8 & -1.4 & 5.0 & 0.0 & -0.8 & 1.4 & -3.3 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\\\\n", | |
" -1.4 & -2.5 & 0.0 & 5.0 & 1.4 & -2.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\\\\n", | |
" -3.3 & 0.0 & -0.8 & 1.4 & 8.3 & 0.0 & -0.8 & -1.4 & -3.3 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\\\\n", | |
" 0.0 & 0.0 & 1.4 & -2.5 & 0.0 & 5.0 & -1.4 & -2.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\\\\n", | |
" 0.0 & 0.0 & -3.3 & 0.0 & -0.8 & -1.4 & 8.3 & 0.0 & -0.8 & 1.4 & -3.3 & 0.0 & 0.0 & 0.0 \\\\\n", | |
" 0.0 & 0.0 & 0.0 & 0.0 & -1.4 & -2.5 & 0.0 & 5.0 & 1.4 & -2.5 & 0.0 & 0.0 & 0.0 & 0.0 \\\\\n", | |
" 0.0 & 0.0 & 0.0 & 0.0 & -3.3 & 0.0 & -0.8 & 1.4 & 8.3 & 0.0 & -0.8 & -1.4 & -3.3 & 0.0 \\\\\n", | |
" 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.4 & -2.5 & 0.0 & 5.0 & -1.4 & -2.5 & 0.0 & 0.0 \\\\\n", | |
" 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -3.3 & 0.0 & -0.8 & -1.4 & 5.0 & 0.0 & -0.8 & 1.4 \\\\\n", | |
" 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.4 & -2.5 & 0.0 & 5.0 & 1.4 & -2.5 \\\\\n", | |
" 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -3.3 & 0.0 & -0.8 & 1.4 & 4.2 & -1.4 \\\\\n", | |
" 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.4 & -2.5 & -1.4 & 2.5 \\\\\n", | |
"\\end{array}\\right]~\\frac{1}{m}$" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 292, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 0.00416667, 0.00144338, -0.00083333, -0.00144338, -0.00333333,\n", | |
" 0. , 0. , 0. , 0. , 0. ,\n", | |
" 0. , 0. , 0. , 0. ],\n", | |
" [ 0.00144338, 0.0025 , -0.00144338, -0.0025 , 0. ,\n", | |
" 0. , 0. , 0. , 0. , 0. ,\n", | |
" 0. , 0. , 0. , 0. ],\n", | |
" [-0.00083333, -0.00144338, 0.005 , 0. , -0.00083333,\n", | |
" 0.00144338, -0.00333333, 0. , 0. , 0. ,\n", | |
" 0. , 0. , 0. , 0. ],\n", | |
" [-0.00144338, -0.0025 , 0. , 0.005 , 0.00144338,\n", | |
" -0.0025 , 0. , 0. , 0. , 0. ,\n", | |
" 0. , 0. , 0. , 0. ],\n", | |
" [-0.00333333, 0. , -0.00083333, 0.00144338, 0.00833333,\n", | |
" 0. , -0.00083333, -0.00144338, -0.00333333, 0. ,\n", | |
" 0. , 0. , 0. , 0. ],\n", | |
" [ 0. , 0. , 0.00144338, -0.0025 , 0. ,\n", | |
" 0.005 , -0.00144338, -0.0025 , 0. , 0. ,\n", | |
" 0. , 0. , 0. , 0. ],\n", | |
" [ 0. , 0. , -0.00333333, 0. , -0.00083333,\n", | |
" -0.00144338, 0.00833333, 0. , -0.00083333, 0.00144338,\n", | |
" -0.00333333, 0. , 0. , 0. ],\n", | |
" [ 0. , 0. , 0. , 0. , -0.00144338,\n", | |
" -0.0025 , 0. , 0.005 , 0.00144338, -0.0025 ,\n", | |
" 0. , 0. , 0. , 0. ],\n", | |
" [ 0. , 0. , 0. , 0. , -0.00333333,\n", | |
" 0. , -0.00083333, 0.00144338, 0.00833333, 0. ,\n", | |
" -0.00083333, -0.00144338, -0.00333333, 0. ],\n", | |
" [ 0. , 0. , 0. , 0. , 0. ,\n", | |
" 0. , 0.00144338, -0.0025 , 0. , 0.005 ,\n", | |
" -0.00144338, -0.0025 , 0. , 0. ],\n", | |
" [ 0. , 0. , 0. , 0. , 0. ,\n", | |
" 0. , -0.00333333, 0. , -0.00083333, -0.00144338,\n", | |
" 0.005 , 0. , -0.00083333, 0.00144338],\n", | |
" [ 0. , 0. , 0. , 0. , 0. ,\n", | |
" 0. , 0. , 0. , -0.00144338, -0.0025 ,\n", | |
" 0. , 0.005 , 0.00144338, -0.0025 ],\n", | |
" [ 0. , 0. , 0. , 0. , 0. ,\n", | |
" 0. , 0. , 0. , -0.00333333, 0. ,\n", | |
" -0.00083333, 0.00144338, 0.00416667, -0.00144338],\n", | |
" [ 0. , 0. , 0. , 0. , 0. ,\n", | |
" 0. , 0. , 0. , 0. , 0. ,\n", | |
" 0.00144338, -0.0025 , -0.00144338, 0.0025 ]])" | |
] | |
}, | |
"execution_count": 292, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"import numpy as np\n", | |
"fea_arrays = np.load('./fea_arrays.npz')\n", | |
"K=fea_arrays['K']\n", | |
"K" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"In this project we are solving the problem, $\\mathbf{F}=\\mathbf{Ku}$, where $\\mathbf{F}$ is measured in Newtons, $\\mathbf{K}$ `=E*A*K` is the stiffness in N/mm, `E` is Young's modulus measured in MPa (N/mm^2), and `A` is the cross-sectional area of the beam measured in mm^2. \n", | |
"\n", | |
"There are three constraints on the motion of the joints:\n", | |
"\n", | |
"i. node 1 displacement in the x-direction is 0 = `u[0]`\n", | |
"\n", | |
"ii. node 1 displacement in the y-direction is 0 = `u[1]`\n", | |
"\n", | |
"iii. node 7 displacement in the y-direction is 0 = `u[13]`\n", | |
"\n", | |
"We can satisfy these constraints by leaving out the first, second, and last rows and columns from our linear algebra description. " | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### 1. Calculate the condition of `K` and the condition of `K[2:13,2:13]`. \n", | |
"\n", | |
"a. What error would you expect when you solve for `u` in `K*u = F`? \n", | |
"\n", | |
"b. Why is the condition of `K` so large?\n", | |
"\n", | |
"c. What error would you expect when you solve for `u[2:13]` in `K[2:13,2:13]*u=F[2:13]`" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 332, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Number 1:\n", | |
"\n", | |
"Part a:\n", | |
"The condition of K is 1.4578e+17\n", | |
"Therefore, the rounding eror when solving for u in K*u=F is 10^1 or 1.0e+01\n", | |
"\n", | |
"Part b:\n", | |
"If we don't include u[0], u[1], and u[13] (which all are set to zero), the condition and thus rounding error decrease\n", | |
"significantly (see below).\n", | |
"The original matrix is ill-conditioned. This is due to the fact that if we calculate the entire matrix without specifying extra boundary conditions, we end up with linearly dependent equations and thus an ill-conditioned matrix with large error.\n", | |
"\n", | |
"Part c:\n", | |
"The condition of K[2:13,2:13] is 52.2354\n", | |
"Therefore, the rounding error when solving for u[2:13] in K[2:13,2:13]*u=F[2:13] is 10^-15 or 1.0e-15\n" | |
] | |
} | |
], | |
"source": [ | |
"print(\"Number 1:\")\n", | |
"print()\n", | |
"\n", | |
"## part a ##\n", | |
"print(\"Part a:\")\n", | |
"print(\"The condition of K is {:1.4e}\".format(np.linalg.cond(K)))\n", | |
"print(\"Therefore, the rounding eror when solving for u in K*u=F is 10^{} or {:1.1e}\".format(17-16,10**(17-16)))\n", | |
"print()\n", | |
"\n", | |
"## part b ##\n", | |
"print(\"Part b:\")\n", | |
"print(\"If we don't include u[0], u[1], and u[13] (which all are set to zero), the condition and thus rounding error decrease\\nsignificantly (see below).\")\n", | |
"print(\"The original matrix is ill-conditioned. This is due to the fact that if we calculate the entire matrix without specifying extra boundary conditions, we end up with linearly dependent equations and thus an ill-conditioned matrix with large error.\")\n", | |
"print()\n", | |
"\n", | |
"## part c ##\n", | |
"print(\"Part c:\")\n", | |
"print(\"The condition of K[2:13,2:13] is {:2.4f}\".format(np.linalg.cond(K[2:13,2:13])))\n", | |
"print(\"Therefore, the rounding error when solving for u[2:13] in K[2:13,2:13]*u=F[2:13] is 10^{} or {:1.1e}\".format(1-16,10**(1-16)))\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### 2. Apply a 100-N downward force to the central top node (n 4)\n", | |
"\n", | |
"a. Create the LU matrix for K[2:13,2:13]\n", | |
"\n", | |
"b. Use cross-sectional area of $0.1~mm^2$ and steel and almuminum moduli, $E=200~GPa~and~E=70~GPa,$ respectively. Solve the forward and backward substitution methods for \n", | |
"\n", | |
"* $\\mathbf{Ly}=\\mathbf{F}\\frac{1}{EA}$\n", | |
"\n", | |
"* $\\mathbf{Uu}=\\mathbf{y}$\n", | |
"\n", | |
"_your array `F` is zeros, except for `F[5]=-100`, to create a -100 N load at node 4._\n", | |
"\n", | |
"c. Plug in the values for $\\mathbf{u}$ into the full equation, $\\mathbf{Ku}=\\mathbf{F}$, to solve for the reaction forces\n", | |
"\n", | |
"d. Create a plot of the undeformed and deformed structure with the displacements and forces plotted as vectors (via `quiver`). Your result for aluminum should match the following result from [extra-FEA_material](./extra-FEA_material.ipynb). _note: The scale factor is applied to displacements $\\mathbf{u}$, not forces._\n", | |
"\n", | |
"![Deformed structure with loads applied](../images/deformed_truss.png)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 294, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"## Number 2\n", | |
"\n", | |
"def LUNaive(A):\n", | |
" '''LUNaive: naive LU decomposition\n", | |
" L,U = LUNaive(A): LU decomposition without pivoting.\n", | |
" solution method requires floating point numbers, \n", | |
" as such the dtype is changed to float\n", | |
" \n", | |
" Arguments:\n", | |
" ----------\n", | |
" A = coefficient matrix\n", | |
" returns:\n", | |
" ---------\n", | |
" L = Lower triangular matrix\n", | |
" U = Upper triangular matrix\n", | |
" '''\n", | |
" [m,n] = np.shape(A)\n", | |
" if m!=n: error('Matrix A must be square')\n", | |
" nb = n+1\n", | |
" # Gauss Elimination\n", | |
" U = A.astype(float)\n", | |
" L = np.eye(n)\n", | |
"\n", | |
" for k in range(0,n-1):\n", | |
" for i in range(k+1,n):\n", | |
" if U[k,k] != 0.0:\n", | |
" factor = U[i,k]/U[k,k]\n", | |
" L[i,k]=factor\n", | |
" U[i,:] = U[i,:] - factor*U[k,:]\n", | |
" return L,U\n", | |
"\n", | |
"\n", | |
"def solveLU(L,U,b):\n", | |
" '''solveLU: solve for x when LUx = b\n", | |
" x = solveLU(L,U,b): solves for x given the lower and upper \n", | |
" triangular matrix storage\n", | |
" uses forward substitution for \n", | |
" 1. Ly = b\n", | |
" then backward substitution for\n", | |
" 2. Ux = y\n", | |
" \n", | |
" Arguments:\n", | |
" ----------\n", | |
" L = Lower triangular matrix\n", | |
" U = Upper triangular matrix\n", | |
" b = output vector\n", | |
" \n", | |
" returns:\n", | |
" ---------\n", | |
" x = solution of LUx=b '''\n", | |
" n=len(b)\n", | |
" x=np.zeros(n)\n", | |
" y=np.zeros(n)\n", | |
" \n", | |
" # forward substitution\n", | |
" for k in range(0,n):\n", | |
" y[k] = b[k] - L[k,0:k]@y[0:k]\n", | |
" # backward substitution\n", | |
" for k in range(n-1,-1,-1):\n", | |
" x[k] = (y[k] - U[k,k+1:n]@x[k+1:n])/U[k,k]\n", | |
" return x\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 295, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Number 2:\n", | |
"Part a:\n", | |
"\n", | |
"The L matrix is:\n", | |
" [[ 1. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. ]\n", | |
" [ 0. 1. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. ]\n", | |
" [-0.16666667 0.28867513 1. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. ]\n", | |
" [ 0.28867513 -0.5 0.12371791 1. 0. 0.\n", | |
" 0. 0. 0. 0. 0. ]\n", | |
" [-0.66666667 0. -0.17857143 -0.09622504 1. 0.\n", | |
" 0. 0. 0. 0. 0. ]\n", | |
" [ 0. 0. -0.18557687 -0.72222222 -0.08247861 1.\n", | |
" 0. 0. 0. 0. 0. ]\n", | |
" [ 0. 0. -0.42857143 0.12830006 -0.23809524 0.33425542\n", | |
" 1. 0. 0. 0. 0. ]\n", | |
" [ 0. 0. 0. 0. 0.24743583 -0.78947368\n", | |
" 0.18426072 1. 0. 0. 0. ]\n", | |
" [ 0. 0. 0. 0. -0.57142857 -0.09116057\n", | |
" -0.24822695 -0.21650635 1. 0. 0. ]\n", | |
" [ 0. 0. 0. 0. 0. 0.\n", | |
" -0.23339692 -0.875 -0.32768529 1. 0. ]\n", | |
" [ 0. 0. 0. 0. 0. 0.\n", | |
" -0.53900709 0.24056261 -0.59459459 0.28867513 1. ]]\n", | |
"\n", | |
"The U matrix is:\n", | |
" [[ 5.00000000e-03 0.00000000e+00 -8.33333333e-04 1.44337567e-03\n", | |
" -3.33333333e-03 0.00000000e+00 0.00000000e+00 0.00000000e+00\n", | |
" 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n", | |
" [ 0.00000000e+00 5.00000000e-03 1.44337567e-03 -2.50000000e-03\n", | |
" 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n", | |
" 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n", | |
" [ 0.00000000e+00 0.00000000e+00 7.77777778e-03 9.62250449e-04\n", | |
" -1.38888889e-03 -1.44337567e-03 -3.33333333e-03 0.00000000e+00\n", | |
" 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n", | |
" [-2.16840434e-19 0.00000000e+00 0.00000000e+00 3.21428571e-03\n", | |
" -3.09294787e-04 -2.32142857e-03 4.12393049e-04 0.00000000e+00\n", | |
" 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n", | |
" [-2.08654805e-20 0.00000000e+00 0.00000000e+00 0.00000000e+00\n", | |
" 5.83333333e-03 -4.81125224e-04 -1.38888889e-03 1.44337567e-03\n", | |
" -3.33333333e-03 0.00000000e+00 0.00000000e+00]\n", | |
" [-1.58327936e-19 0.00000000e+00 0.00000000e+00 0.00000000e+00\n", | |
" 0.00000000e+00 3.01587302e-03 1.00807190e-03 -2.38095238e-03\n", | |
" -2.74928700e-04 0.00000000e+00 0.00000000e+00]\n", | |
" [ 7.57746398e-20 0.00000000e+00 0.00000000e+00 0.00000000e+00\n", | |
" 0.00000000e+00 0.00000000e+00 6.18421053e-03 1.13950711e-03\n", | |
" -1.53508772e-03 -1.44337567e-03 -3.33333333e-03]\n", | |
" [-1.33795162e-19 0.00000000e+00 0.00000000e+00 0.00000000e+00\n", | |
" 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.55319149e-03\n", | |
" -5.52782173e-04 -2.23404255e-03 6.14202414e-04]\n", | |
" [-3.65145909e-20 0.00000000e+00 0.00000000e+00 0.00000000e+00\n", | |
" 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n", | |
" 2.56944444e-03 -8.41969143e-04 -1.52777778e-03]\n", | |
" [-1.11350493e-19 0.00000000e+00 0.00000000e+00 0.00000000e+00\n", | |
" 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n", | |
" 0.00000000e+00 2.43243243e-03 7.02182760e-04]\n", | |
" [ 8.34619222e-20 0.00000000e+00 0.00000000e+00 0.00000000e+00\n", | |
" 0.00000000e+00 0.00000000e+00 -4.33680869e-19 0.00000000e+00\n", | |
" 0.00000000e+00 -1.08420217e-19 1.11111111e-03]]\n" | |
] | |
} | |
], | |
"source": [ | |
"## part a ##\n", | |
"\n", | |
"print(\"Number 2:\")\n", | |
"print(\"Part a:\")\n", | |
"print()\n", | |
"\n", | |
"L,U=LUNaive(K[2:13,2:13])\n", | |
"\n", | |
"print(\"The L matrix is:\\n\",L)\n", | |
"print()\n", | |
"print(\"The U matrix is:\\n\",U)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 333, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Number 2\n", | |
"Part b:\n", | |
"\n", | |
"displacement for steel:\n", | |
"----------------\n", | |
"u_1x:0.00 mm\n", | |
"u_1y:0.00 mm\n", | |
"u_2x:1.95 mm\n", | |
"u_2y:-2.12 mm\n", | |
"u_3x:0.43 mm\n", | |
"u_3y:-4.00 mm\n", | |
"u_4x:1.08 mm\n", | |
"u_4y:-5.38 mm\n", | |
"u_5x:1.73 mm\n", | |
"u_5y:-4.00 mm\n", | |
"u_6x:0.22 mm\n", | |
"u_6y:-2.12 mm\n", | |
"u_7x:2.17 mm\n", | |
"u_7y:0.00 mm\n", | |
"\n", | |
"displacement for aluminum:\n", | |
"----------------\n", | |
"u_1x:0.00 mm\n", | |
"u_1y:0.00 mm\n", | |
"u_2x:5.57 mm\n", | |
"u_2y:-6.07 mm\n", | |
"u_3x:1.24 mm\n", | |
"u_3y:-11.43 mm\n", | |
"u_4x:3.09 mm\n", | |
"u_4y:-15.36 mm\n", | |
"u_5x:4.95 mm\n", | |
"u_5y:-11.43 mm\n", | |
"u_6x:0.62 mm\n", | |
"u_6y:-6.07 mm\n", | |
"u_7x:6.19 mm\n", | |
"u_7y:0.00 mm\n" | |
] | |
} | |
], | |
"source": [ | |
"## part b ##\n", | |
"\n", | |
"print(\"Number 2\")\n", | |
"print(\"Part b:\")\n", | |
"\n", | |
"E_st= 200e3 # MPa\n", | |
"E_al= 70e3 # Mpa\n", | |
"A=0.1 # mm^2\n", | |
"\n", | |
"Ff=np.array([0,0,0,0,0,-100,0,0,0,0,0])\n", | |
"\n", | |
"# L*y=b , U*x=y\n", | |
"# b=F*1/E/A , x=u\n", | |
"\n", | |
"b_al = Ff * (1/E_al/A)\n", | |
"b_st = Ff * (1/E_st/A)\n", | |
"\n", | |
"u_st = solveLU(L,U,b_st)\n", | |
"u_al = solveLU(L,U,b_al)\n", | |
"\n", | |
"u1=np.zeros(14)\n", | |
"u2=np.zeros(14)\n", | |
"u1[2:13]=u_st\n", | |
"u2[2:13]=u_al\n", | |
"\n", | |
"xy={0:'x',1:'y'}\n", | |
"print('\\ndisplacement for steel:\\n----------------')\n", | |
"for i in range(len(u1)):\n", | |
" print('u_{}{}:{:.2f} mm'.format(int(i/2)+1,xy[i%2],u1[i]))\n", | |
" \n", | |
"print('\\ndisplacement for aluminum:\\n----------------')\n", | |
"for j in range(len(u2)):\n", | |
" print('u_{}{}:{:.2f} mm'.format(int(j/2)+1,xy[j%2],u2[j]))\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 334, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Number 2\n", | |
"Part c:\n", | |
"\n", | |
"\n", | |
"reaction forces for steel:\n", | |
"----------------\n", | |
"F_1x:-0.00 N\n", | |
"F_1y:50.00 N\n", | |
"F_2x:0.00 N\n", | |
"F_2y:-0.00 N\n", | |
"F_3x:-0.00 N\n", | |
"F_3y:0.00 N\n", | |
"F_4x:0.00 N\n", | |
"F_4y:-100.00 N\n", | |
"F_5x:-0.00 N\n", | |
"F_5y:0.00 N\n", | |
"F_6x:0.00 N\n", | |
"F_6y:0.00 N\n", | |
"F_7x:0.00 N\n", | |
"F_7y:50.00 N\n", | |
"\n", | |
"reaction forces for aluminum:\n", | |
"----------------\n", | |
"F_1x:-0.00 N\n", | |
"F_1y:50.00 N\n", | |
"F_2x:-0.00 N\n", | |
"F_2y:0.00 N\n", | |
"F_3x:-0.00 N\n", | |
"F_3y:0.00 N\n", | |
"F_4x:0.00 N\n", | |
"F_4y:-100.00 N\n", | |
"F_5x:0.00 N\n", | |
"F_5y:-0.00 N\n", | |
"F_6x:0.00 N\n", | |
"F_6y:-0.00 N\n", | |
"F_7x:0.00 N\n", | |
"F_7y:50.00 N\n" | |
] | |
} | |
], | |
"source": [ | |
"## part c ##\n", | |
"\n", | |
"print(\"Number 2\")\n", | |
"print(\"Part c:\")\n", | |
"print()\n", | |
"\n", | |
"rxn_F_st = E_st*A*K@u1\n", | |
"rxn_F_al = E_al*A*K@u2\n", | |
"\n", | |
"\n", | |
"xy={0:'x',1:'y'}\n", | |
"print('\\nreaction forces for steel:\\n----------------')\n", | |
"for i in range(len(rxn_F_st)):\n", | |
" print('F_{}{}:{:.2f} N'.format(int(i/2)+1,xy[i%2],rxn_F_st[i]))\n", | |
" \n", | |
"print('\\nreaction forces for aluminum:\\n----------------')\n", | |
"for j in range(len(rxn_F_al)):\n", | |
" print('F_{}{}:{:.2f} N'.format(int(j/2)+1,xy[j%2],rxn_F_al[j]))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 373, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"ename": "SyntaxError", | |
"evalue": "invalid syntax (<ipython-input-373-8ff843e1c055>, line 37)", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-373-8ff843e1c055>\"\u001b[0;36m, line \u001b[0;32m37\u001b[0m\n\u001b[0;31m interact(f_st,s=5;\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" | |
] | |
} | |
], | |
"source": [ | |
"from __future__ import print_function\n", | |
"from ipywidgets import interact, interactive, fixed, interact_manual\n", | |
"import ipywidgets as widgets\n", | |
"import matplotlib.pyplot as plt\n", | |
"from matplotlib import rcParams\n", | |
"rcParams['font.family'] = 'sans'\n", | |
"rcParams['font.size'] = 16\n", | |
"rcParams['lines.linewidth'] = 3\n", | |
"\n", | |
"## part d ##\n", | |
"\n", | |
"print(\"Number 2\")\n", | |
"print(\"Part d:\")\n", | |
"print()\n", | |
"\n", | |
"nodes = np.array([[1,0,0],[2,0.5,3**0.5/2],[3,1,0],[4,1.5,3**0.5/2],[5,2,0],[6,2.5,3**0.5/2],[7,3,0]])\n", | |
"nodes[:,1:3]*=300\n", | |
"\n", | |
"r = np.block([n[1:3] for n in nodes])\n", | |
"s = 5\n", | |
"ix = 2*np.block([[np.arange(0,5)],[np.arange(1,6)],[np.arange(2,7)],[np.arange(0,5)]])\n", | |
"iy = ix+1\n", | |
"\n", | |
"def f_st(s):\n", | |
" plt.plot(r[ix],r[iy],'-',color=(0,0,0,1))\n", | |
" plt.plot(r[ix]+u1[ix]*s,r[iy]+u1[iy]*s,'-',color=(1,0,0,1))\n", | |
" #plt.quiver(r[ix],r[iy],u[ix],u[iy],color=(0,0,1,1),label='displacements')\n", | |
" plt.quiver(r[ix],r[iy],rxn_F_st[ix],rxn_F_st[iy],color=(0,1,0,1),label='applied forces')\n", | |
" plt.quiver(r[ix],r[iy],u1[ix],u1[iy],color=(0,0,1,1),label='displacements')\n", | |
" \n", | |
" plt.axis(300*np.array([-0.5,3.5,-0.5,2]))\n", | |
" plt.xlabel('x (mm)')\n", | |
" plt.ylabel('y (mm)')\n", | |
" plt.title('Deformation scale for steel = {:.1f}x'.format(s))\n", | |
" \n", | |
" plt.legend(bbox_to_anchor=(1,0.5))\n", | |
"interact(f_st,s=5;" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 372, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Number 2\n", | |
"Part d continued:\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "4b62dd4fc91a4295ab578b1c539087b4", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"interactive(children=(IntSlider(value=5, description='s', max=15, min=-5), Output()), _dom_classes=('widget-in…" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"print(\"Number 2\")\n", | |
"print(\"Part d continued:\")\n", | |
"\n", | |
"nodes = np.array([[1,0,0],[2,0.5,3**0.5/2],[3,1,0],[4,1.5,3**0.5/2],[5,2,0],[6,2.5,3**0.5/2],[7,3,0]])\n", | |
"nodes[:,1:3]*=300\n", | |
"\n", | |
"r = np.block([n[1:3] for n in nodes])\n", | |
"s = 5\n", | |
"ix = 2*np.block([[np.arange(0,5)],[np.arange(1,6)],[np.arange(2,7)],[np.arange(0,5)]])\n", | |
"iy = ix+1\n", | |
"\n", | |
"def f_st(s):\n", | |
" plt.plot(r[ix],r[iy],'-',color=(0,0,0,1))\n", | |
" plt.plot(r[ix]+u2[ix]*s,r[iy]+u2[iy]*s,'-',color=(1,0,0,1))\n", | |
" #plt.quiver(r[ix],r[iy],u[ix],u[iy],color=(0,0,1,1),label='displacements')\n", | |
" plt.quiver(r[ix],r[iy],rxn_F_al[ix],rxn_F_al[iy],color=(0,1,0,1),label='applied forces')\n", | |
" plt.quiver(r[ix],r[iy],u2[ix],u2[iy],color=(0,0,1,1),label='displacements')\n", | |
" \n", | |
" plt.axis(300*np.array([-0.5,3.5,-0.5,2]))\n", | |
" plt.xlabel('x (mm)')\n", | |
" plt.ylabel('y (mm)')\n", | |
" plt.title('Deformation scale for aluminum = {:.1f}x'.format(s))\n", | |
" \n", | |
" plt.legend(bbox_to_anchor=(1,0.5))\n", | |
"interact(f_st,s=5);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### 3. Determine cross-sectional area\n", | |
"\n", | |
"a. Using aluminum, what is the minimum cross-sectional area to keep total y-deflections $<0.2~mm$?\n", | |
"\n", | |
"b. Using steel, what is the minimum cross-sectional area to keep total y-deflections $<0.2~mm$?\n", | |
"\n", | |
"c. What are the weights of the aluminum and steel trusses with the chosed cross-sectional areas?\n", | |
"\n", | |
"d. The current price (2020/03) of [aluminum](https://tradingeconomics.com/commodity/aluminum) is 1545 dollars/Tonne and [steel](https://tradingeconomics.com/commodity/steel) is 476 dollars/Tonne [2]. Which material is cheaper to create the truss?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 337, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Number 3:\n", | |
"\n", | |
"Part a:\n", | |
"The minimum cross-sectional area for aluminum to keep total y-deflections under 0.2mm is 7.67870 mm^2.\n", | |
"With this cross-sectional area, the maximum y-deflection is 0.1999992558168 mm.\n" | |
] | |
} | |
], | |
"source": [ | |
"## part a\n", | |
"\n", | |
"max_def_al= np.max(np.abs(u2))\n", | |
"A_new_al=0.1\n", | |
"\n", | |
"while max_def_al > 0.2:\n", | |
" b_new_al = Ff * (1/E_al/A_new_al)\n", | |
" u_new_al = solveLU(L,U,b_new_al)\n", | |
" max_def_al=np.max(np.abs(u_new_al))\n", | |
" A_new_al=A_new_al+0.0001\n", | |
" \n", | |
"\n", | |
"print(\"Number 3:\")\n", | |
"print()\n", | |
"print(\"Part a:\")\n", | |
"print(\"The minimum cross-sectional area for aluminum to keep total y-deflections under 0.2mm is {:1.5f} mm^2.\".format(A_new_al))\n", | |
"print(\"With this cross-sectional area, the maximum y-deflection is {:1.13f} mm.\".format(np.max(np.abs(u_new_al))))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 338, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Part b:\n", | |
"The minimum cross-sectional area for steel to keep total y-deflections under 0.2mm is 2.68760 mm^2.\n", | |
"With this cross-sectional area, the maximum y-deflection is 0.1999999999999 mm.\n" | |
] | |
} | |
], | |
"source": [ | |
"## part b\n", | |
"max_def_st= np.max(np.abs(u1))\n", | |
"A_new_st=0.1\n", | |
"\n", | |
"while max_def_st > 0.2:\n", | |
" b_new_st = Ff * (1/E_st/A_new_st)\n", | |
" u_new_st = solveLU(L,U,b_new_st)\n", | |
" max_def_st=np.max(np.abs(u_new_st))\n", | |
" A_new_st=A_new_st+0.0001\n", | |
" \n", | |
"print(\"Part b:\")\n", | |
"print(\"The minimum cross-sectional area for steel to keep total y-deflections under 0.2mm is {:1.5f} mm^2.\".format(A_new_st))\n", | |
"print(\"With this cross-sectional area, the maximum y-deflection is {:1.13f} mm.\".format(np.max(np.abs(u_new_st))))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 339, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Part c:\n", | |
"The weight of a aluminum truss with 11 beams (with cross-sectional area of 7.67870 mm^2 and length of 300 mm) is 0.068417 kg.\n", | |
"The weight of a steel truss with 11 beams (with cross-sectional area of 2.68760 mm^2 and length of 300 mm) is 0.070953 kg.\n" | |
] | |
} | |
], | |
"source": [ | |
"## part c\n", | |
"# weight per beam = density * cross-sectional area * length\n", | |
"l=300 #mm\n", | |
"rho_al= 2700 /(1e9) # kg/mm^3\n", | |
"rho_st= 8000 / (1e9) # kg/mm^3\n", | |
"\n", | |
"weight_al= 11 * rho_al * A_new_al * l # number of beams * weight/beam\n", | |
"weight_st= 11 * rho_st * A_new_st * l # number of beams * weight/beam\n", | |
"\n", | |
"print(\"Part c:\")\n", | |
"print(\"The weight of a aluminum truss with 11 beams (with cross-sectional area of {:1.5f} mm^2 and length of 300 mm) is {:1.6f} kg.\".format(A_new_al,weight_al))\n", | |
"print(\"The weight of a steel truss with 11 beams (with cross-sectional area of {:1.5f} mm^2 and length of 300 mm) is {:1.6f} kg.\".format(A_new_st,weight_st))\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 340, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Part d:\n", | |
"The cost to create an aluminum truss is $ 0.11\n", | |
"The cost to create a steel truss is $ 0.03\n", | |
"\n", | |
"Therefore, steel is cheaper to create the truss.\n" | |
] | |
} | |
], | |
"source": [ | |
"## part d\n", | |
"\n", | |
"cost_al=weight_al*0.001*1545 # kg * 0.001 ton/kg * 1545 $/ton\n", | |
"cost_st=weight_st*0.001*476 # kg * 0.001 ton/kg * 476 $/ton\n", | |
"\n", | |
"print(\"Part d:\")\n", | |
"print(\"The cost to create an aluminum truss is ${:5.2f}\".format(cost_al))\n", | |
"print(\"The cost to create a steel truss is ${:5.2f}\".format(cost_st))\n", | |
"print()\n", | |
"\n", | |
"bool_ques=cost_al<cost_st\n", | |
"\n", | |
"if bool_ques=='True':\n", | |
" print(\"Therefore, aluminum is cheaper to create the truss.\")\n", | |
"else:\n", | |
" print(\"Therefore, steel is cheaper to create the truss.\")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### 4. Future Predictions using past data\n", | |
"\n", | |
"The data from the price of aluminum and steel are in the data files `../data/al_prices.csv` and `../data/steel_price.csv`. If you're going to produce these supports for 5 years, how would you use the price history of steel and aluminum to compare how much manufacturing will cost?\n", | |
"\n", | |
"a. Separate the aluminum and steel data points into training and testing data (70-30%-split)\n", | |
"\n", | |
"b. Fit the training data to polynomial functions of order n. _Choose the highest order._\n", | |
"\n", | |
"c. Plot the error between your model and the training data and the error between your model and you testing data as a function of the polynomial function order, n. [Create the training-testing curves](../notebooks/03_Linear-regression-algebra.ipynb)\n", | |
"\n", | |
"d. Choose a polynomial function to predict the price of aluminum and steel in the year 2025. \n", | |
"\n", | |
"e. Based upon your price model would you change your answer in __3.b__?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 345, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"## Number 4\n", | |
"## part a\n", | |
"import random as random\n", | |
"\n", | |
"# load aluminum and steel price data files\n", | |
"steel=np.loadtxt('../data/steel_price.csv',skiprows=1,delimiter=',')\n", | |
"al = np.loadtxt('../data/al_price.csv',skiprows=1,delimiter=',')\n", | |
"\n", | |
"\n", | |
"#yr_st=(steel[:,0]-2014.75)/(2020-2014.75)\n", | |
"yr_st=(steel[:,0]-np.min(steel[:,0]))/(np.max(steel[:,0])-np.min(steel[:,0]))\n", | |
"price_st=steel[:,1]\n", | |
"\n", | |
"#yr_al=(al[:,0]-2016)/4\n", | |
"yr_al=(al[:,0]-np.min(al[:,0]))/(np.max(al[:,0])-np.min(al[:,0]))\n", | |
"price_al=al[:,1]\n", | |
"\n", | |
"\n", | |
"# randomize testing/training indices\n", | |
"# for steel\n", | |
"np.random.seed(103)\n", | |
"i_rand_st = random.sample(range(0,len(yr_st)),len(yr_st))\n", | |
"# for aluminum\n", | |
"i_rand_al = random.sample(range(0,len(yr_al)),len(yr_al))\n", | |
"\n", | |
"\n", | |
"# choose the first 70% of data as training\n", | |
"train_per=0.7\n", | |
"# for steel\n", | |
"yr_st_train=yr_st[i_rand_st[:int(len(yr_st)*train_per)]]\n", | |
"price_st_train=price_st[i_rand_st[:int(len(yr_st)*train_per)]]\n", | |
"# for aluminum\n", | |
"yr_al_train=yr_al[i_rand_al[:int(len(yr_al)*train_per)]]\n", | |
"price_al_train=price_al[i_rand_al[:int(len(yr_al)*train_per)]]\n", | |
"\n", | |
"\n", | |
"# choose the last 30% of data as testing\n", | |
"# for steel\n", | |
"yr_st_test=yr_st[i_rand_st[int(len(yr_st)*train_per):]]\n", | |
"price_st_test=price_st[i_rand_st[int(len(yr_st)*train_per):]]\n", | |
"# for aluminum\n", | |
"yr_al_test=yr_al[i_rand_al[int(len(yr_al)*train_per):]]\n", | |
"price_al_test=price_al[i_rand_al[int(len(yr_al)*train_per):]]\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 346, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAH/CAYAAACy+YcgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5gb1fXw8e+Rtrv3XnA3tsHGBePYYEyvTggQQuAXEzoJBIiBN5AQQkgFEhIICSSUFHqLTUggLlQXXAH3Xtld1/W6rLdIuu8fd7QazY602qq1fT7Ps4+kmauZq7pzdO49I8YYlFJKKaWUUkrVTCDdHVBKKaWUUkqpI5EGU0oppZRSSilVCxpMKaWUUkoppVQtaDCllFJKKaWUUrWgwZRSSimllFJK1YIGU0oppZRSSilVCxpMKXUUE5HrRMSIyFXp7ktTISIPOc/J+HT3paHVx2NtqOdLRAY52/1zfW43hf3misjDIrJRRCqcPgxqzD4cKUTkJuf5uSIN+/6Vs++xjb3vY4GIvOw8v53T3ReljnQaTCnVAFz/qCZX0264025uY/VNqYYiIhnO+znZX/NqtlEoIqsbsJv3AVOBDcCvgJ8Cuxtwf1WIyEki8qKIbBORchEpEpHVIvKCiHzL0zZtAU1NOa+d+7UOOcumiciEdPevPolIO+fx/cq5fZPrcf8pyf3+6Gp3Ux32n5YfIxJxBb+p/jX597NSqcpIdweUOko9C3wDuAaYlqTdNc7lcw3Uj9eAT4D8Btq+atoeA/4JbGnk/RYATydYV+5cbgQGA0WN0qOY84C9wLnGmHAj7xsRuRh4AxDgPWAVkA30BS4ATgZeaOx+1aNDwCPO9RxgBHAxcKGIXGKMSfZ96PYo8Dywub47WE8uAILAdM/yEHCFiNxhjCl1rxCRbOCbTpt0H3/dCTwA7Kqn7c0ESj3LzgS+gn2/L/es895W6oiV7g+zUkermcA24HwR6WCMqfIPS0QygSuBEuCVhuiEMaYYKG6Ibaumzxizm0bOujjyjTEPJGtgjCkHGjIDlUgXYFeaAqkA8CQQAU43xsz1rM8ETm3sftWzg97XXkRuxj7uX5P8x6VKzndmfR3oN4SLsf2b71n+LnAh8DXgJc+6yUAb4G3goobuYDLGmHzq8Uc2Y8xM7P+9SiKSgw2mXjfGvFxf+1KqqdFhfko1AGNMBPgbkAkkmq90EdAeeMMYsz+60Jnn9G8R2SIiZSKyS0T+JSIneTfgnhMlIl8XkQUickhEZnrXe+4nInKDiCwSkRIR2S8iH4pIlX/wIvJPZxvdU1knIkERuVlEFovIPhE5KCIbnGFNg6t77kTkTGebP3Kuz3Ue0y4R+YuItPO5T8qPx+e+k5z9PZJg/dnO+kddy7aLyHoRaSkiTzhDmUqd539Sgu0MF5E3RWS387quFZEHRSTP066fs7+/ishQEXnXeTy7ReSpaHsRucjZX4nTn7t99lllvpOIZIvI90Vkpoh8KXaYWb7zWvat7vmqL+IZphS9DXQCBvoNCRI7jPC7IrLE9d5aL3Z43MBq9vcrZ/tdPNt/19WmpdNuvfMa7RSRV0XkeJ/tzXde82Yi8oiIbBU77CvZ8KXuQDdgqTeQAjDGVBhjZrn28TIQHTL2kqvPcUGoiAwUkb+7Xs+tIvK432fFaX+2877a6zyGFSIyVUSCSfpeF3/BZiQHikgLpw+Vc6LEfl8sd/ryZ+96n/5fISIfiB0eWSIi60TkTyLSzdOuq4g8KSKbndezUESeF5GePtscKyJvO89hmfOZeF9ErvZpmwWcDfzb+a53exebmZ3i8zxc46x7L9ETlcprKXZ44Crn5o2ez0pnp010qHl3sd+l68TOEfx/nvWdPfuPfn/PF/u9c1BEVjrv8ZaJ+l0XInKeiMwWkWLn9VwiIreIiHjaXer0+XsiMlFEPnba7xL7fdkg/VOqOpqZUqrhPI+dnzEF+J3P+inOpXeI35PAIuB/wB7gOOwvmueIyARjzCKfbX0LmIT91fd9qg638HoSuAk7hObP2GFGlwPTReT7xpg/VHP/ZB4Bbgc+wz62CqAndsjHdGIHAdUZD/wY+5g+BMYB1wFjReRkY0xJPT2e94H1wP+JyA+NMRWe9d9xLp/1LM/G/hKbi80stgWuAP4rIicZY1ZEG4rIacB/scOCXsH+Iny68/jOEpGJxpgyz/b7YYdozsEOmZsI3AA0F5HpwDPAW8Bc4OvAr0XkS2NMdUPEOmCHUH2IfT32A4Ocvp/n9L2xhwWCzaD9FDufqRR4wrUuOiTod8D3gKXEv7fOxj4Xa5JsPzoMybv99QAi0gz7nAzHPqevOdu+HPu8nGGMWeDZpmCzDL2Bd7ABQ7JsShFggG4ikuMdBubjdaA5dkiZe6hUZbbReW/9G/vDzTTskM7jsc/TWc5npdjV/gfYz2gh9jkrxmbDHgZGYoehNSTjuf0T4BTs8/gOsD3ZnUXkKeznoAD7WSrGfkd+E/v4v3TaHY/9bLfHPj+vAb2w35XnOs/LFqftWOBjZ1vTgB1AR+zzcTnwD083JgEtqDrEDyDstJ8qIt2NMdudfXTDvk8fcdr4PbZUX8tFwB+B7wKLnftEHfRs9i/YoZbvuLbpS0QynDbnY4fh/g37Wenv7Ouv2O+LeiMiN2K/s/cCL2KHiU7GPr5RxL5/3c7EPo//xn73TwKuBTpjs4JKNS5jjP7pn/410B/wAfbg4STP8k7YA8GNgHjWHeeznSHYf5LvepZf52y/Ahjnc7/o+qtcy85wli0BmrmWd8UeoJQDvVzL/+m07+6z/SrrsP9s5wMBT9sMoFUKz9mZzjYNcKVn3ZPO8vvr8HgectqPdy27x1l2iWd/bbEHE/M8y7c77V8FMl3Lr3WW/9G1LAhswh5Aufcp2IDbAPe6lvdzPf4bXMszgS+wQ8R2ACe61vUAyoAlnn76PdYcoIvP8z7J6eOfq9tGktcuw2mbj52P4f0b42o7yGnr3V8hsDrB9g9hA0zvZyYTaJniZ9J3+8Avva+ds/xsZ/kK936d97jBBrvNU9m3c7/3nPstBW4GhgLBJO1vctpf4bMux3mudwH9Peuudu73iGvZCOc1/gho4VoewB50G+DCVPad5Lkt9Fl+i7OdVa5lv3KW7QH6+dwnun6sa9nliZ5zIA9o47q9BDgMnOJpN9F5Dl53LYt+rwzw6Uc7n2VPOtt2f99En6ubXO9t9+f6h86ywe62dXgtfT8/rvUvO+vXAZ2SrO/sWna3s+x1XN9rzro2QF6q73PPa+j7/sF+R5c6j7mn57n41Lnv+a7llzrLwthhsu7P/5JEr6H+6V9D/+kwP6Ua1nPO5RTP8quwB57PG2Pifqk1xmzybsTYLMdHwGnOr4derxufYUMJfNu5/JEx5pBrH/nYjEV0LldtGaDUeIa/GGNCxvULeQqWG2Ne9Cx7ABs0uIct1sfjeR4bkHp/Bf0WNgP1TIL73WniM1n/wAY7o1zLTsNmLt4wxnzi6p8B7sUGe9+mqjXYA9xo+wrgTWwQ9i9jzOeudduAecBQsfNyEjLGlBpjCnyWz3b2eWay+6eoCzbj4P0bU9sNuob8lPp8ZiqMa6hsLf0fNlj7sWfb/8MGQMcT/7pG3W+M8WYDkpkCzMZmwJ4ElgEHRGSWiEyp4VC7S7DP9U+NMes8/f4HNgB0Z5puxgZOtxhjDrjaRrAH+2AzlHXRXEQecP5+JXYY5R+xn4t7fNo/aYxZn+K2b3Yuv+t9zo0xJcaYIgARGYcNHP9ojJnnafcBNkt8sYjkerZfJVNojNnj048LgVnu7xvPfVZjg+0prsVTgE+NMYky8zV9LVP1K2PMjhTb3owNEm/1fK9hjCky8aMB6sMV2O/X3xljtrr2VYod1QH+341vGWPed7WvIFa0ZWQ991GpaukwP6Ua1uvA48CVIjLV2En3YP+xGuxBfBwRGYA9yJ6I/eea5WnShqpDifyG/iUy3Ln80GfdB542tfEqcJ2ILMY+/o+BBa7Hnqo53gXGmJ0ishYYJiJ5zj/3Oj8eY8wOEXkbmCwiXZ1ADGym6RD+BUJ2G2cIj2s75SKyC2jtWhzd9wd4GGPyRWQdMEREco0xh12rv/AGDdhf/gE+p6pCbODYAZu5SkhERgN3YSeHdyT+f0F9HDAtNsb4BR61ZowxIvIqMEVEFmKHvUXfW96hmTUiIh2xv5LPM8bs9WnyAXAO9rVc6FlXk88eTiB7hogMxWa9RmOHtE5y/r4lIhek+Hk52bkcLiIP+KzPBLqKSHMn+DgZW0nuUhG51Kd9OTbjURfNsIEz2AzCHuzQsYeNMVU+09Ts+RuNLR7yWTXtos9L7wTPSwfsc9MXO3TyVWwgsVjsPLXZwMfGFnCJI3buag9sxjaZ54CnROQrzu0B2IxUdX1O9bVMVUrPrzMnqzew0O/HlgaS8LsR++NhBP/v7qU+y750Llv7rFOqQWkwpVQDMsYccg4Ar8UWnHhDREZhh/bMdP8aB3YSPnZ4Qx52jsebwAGcIWjAMOwveV47a9CtltiKW36/qha62tTWLdhhbVOAXzjL9ovI09jskXduUCKJ5p7swD4PLbAH/vX1eP6CfY6nAL8QkZHAicCz7l/xXRJl2ULYoX1R0X0nCnAKscM4W2J/FY7yy7SEUliXmWA/QOW8jBlO+/ewc4ZKsO+x72CDiqbqRuz5ob6NHZYHUOzMo/lxLQL2qFReI3e7qPIaZlsrGWOW4yoPLbZwyYvYzOB12KxVddo6l9dW064ZdphwW+z//Z9U07YudhhjanIi2JS+u5yMXTOcOW7ViD4vX3f+EmkGNlslImdjs3M3YecoRcQW8rndk026GPtZebuaPryMPTVB9PQXpSSv2lrT1zJVqf5viAYhjXkajYSfO+eHqSL8v7v9PnPR77+GKqKiVEI6zE+phucd6jfFs9ztDuw/jyuNMecZY+40xvzE2FLDybIN3gxGMvuxQ3HyfNZ1crWJig7X8/snVeUfnTPk6hfGmAHYXzq/gx0+NpVYcJWKDgmWR/sYDXBq+ngS+R92cvY1zpCy6JC/REP8UhXdd6cE62vSx/pwLzbgmmiM+Zox5i7XeyzVQDctjDHlxpiHjDH9sUUHrsUeXN8N/KwOm67ta1STz11SzjDLnzo3T0/xbtH+TDDGSJK/Ha72ZUBGkrbVVtysZyk9h8aWsj9IasF+9Hm5uprn5VPX9mcYYyZhg5pzsQVnzsIWlHEPB7wYWFRd9sYZdvomdp7X5dihaftS6HOqr2WqUn2PRvvWmD+mJPzciT1NQBsa73tRqVrTYEqpBuYMbVmDrSDVCzvuvRj7j9YrWpo67ldPJ1Coy9A7t+gQGb/z2ZzmaQOxf7LessMB4IRkOzLGbDHGPIcdsngYeyCSqq94FzjDsQYA61zj92v6eBL1NYI9gOqHHdJ1JbZQQapz0RJJ2D8R6YJ9PGs9Q/waUl9s9iCuMp2IdMUGv+kWJoVfl40xm40xz2LfW2XU7L3l3dZObLGSYSLiN0wo5fdRHUUzDu6S0NHKb37PSfQ1rFI+PIEF2Mz2iJp3rUlYCHQQkeq+C2v6vFQyxhwwxrxnjLkemynshfM9J/YUECPwr+Ln5zlsBr0FPkO669jnZO+LGnPmhm3CzrvsUh/bTEGy7+4J2GPUhv7MKVVnGkwp1Tiexw6veRH7y+dLxr8scnTYX2Ug4QQtv8aW+K0Pf3cuH3T/4uqcb2QqthCD+2STi53L//Ns507sgUYlEcl1hpF5tcFmQ2oSMAwVEW/hiAewB4P/dC2r6eNJ5hnsQcoz2GEvdc1KgZ3LtQU7T+Vkz7qfY+fE/b3KvRrOVuwB6YDoAhHJxpYKbwpDv/cCHb2FVsSez8nvoKstNX9v+fk7tgx53BA4ETkDOA9b0r9G86O8RKSNiNwtIm181jXHDi8DW7EwKjqHqxtVvYYdgvgjEakSIDnPmbvoR7QQxJ+cHya87btINefrSrPoObeecJ6vSiKS53peP8LOK7xRRM7xbkREslxzmRCRU53S+O42gp1PCLH3VjRgTzWYmg181fmbWU3bmr6Wyd4XtfUn7KkeHvf5/LVOkP2vi1ew8/Rud37Mie4rB/vdCI373ahUrTSFf5xKHQv+hp2wPM657T1nUdSfsUHLdGci9H7sr+I9sAcIfgeTNWKMmSkifwGuB5aJyDRi52XqgK1Qt9l1lzecvt/oZNZWACdh5y19jP0FMaoZ8IFTJGIBtoR4W+zBRAbw2xp09T3gORH5KnYo11ewj3859hwjtX08CRljvhSR/2KrdVVQD//IjTFhEfkO8B/sc/MKNgtyOnbS+QL342kETzj7nuf0JYKdpxPAVparcoLaRvY+cCswTUTmYedCTMOeo+lDEVmDzVBsB9ph31sBavbe8vMQNmi63Zkv9wmx80wdAr7jUxCkprKxP4z8TEQ+wT7fh7FDqy7EflYWYL8HouZg34t3iUh77EH0HmPMX4wxJSJyOfZ8O4tE5D1s0JeFzTJOBGZhnyOMMYvEnmfqt8B6EfkPNtBvi82QfgX7A0Sy83WljTHmNddnfa3zWS/Gvk7nYrPJ7zrFSq7ABjPvisgHxE4r0Av7PbKdWLb/XuAUEXmf2GkMTsUWvJhpjPnCaXcxsMV1u7r+Gux7N5W2NX0t94jIMuz5p552+m2AxxPMH03F77DfDV8HVjvvj1JsNvtcbKW81YnvXjPO9+2d2O+kz535xdERDP2Bvxtj3qmv/SnVUDSYUqoRGGMKnH+O5wMrjDHeimDRdgtE5DzgQeAb2H9k7wOXEZtPUR9uxJ6X4wZswYgQtkLSDcaYf3n6dND5df532MBuHLb60lifPu3HTuI+E1uZrD32BKNLgEeNMdX9Ouv2CTbIeBB7oFmCzRTdY6qW6E358aTgH87+3naGf9WZMWa22HLN92MLkTTHZoh+DvyyBkU56qMvbzoZv3uw8/f2YwO9/4f/0NPGdj/QChvYnIsNlDZjTzB7L1XfW4uw761Zddmp8z4/FVuS+VJsUBE9ietPnYIRdbUL+946D/s5uhKbtT0ArMRWv/yT+/1gjCkUkW8CP8IGmTm4yuYbYz52hr3djR2eegY2+NuO/bzE/SBgjHlMbKXNO7AHzm2wFfc2YbNyr9XD42wwxpgbROQjbKGIq7Dvjy+x2ecvXO1WO8/LXdjP3CnY4aBfYt9L7uz249j30snYeVIV2OfjBzjZMCcTNhF7Au2Gemw1ei2xp274LbbEeAtn2fPOfWqz/5CIXIytbDgFWwgljA24/0isYl69Mcb8UUQ2Y1+nq7FZ5jXY93oqRViUSjup+w9tSilVf0TkTGy1uR8bY6orP9wQ+/8FNiC8wBjzn8bev1Kq6RFbSv414Kwa/iiklDrK6ZwppZRyiEgLbIW4zcC76e2NUqoJuQibxfU7n51S6himw/yUUsc8EZmAHcJ4IXbS+fVOdT+llMIY8+1090Ep1TRpMKWUUnZ+wn3YE1z+nPqp4qeUUkqpo5zOmVJKKaWUUkqpWtA5U0oppZRSSilVC8f8ML/27dub3r17p7sbSimllFJKqSZq8eLFu40xHbzLj/lgqnfv3ixaVKeT2iullFJKKaWOYiKyxW+5DvNTSimllFJKqVrQYEoppZRSSimlakGDKaWUUkoppZSqBQ2mlFJKKaWUUqoWNJhSSimllFJKqVrQYEoppZRSSimlakGDKaWUUkoppZSqBQ2mlFJKKaWUUqoWNJhSSimllFJKqVrQYEoppZRSSimlakGDKaWUUkoppZSqBQ2mlFJKKaWUUqoWNJhSSimllFJKqVrQYEoppZRSSimlaqFRgykROUdEZotIoYiUich2EXlVRI73tGsjIn8Vkd0ickhEZorIMJ/t5YjIwyJSICKHRWSeiJzaeI9IKaWUUkopdaxq7MxUW2Ax8D3gbOCHwBBgvoj0AhARAaYD5wK3Al8HMoH3RaS7Z3vPANcD9wMXAgXAeyIyvOEfilJKKaWUUupY1qjBlDHmJWPMXcaY140xHxpj/gFcArQALnWaXQyMB6522r/rLAsAd0e3JSInAlcCdxhj/mKMmQVcDmwFHmy8R6WUUkqpVD36KFx8MXz2Wbp7opRSddcU5kztcS4rnMuLgXxjzPvRBsaYYuBtYLLrfhc793nF1S4EvAycIyLZDdlppZRSStXMokUwdSq8/TZ87Wvp7o1SStVdWoIpEQmKSJaI9AeeAgqxQRDYYX/Lfe62AugpIs1d7TYZY0p82mUB/eq/50oppRrS/v3wt7/B+vXp7olqCO+9F7u+eXPsekkJvPBCzbJV778Pr7wCoVC9dU8ppWosXZmpT4EyYC1wAjDJGLPTWdcWKPK5z17nsk2K7drWT1eVUko1lhtvhClTYMIEOHw43b1R9a3I77828OCDcNVVMHo0FBZWv50FC2DSJLjiCnjiifrto1JK1US6gqmrgbHYOU/7gRki0ttZJ4DxuY/43E6lXdUGIjeIyCIRWbRr165U+6yUUqqBLVxoLwsLYc2a9PZF1b9EwdR//mMvQyH44ovqt/Pf/8auv/lm3fullFK1lZZgyhizyhjzqTHmJeAMoDnw/5zVe/HPKkUzUkUpttvrsy66/6eNMaOMMaM6dOhQ4/4rpZRqeDt3Vt9GHVn27au6LByGtWtrtp1ly2LXFy6E8vK69UsppWor7QUojDH7gPXE5jitwM6H8joe2GqMOehqd5yI5Pm0K3e2qZRS6gilwdTRxy8ztWULlJXVbDvu7FVpqVYGVEqlT9qDKRHpBAwCNjiLpgPdROQ0V5uWwEXOOlztMoHLXO0ygG8A/zPG1PCrWSmlVFOiwdTRxy+YWrWqZtsoKalaoGTu3Nr3SSml6iKjMXcmIm8BS4AvsHOlBgB3ACHgUafZdGAe8E8RuQs7rO+H2LlQv4luyxjzmYi8AjwmIpnAJuBm4DjgW43ygJRSSjUYDaaOPn7D/Favrtk2Vq4E45kxPXcu3H577fullFK11diZqfnAV4G/Ae8AdwIfAsONMWsBjDER4EJgBvAk8BYQBk43xmzzbO8a4DngIWd7PYBzjTFLGv6hKKWUakg7dqTedt06eP55W1pdNV1+mamaBlPu+VJRc+ZUDbCUUqoxNGpmyhjza+DXKbTbC3zH+UvW7jA2ILuzXjqolFKqyUg1M1VSAuPH2/YzZ8I//9mw/VK1V1xcdVl9BFP5+bBtG/TsWbt+KaVUbaV9zpRSSinlJ9Vgavr0WNsXXmi4/qj61bKlvaxLMJWVFbs+b17d+6SUUjWlwZRSSqkmKdVgSudWHZlat4bdu+1fTbiDqUsuiV3XIhRKqXTQYEoppVSTtHNnavNgNJg6MnhfyzZtan5i5p07Y3Pp8vLgqqti6zSYUkqlgwZTSimlmqTSUjh4sPp2u3Y1fF9U3R04EH87K6vmZdHdWakhQ2DcuNjtpUvh0KHa908ppWpDgymllFJNVipZJ81MHRnqoyy6O5gaNsxmt44/3t4Oh2HRotr3TymlakODKaWUUk1WKoGSZqaODPVdFn3YMHvpzk7pUD+lVGPTYEoppVSTlcq5pjQzdWTQYEopdTTSYEoppVSTpZmpo4c3mCothU2bUr9/JAIrVsRun3CCvXQHU/Pm6cl7lVKNS4MppZRSTVYqwZTfXBzV9Hhfpw0bbICUqo0b7QmaATp1gg4d7PUBA6BtW3t9zx5Yt67ufVVKqVRpMKWUUqrJqukQvugBtmp6vJmpaGCUKr8hfgAicMopsds61E8p1Zg0mFJKKdVkVRdMeQ/IW7VquL6ouvGbM1UTX3wRu+4OpkDnTSml0keDKaWUUk1WdcGUd76USMP1RdVNXQuFJMpMgQZTSqn00WBKKaVUk1XdAbhW8jtyLFyYeF1ubvX3TxZMjR4NwaC9vmKFzqNTSjUeDaaUUko1WTXNTKmm6eDB+GF6XgMHJr//4cOwfr29HgjETtQb1awZDB8euz1/fu36qZRSNaXBlFJKqSZr924IhxOv18zUkWHhwsSvY9u20L598vuvXBmr/NevH+TlVW2TbKjf4cMQCqXeX6WUSpUGU0oppZosY2xAlYhmpo4M8+YlXjdoUPVz3T7/PHbdO8Qvyl3Rz72/1avtPlq0SD7UUCmlakODKaWUUk1asuyTBlNHhmTB1ODBye8bCsHvfx+7PWKEfzt3Zmr+fJsJMwZuugm2brUnCf71r1Pvs1JKpUKDKaWUUmnz9ttw9tnw6quJ2yQLpnSYX9NnTPWZqWSeeio23yovD779bf92PXtC1672+sGDsHw5vPYafPhhrM3s2cmHjSqlVE1pMKWUUiotjIHrr4cZM+Daa6GszL+dZqaObOvWwZ49idcnC6Z274Yf/zh2+777oHt3/7Yi8dmpGTNg6tT4NkVFsGRJ9X1WSqlUaTCllFIqLYqKYMcOe/3gQdiwwb+dZqaObO6slF+hiWTB1I9+FDvZb9++cOedyfflDqbuvx+2bavaZubM5NtQSqma0GBKKaVUWmzfHn973Tr/dpqZOrK5gyl3sAOQlQW9e/vfb+lSePrp2O3f/Q5ycpLvy739w4dj1888M3Z9xozk21BKqZrQYEoppVRaeLMGa9f6t9PMVO0ZA8XF6e2Du0y5u+IeQP/+kJFR9T7GwK232kuA886DCy+sfl8jRkB2dvyy0aPhuedit+fMgZKS1PqulFLV0WBKKaVUWtQ1M3XoUHz2QcULh+Hkk6FDB/j739PTh/37bSEIsCfbHTMmfn2iIX4vvmiDHoDMTHjsserLp4PNdI0aFb/s8cftPKvoiX7Ly+Hjj1N/DEoplYwGU0oppdLCG0zVNDOlWankXnrJnlepoiJxBbyGtmBBLLt0wgnQvHn8er9g6sABuOuu2O077oABA1Lf56mnxq5fc40NKAHOOiu2XOdNKaXqiwZTSiml0iLVYCpapMJL50slt2VLunuQfIgf+AdTv/wlFBTY65072yIUNXH77XDRRXDZZfDoo7Hl7nlTGkwppeqLz0hlpZRSquF5g6mCAujUqWo7zUzVTnl5unsQX3wi1WBq8eLY9d/8Blq0qNk+O3aE6dOrLj/tNDs/KxSCzz6z75+OHWu2baWU8tLMlOLsoSIAACAASURBVFJKqbTwK1vtl4U6dMj+eWlmKrl0B1ORCMyfH7vtreQHMHBg4vufcgpcdVX99adFCxg7NnZ79uz627ZS6tilwZRSSqlGZ0zVzFQyfoGTZqaSS3cwtWYN7Ntnr3foAH36xK/v3j1x1kkEnngitaITNaEl0pVS9U2DKaWUUo2uuNg/2+TWsmXsul/gpJmp5NIdTHnnS4nYQhLRc0WdfXbi+15/PZx0Uv33yRtMRYtjKKVUbemcKaWUUo0ulaxUx462tDb4B1OamUquoiK9+/c7WW/r1jbIWrAAvvEN//u1bg0PPdQwfRozxmbDDhyww0zXr7fnulJKqdrSzJRSSqlG5w6mopkKL3dxgFQzU+Fw3fp1NEl3ZipR8YkRI+DGG23QFNW2bez6z35mhwU2hMxMmDgxdluH+iml6kqDKaWUUo3OXXxi/Hj/NtUFU37LSkvr1q+jSTqDqaIiWLnSXs/IqHoiXa9774VJk+w5pW66qWH7puebUkrVJx3mp5RSqtG5M1NjxtihXyUl8W3cZdJTzUx5t3EsS2cw9emnsesnngh5ecnbn3ACzJrVsH2Kcs+bmj3blkrP0KMhpVQtaWZKKaWOYocPwz//CUuXprsn8dzBVM+e/vNW3Jkpb8l0Y/wDLA2mYtIZTPnNl2oqBg2Crl3t9eLi+PNaqboLh2HaNBsca4EPdSzQYEoppY5iDz4IV19tz69TUJDu3sS4g6nu3asPpryB08GDUFZmr7vnXJWX67ypqHQWoKjuZL3pJKJD/RrSSy/BV79qM4Bz5qS7N0o1PA2mlFLqKBYtT11e3rR+gXfPmere3ZbM9koWTLlvd+wYP4zs8OH66eORLl2ZqXA4/mS9TS2YAj3fVEO6+urY9e98J339UKqxaDCllFJHMXdgES0z3hR4M1M1Dabc86W8wZQO9bPSFUytXGlLjwN06QK9eqWnH8mccUbs+ty51Z/zTNWOfhbVsUCDKaWUOoq5q9s1lWBq//7YwXZOji2L7TfMz10ee9cuiERit93BVYcOkJsbu62ZKStdwZR3iJ9IevqRTJcuMHSovV5RAR99lN7+HK10zpQ6FmgwpZRSRzF3YFFcnL5+uLmzUj162INtv8xUdja0amWvh8O23HaUZqaql65gKjq0FJrmEL8o91A/nTfVMNw/gCh1tGrUYEpELhWRN0Rki4gcFpE1IvJLEWnhaTdcRN4VkYMisl9EpotIP5/t5YjIwyJS4Gxvnoic2niPSCmlmramOMzPO8QPoF27+JO4RiUqj+7NTGkwVVW6ClA05Up+bhpMNTwNptSxoLEzU1OBMHAvcC7wJ+BmYIaIBABEpD/wMdAK+BZwDdAb+EhEOnq29wxwPXA/cCFQALwnIsMb/JEopVQTtH8/PPccrFljbzfFYMpbfAISZ6cSzZvSzFT10pGZ2r0b1q611zMz4aSTGr8PqTrttNj5pb74omr5fVV3GkypY0FjB1MXGWMuN8a8YIz50BjzGHAbcDIw0WlzDzbgOs8YM80Y8wZwPtAWG4wBICInAlcCdxhj/mKMmQVcDmwFHmy0R6SUUk3ILbfYCloTJthJ9U19mF80mIKanWtK50xVLx3BlLuK30knxZetb2qaN48fhjh7dvr6crTSOVPqWNCowZQxxud89Sx0Lrs5l2OBecaYfa77bQeWA19z3e9ioAJ4xdUuBLwMnCMi2fXYdaWUOiK88IK93LUL3nqraWamvHOmojQzVb/SEUwdKUP8otzB1IYN6evH0UozU+pY0BQKUJzmXK5yLsOA37+AMqCviER/5xoCbDLGeP9trgCygCpzrJRS6ljiHk4HTTOYcmemahJM6Zyp6qVjzlRTPlmvny5dYtcLC9PXj6OVBlPqWJDWYEpEumGH5M00xixyFq8BRopIpqtdC2zwJEAbZ3FbwFXbqdJe13qllDpmbd0af/tIH+aXLDOlw/yqauzMVCgECxbEbh8JwVTnzrHrGkzVPw2m1LEgbcGUiDQHpgEhbJGJqN9jh/z9WUS6iUgv4DmgubM++tEUwG80brVntBCRG0RkkYgs2rXLb+ShUkod+bzBVFPJTPkVoIDUgyljNDOVisYOppYti538tkeP+Ne2qdJgqn6Fw/G3Q6H09EOpxpSWYMoZqjcd6AOc48yJAsAYMwf4LnApsB3YDLQG/oYd/hfNPO3FP/vUxrXelzHmaWPMKGPMqA7us0IqpdRRpCkGUwcOxDJk2dnQvn1sXcuW8Qe3mZn+wdT+/bEhbM2a2UBKg6mqGjuYOtKG+EH8+02r+dWdNyt8+LBmp9TRr9GDKWf43hvAGOB8Y8wybxtjzJNAR2Ao0NMYcybQFfjUGBMdBb4COE5E8jx3Px4bdK1voIeglFJHhKY4zO/LL2PXu3e3JdHdbr3VXp5+OvTs6X+eKfeAgujvYRpMWXPnwssv22CzsbMCR2Iw5X5/aWaq7qKZyeqWKXU0aeyT9gaAF4AzgMnGmPmJ2hpjyowxK4wx20RkGHAm9rxUUdOBTOAy1/YzgG8A/zPGlDXEY1BKqSOFNxNVVmb/0inRfKmoe++1QdOsWTbQ8stMuYf4RdfrnClYvdqWxP/mN+H3v49fl5npf5/6NHdu7PqREky1bg1ZWfb6wYP2T9WeX+B04EDj90OpxpTRyPv7Izb4+TlwSETGutZtN8ZsF5Hu2BP5zsVW8BuJPcnvm8aYl6KNjTGficgrwGNOtmuTc7/jsCf7VUop5XHggB1ely7VBVMQyzaBPdjNyLBZluJiGwy6s1vRYVqambLnGIsOqbrrrvh10YChoezcCRs32uvZ2TBiRMPur76I2PdQNIu7Y4c9/5SqHb9gSgNUdbRr7GF+5zmX9wHzPH/XOesqsCfx/RvwDvBtbMU/vwDpGmxxioectj2Ac40xSxqo/0op1aQFg8nXp3uoX6LiE4kEAvHB1c6d8cMXe/WylxpMwebNidc1dGbKPcRv1KiGD97qkxahqD9+nz3NTKmjXaNmpowxvVNoswM7pC+V7R0G7nT+lFLqmNehQ/IDwnQXoUh0wt5kOnaEggJ73RtM9expL3WYX9U5cm4NHdwciUP8otzzprQIRd1oZkodi5rCSXuVUkrVk5Ytk69vSsFUqqWzvfOm/IIpzUzFl6V2V0mEhg+m3JmpceMadl/1TTNT9UfnTKljkQZTSil1FPFWx/NK9zC/ozmYKtxYzOJ3N1O4sdj3dmOKPi9RDRlMVVTAokWx20daZkqDqfqjwZQ6FjV2AQqllFJpdCRmprzl0RtzmN/H7xWzcmERZ321DX2GtopbV7ixmC/XFtFtgD294bTfLSUcihDMCDD+8v588uq6ytuT7xhB5z6t/HZRY+79RrfpLYPevTsscc0ersmcqYLCaWzc8AilZQXkZHehT9+pdOk8OWHbVaseYdr0Anbt7ML06VPp7LStyXbSSYOp+uP3Q4YO80uf4mJ44w0YPx4GDEh3b45eGkwppdQxJJ3BVEkJ7HVOp56VFV9YIhl3ZmrTJti9217PzKx7Nb/8tavYtmIZPYYMo+uAwXHrVi0qZuHL7yDhrbz9WE++ce8FlcFL4cZi3vzNO1SUbiUzpyfHn3oS5Ye3E6nYTjirOxuWtoq7/eXa3vUSTBVuLOat3y4mEjYEgsLX7hxJ5z6tKueUnXnxdE7sfoB9wRZ873uLuHjyS4hEMCbA4iVj2X9oLeGK3QQz2zOo/71VgpuCwmmsXn0fkYiNSEvL8lm9+j6AhG2NOUwgAJ065zPlmvsocAISv+3k57/Ovn2fAmEgSNeuVzB40IN1fl7qQudM1R/NTDUtt9wCL75ov2u3bIn/0UnVHw2mlFLqGJLOYX7R0tlgi08EUhxo7g6mFi+OXe/ePbaN2gRT+WtX8eqD9xEOVRDMyOTy+38eF1DN+fdiTMmrGMJEyuaz8pPOdO4zCYCVnyzmcNGrQJjQ4fns2lxG+YFpQBhKg2RmBik/8Hrl7azsQUDv1DqWxKIlKwmFwgQIEgqFWbRkJRf2OYWtW+FXj17NyBPmg0Qq20eHfYpEKCqaiwgIEKnYzcpVPwTig6SNGx6pDICiIpHDbNzwSJVgyq9tZqZtG72fdzv79rkqVRAmP/8FgLQGVJqZqj9agKJp+fRTe7lrF2zYAEOHprc/RysNppRS6hiSzszU2rWx6zUZcuIOpj7/PHbdPS+ocNl/uX7CXL7YPo5IoDefvuWfbXJb+clCwhUVgCFcUcHKTxbGtd+9YzuZhAEDhImEYmMU7fXYuvKStTaIMQaRCIf2rgQJgzEgYUr2bQRGpf6gE9jf+k36XTCLzLxiKkpaUZR7BnAKe4vuZ+SJc5POmauyzpRVCZJKywp87+u3vCZtk8nPf1mDqaOEZqaaloqK2HW/10bVDw2mlFLqGJLOYGrdutj12gZTZWWx69Fg6ouZ/2XJG39kQGcY0HkpERPkk1civtkmt0BGdyBIdMiZvR2zaudoBsu/CAZCRCIZHD9+dOW648eP5otZb2JCYSQjyLCJp7Jz82oioQiSEST3+J6Ely0mgBAhQmnXnNQfcAIFhdPoFHgbmtkjpKxmxXTibQoKx5Ob+3K1xUf8eAOfnOwulJblV2mXk93Fd1mytn7r/IWrbdGQ86/cw/wKC534txbPpdLMVFPjDqaO1SqnjUGr+Sml1DEkncP83Jmp/v1Tv587mHKLBlNL3n0fsAfAIhAM2IxQNNuUyPHjR5Lb5nIy8r5CbpvLOX78yLj185YN5rl1U/ioYhDPrZ9C536xoGxn6zJW9imgNGcvK/sUsKbHQVYcl09pdhErjstn88FlnLwhnwEFezl5Qz6F2z5L/QEnYIfPVXiWVjjLqw9I/HiDpD59pwLe0n9ZznKqtA1F4n+TjZBBn75TE2wnkeRnmo7OzbLBmaG0LJ+VK+/hw49GMWt2P+bMmUBB4bQU91VV8+b2D6C8PP0VL48U4TA88giceqotcgB60t6mRjNTjUMzU0opdZQoKqp+mNKRPszPLRpMBTL7AStdawLY4XdVs01unfu04pK7L6hSGQ/sQeGX5jPO/toDDMkvJ+PEmczf0pNxxw0HYM1H0/neW/vJCENoMXwc/Efc7e3jN9LuYBkdD5QRFmi7NZKoGylLNqzOmCAiyQMqb8ZFTGaVIKlL58ls+mIX+8ueIiNvL6GStrTMvtE3C9Sl82Qe/8cWRg57klaZFeyvyKRrn1sq236w7QOy9r5Dq4wwxaEgWTndyQ1tieuDMdCt2xVJ++03NwsqCIWKnMdftUjG4i1FzN+4h7F92jGyV5uk2webnYpmUAoLoXXrau9yTPvyS7jqKvjgA3t7wQI46STNTDU1Gkw1Dg2mlFLqKPGTn1T/q/qRMMzPW2EvNxdatKj6C3c0mBp5/gXMfLaEcPk6Apn9QdojbCczu2eVbJPXjs3vsXPBDDKyzqJzn8srl69YAaN7Tucnrx+2AVLwMIt6T68Mpo7fGkHCELRTpjh5dYQM1+1eLXsTyNpGpKKCQGYmvU+v+5C0ZMPqZsw4nfETXqgSqGCwFScMlG3LIdA2RGbzEBUHM8jafCJdzqjar67hE1ny5i2EwwUEg1248HL/Wet79sD0Fy+h88mDKTBCRAxtrx4MzmsbyL6En+R/CBICk8GPR/6UXTseo0fgs2iX2BYZzpnVzJdKZQ6Wu0jG3OUvsn3LbxmYU8SG5W0oO3An44ZemfC+i7cUkTdqD1mH21Ge34aXF2xlw5wCzhvahYGdW9QoKDsWTJ8O11wTq8wJdvjt1KnOe85DM1Ppo8FU49BgSimljgLLlsGTT1bfLl1DmIqLY2Wns7NtNT8/+WtX8drP7iMcChHMyOCyH9s5Tx07Jg6mhkzoBlzGXx7ZycK1HSkoas7fniyi//A2ScuRfz77VcxtP6FHGEKvfsLnf4ATJ9mAatkyGLI1QkaGDZBMGPqvj2WX+p4+mc1/e6syWOr/taspWPWLytvNLunP1vMXUh4+SFawBW26bCWPEbV9+gA7rM5dbhwgEMilT9+pPHbBZPbsgYsvfhEJGExEWPHuaAbN28COVs3oVHyIXmefw4z/LCYiQsAYJn/bP8DYMvc/VBxcQESEiDFsmbuV3ueNrtLumWfglO7LaR/IoH1mBrsrQqyfvZyJX7HZwN17unDRkus5JZLH/EAJu3t3Yf7Wu2m7/TMmRvL4IFDC3u7D+U41jztREOlVWlZAQeE0Du18iHa5dnJdu9wiDu18iILCZr7ZtcVbivjWX+dT2itCp24B9i/qzfMrbdnJj9ftJiMA4QgEA8KDk4dy5ck9q2zjWFFaCnffDY8/HlsWCEDE+Vi8+ab/6Q40M5U+OmeqcWgwpZRSRzhj4Lbb7BwGgDFj7LAbP+nKTLmzUv36JS6Lvm3FMkIVITARwhUhtq1YVhlMbdgQ39ZdzW/IhG68dkU38vPhxJyldF2/kJbHjYYkAUz+JzPo4combftkRlwwNWf7ZK7r+RZGKghFMsnpHzsYzxsxgt7PP0/JgoXkjRlNcZet7OmUQ3n4IBmBLApK/gRUgEB5ZHfCczXVRPS+3kIMebmTKS6GJ554kOc+uo5mAws4tMbOhXp41DuMy2jG3NAhZvWbSGZhR0aHK1iYkUnRsFN997MqIrTJ6UrH3F7sPLyFVRHhNE+bUAj++Ef43nG7+EqLXjbTlJPFjopYFmnUui+5MG8IApwIFK77kkEt2zOgxM49GwWsbda82sfdp+9Ulq28myChpO1ysruwccMjBCiLWx6gatXCqPkb91AeioCABCI0Gxg/TjYUiV4a7p+2nIGdWyTNUNV0eOGRYvVquOKK+Gqa3bvDCy/YoPrvf7fLdu2qel/NTKWP+2TemplqOBpMKaXUEe7112NzF4JBePZZGDXK/pLs1RSCqWTFJ/Ja9wFj5zwZE7C3qTpvqm3bWNEAgKJXXuHXzWawpN0grm73D0qfq2DzC5n0fv558kb4B1Rdx59F6NVPIAyhoL0dtWwZfF46gmu2Ps+YvIUsKBnNLzrEtlNQOI2NJY9Q2r+AjP2tCO87hDE2eAqZqkePic7VVFNdOk9m15ZRHFq9ixZDO9ClczeWL7frmp2wlSnnruZ0Mnj/uNWED2RxYYshIHChgb8vLOQbrU4kQ2CYgQVLCnwP+E8YczZdK0oISJBI63Hkj8mr0ubtt2HrVijvOYAApYgEMCZM34Gx8Zu5Ww8hNCfgZLhytx6inYSATEQEYwy9VhQCQ6p9zNu3bOLQ7hcI5+xFKpoRySyNmyNmsPO/Vq78ge82Eg0VHNunHVkZAcoqIkQiAQ6t6UyrsTYzJWJn30XzkRFjmL9xT8IgKZrlKg9FyMoI8MJ1Y+PaHomBljHw3HNw663xmY3Jk20Q1a6d/Ty/9VbioEmDqfQIh+OHXWow1XA0mFJKqSPYoUPwA9fx4623wpAhdrjNtm1V2xcXN27p5+j8p/WfDQNsRiLZfKnysvZktbiUSMV2AlndKS9rD1QNptxZqaJXXqHgJw9wUgBOaj+HCBAwEC4vZ8P70xiWIJg6cdLlfP4Hm5HqOv6syqwU2GAKbED1eam9f3SIZLS6XHS4XSi8L6XnoqbnX/LzxadfkvfWBgYAoXX7+QLYvqcbAN8atZ17yAGBMSaDjXnGZlwQjBhOI4tMwgTtEvof8D8EGGoi7A8EgAABMQw1VYtnRId6FYYLCZsWBDBETITSFrHMTste5UTWGzCGiHN789JD9G3RCeMc5W3fs5d+KTzugQVjKJ4/HCGIIczeQZ+wr8N0Qjl7yChtR4vAN+jSebKTtUuttDtA1+yP+NOkXxOO7GRfUUf+9Nk9fPruCJoNLCCjsAsPPwz3T1tOxBiyMgKM7dMuYR+jWa6IgYpQJC7w8gu0ovdpqsFVcTHcdBO8/HJsWXY2/Pa3cPPNse+QLl3g/vvhrrv8t6PD/NKjwlP4U4OphqPBlFJKNTEzZ8LDD8Mll8ANNyQPfH7961jQ1KGDLUIBNvjwC6YqKuxk8Zy6n/aoWu75TzmRDHq1+zlb9gxOGkx1G9CGrNzuhLO6EgwG6DbAHmQmC6bWvfUPmlNZZwHEFgoPBWFNzwDDkvTxxEmXxwVRYOd27dwJkyZN49prH6FDxwJ27exCODIVmJygulz1Eh3Q10Th8l0MhMqAqHD5LrZW2GBqIpkgocrgqWWoFMnIBQwChEo3EMztCgQJSphVX+yl6kwoyA4sQ+iLwSCEyQ6sAcZVrl+2DN631ejp2GoWHxYepkNOL3aVbmHQhly6YbNvWa2WMLOggPY5vdhduoUzR3YhL3CAz0oupmuWkF9u6BSYC1xW7ePODixDTF8AhBB9K5pT9PEvMGQghOj4dZum7NN3KqtW3IOR2JGkX9VCcILiVfcSMaWIQJu2O5g69V7mvHo3gw6dxH+KM7ny5NSLUESzXBWhCJmewMsbaL2xZDtvLtnum8VavKWIN5ZsR4BLTuqelkBr3To45xzYtCm2bPBgG1idcELV9rfdBn/5S3zFzqgDB/TcXengDaZ0zlTD0WBKKaWamO9/H1auhP/9D/Lz4ac/9W+3cSP85jex27/8Zayks99E8Kj9+xsnmHLPf8KE6NthGVv2DE46zK9zn1acc34zti7YTM8xvSsLSCQLpj4dFOCMz5xACpg+OkBprrDuuCzuOfXipH0s27Kfso3FZPdpRXavloANFiZNmsadP7iPnBwbNHXqnE84fB8FhbXLMAUkx/eAvqZ6d9tDcJ0t+x4kTO9ue/jgI7tu366tSIcORIOnPPNvWgV3UGrGkRuYy8Qh6yjdnUN5ZAhBs4INCy5l796xtG0bv4/sESNov3QqZRUDyc5cQ/aIR+LWP/FE7Hqo3WnsK/8re8q+JCiGHqOuq1y3raQ1u8sWs6usAMGwrWQwJ0/pw7TfPcG8cDN6BA8x5o6LUnrc4ewW7Fr6MuFOJxHcsYS2PUK0PPwGhw8PIzd3GdmlXwXG0qXzZEJLZrPRzCWUs5eM0rb0kXG+wys3bniEiIkfC5uVXcrpV9nqgteaAJ//+3SOWz+OPgh5zQdCr7EJ+ziyVxteuG6sb+DlDbQEfLNYi7cU8c2n51Eetu/m1xZv56XrxzZ6QPXww/GB1PXXw+9+B82a+bfPyoLf/x7OO6/qunC48X7AUTGamWo8GkwppVQT4z5X1IMPQmYm/OhHVdv94Af2IAXsHKlrromt8wYfWVn2hKRgh+8kOndTfXLPfwpIgJKwnf+ULDNVsnQppT+8gQ7l5ZS+lUVJ52fJGzEiaTDV+ZtXM2//DEaXnsTCnCXM3jmS64d04PJTezG04/CE+9q2/GU2bvmtHSq2vB19DtxJj6FXsGwZXHvtI5WBVFQwaOc9pVJdTkwGVGRjMg+RUdqOHrk31Xm+FMCAZp9RmvUa5ZGhZAVWkNPsUrZuPQOA41r+k1bBTErNOHJkLvvKN9M8Yw3Nec9mBQbfTvanT5FRvobycBb/WzeBrD/Bffd5dtJjDNnfeYTszR9D7+uhx5jKVXv3wj/+EWt65o1fpy+wbdGH9Bh1Gl0nfD22mXHnEZz5kVOZMZMe487ji62bWR8qA8pYH4Iv9nXCJ9FRxdYVIeb3upRIIEigVx8yN3xCxsz5mPBs9gUh8/wuRGd29Rj2LVr+9nMOHxpDbrMVtLrzW77bTBgURzMoEmF37ix2D5sFQGBPM/rN+TY9vuI/LwtgZGAdIzM+hsAEIPa8eQMtgDeWbK+SxZq/cQ8V4dhEF+9wQa+Gmoe1dWvs+qOPwp13Vn+fc8+F666Dv/4VLroI5syJlU8/cECDqcamwVTj0WBKKaWauB//2AZDd98dW/a//8G//hW7/cQT8RXyvJmpTp1iw/7qqwiF93xQXu75TybYnZbN2tO8ue1LIiULFmLKyyESwVRU2Gp5I0ZUuY87mDpv33iKsjpBFpxtjuf0zkJmPgTeKKWszf7KjJNbQeE01u98kIhTQjuUu4f1Ox8kozCXZcsmM3RY4hPkHn/8o5XDw2KCBMpziWQeJKO0Hc2C19H2g4FkACHg4NdSmRmUgt4TyMl6mJzwWghmQe8JlQe+b6yazDl9v09z3gPg9wt+D8AN46cx+urJMGoKMugCvnjzY777yATmbx/DpsdtUF7lQLfHmLggKurZZ+GwE2OeeCKMHw8iX48LoqK6DhjMZff/Mu49Mve1F+ParP10Liec6ZPO8NjXuh+RwCGQIJEA7A4eR07zvhS16keb4vW033ywMpgq2Z1JwewiTPn77MvKJPP/MsnzKcWfUsl119C0SNYh1h5+iozCfv6B8bYF8LeLIVxuX5tvT497Dkf2ahMX8Phlscb2aUdmUCozU97hgm6JCl7UR4C1c2fs+vjxqd/v6aftD0CdOkGfPrFg6uDB5NlyVf9CnuKXGkw1HA2mlFLqCHDPPTZDdccdNsN0222xdVOmwMknx7f3ZnLqO5hKdD4ot+j8p1BmV8rLA6wraMOAAcnnTuSNGU2gQ3+CrfoQLt5I3pjRvo/HHUwdXr4bcY56DZARdOZPhSJ2CJ9PMLVxwyNEPCW0I04J7WXLJnPmzi506uxfyCB6IL16lS1cEAx0JLvD95j2UgmnmhI+kjx6D27GtzLvJRI5nkBgJUsKfsAJXJL4gXsYA0VFVBmCR48xRK6eTtmaj8kdPAF6jGHLFrvqr0umcMP1sOeTabyxajJ/XTIFgPzOU3hnVOz+Q28ew7aH7c0dO2ym6frrq+9TOGzLoUfddlv182C6Dhgc974YcPI4tnyxNO52KnpPHMLi+W8TKt1GRnYPWo0YwvzibjZTFQnTuWc72jttSxYsxFSEwBhMKFwZkHv5nberWoFw4qqMmz+mrPw4yiJDyA6vIHvzx/EB6bYFsPlj6G1fN78s1shebXjphlNSmjPlV/ACSFhRsCZBlrvEeU2y2CK2IAXEV9tsyIp+xthse3SIM8C+ffG3ZLTi7AAAIABJREFUj0U6Z6rxaDCllFJN2MiRsHixvX7nnTagKi+HNWvsshYt7FwpL7/MVFR9nLh324plhEMhTCRCOBQ7H5Rb5z6tOOcruWyft4cXPm3Hph2tOPn05NvdKBHyTrmVDBMkJGE2SoShJA+mcoe2p2zdPoyB/Z3nsmPAa0RyigiWtqFfh6m05Ioq+0k0xKu0rIAVK+CZZ6bGzZkCqKjI5fjj7byn/LJTeWr2ZkaaFSyWIUwcKDyQ8UMyCTGJDD7fex55gZVkBJcTMgFOCa6EGgRTV15pJ/vfdpudixIVDsO4y8ewcOEY/vAHW23tyy9j67tcOIUxN0+J21ZWFlVu3357rPrao4/CtdcmPvdX1L//DZs32+vt2sE3v5nyw6kUzUKt/XQuA04el1JWCiASyqei5E3CoQpMOJOi8PcImd1ESrcTyOzOHhlEb6dt3pjR7G/bn73NjqPtoU30GuNXZiN23q71q39BeXg3htSKJCR675TlfIXd5SdWFsVon9Oc7OhKb9bq3F/Bu//PN4s1MrCOkZkvAgKBb+IeLujmV/AiUUXB6sq2uxkTn5mqbUapRYvY9Yaq6GeMLZQxa5adP/qDH9ihhs88A5dean8oOFaHF+owv8ajwZRSSjVhb7wBV10Fn3xib996a/zBwQMPQOfOVe/nDj4yM6GN67ipPjJTPYYMIxDMIGxCBIIZ9BhStWZe8YxFBBcfpFd2HvdOOkhR0SL69x/ls7WYnau20Je2BCRIwLnN8JG0bWt/aY7+4ux+zNta/Yn8s17COGcEErGZqUhuEet22aF73kxCoiFewWAXDh+G2bMn06oV3HzTQ0hwL8VFbZn1/o849xy7nU1L3+e5wENkEqKCt/h87/lkEiJDbLGNPh2aEyjOIhKuIJCRSbfhZ6f83O7cGStH/cQTdthUK1uHg88+i52Q+Te/sef7iZ6suVMn6NYNcnNjQ/GgajAFtkrkz35m3wtr1tjzRk2uZkpXtBw62APW3NyUH1KcE848L+UgKmrbimVEwjbbFAmHOLD7M8oPfASEoTRIVvYgcMKp/a36sPTE2wiHDVuCQq9Wfah6piyrVUFPOtxejinPYc+lIUpPC1UbUCWqylh2sBsRNiEIEQlQdrBbLJjyZq1WTbOBlAnby2gWa9sCeP4Cuwxg6Qsw5d++Qy4TFbzwqyiYrGy714EDsfmVeXmJi05UpzEyU+vWwYwZ9vrTT9uS7c8+a2+//rr9HLz5pv9n4GinwVTjqeZ3KKWUUunUvDn85z9wyimxZdGT8Q4aBN/7nv/93L8m5+ZCS9dIt1SCqfy1q/j0rVfJX7vKd30goyudWl3JkHaX0anVlQQyulZpc3jJFpAgEghCIMh5x21JWnwCoOPgXoQkTIgwYQnTcXAvwJ6M+KmnYOJEW4I5GLTtV62+n/z8F0AiNojyHAgbY4fuefXpO5VAID4aCARy2V8cq7jXMbcZ4+dsZuJHezl/2Wb2bY0dVZ4SXFkZPGUSom+HPAIZWUQIEsjIouP4KQSmvE3gjPsITHnb92A4kfXrY9cjEfjww9jt3btj17dtiwXZYLN1IvFZO7DBtFfLlnDjjbHbDz+cvE8rVthf/8FmsG65JXn7+tZjyDCCGRlIIEAwI4O8FtkgEcAgEqFk38bKtl+uLaKiLJ/Q4YVUlOfz5dqihNt1z9Fr/Wome2f0sHX1DbHykHEyElZl3NpmJ+VSQYgw5VSwtU0svWOzVj9jf+gqdpf/jLKOl9uMlAQr574BNqgKu46Co4FWAiMD6/huxjRGBuxZsaMB1p1nD4zLPkWzWEFJPg8L4INlRbQcu56srkV1mufUGJkpdwbt4EH7Y4v7RLXvvAPf+EbVwOJYoMP8Go9mppRSqolr0QL++184++xYVgLgD39I/IurO3PTokUsswHVD/NLZT7UzoWFjGvesfLcTjsXFlaWMY/a1rwXnXcV22PSSJj/burFHUnKogMMHT6S5Sxm56otdBzci6HDR1auu/xy+xfX1/yXqY7fsKxopmrNqocIR/YSDLRl4KAf8dSfY+mZsb1mx2WbhnecDZwJQLfhZxP57PHKzFOH8dfA+Gvi5sQANQqiojZsiL89axZc7FR4L/LEBS+66jlEg6iePWPDQCHxe+T734fHHrMHXXPmwLx58UG7m7sc+le/WjVga2hdBwzmsh//vLKYBcDKj2ZVvkfdmdGs7N2UH3gdv6yVl3tIYMt9m4i8mEWXt3YgAodGhdl/WRjT3L7HpSRAvw63JKzKuKzin+RO/C/NMyo4GMrkcMV5DMW+f6tkrbLGwzn/omz5RrKH9iE7+j7pPQGCmbHMlDvQ8kpQ8MJb6AKSl213W7yliKnvzKf1hAgmHKDN52OB2hWxaIzM1J49seulpTaY8vrXv+yw2Zdegoxj6KhXM1ON5xh6Wyml1JGrVSt47z248EJ74Hv99XDWWYnb9+wJF1xgf5m97rr4oYHVZaa2rVhG60BHOrTozq6y7b7zodpnBAgB/5+9Mw+Pqjz7/+c5M5M9ZGHJAiQQtrAJCAYQUFnUIlasintb69K3aq2tYi1q/SlutVJb7esudalbX+sCiiuiCEpAECRAIEAgCSQhJIRASDLbeX5/PJmcM1syYQkBz+e6cs05c86ZnMxkznm+z33f31sTAl1KutmDEx0eXz4G+/b3mN63lI93ZPGfnVN5ug0xVVG5gJoDjyLT9lBzII2KyjvbsBT3tv6ChE/LqiuLZ+xXO5tT9Q5QkhBPQYGxXU+bgnvfCyA9uLGzZPMUWgwVe+epiNNREE+BmCNTYESEIHiw+MknxrJZTJkJJ6Z69lSDzFdeUeuPPaZSogKprYVXXzXWzeYnHUmgmYVZXJmfb9hfrKJW0hy1Cp1eak4JBMH3e2s5hQKkhLjvbMSvthk7C0H872MhRKupisoF9Kj/FBxqBJvocJNY/ykVlQvISJ9JaUoVscKNTdrw4mW3t4KEBW6kpxdiu5sePZpdJ3vnwTWL4IfmmqkRV4T/n9q5LHyqYOD/JcFugqHIL67BresIDZA6jl41HK6YMkemjpWY8rkFQrCYstsNR7v//let//vfPx5BZYmpjuNH8i9lYWFhceKTnAzLlqk+VKHqpAL54AM1c9utGzzzjPF8W2KqV/dc0tK6oQkbuvTi6N4taJ/4LnXU6R6kZgPdS3yX4HDX8uJ1dLn+YdbaXUhPFBl6X1JTw/d9qqhcQGHhHKRstiv37KGwcA5AK4LKRmuCStNiw6Zl1W5aQn9T5Kl20xIKCqa1bB8xcRo73G/y9pNL+KJwCt+sn4aum4wawtiHHymBkamNG5XrXlpacGTKbH/cXjEFMHu2Iabefx+KioL7gL30kpEiNHw4nHFGZH/HsSZQXPnoPXQ4doc9ZNQqEF9KoO5WRha7kibyLI+Q27eePaVuLnf+A9wqSiQcjhZ3yUCKt88D6e8OSXOKaUb6TPJta/k860OGNfRnY/w2Lt/9M0Z5srFhw+PxsrOgkEHZypLTqefijL9dNZLuHexE2UKfSSoi5YtM9ZnUuj17GJFlZlxOV2xC1VxJXaNXVPh0QGjdIdAcmTpWaX6BkSnz92PqVBg8WEVfQdUhOhzq/9lm46Qn0Brd6VT1lT+Gv72jscSUhYWFxQmE2Xo4kn27Nesgc82UOc1v9/L17F9XRvLI3vScqNqnij2xaMKOJgQgEHuCnQbcxd/T+O1C7KkD8NRuI67/TzHP/ns80NR9NUl2F8KmA24y8lYD4cVU8fZ5LULKhzQNSEORmXm5qpnyO0Y92ptT98IdmzJkCu5iI/IU339KS1RI02DIEIiNncZfp05rERP19f7v5bEgMDIFsGSJcs8LFFNmDkdMDRsG06erNFIp4fHH4dlnje2Bdui33BKZ493xJDAlMJTg8hGYEtg9MY2cnJ00ubeSMmwAG/vcRcOuH4iL6sGYn04IabEOrbtDAgyLbiC530aSbQUM9mrU6xm4N/dCSvAKLwVxWxnEWJwlB6h64QekRyI0QcrM/iSMDfOF752nxJJZIC37W/hoVSs9sHyMzk5hRuw4Xv64hqbSrvS/KnxUqi2HwGMdmaqt9RdTuu5fU5icrP6fPR4jTdUXmXrxxbbdK090QtWJNTT4fy4WRwdLTFlYWFj8CAhlQLF7+XrcC6tJFAm4S6vZzXp6TjyFao9OEqBLiQSqPTqB9hJxeadR/cwzuPbvDDlj//33MKZLA9dnNpHk8FDntvNddusV0G0NSEMxOHcuAOW73wAkUkJ6uZPc7YdaUvcywkTxck+bxmbepHbTElKGTMHJtBYh1r+/4VaXnGxEZurqjr2YCoxMgUr1u+KK0DUhPsKJqVAGFGbuuEOJKYCXX1bugT43yI8+guJmb4eUFLjqqjZPv1MQLmoViDklEKEzoNtneBuV6YrXU0JJoQbogEbFfwWzBg0Mqg2E8O6QMdEZVFQuoLH8eVLsym0yxa6DWMorw7cQUzmawoQdzB52DwA7CwqJ8XixYUPqkn3vb8WRHh+yVxoQHB0NFa2C8CmBIeh7YCs32ZfxlTaJHj3CR17bcgg8lgYUDz2kmpnLAJOQykpjOTlZCf8nn1TC4rnn1PMvvQSDBqnefSczocTUoUOWmDoWnOS63MLCwsICDAOK8wav55Kui1oiUpqwoQkNTWjsX6e6+vY4LZ0VDV42N3lZ0eClx2nBaiRu1Cicj89h52XjcT4+J2jG/of1C7jl58+SHKWsppOjPEw59VkqKheEPcdwtU3hnvdxoCCJKV/vZcrX1UxdVs3g7QdbXPZqNy1p9djc06Yx/pcPk3vaND9nvBEjjOX2mHccKXV1/rPrPnx1U61FprKz/R99tGULfdZZqp8ZqFQgs9lEoB16XDiP8RMUX0qgzyXQ6Qps4Ku3PLrqv2DT8jUhXyen32w0/N9ojShy+s1WDaIDGwNLJ2ellzJ2xLtc138HabrqvFwQtxUdiUQiEEgp2VkQ2lEz9B/UHK2acrd/9MknsgLdAwMpW8WNcRfwwOSH+OIXFzAkcVXo/WjbIdCX5heVWcsG7zbWlLTyz9tO7rknWEiBSof14WvaKwQ8/bTqpebDbNxyshJOTFkcfSwxZWFhYXGS4iw5wIEvy6hfWUHarjJ+e/r3PHV+NVPSE3AvrMaeEIUuvc0/OskjewPQpa6YvmufwLt5AX3XPkGXuuKg184vepKtnrtxTFjCVs/d5Bc96be9a9d5REf7p+zZbKFtyn2EsysPV/PkI3bbIsCcfibwSA03dlKGTGn1WDOLFhnLZnOPjhRT5qhU//5Gj5+dO1WEKJyYiokxUjp79fLf1paYEsJo4Asqre/QISgsNHr4HA879I7AlxI44dKrufjuh1iyaQZS0vLjj0T37Ar5OhnpM8kd8hfsshtIsMtu5A75CxnpM1uJrEqEAJ39bN70JyoqF9B/2DDejf4/9Z3Ei1t4KIjb2r4/qnceTLrdP/IUTmQFsnMZduHCrnlxaC762VqxZQ9jw+4jMVEJqbTL8ylO2MJVL+azpqSWNSW1PPXl4YsrpzP8tlBiCtT/75w5xvqxMsToTFhiquOw0vwsLCwsTjKcJQdo+H4Ph1bvAa8aEcYhmT1BIpojUSA5VH2Q7w+5SaGRWmKZnKnCE7s2vUzjrQVEpRbQWCvYtellBpoiTxWVCzi46ym/tKWDu56ioks2GekzcbshMbH9KXu+2qbi7fNoclYQE51BTr/Zbbj5QWP/GbBhTcvg94mSqxExXZh+3RRyT5vW6rE+Dh6Er7821s87z1g+XmJq8GAYMMBIwfvii/Bpfr4eUwDR0cqgxJfyFEnD0osvhj59lGjbt0+lQhWaAiIXXKC2n4yYUwJX7lCPp/T6lvW7TufX1zRRu+klkBKbw8GQiaENKABEw1lsfPsQ7qZSHDFZDOp7FhA+BdCMjovi7fMYFfckjveW0xBfir37QBYO2MHUYfeFPW7DutBtBEISiWFKn0m4vFHYhQu3HoWeHSaC1cxobSuj7ctAmwT4v3ZCAsRk1aiaSaFSAd/9fhfvfL8rbJ1VJFSEv4QEpfmZMTua+nr1ncyEq5myOPpYYsrCwsKiFRoa4O231cA27+gbtx11nCUHqH6xAOnWW56TUiKEQAiJlBIdFYlqSuhCrS7ZJ9VAfHdRLTLuK3ZnfNaS3ORNlezmMxKbLZ5BiR1ljG6g4WkxilizBvZWZZCWHrqGpDUy0meS4c5QNR1ZkyC97Td97KzbWQlEbVnE/O9m8NTC2xk6FP7wbJuHtvD558bgY+RIZRvuoyPFlNl8ol8/FWUyiylzZCo2Fhqbs8cC66SysoyBZVs1U6CK8m+7zbA9nzfPP93weNmhHw9W7pjOyh3TAbilH1xxeW5EZhablq+hsfb/AC+exnw2LU8nPWcKOf1ms3nz3cGpfgE0OSvYtfNl9v65AW/qZrR9mznzAwcDd0voEbz/hnVriP3PfvrJVDzr97OBNW0LqrboncdlixYyNGEZX+2cxH/+p5XvXxumFomJ0FTaFenVEOg4ojUktFpnFQm7QgcHAUtMmbEiUx2HleZnYWFh0Qr33QfXXAMTJkBp6fE+m7ZxFtchPUoKSSnRpVrWpY4uvXxQXMZXu6s5mBdPYt915Jz3RwbNuoGc8/5IlHhP1Xfg8ntN36y5j7aMIr76CubPn01TU/tT9ihbhf7yT9G/eBD95Z+qAVsEjJ11O12uWMJTC28H2j8D++GHxvKMGf7bjmea3xRTluKSJf59daaZgm6hxJSPSCJTANdeC6mparmkxBh4DRum6qp+jNTXq8jV2J9d2qahhUoB9KJa/HpbUgIz0meSnnQTrnqHSh/UQx9vtyezO+MzvF0BAXpXqPulmy3FD4bcv6qwBLu0YcOGXdqoKlR1VxvWrWHJm++yYV3o+q7WkBI+2ZjHX5bfTv6uPLp3b2XnUKYWJhISwFWewp63xhG9VaUCXnxqr1brrCJh9+7w28xiKinAJyTWdDlqbF3XnhQEWqODJaaOFVZkysLCosNpaFA57OaZws7KRx+pR48HVq0KHrR2NqJzkkAD6dXRpc6O+gJqnZVE2+I4kL6afr8oxRFfR7krAbutAUe8Gtk54mvZqz+LdIa4A+MvoFpzLgP48ktYskRFsa67bh7de1TQ0JBBXl7bKXu7131GmseFXeh4PC4q1n1Gzwh7OZnNEdojpnTd+JxBNUY2c7zEVL9+ygija1dlAb13r/++112neolBcO+nKVNUo1KA08JnpvkRH6/qoh4MGLv/9red3w79WNEeF7ohE09jw5L3W/pbmVMCd69NYNOnAwBJcr86sqdUITTjuyZENEgZNJGBgH0p61qa/5pJixZoXi9SgCa9pEWLI45WlZYaEY3UVH8BEkQ458BmfK5xp2pbuUhfxmhN2be/fv24sL2pIqE1MWWebGgrMiXlyfl/vW+f+uxCRaZai+pZHD6WmLKwsOhQVqxQzRSTk2H1asgM9NzuRLhcsGWLsV5VdfzOxYez5ADO4jrV0DOEXXKNczdfVr5F95wGxPBV2OKbSJSAgG4Ygwd7dPAoUWoewjXBNafnhUpb8kWd3G5aXPGWLJnJH/4wk507YNas4MFNKFZ4hzADe0vvpxXeIVzS9mGA/8CvPWLq+++NwvVu3YLFx/FM89M0mDzZEEY+EhJg5kxYuFD9rZcEvEnXX6+szLt2jVxMgRJOjz1mFPknJ8PVVx/e33IiomlKXPtoj5jKHDiYS+8N3d9Ks/fC993av70rid37k5jzLY4ED+56O46mGcju74V97VC91tL27qXm2/mq19u+raT1v4D1Tkk/mYoNG0gVvaJZTK2rWsfqPasZkzaGkT1C93vbuNFYHjq0jT84VJ8rEwkJMK7XKr74xQVE2VzwikoFHK0Rts4qEiIVBIHXG01TUVpXs151Ok+MCb32cMstyo3z6qvh9NODt998s6o5e+CBjj+3kxlLTFlYWHQozzyjUiwaG1U04Prrj/cZhaeoyD9VIjAy0NG01EN5dIRdo9v1w4MEVXHRq/S46HNsMV5j1rVds69eIAr8Zsij/NLzWjOK+PZbQ8j06QPnj1gFScvg4CRIbnvg1HfUZH615h5Gy42sEUO5Y9TkiM/cHJlqTxqP2cVv+nSw2fy3d5SYamw0Boo2m2FxPnVqsJhKaZ7Q/+lPQ7+WwwGXX97+c0hLg1/+Ep5/Xq1fd53hKPhjYPZs+OtfjfX29kcK199qyMTRbP72UtzOUhzRWcQ5Utn0Ri3q+2Zj1IzpREfnhzWqCJVaG6rXW9qOnUHRKlBC6q3n55K3ty9vdf8Ifn1vSEHVLjEFrZpaJCbCWX2WEWVT7oB4XfDDm7DuzTabB4djTUktq+priMrsiqu89ahWqMmbmBhDTDU1nVxiav9+ZQEP8Nprqs43FPPmKWfDk63NwfHEElMWFhYdyqZNxnKoNITOxIYN/uvHOzLVUg8lQXp0FaEyiamKygW44hdgl8GRpUiJic4kp99sNm1+EOndh7ClMiT3nqBZ8Yz0mSFT9r76yli+/tzWC9RDMTo7hTuu/wX5xTXc0c40IIdDiRCvV4lgtzsy84XW6qWg48TUjh3GclaWUes0dWrwvpFE+Q6Xv/5VuRva7XD//cfu93RG7r//yMRUONJzkrjojzPYXVRLz4Hqf7p0w74WcTVk4mhk3Gw2bbot5PGhjFviRo0i6sH7KPlmOdkTJhI3ahRpq74LilYBlH/0FTfX3QzRNk6r81Lw0VeMvOYoiKlWiIuDpSXKHVBKF/boKAQy4ubBgawpqeWqF/NpStFJu1xj3+Kh2OJcNJWGFlbhxJSvafnJZkKxbJl/VDXc/aqpSdVfBqYzWxw+lpiysLDoMHTd3265s1NQ4L/ekZGpK06p4LxB1bjXdYOpaiAVnZOEsGstkanoHP8K6+Lt85CylSYsbSGiWyJMbdU2hePLL43l6YOXIfc7EVJHel2ICAdOo7NTDquWQgiV6ucbADc0BBehB1JZqdJNQQmxc88N3qejxFRgvZSP/v2hd28oKzOeS2n/2xMxSUk/jqamoYiJgVdeUdE5OHpiCpSgSjd9Z83iSj0/k60FX+HSFvrX8uhRIY1bCtc+zU79SRzT3Gw59AHOtbvJzhvP1pfmU32glm5eD73zVI7ngLIkEDaEZkPqzeshOJpiSgjYsD+Pqa8u5Kw+y7jruUmqjmrdW2HrrFojv7gGl0fZrAtNp+s5G0BIpK5RX9CLQxt6tYiqqKjQUaeT2YTCfO2F1if/Fi2yxNTRxBJTFhYWHUZp6YnV5+J4RaYuGlTBvZNU8Yzn8/3UJ0DC2Az2RX/JtsmP4JF7sYvuaNFzyMAQPa31cAqF22PDKbzEa1DrFXhSzmVqe0RU2Sq/egmXC775xtjclDuCpm/tOPDgljZKYkaQ264zbD9xccYAuLGxbTHlsx0HmDgx9Gx2ODH11VcqLe+yyyKLgLVFoJOfDyFUdOrll43njqWY+rGTkGAsH00xFUiguAIY2O8+Fv+nB12HvY0jrg5PQxJ9su8ImtyoqFxA+b4niUpQ4f2oBDfl+56EVFjVLwOPx0Ox3U52fAxxQI9xw6n7rE5FtaWXHuOGB52PrqvMgdh+64jPXQ2ZY4DQtVWRkpAA+bvyyN+Vx81dILEXrdZZtca4nK5E2TUanToS1epBaIDQSRxRSsLwMuoLenNoQy+S3CkhzSVOZnt0c1YAtC2mIjXgWLxYTSReemlwCrSFwhJTFhYWHYY5xe9EIFBMdVRkalpf1eDHd6Nr3FDNwexVFBbOQeIEAR72Ulg4BzBqmCJpDuprbFvr0Xh14SUUj/wce5SbKJuDF0b+MvKTDNFjZnVZXstsb04OrI3qw9/cdzFWFLJKDmZyfZ8OEVM+IhHu5nqpUCl+EFpMffutcsyTUrmL3Xln+881kEDzCTOWmOo4OkpMhSI9J4lpl93E5vyfwUEYNi4jSHCBikIjAvKkhZuKmvl4vKpJmterU7axgMyBgzmUHc/S6vl0dfSkxr2bqdm/I/BVS0pAZqzj3KuvZWi5i+ffiyLl2n+FNauIhMREo8nujTfC44/DgAERNA8OwejsFP492cFHLy5hacU4tp3qAHyRKkBIEkeWkjB8F/aSXqwp6RUU4T5ZxdS+fbBunf9zrd2vyspU5sUpp7T+up9/Dueco5ZrapRBjUUwHdpnSghxiRDiHSFEiRCiUQixRQjxiBAiMWC/oUKId4UQ5UKIQ0KIjUKI24UQ9oD9YoQQjwkhKppfb4UQIsAg1sLCorNwIqX4HToExcX+z3VUZGrfkFcoOvtatpx9DVumXUtl/1dCpvBJ6fTr/5TTbzYaUQH7NP8ATSKe1/dF84ddcczdHU9+SQ47Hn2BkfW/5YVzXmjfoClEjxmz+Bw/Xs0kb7Tl8pw+kw223MPqKdNeQjn6eTz+zW59uFzw2WfGenvE1PPPG8J05crDP18z4SJT4N9vCiwxdSw5nmIKlKA668pczroyN6SQgvBRaKntZ/CVWxnx60Jyr9yKSFI+4mUbC9jbtJvCunz2Nu2mbGNB0LEbN0Je9kLuXJbFTw9ewK2fZ7Hl64VH9LcMNwXAPvxQpQ7edlvo72OblK1i9PKrubv/s3x4+q+ZsbaY6/YuZZTc2tK7SwgQNh29bylXvZjPmhL/X3SypvktW2Zcj3y0NflnnkgKh09IAbzwQvvP68dCR0emZgOlwF3ALmAUcB8wWQhxupRSF0JkAl8Bu4HfA9XAVOAxVA9w8/zffGAGcAdQDNwMfCqEGC+lDNDoFhYWx5sTKTJlrh3wUVOjzA2OZapD4eZ7GTDuPcOBT+hUed8L5VYO+A+qfBGqbZsfxuWt5qBL8H69gzUNdjQ07JodcGATXoTm4NDmMTRuH8mXj47khRvaeaJ9JqFrDnVemgOtzyS2m4wcBgxQM8lH2lOmvQRGpmpqYOxYNeuBceohAAAgAElEQVT++usqVcXHsmXKaAGU82A496tAMdXYCO++azy3f//ROffWIlOZmer8fBMSx9KA4sfO8RZTkRAuCi0lRCcou7roBBcH5PNUVObQe+hwNJsdr/Sg2ez0Hhqc5rdxI8zw2kjP+x2asKH3noa2fgUR9yYIwfPPq/fzlVfUutsNf/87vP02/PCD0SQ6InYuA73ZGVA6eWLCvWhC4tFtvLF3OltSupOqHSRfDmatHIjbo5NfXON33TlZI1OB9VIQmZiaMyf89kAL+q7Hfi7shKWjxdRPpZTmj3epEGIf8ApwFrAEOB/VDmWClLKoeb8lQoh+wC9oFlNCiBHAlcC1UsqXmp9bCmwE5gIXHPs/x8LCoj2cSGIqMMUP1EClpgZ69Dh2v7e8/K12NZIMdPnKSJ/JHi2bZ354hhVVK5Co6UodHa/0ctGAi8hMyOSUlDGc/8eRNKJSPp54Au64w/RCAfVQgazRB/CY6y5lYe4dyh36gJAGCodrJnG4BNqjP/mkEfF59VV/MbVihbE8fXr4+oEuJvf5AwdUo1yfCIPDnGUPwOOBnTuN9Zyc4H3OPdcQU336HPnvtAhNoilXprOKqVC93miuIzIjhIvi7fPomngTuZftxN5ch3WgaR2Z+M8ebNwIZyT3QxM2NKEBktjYAFUfwNI3nqJ0xXKyxk/kzCtvDtqemqrSU3/7W/jDH4wedLt2qahwu+z7+0zCSxRerwuJQBM6dk3HJrz8Mm0hmpDoCDzYeNt7Jh+KMxmX499sSU+tpcu4GrwNUbxf5CKpX8dM8hxrAuulwL+tRyhWrFD3s3Ai6aWX/NcDJ3gsDDpUTAUIKR/fNT/2bH705agcCNhvP/5piRcAbuA/ptf3CCHeAv4khIiWR2RrZWFhcTSR8sQXU6Bm+46lmAobggKEjEIKl996oMvXuqp13PDZDbi8LqQq00Yi0dBwaA4u6HdBSzrf3XfD73+vjps7F666qrmJcoh6qEBBlV9cwypPf/Jlf2xCrW/bZgxKAtPUOgqzmNq3T/U182EWQACbNxvLo0aFf02HQ71uQ4Mq0vf1YPJxNMRUWZkx+MnICN3b6Z57lIlLQkJwk16Lo8eJEJkK1estfI+qcnY3PYAjXg2JHPF17N77AEmVcX7GFhs3Qk3jEKYNrAYkutRJnTQk7DksfeMpvn9vEboQVL+ncsZCCaryokK8ZQW89eJw7v/b4JZ0sVDR/1bpnce/PAvZuXQZ1Q1deeInf0LQhCYkNk0iJdiERJMerrQt4Ur7N2jaeHyNgdeU1FLaL5/kfqrOauFO+OxFjdevH3dCC6qaGhXlay+6Dp98oq77obbNn3/k5/ZjoTMYUJzZ/Oirpngb+H/A/woh7gBqUGl+PwfMHS+GAjuklIElxhtRgqx/87KFhUUnoLzc6O9xIhBOTFVVHb5lsLPkgOoNlZMU1GzXwEZoQWVDbPkZrt6fY4/bh6chleiys8mY6u/ytXrPalxeFzo6GhrjMscxLWsada46xqSN8auLuukmJQw2bVKDxj/9SUVv2LkM6W3d0tznrOX26DjsGuP6duVPYay9OxJzTcSLL/qnugQaUphr+HLbcMZISjKO/+IL/21HQ0y1luLno2tXeOedI/9dFq1zIogpCO719s03k8IIKhuIgLlloeotfcf72lbUdslmaW0RaVGN1BLL5MzRYX9/6Yrl6EKAEOjN6wSIqfKiQt6+fw4ejwe73c7YvEf4rCv0615A6abhQJjc2jDk787j5eXqWrShagi/OOVNfjXqNezCg03T0aWaPtKEBN3t18cqv7gGKXSEMOqLfKmAvu0dlY58NPn668M/dtGi0GLqiy9UarRFZBxXMSWE6IlKyVsspVwNIKXcI4QYDyxA1UGBqp2+T0ppaqVHKhDqFrbPtN3CwqKT0JnMJ5qa4L//VdGTceNC72MWU8OHGz2nDtfRr2zDWxSXPI4npgb7hq7kHLyN3sOCc1wyMy9n9+7X/VLOpISePS8n1vlTPn73DHRhQ5Nepl8UnJ8xJm0MUbYo3Lobh+bgxhE3hjWWcDjg5QdX8e7jy/hq5yT+/e88fvMbSI0ZQbbeuqV5YD1U79iUloFnly7QrdvhvU9Hijky9dFH/tvMYkrX/SNTkYipijDO8wcOHHktXWvmExYdS0wMaJr6H2lqUhFDe2eYem6DUKl/mhYbkApoYK633LFDpcUOGFTLAZFKvVc55O0uqg1rgpE1fiLV7y1CBzQpyRo/MWif4sWf4nG7QQg8bjdx5f/HjWetxSY86NgpL3qEzIGRC6rdu41ln+X6q+uv4Kw+Klp1avoP/GrUazjsXmwBfazG5XRltLaNPLGRWhJIFfV8rw0lJW44V72Yj8ujE2U/8SJV5nqpoUPbF/H75JPQ/9+W2UT7OG6XByFEAkoweYBfmZ7vDrwLHEKVPdYAU4B7hBBOKeWjvl2BAO+Slufb+t2/Bn4NkJWVdQR/hYWFRaR0phS/xx6De+9VA6Zt26BvX//tNTXGwDkmRgkun5g6HEe/isoFbKuaix6rZoc9sTVsq5qLvTI2qH9MbMxctq5ayYDTtrVc5Zx7+jN46lzIhel8R+mqnWTl9aHP9NOCftfIHiN54ZwXWL1ndVAkCvCvhQJO23gBp05x4fREMfXVhdxySx6/eqwPX0ZgaW6uh/r2W+P5fv0i619yLDCLqUDMYmr3bmM9NbVt8ddWv6q6unYW0wcQSWTKomMQQkWnfJH0Q4fa/vw7A6FS/3L6zW5eD45YmestfQPwrRUp6GjYNB2bTaPnwPCi4swrb0ZWJeAtPoQtJ54zrwxurZBa34QmZYvgiqnZgV1T4som3Wz99NN2ialAUwQwRJWPV9dfweO/W8b4y/3rPUdrW3kj6mHsONGQ6EIgbNG8W9EblycaXRLStKKzY66X+tnP2hZTGRnq3rd7t4qq5+erHns+6urg/fePyametBwXMSWEiAEWAjnAmVJK89fjj0AfIFtK6Ys8fSWEsAEPCCHmSymrURGoUErI9w3YF2IbAFLK54HnAcaMGRNKkFlYWBxlOpOY8jWW1XX47rtgMWWOSg0ZAunpxvrhRKaKt89Dxz/NRsc/zQaUgJs2Dbrpv+eStU+pmSEBZ99gpM7sH+2gqFcdXdLCd4kd2WNk6GhUYC3UyMuRXic2oeOwuTirzzL+sjyPGRuUpfk6z0Acdo05EViahzKfOB6Y0/wCMYupwKhUW+IvcDAthDIq8A24a2uPTEx1lvfPQmEWU/X1J4aYguDUPx+hIlbmekvfALzv0K/od8EjxMTuxaZ1R8bNAYJfD6BiRTl9K/oiYkFWqPWM8Zl++7jH5DBo0ddUJ3WlW101iZl2dtYZ4kora5+lnjhUyJTcArbvVW6E/bqr5ZIaQ5Dl78qjODOP8b0DDt65DDtubKK5vgqVCjjetok8e6Iy0xFDg0wr1pTUdtoUwL17jYk+u121d3jwwdaPEQLOO8+IPi1a5C+mNmxQrosWkdPhYkoI4QDeQVUETpNSBjY7GA5sMwkpH6sAB6oWqhpVD/UzIURcQN3UEMAFbMPCwqLT0JnElK9XEKhZ50DMYmrYMH/DicOJTIXrCWN+ft8+1dNj+3Y4b6QTR9xUdPc2NEd/mtY7YZq/uUSULart3lC+KFRsV2isgboyv95QVQddJDan83mEjW/qRwDw9NwU/vvVODbujXwAYY6sHM80tUgjU+1J8YPgwfTkyf6NMo/UHt1K8+tcnCh1U5EQLmJlFl2bNsGUKQu4ffYcoqPVxI8ugxuDm9m/vpp4QBMCXUr2r68OElMrvU6ahvwOTbexv6cXbeAKBq0rbxFXm0fnMCnolUOzbV0hV4+5G5vmQdc1EAJNeNGlje92TGN3bQ7x0QfZvnc4yckhol3NboBSVxNIXjRstih6ZvTijag7myeZFgSZVnTmFEBzvVReHvTqFdlx559viKkPP4RHHjG2bd169M7vx0KHiikhhAa8jjKUmCGlzA+xWyVwuhAiJUBQjW1+9GXMLkQZUsxCWavT3NT3MuAzy8nPwqJz0ZnElHngG2hKAMFiqnt3Y721yFRF5QK2Fz2G01NJtD2dfgPvICN9ZlinLV+azcGDyprb93tz+9Yjo0+BmBEgJTs3V5CHv7mEW3ezes/q8BGoH96Eta+B1wPoqgBCc6ALm0qQ1hx8HTuNN90DWtL5StP7ACrN8Z3nUvjnPyMfNHSWyEqgmJoxw2hO2dCg6s+E8BdT4fpLmQkUU1deqfpW+TgSEwopO8/7Z6Ewi6lAF8gTkXARKx8bN8Ls2fNahJQPX2PwUMcmn9INV/F+dKkaMCSfEpwrm1nXnx2yHiFsCAlO50C2DRnfIq7We/YSaYu7zasKsGtuNE0iUI58mgBN6ozL+bjZWELglXb2fT+N8gFT/FMIe+fxun0hRZ+p+qpLzqvh3Osmwc5laLob0EOaVgz1bmasVsgq72Dyiwd0KjFlrpc666zImnm73TB1KkRHg9Op7julpeCreikqMvZNT4fKyqN6yiclWtu7HFWeQomfecAhIcQ4049PTz8LxAKfCSEuFUJMFUI8gGr4+56UsgyguSnvf4B/CCGuF0JMBd4C+qLcAC0sLDoJe/eqAfqRUlcHV18Nv/jFkQ1wzGIqVGSqwBQvHz48sshUReUCNhfehdNTAUicngo2F95FReUCcvrNRohov/2FiCan32waG+GCC2DVKt/z0LVX80iu2XKqT65a95lL2IQNh+ZgTNqY4BPxpfKtfknNtKI3v5aO1D38x3MGf/NcwpWuu3BljGGjLZfn9JlssOXyu8uNdL6nn/Z/H9qis0RWAtP87rhDGW2ASut0NTvLH0lkKioKLr7Yf+ByJGKqstIQ9cnJR5YuaHF0OJ6RqT171P/Xz3/uH0U/Vni9yiCoe4+2I+hmMsZnEnVhfw7lJBN1Yf+gqBTAmFOH0D3KzoAYQfcoO326ZCOkrVlc2YjZGfnFQquLVql5snnwqmstrnya5nuU2DU3VRs+4e0H7qa8yN/5qMabyKrq3hTUpvFtZW/KGxNV/agtCoRNPZpMK6Ym7OQ1x8PcZn+bfzseZmrCzojPtyMw10tNnqwmkxzhM8ABda2Jj1fiy4dvwgn8I1MDBhyNszz56eg0v+nNj3c3/5i5H+XYly+EmATcCzwBdAF2olz//hZwzK+Ah4AHgWTgB+AnUsrvj8nZW1hYHBZHKyr10ktGNOC00+CWWw7vdcwDlMDIlJTBkSmz+DJHpioqF7Skzqjbu7+luS6bKN4+jwkTlgFQVPQoHs8e7PY0Bg68k25dZ3Lxxf43xKefhst+cyGrHn+fnZvr6ZObQN5tFwIRmEuAmlX1uqC5Xa+505QHO//1TGSNPhCbgEkNLj9HvlOzUvjo38oWV9fV+/vll5GZSXQWAwVzw9WRI+GMM9QAw/eZNzSoGdn2iimzwJkxQ4me5GTjuSMRU50lRdLC4HiKqaeegnffVcseD7z55rH9fTt2KNfCvVUZpKW3blRhpqJyAUXuR/EM2EOVOw0q7wyKYKXYBBMTHUivRNgEtqE5vLt2M16PxKvbWL8ufB+rQNzb6ohKuBivXoFNy6DnrqXsi3OxP/oAyGa/npYqeInX7aZsY0FLdKq8qBCx5W5+MsytmhsfELz9gINZf34IznyKstVL6T3mTDJNphW5TT8gNQ9CqubAuU0/ANMiPudjSU2NUevmcMD48epanZLSejq6bwJxxgz49FO1vGgR3HijWjZHpgYOhGXLjv65n2x0dNPePhHulw+cF8F+jcBtzT8WFhadlEjF1KFD8NZbSsCMHRu8fccOY/lw87pdLmUB7CNQTO3ebQy8k5KgZ08VifDhu0lVVC4IKOoO3WzXN6ubkT4TeWAgZRsL6D10OD26D+bnP4cPPjD2/ctf4De/UcslM9x8MXwZ07KmYe7wFNZcwkfzLKv0unDpgre9Z7JB70NXrZ7vGEqBGIBNSNUbqrkeypy28uSTcMoparZ66VJ4+2249FI1W/7eeyo9JHC2sq4OqqvVcnS0es+OFzNmqEhibS3Mm6cGF4FiymZTfc9AfbZ9+rT9uhddpF6vsRHuuks9Z45MHUnNlJXi1/k4XDH1+ef+zpaBjBgBM2e2PkGxfr2x/NZbcOGFcNllkf1+KdX3NFRUOSYGZs2CnBz/530D8vnzZzP7jruJigpvVOGjonIBhYVz8FVUeDx7QtZXOYvrQJfKTEeXxDd5Of/SXN5/spolRd34ZlMSTU3q3Npit6M/Qh7CrmWD7qWi71VIIYjyVKB7ykDEIr1VeF2bQHoRuqS7w8gIKNtYALoHrbnBr0Di9XjYuHQJm77+Aq/Hg+37XcxKG2KkB/aZhLBFg9eFCIhahaIjzSq+N4UNRowwGn0nJ0dW2ztjBvzud2r5iy/UtTEmxopMHQ4nQOcECwuLE51IxdRdd6nBvMOhZusDOxeYZ/8PxwgCgtNmAtP8AqNSQqhmqb5Gj/v2qdni4u3zwvZvMeOb1S0vKuTtB+5WN2y7nR3RD/Hmm0Y+/5/+BHfeqZbf3vI2c/PnAvBtuRqZzRo0S200W5sHNNIFoHcem899jfXLP+Stqmy+lwPV8zrYBFye15vM5NiwN/shQ1RE6h//UOv33afE1OWXqwhaZiYUFyvR5MMsBnJyjJSb40Hv3ur8pDQGxOY6qoYGQ0iBGixE0kMoN1c1sbTbjVTCo5Xm11lSJC0MDkdMffONMpFpi3feUeI8HObIAKjm2pMmqe9eW7z2mkqDDsfTT6uorDkd1iemliyZybnnwoQJ4Y0qfBRvn0dgaXqo+qq67t+wbeI8vDG12JpS6Ou4Bcen/bmwn855fQ5Svi+BzZu7MLKV+SEf32sOTtG8aBKkJtGkBkJDs2eiOXq2FETaooage8qwaRm4iowLflxyDiqDQKrIFKAJdbHyuD0gdbxuj180i955lIeJWgXS0WYVZjE12tRbOZK6KVDX6sGDVYpnU5PKQhgxwphs7NrVSjmOFEtMWVhYHHPMDXt79vRvvOhDStVIF1SB7LJlwZ3ZzQPWPXsO71wCIwiBkanAeilQkYyuXY3oS3V1+DoCM+ZZ3bKNBXjdbqSUuF1uClYXAOqGfeON8PDDxnGLSxf7vc7i0sVKTAVam/9yYZCgWlNSy1UL3bg8Z6PLllZVaAIcdo2LTu3V5g3+z382xNTWrUq4+lIRy8uVOB41yti/s0VWfDO0PgLFVHtT/HyYUwjh6ImpzpIiaWFwOGLq1Vcj22/BgvBiyuv1/z6BmsC5/nqVitVaRMvrhQceaP13l5bCK68YEXDw70uUnDyTCRPCG1X4iMShtKJyAVv3zkXGOhGAHlvLdufDMCEK6WhAa0ph1qGb2Ljx2jbF1L598PGuH9hx5kJ6HupHo2hgUsnP0KS9eaZLR6AeDXHlZX+ycTE4tMNFVMJF6J5yENEgG7FpGTiaEkEqkSWl1iy6FOVFhfzfc6/j9bixrdnFpeaoVQAbt7/NI+OeJjHmIPVNiWzcfhOjs3/tlw7uE6j796+hvPwtVEaDjczMyxmcO7fN992MWUydeqqxHKmYAhWd8t2fFy3yF9lWVCpyLDFlYWFxzDFHpoYMCS2mSkr8Iwah0viORWQqUEwFRqZ8dO9uiKm9ewnr0Ac2QA+a1e3uiEZ4JVKo/iqiToV2rroK/vd//QdJ07KmtUSkfOuAUQ/VbG1udp3ykV9cg8ujo0sloCb078b0YRnUNrgiTj0JFA3mmi5QN99wYqozRlaOlpgKxFwzZaX5nVy0V0x5vUok+bjpJv9G0FVV8OyzannFivCvU1pqmKTExKiIAcDHHysr61//Ovyx771nXDeTkuDWW41thYUqZRfgr39V4swXkTWLqaFDw7++mbYcSiF09ArhgSiPmuSJrWXEhfMo2tKVcL2sfDz1FNSuH0PlT56jKrEUXQr2xVfQs74fTbZDRLsT6HLgED3LhpGYOBibAM1uo89Zxh+UvH8bdq0HekwmINRFV/eyd2tdi8jS7Jkc2uGCyeqYTWv/xaBZG3EkeHDX29m09l9kDnws6PwqKhfQi78jY9WHlxh7kC78ncLNu6isfLcli6HJWc6mTbNpMQYCwEt5uSoGTk4e3SK87PZkkBKPdz/qvuIlJjqz5b4STkyZr0ttMWOGSl8GJaZOOcXYNnBg5K/zY8cSUxYWFseU2lrVjBZUali4+pTAItfAVBfwH7AerpgKHPS2lebnm1V88p8VVO3JYP782VRVzWTI0NkUbpqDNDXjFUQzeMgjIdNiXEV1OEzF08Pi60iYqUw1AtPifCl9i0sXMy1rmpHi53Od8kWmQuTvj8vpSpRdw+3Rcdg1fj9t4BGnmoQSU2Y6e2TlWImpYxGZ6oxi9MdIe8XUypVGtLx7d5WubLMZ25uaYP58FXXfulWZB3QN0QvbPIk0Zowy2vn739X6bbeppt6BNU+gIvvmXkE33wz33+//N3zxhYrw7NihhNUVVygRaP4+RCqmcvrNbrMRcCTR+6goJ1nZ82hNTB06BE88AeNHlPA/XSE1+SD1jbGIqE3E2zaqBsDQ/LgYiYrIC60bMu6ulteOPb2WQdkPoye7VSRK6HgaUojam0Vi91LscbV4GlJw7J0MnE5F5QJE1w+J0jzqXBM9EP8hFZUTg67xxdvnIXH5PSdxmaJPZnRCUV7+hp/w8njMFxX1GkqM3caWLXPJyrqXbdtmYrf7T/yFikz5bNADmTBBCe+6OiXkfcYnYImp9nAcM9stLCx+DJgH3rm5/gMMM8uX+6+3FZmqqVG1S+2ltciU1+sfRcvMVCYTTc5yhJCkpZdz2+13c+DAAmUowSMcOtgdKcEmuocVUgCrq/sjHL2wx45DOHoRP7Q/b70V3sZ21sFDPFdZxayDJrXXXA+1os9v2HzuayFrpkZnp/D69eO47ZxBRy1nvy0x1dkjK51ZTNXWGsfGxkJGaOM0iw7GLKYefVSZQBQXh9///feN5Zkzg69zMTH+0YOVK0O/TqCT2kMPGX3QDh2CX/5SXacCWbzYSPuKifGPSvn+Hp/ZACizG19/M98gOzMz8qhGRvpMcnMfIiZaRXliojPJzX3I7/oXzgUwkMTE1kXX/PkwYoRqKNw1ZR9CQGJcIwl2iRCqFtT8qDU/IqvZVDiHisoFalKs6QVkihshQGg6QoAjvhbZ5wcc8bUt6wf6fNgyiYbmL5DQXOp5EytXQmNTuL8htDFRaGREdbgAXu9+Zt9xJ++8M4aPP+nPmjWTqKhUodFQYiqwT54Ph8O/zu/zz41lK80vciwxZWFhcUwJTPEzp7O53cZyoJgqKjLb3CrMA1YpjbS79tBaZKq42EiryciAqqpgk4mYmEZiYudRXQ2zLpnJzAvzOefs7fQfkE9G+kzKiwpZ+d7/+fU3kRL++cFQPLoNqUu80sZ1Dw4N72C1+mX48FbYvkQ9rn4ZUPVQFy50c9XmCVy40M2aktAj+NHZKdw8uf9REVIeT7B4ak1MdcbIillMHTjgL9SPVprf4YqpQPOOSGzoLY49ZjEFKoUvXCsGn4OejwsvDL3fuHHGcrhUP/P/5sCBSmC/+qohzpYvNyJVZv7yF2P5uuv8e+P5+O1vje/C+vUqdfBwUvx8ZKTPZMKEZUydso0JE5YFTSTl9JuNpsWGOdqgak+G3/mbcbtVGtp11wU3FI6IZlOMSA2DAHRcppYXwTQ5K3A61eeSl6c+16o94YRjmNnDo0BUlJuk5FqEkDQ5y9m8+W4KN9/LxImT+Ozz/rz++iSmTFECK5yYApXqFworMhU5lpiysLA4ppgH3kOG+Ntm+2Z6a2qCHf8OHPBP5XM6/S3N4fBS/VozoDCbTwwbFj5NxeGo4M9/NgbQUsIPPzQ79t0/h+Vvvcrb989pEVSbNsGqDUk8uzaRrxtrGfDzRHKGtXJ3K1wQct1cD+X26OQXH4VOyIfB1q1GVLCpCXbtUsuaBtnZx+WUWsUspjZsMER8r17Bg+b2cDSs0a0Uv85JqP+Ljz4Kve+mTcbnGB+v2geEYvx4Yzk/P/Q+gZEpUOl+99xjPH/33f7pyKtWwZIlatlmg9nBTuaASis011w98siRiam2CIxe2e0pgH8ovqkplvnzZzNnDvwtsJMoqsdWWVn4hsKR0OSsiCjlMPCYcJG1pqYMevdWUcLvvlPPzZ8/G6czuDF7Zubl6B5/QaXrwROFyogwjiNB1xspL3+DqOhyNE1lUsy+404WvDeap5/pzwfvjOftOf/LFaf4vxfm5r1mrOtR5FhiysLC4phiFkmDBxspK2AIrXB9WcyztKEGq4cjplpL8wuslwp3M92/P4PnnvN/rrAQihd/iqd5pO5xuylerDoiLl4Msf3Wof3PTRROeYB7S29iXdW68Cc5eGbIdV89lK3ZmW9cToiiiw7A7TYiKjt2GAODrCz/nlydBbOYMhdtH0lUCoIjU4EDpEgwC/jOmCL5Y6U9Ituc4jd9evieSebI1MqVwel6uu5/DTKnWd19t2F/7XIp+3OfUYU5qnPFFa33Tbv9diO1ePlyfwfCoy2mwD96deYZqxky5NEWcRUdlcknHz/EkiXq+jZ7tqo186HrKsUSVEPhwyUmOiPilEPzMaEiax5PLI//bbZf83aHQ9nKv/3E/0CtTV0H9tvoF/s/DM6dS1LTJTjro5ASnPVRJDVcRt3mbshmUSV1qNvcjcGDHwTpL8jaj/9FKCrKTXyX/QghiU2uInXyU9x9zavUrzQEVVYWnJV7gJvHlXFq5gFApXweyUTTj42IDCiEEHbgduAKIAsIvFRIKWV80IEWFhY/egLT/Mz4xFRgip+PoiKYOFEth0qjOhx79FBpfr78+NMnVPD668pkYtiwmarIuvAudNnUsr/LGcMzT88OGjgXFsJ5g5rQZHMhtBSk1qvjPv8c4nNXI+wu0HTcupvVe1aHb8d3rk0AACAASURBVL475hpW7qghdtsiGvvPYOyYawCjHqqjmkIG4itUBvX3Dhp0YkRWjpWYio5WaViNjWpgXF8f7ITYGgcOGA5voCIQFp2DwxVTP/tZ+P2ysiA9HSor4eBB9R0yGwd88IER5U1M9BdTDocSPqeeqqL0a9cqG/Qrr/RPMfzjH1s/11694OqrlfEN+E9YHQsxFUhG+ky/dMBRo1TK4ddfq/Vbb1V/6403qvfDd/94/fXZ3H77XUiaQrxqeDQR02KKsalwDgS6C9LSnspARPs5sfpS/qKjM3jm6dkt4q9XL+XaeN116rN1fBdLjx0O7MIGNhvxv4uFcTCs9yy+ua2AisQU0g/WMuzxWZQXNvHDC0YYst+pA8lIn0nZpmJq61/EFt+E7nQg0bBFO/E1uTjSNGBpc1F5yvO4yksZxVMAuEoP8OJPC7Ch49UF/ylIo9iRBnQ5sl/2IyJSN7+/ALcBXwBLgMNIXLWwsPixcfCgcggCZcPrG2zb7SpNrKxMDUDNTn4jRqiUOfC/0YcSU0cjMnXlVfeyadMb+G5UPpOJ5CRabqbbix7D6a6ktiadZ567o+VmCjA1YwFjMpZTu2UicZdMxVGY1uLYFzd8GG63MnDQ08cgPVHYbG4cmoMxaeFHzm+sLOWuNblALqyBh7NKuXKs6mA8Ojulw0UUKOFw6aXKnhnUQPDCCzu/+QT4iylznd2RiilQqX6+9NP9+9snpv7xD+WuBqpe6pJLjvx8LI4OocRUbIjyn7IyWL1aLdvtcN554V9TCJXq5xM/K1YYYirQje/GG/0bY4OajHrkEeXqB6o33ZdfGtvPP9/ojdcaf/wjvPxycCQ1cLKrI4iPhw8/hJ/8xMhQuOkm9V7On2/sN3ToTAYPab4WeyqxkYh06eiO+hZnvsBHe1NXesf+xk+8FRY+jK5XI6WGEDouZze+LMwib/haUmySWq+gPuZcpjYfk5E+kz1aNoV7VpPmGsM776gJsKQklabui/Klp8OqPafhllHYbW6Ew0Fc3mkANKz6jl57iulVoYPNRsOq7zizz1jS893EZoyisWItg/qMBcCxJY5BO/6JJmxIqTf3CNQQCA5krKB6wDt4YmoQ7nh0mxNhOwwXJgH7kj6hcPO9DM6di7O4DoemowE2Ibl6ZCU6e9j3XhrJTZaoioRIxdTlwP1Syvvb3NPCwsKiGbNr2sCBxo2nf39j29q1xmAE4Jpr4A9/UMvm+oGjleZnfp0pUxYwfboSUmZiYhrRpbLr9c2kbtqkbInNzJm5gO6O59CFIE1upGjTNWgx2QiZjRBQI7pTlt9scrF9JFkf/IGLbviU03LODR+VAj7eUBG07hNTx4vx4/3dyHwzxp3dfAL8xZSZoyWmfP3Ramuhd+/Ijtu3z79G5P/9v/DOjhYdTygxFcppceFCY3ny5Lbd8MaNM8RUfj7ccINaXrrUcPiLioLf/z708bfeqswwli5VaXDffGNsmzOn9d/tIzdXRdDMNti9erVuUnAsSUxUZhjnnGO8B+barqgodU8IjGo5Sw7gLK5Di7Pz78frOaf3HmyaxKY1W6M7NLpdb6jLVOdkBn7RDa9LRxPgleDRNR78OoYdjkcY4erLD1E76NX0SzhDHbOuah3z3n+Q3IN9WRz3CbH97qFx+0jOOMP/+5qRAfklo/ir+wXuvaiEzKnZxDU344vLOw1bj4HYknLw1hUTl3ca1S98Rs+BzS0vEvtzcOkKUi6DuEMCTdjQhIaEFjElpaRLxXi6VIxHoqNLnQ/ltww4YwG2uH3ojanERE/EY/8MKSOL3pWXv8Xg3LlE5yQhhYbXq94XTYBA0rCykjxRxZ1nZDAs7RAHo7sBlt1oKCIVU12AZW3uZWFhYWHCbD5hrpUaMsQQU6++ahgC5ObC6acb+5nF1NFK8zNHpq67bh6aFrrQxeXyFzTdu/tvT0+HyQOXs36n8uHVERwqWYuwnY30SoRN0HNgCs+8ovYf12sVC0bdRtRaF6z/FJL6h7Q2B5g+LINlW6v91o83Z50Vut6ts/eYgmMvpny0x9Fv3jyV5uc7j6uuOvJzsTh6hBJTmZnBz0Xi4mfGbEJhdvQz1z1dc014i3xNU1Gl4cP9+19NmuR/7WyLO+/0F1MdkeLXGl26wCefwNln+0+uQfj3Izq7C9HZKmryfBG8uDyN8Vl1XPErO8MHeIjOSWrZDuAsrgOvjk1TUTm7Bkid81O6MKv0Vhw2yeVewS2Lc/DcpqJj2zZs4L4dN+KQNtzCy95RG1iyfSSTJ/ufS2YmnJp5gAcubiSa7hxY2kjMwANEZ3fBltqPuAm3KfVmE9hS+2HveSreAyCEQEqJvaeaqSqXgn66BylsSjQ1p/fpUrKzvoBaZwXRtngqG8v4avME9No/IL2lOKKzuOiPMyjeNpQDzuewx+3D64xH2J3Y7OGiV96W99Fz/nD+M3cPlw3fg12TLb0PhdS5edzu5v33U78SEsYe//tRZyNSMfUxcDoqxc/CwsIiIsLVS5kH5a+9ZixPmOBfJ7Btm5p91bSjl+Znjky15hAVWLCcmmqkJ4IqjE6V46FkK+AFYWN/ajYf9HiK7vuz2ZtcwviEP7N4sYpAndVnGXbNBdKrmu7uXBZWTPmiUB9vqGD6sIzjHpUCNetuFh+bN6vP5kRL8/ORkBB6cNxeDscevarKv9D+vvvC91+zOD6EElOBduO1tf492GaG7zvbwujR6rP2etWExP79Kl3sU+VVg6bBHXe0/hp9+qgU0euvN57705/a/t1m8vJgyhTDBfB4iylQ36VPP1VuiOua/XkieT9AfV7L13Xh+/IuXP4YdJkYvE90ThLCruFxqgiMxwtuXamGaDtoCBDQP7aOBQu6cPHFMLxhAA7ZiA1lLHFKwwCWEOyAl5EBWSMLibJ70bDh8XjZWVDIoOyxSsTpAAJ0Jeq6TBvG/ve2IqVKL+8yTeV7puoNNCz/O45uA/BUF3Ew1oEzcxjb2EO1q7zl99mExKEfwtPwOVJ3I92r0D2jyOk/i3f/GoezoRSpZVHkdXHJNQ+EqbVSF52KygXs8j5K3h/3UKxrCE3H0dSVbtsuJrFCKXQhlABt3FDdYWJqXdU6Vu9ZzZi0Ma1mcnQGIhVTjwKvCyFcwEfAvsAdpJTlQUdZWFj8qIlETDWZMhJ69FAz/d26qdoWn+12VtaxEVN7qzJISw++dElJS9GyD5sNrr0Wnn9eDZquvhrWfnYqjoQGpGcX2HqxTYthd/xWyuKLsKGxvGQ1K1eqm8DSkkkIe5QSUrYo6DOp1fO8cmxWpxBRoNzJxo5V6TapqSpF7dAhKClRbn4+TiQxlZt7dHo6HY49+qOPGv3Nhg+HWbOO/Dwsji6h/mcCBe+iRYYjX16ef9uH1l53xAjDCGXlSvjXv4zts2ZFli577bWqxuhf/1LXo+nT2z4mkL/+Fc48UwmWX/yi/ccfC1JTlWHP+eer9+a22yJ/P/LzVQ2a2TXRTHR2F7pdP5x7flXH7ho7qXEeVpQmERMDvzitCt2j49Y1VpQmsfF/4eKLoc/wwVTl/4Dukbg9Nr5eN5iUFPUZmsnIgCV7tuIWGUgJXuGlIG4rgxir0uhstGQsmCNmjRuqiR3WrUWgDDjnDHa+8RJN23cggPhaL/HlWxgQF01qQixRHi8uu41uDY14u36n7ieA7nFTtrGA3kPBVf9fvC43Hn0V+3b/ln1bzyR1wNKg611m5uVUVC6gsHAOUjpVM2ObDoAntoaq4a/gTE+l+/e5LfV1toHdWtIrAyN/R5N1Veu44bMbcHldRNmieOGcFzq1oIpUTPmCrn8BHgmzjzWvZmFh4UckYioUAwcaRgFbtyoxdSys0efPn83sO+YQFWXy1JGg1cwMakAJynnt/vuV6NM06DkwBRGVCfYMvLpAq68hStdxC3BIL4lb4loGW87ueWw59zVqNy0hZcgUcsNEpTojp59uFMMPHmzUaXz2mRGpS09XxeSdkVAD47b+ByOlvWl+5eXw9NPG+ty5tKTUWHQeIokUml38Iknx8zF+vCGm/v1v+O9/jW2RRpiEgBdfbI6Qpx7exMDo0eoa6vGoNLvOQrduSihWVwenV4fjV79Sn0FSUuvfp+jsLry+uQsVpqSEG2+E7jcMZ+/aOq66JYnvy7tAuerBNXRoF3rcMIKv36zjT/9U22bODP4dGRmw4qVh/GnSg4xw9WVLlx3MHqaagxXGFjMv6wlyD/Zlc+IOZsfew0hG8nHychZnLWZa8jRmoWZU4kaNos/LL9Gw6jtsyUlUPvQQ0uUmucFJcoMTgQQECEnP+P1U6DpSCISu072+grKNSlgJIbEJN7pnF7tWTgNvFamDNoOQIDXctWczeMpcvvlmEjKEwyGAjpPa7o/xhfNuMspP5aMt3bh6UDwjPitAenTQBPFj0og7Ne2wRFVrkafVe1bj8rrQicD9thMQqZi6icAKbQsLC4tWaGw0mvJqmn839UGDWj92wADD2amoSKV9hKuZCrK1DYHP+rzJWcFTT2cw/0Vlb7tkyUzOHlBD3k+fRo+pRWtKoduWS3GM+o3f8cUfLqDkm+VkT5hIzvmGyKpM2MGioSqtb3dcCZN39ueFPdWsjnYwxummtMa4Y4+cVsuFC924PBOI2ubm9R61x8WV73Awp7SYxdQHHxjPd1bzCQgfmToatDfN7+GHjWjs6NGRpYZZdD4aG5Vpgo/2iKlx4+Ap5UrN668bz//kJzCyHeNFIZTwOBLC1RMebzQtOK2yLVIivJwGujLeeqsSWb2yu5D1GnzXbE//9NPqc4rO7sKLa7vwfXMSQ6gmtxkZ0Lh9JB89eQ+7z1/NM3dd1TL4X71nNQXRW/khegs2YWP1ntVsrd3K3Py5AHxbrm52swYpQVXUU7D6dI0xaYMYOPAVGlZ9xy7dwYavvuOUgqXYdB2PsNM9upGs7RXUJMTS9VAjXTathgmXILxepBDY0eFAE576jyj7WlD29RCErTta1DDOvu5SIHxjegMvI2Y8xqN/eYgl64czYXkZp6TpShF4JYdWVtLwfRXdrh/eLkHVVuRpTNoYomxRuPW23W87AxGJKSnls23vZWFhYWFQVGRY7+bk+DeyjI+H7GyVJhYKs/DymVCEGqg2NbXd26eicgGbN9+Nriv/6rQ0ZX0OzY0WP7iEK1MHobt1JII/f9GPf/3WuCkUf7iABa8ox7512zYyE1oE1eo9q6lI3MruxCLwanzeNIw/e2Ck8xDYonh0hZHKl9S/Blexji7B7dHJL645YcSUudjaHNH54gtjubOm+MGxFVPtSfMrKVFpov+fvTOPi6rc//j7mRmGTUBEEXABUVEzDZcU3FLD0hbNyupqme2L7Xl/LZZalnW7Wd3bclttuZl6u1ZqXUvNNM19KzV3FFRABXFDYLbn98dhmDPDDAzIqs/79eI1Z3nOOc8Ycc7nfL/fz9fJSy9VT6qhovZZssTV8LtDh8pFOvUmFHoqW/ekqBr6e9HVV7u/3HvoIZg7V1v+4gvNij4szL02ztN8AlwGGYX7kjm1OJnkt1z7vAmDf/3+L7fjl2QuYVSHUWVExv9d+n+c7GMgwtyIfZ07MedbAxcfPcSWiEu42tiUtMPvEllYhDDAsS4DaPbnBnrvy9IE1plCDE2XYxNWQCt6krYj2G1HOL3yDPR/nqDAWIqKy6/SMRoLeebZJ3jqqb+ybtn1YLgWbI7S/dLm0NL+SsSUP7VOFUWekqOT+eiKj867mqlShBBtgSZAnpQyvfqnpFAozgfKa9YL2sOHP2LK2WvK14Pq0aPli6n0fa+XCiknQUGF3HXX6yxdOoJNWeH8z9yFbb+cZHVmBJYm4ZjNrrEZv63EIVyOfRm/rSwVUz1FSGlan0nYKdrWgTOPz6dR7gqOhvRn9vNaKl9gINx4WRT/yzRgtTkIMBlISYzyPek6xmjUREJ+vpb+c+mlrn2+6t2UmKo4MvXSSy7nyj594Morq2cOitqnqil+oL1cctaFOklNhQEDqmduivKJi3Pdn5xtOJxcdplmxrF9u/ai7osvNKMOZ0p5kybee3np3QazPYI93oRBWuu00ogUQFprre+GXmRY7BamrZ2GXdqRSAQCeYlkvxRI2yE2iSls5zK65G9lW2QXOscO4g7LhzQuLiKiRGA1N58hW0pKpU+Jk8TerZtJQasN3rHj2Qrt1IUAo8lOyuVfs+b4SeJODqNlemOcWYfb9m0mPPIotjijX7VO/kSekqOT672IcuK3mBJC3Aa8DLTQbTsMPCOlnOnzQIVCcUHij5j68Ufvx+od/bxFpgICXA+lR46U/yDvK41B7+T3/YZwflijvVW7xeOBJrxjKqS7HPvCO7peKyfnZ5em9SWftTLXmM23+4dxKrgJx9e5xFK/ftAnKZKZd6ewJj2PlMSoeh2VMhi0FJcPP4RHHnFvHurrDXxDSvMzGqtP/Pmb5rd3L3z6qWtdRaUaLna7e3+pyoopIbRUv++/d217+mn1+1BbvPSSljUxaJAmlPQIAePHa42DQUvz0/93cRp2eNKsmculMT/fmztiMiEhyYT/FZJvcqX0LclcQlrrtNJ1vcgQCGwOu1bnBEikpl0MEow2zNFrWGFczwphA7mey6KyWWxIYtZfjCQdlOxuJYjeFsYN+7aR0aQxxyJCS9NFTPFNAK1319HNG8myzCGgka3038AXQkB4k0Xcf/Y3OrRKIO1kb9JOpNJibzi2fSdY3G+bX7VODS3yVBF+iSkhxE3A58BvaIIqB61z12jgCyFEsZTyv+WcQqFQXGDoxZS3B/Dy0mL0D+bp6VoERG8c0batq09VRSYUvtIYjh11vUp0FoODl5tg8+6YwwpwWA9jCGgBzXWdaxP6k7z873QpLKDYZuaJM5fw9Yo1OHCA3YA5LgVLViRDhmjDe8RH1msRpeeWW7QfT1q31sSJM8XJSUOKTCUmugvEc8HfyNQLL7ic3wYP9p4qpGgYOM0RQItI9KqCl0xqqktMXXSR5l6nqB1699bSNH1x661aH67Tp7X7zGuvufZ5q5cCTWDFxmrus+B+/9MzbpxWGxcergkqp4hyohcZRzMimJn1GsJkQRgcWk8qJNJuAHsAcVFmDHla1Mog7JwWu1iUn8f2lka2t5IgBblBWWR1sdIp8xihZ84SWtiI7KgCdg9uifPP+4ElR9h7sB0IQeO2J2h9WQ6GAN82CQY0YbczZD9dzyZhwlBqHR+TG+F3rVNDijxVhL8eQs8A/5FS9pdSfiClnCelfF9KOQD4Gni25qaoUCgaIv5EpnwRGupK9bPbNbHjfBAFdwviisRUYtsJCOH+5FxcHMgnn7isz48cgUuCNnNPkw9JtG52G1vQ9BgOczMMwT1wmJtR0PSYa2erXuy88ku+ctzP0P99ye9BCdgcWl2UHQdBrfMASEsrf44NCYPBu4FIQ4pMVVeKH/hXM/Xnn+5GA1OnVt/1FTXH1197365v1OvN2c0fbrsNoqK03nVvvqkcHesTYWGa6HGSmelaLu8liDOaVR6Fhe6/P95Ijk7m7i53E3lwFPtf+4gj3zxMyG+TuCLkEQ5/Ookj3zxMs2UfMbztcAKNZozCiNlopmfznlyR2AcpTUgpkNLE6d8HcSBOMC9VMHPIWT4cfpQFfQtIky7r1ZNJ4RikBCk5sTeCzOWxWE6bSmuevfFmy7O8EmUj3rIWO3Zs2LELO+0u6cJHV3zEQ90eqvd25tWJv2l+HQFfpZGfARX8aigUigsJi0VLa3Li7eG1ooLtlBRXit+aNe779C5PFYmp2JgR2HIL2ZvxOvYSx765n2pufk66mDczo9WdBAgLYq6Zs9fNIKRbNwB2F37P9502Enu6PTlhewgt7MEAtCKijRn5jJlvpdjaF/tgK/YlZoTUmh7a7AaKMqNo0qRyDl0NgU6dYLNOczZurNUS1FdqS0z5ikxNmeIyYxk2TKuXUtR/brxRa4dwv87cU8pzq5dy0qqV9pBut5df86moGx58EN5+231bVFT5zY2feQZuv93734GZMzUzC4CvvtLGVURmpmZoUbgvmZbJkNgNTvyq7Wt3NyRHUyZVLjka4B98snwVa2f2oejgxQxuW8ig8G8xGQrYFWgmreAso4yuBoFdR47hnUP3kXggELOlESf2hXNibzgt+ubQ9OITbml/evfc4BALcb2ySC8aT6Md/QlLvIqLky8HuGBElBN/xVQBWlqfN2KAM9UzHYVCcT6wd6+r/1B8vNad3pOoKC3P/NixsvtAS4P54gttefVq9316MXXkiPaptz8PCowlse2E0l5REcf60n5lC5Ba1/vgwwlu5xsRPo+zoZAfFk6TAgtn160vFVM9i4r4oNF+joUdIEBKeha57qZr0vOw2BwleewOjCEWDMtT6H1tHnO/iMKSFcnlo/zrWdOQ8BTC9TnFD8paIVdXjymouGZqyxb3CMeLL1bftRU1j6fd9tatrkbV4eHnlq5ZX23JFdoLl7Q093TAgQMrjiDGxWk/njz4ILz6qiZGlizR7lvNm5d/Ln1E7ORJ9/XWJf3cvaXK3dy1P/LP/ixeC+Epe9lxti+XWIp4JeATcAqjga6XicnRyTx086NsSP+JIFsrju85gW1LJlmrtMf+pp1PlB7nWU8lBBBs5UyXXwiYs4qzbRKw5top3JRBcPd4IobUb0vz6sJfMfUTME0IsV1Kud65UQjRHZhasl+hUCiAiuul9Pt8iSl9F/s1a9xvYvqbUFjYPJb/OhWbzfUkW1Scxc6dmv15bMwIAhMjECYDdqurw72TS4I206vNIta1jkMiMEiIbdEcZ/uW5I438NHmmWwwG+hpcZCcdoNrjolRmE2aQ5/VoUWiDuREEh8aiaWkTOt8SvFz4vnftD6n+IF2w9fXeVVnZCo0VEvVstm02r6iInfr5cmTXcvXXQc9L4xni/MWfVTqqqtwc/5UnF+MH19WTFWVli01t8bly8HhgDlzNHOf8vBHTPnC+RKgKDMKpIE5jsvBCsOM61ho70VX+2BGOwcfXEfyd0+QbLeAwQjdbiWrz+0czLVTfLaA9R9pXvGX3LvD5/VEgCR/dBEZKz+gUeYoEFFYF50ENlwQgsrfLN3/A4qBNUKI3UKI5UKIXcB6wFqyX6FQKABXs15wtzn3pDyhdfHF2oMqaEW9zggUuCJTgwfPo/+AiW5CyonDUUj6vtcBreli07u7sNqRwC2zu7ApK7y02eWA2J/Y2boJUggQ4DBA+lGd20WrXiT/5Rvu7vEoyX/5Blq5qs17xGsOfU9c0QHjr5rZhMMBv/ziOtxpPnE+0dAiU6A9zIBmPFGdkSkhfNdNrVvncn0TQkWlzgf09S4jR9bdPBQ1zzXXuIuWyy8/t/ONHu1a/uqrisd7iil9K5GKxFSbNtqnJSuStpkpxEeFMNtxObdbn2G243IWbtO53B5YAXYLSLv2ueFT4pY9QO+AVQwY0Jkh94wnvms3jJRvniQMkNXhF07FrUMYjCCMFG7y0f/kPMMvMSWlPAx0BZ4CdpQctxP4K3CJlLL8jl8KheKCQp/u1KyZ73HlPdSaTO79jYqLXctOMXXXXa9jNrv3kNKjt0UPjA/n5xOt2JSlWaA7UzGKo82u1AcADBgK3Q0rNjra865tBBsd7fGkR3wk4we146LosjeaxETXTe18ol0799TF+h6ZAvjnP7WHofffd0/Nqw58pfpNmuRavukm7/1pFA2HAwe0tE3QIlJDh9bpdBQ1jMkEX36pRaRee+3cX8LccIPW1gNg7VrYt8/3WJsNDh92rdvtsEMXGKpITCUlaTVaQ4fC609Hcu8A9zdewy7WVe4k9AejGdeNUIK9GDZ8Bp8Pp6tcw42tt9Ex+DKE8MiZ9sRkIzfpG6S0I6Wd4O7xPoee3byZ3A8+5OzmzT7HNBR8pvkJIcYCP0gp8wCklKeB10t+FAqFwif6B0rPmgM9Fd2cUlPdO887cab56XtFeSMo0L3UUx81aNEC/vgDzGEt0P4U2gADxpCBmKJcd7mNGfmM+XgNFpsDs8nAzLtTvNqbd+oE//uf+7bzMcUPtAfJ9u1d9vQNQUxdeWXNNcn1ZkKRmQk/lSTAGwyaCYWiYbN+vWv58su1minF+U3//u6ZBudCVJQmbhYs0Na/+gqef9772KwsdwdbcL+vOiPt5fH009oPQDc09bVwWzbDLo5ldG+dGitxpbVu+orORxZgcFjRuvFKsBXBb28BELtvKVxxN2uOLiMs7ITPflTWoONszV9JruUwafGPEOFlzNnNm8m8406kxYIwm2n9qcv0qSFSXmTqU6ABJG8oFIr6hl60lBcF8BRTnlas+ropPVFRWtqUvleUJwZDMIltXfbnZzdv5tLMD7kkSHsL5oxMBTTZhzF8BMagPhjDbmBVxx3sbuEKgzlNJhwSrDYHa9Lz/PoucH6m+Dl5+GFNJPTooYneCxlvaX7OCAZoD2TVWaelqHuq6uKnuLAZM8a1PHNm2XueE32KnycxMVXrkze6d2v+fVdvdyGF9sLwuvlWRhy4gVssE1nbZAQOgxmEsYzjROy+dFbN+Rfb5qZht/uQEBLMN39K0+uX8efmGV6HnF23HmmxgMOBtFo5u2592TENKHJVngGF6sWtUCiqhL+RKc+3a542577ElMmkCapPPpnAkxOeITBQlwMowWiIoEPHyaVufs63YMOKLFzeysydB2cQF6e9BVtuKqZJ17nEnm5PVtgqcsMP8myHz11z0JlMBJgMpCRGeZ2Tp5gS4vxuzPrgg3Dzzdp/3wu9R463yNTWra5tXbvW7nwUNYsQMHx4Xc9C0RC59lqtFrigAHbt0l66eAvIlCem4n1nzlUJ/QvDdbb23JLVnt4B3Zne6zQtgqylkSkAYroyrcNwhMNC1s5A9nQMA6MrhCalVjsFENjIggxZQHZOv9J7sZOQXpcizGak1YoIcM3gIgAAIABJREFUCCCk16Vu+xta5OoCvwUqFIqawF8x5Zkm4Nk1PjpaqztyMnjwPGbO7M/efe1471/9AZj++itAc5BgKIwkZtu9tF/6Nk2KXUrG+RbMiAOzsNArZD2xJUGtHWtHkhOUxebYJRwJPch1MU+4Wc3qTSZ8pfhBWTHVo4cm+M5noqKUkALvNVN6MaVqpc4vUlO16IBCUVlCQtyNS3wZUZQnpiqql6oszheGuoop1tna8fTRIWxMegyu+Qe0Hax9BoVjxILJYKdV7lk67TpBUJEDLf5iLGudbrCWGkHpCenWDfNLU8gZPgzzS1PKCCV/Ilf1iYqs0VsIIRIrGAOAlDK94lEKheJCQC+mKlPsv8OL82pKiuYOOHjwPJ54ciJBQZrhRJMmWTzx5ETemP4ygcd/pMPJDIr3aDlWUjgoTj9JYLxW1BCS0IgTIQHkhgTT9GwhZ4salab5Fe5LJmvuKzQZtAT72TbMSo/m2o75bqKpR3ykTxHlJDJSq+Vyug6er/VSirJ4S/P74w/XNiWmzi9Uip/iXBg9WjO2AJg1C/72t7IvpWpTTDlfGM7ddIj/bjyEza5FqVbuyWX9geOMS+3NdksnhtljGZ2QA0YzdmsRBiGJyy0mNs+KSBzIzy3+8Hp+vRGUk6zdO1gw53PsNht/HNrHqKQk4pJcbyQrilzVNyp6p/hfYI+fPwqFQgG410yVF5kCLV3MyeOPl93vrMd57LHnSoWUk6CgQh647++02riV4r2uiwqTgcBEV9nriZM7WdO2Bbtjo1jdtgVt2u4sFVPmuHxCu9ixHB+Iozgeq913XVRF9OjhWlZOXxcOnml+xcWwe7drW+fOZY9RNFyUmFKcC2lpEBamLR8+XDa9HWpXTIEmqKaN7MKse1Lo264pAi1CVWx18P6v6azYk8uz327lq6wYxO3z+eLPcRTbA7E5DCAdsG9ZSYSqLJ5GUAAHt2/FbrMhHQ7sNhsHt2912x/SrRutP51Bs0ceqfcpflBxZOploBzzRoVCoXBHSv/T/AD+/nc4cwasVnjoobL7U1LgoYcmERxy1uvxjaNyELLkj7iAwHaNCU+LL41KAfyaAQ4MgERi4HgjVwpeUOs8hJAIoc3dYBA+66IqYto0zdK2d2+tQaPiwsAzzW/HDpcTV2Ki68FJ0fDp3FlzslQoqkpAADRqBKdPa+sOLxqktsWUkx7xkTyWlsT6A8ex2hyap5/OJGPhtmxG9+7Np0d78eHa0Uy+7BWuaLcMgYPEA2fZ2bExDmyl4z2NoJy06twFo8mE3WbDaDLRqnPZ8P2J0CAORjemVWgQITXxZauRisTU91LKdbUyE4VCcV5w5ozrQTI4uGLXoZAQ+Pxz3/svuQSuHT7bpw3ribwY7BgwCAfCZCgjpADyTDGAEbADRooiYkobAhdlRiHt2ts1ieDF6y+uMKWvvLk67bAVFw6ekSlVL3X+oqJSitqgrsQUuNL+1qTncbrQyvu/uqp4hl0cy8aMfAK65rF2X3teWP4Ml7dbjUFYiD0uIOga0k98Q1GgIKhYkhh/ZxnzCYC4pE6Mev5lDm7fSqvOXdxS/EBLA/x66sRSsTXq+ZfLjKlPVCSmFAqFolL4a4vuLwEBYDDYve6TEv71wV/p17YLT/7lJPLYWk6//z72gcMIudLVbr5L/0vZ9GcwWLKRAbHsOXRxqZiyZEVyZHYKQa3zMOZGMfrvVRNSigsXz5opJabOX5SYUtQ0J09qP76oaTEF7nXCraNCS/tTdYgJY8zHayhu5KD5XwS7trZi2pkvmTzid0joT+yBFcSuPwnSrlmrh/nwfgcMpjhMwcEYTGXvud7SAJWYUigUFwyVSfHzFymNCFFWUEmHYOnSEVwZ/BUFn3/KiXUHwQFi/npav0GpoApt1o5vm2+nhT2SA1Jwdn87gnWN3C1ZkViyImnWrHrmq7iw8EzzU2Lq/KRlS/e6SIWiJjh40Pe+4ODad4kd3bt1aW+qd3/Zi6Uk/U8YJWHJmXwmDVzT+k56tCq54RvNYLdonwn9vZ4zJ/0k897cjN3mwGgyMOLxbsTo6pz9SQOsT5Qnpl4ADtXWRBQKxflBTYgpq+UWzIEz3VP9JMyfP5oxrb9i+P4XObHXuUMgHZKzyxaWiqk16Xlk2pqRgfbCLCo2D6MxkqAgKCpynVIvsBQKf/FM88vNda0rMdWw0fcIu+OOsu0cFIrqJiPD977Wrev2d9Bpo15sLRFUAqR08NaS3TyWlkSP+F5w+3w4sEITUq16eT1P+t6vib/iA0whx7GdbUL63vuISby7dH9FaYD1DZ9iSkr5Qm1ORKFQnB9Ud5ofQHLyi7zyClw7fBZGgwOkgfDDg1j1zQSeiBmPLAAQHGyWQE5kM2JOHCN+4LDS41MSozAJg/ZGzWEgGu3VXkiIu5gKCqqe+SouLPRiKjtbM1MBrV5QmRU0bDp2hOXLtQfcW26p69koLgT09VIJCXDggGu9uhv2VhZnPdV/1h1i9tpDSIMDhMtGXevF2MuniALIzplHUcCbBJi0m29A6HGKxJtk5zRzq6+KS+pU70WUE5Xmp1AoqpWaiEzFxcFPP71Il0M3MzTpOAYBCEhtfZKFWcPo1mg9B6MS2BYbCORzLDgQW1EQV5Uc3yM+ktFxKbz1VR5FmVEMGapNLCQEjh93XUeJKUVViIig1A3SKaRAa+RsUnfZBo9y5lTUJnox1aWLu5iqjXqpinDWU81+pSVF7XYTlJCLFGC1aW1FKjJwSt/3OlIWuW2Tsoj0fa97NatoCNRq73ohxI1CiLlCiAwhRKEQYpcQ4hUhRJhuzGdCCOnjZ6fH+YKEEH8XQmSXnG+1EEL92VMo6pCaEFMAs5/LZljS8ZIUBwkCNh2J4JuAi3jnyvZsaxUN2LR92Nm7YYvb8WHFkZxa0w5LVmRpxMxpQuFEpfkpqoLBAOHhZbfrU8QUCoXCHzzFlJ76IKacJEVFcuK3JKTdgAEIMBlISYxiY0Y+7/6yl40Z+V6P89bEt7ztDYHafmc2AcgEnkWrx+oGTAEGCSH6SCkdwFTgfY/jEoBZwHyP7Z8AVwN/BdKB8cBPQohUKeUWFApFrVNTYqqVNZdiIQEBEozWPcQ0DaRvq99oe9gI6BvtGmmU1NHteH36YURJnWuIR/MKFZlSVJXIyLIOXKpeSqFQVJYGI6aSYMkSzQ33+vvzmDBWS58f8/EaLDYHZpOhJO3P/UEgKDCWouKsMufz1ty3oVDbYupaKeUx3fpyIcRx4HNgILBUSrkPj0bBQoghJYuf67ZdAowG7pRSflqybTmwHXgRGF5TX0KhUPimJmqmAILDdlMsmyHRrFYLtq3i+pidrJZRaP2jAATFgc1Z27QDV7R0z9nWP+g656XElKK6iIx0T8cBJaYUCkXlaShiylkPasmKJOJwJD3iXW5/Duk77S+x7QR27pyIw1FYus1uD2bz5gksWuQa15J1tGEFhc37c+2Dvmuw6gN+iSkhRArQWkr5Hy/7RgGZUsq1FZ3HQ0g5WV/y2aKcQ8cCG6WU23XbhgNWYI7u/DYhxGzgaSFEoJSyuKI5KRSK6qWmIlPW1e9Q+Gc7AuK6Y83ahC1jJY7YUfxp7kJi49U4G/KuiujL3tAYJiW6+8d6E3kqzU9RXXh7caDElEKhqAxr18IhnY92YiJurrP1SUwlJbmWd+/WPp1uf1abozTtz5PYmBGs/L6QZjFvYA/Ow1gYxVefPcGMua56qZSW65j1lyc5Zk+iffF3cHB6uaYWdY2/kalXgF997OsEPAAMruIcLiv53OFtpxCiL9AOeMRjV2dgv5TyrMf27YC55JjtKBSKWqWyYmrHzklkZc3GKYbi4m6hU8cXy4w7fSgIW8YKbBkrteiUEOxpdj2rfksgeMQRkixZ7A+No+vAnrzQvWWZt2H6yJRK81NUN56/602aQGzDzVpRKBS1zIYNcMUV4HBo6716aS/4+vSBpUs1YVXXbn56vIkpp9vfmvQ8UhKjvJpR/Pkn/PZ5Xx5LbYHJADY7BB9OcBtzRaeN/HjqWRyYMGDjuvUbiTkPxNQlwGs+9q2jrNDxCyFEC7SUvCVSyg0+ho1Fi0DN8tjeBPBW3XZct1+hUNQylUnz04TUTN0We+m6p6AKu3EcZ7ZO4VCzNhyJbEpO4+McayewfB3Jz/Ou47fWeQxPiWLaSO8KTkWmFDWJp5jq0kX1JFIoFP6xeTMMGQKnTmnrTZvCjBna8qxZ8N13kJZWv9xBExK0+dhscPgwFBRo91Sn2583rFYYOxZkdgTjexkABxgNdB4SwZShrnHtGp0mKmmSqw+VbRQxtfKtqoa//1mC8O38ZwRCfezziRCiETAPzX7rDh9jAoGbgO+llLmeu6GkeKLs9oqufS9wL0Dr+hQzVSjOAyoTmdIiUt63e4qpJckGdg0YQvDJTCAfQ7EJg20RkIwlKxJLViRfroF/v+n9WsqAQlGTeL44UCl+CoXCH7ZuhTFjXPeoJk1gyRLo3Flbj46Ge++tu/n5wmTSomXOqNTevXDJJeUf8/LLsHEjQDh3LEvgibHHaJfSjAd6u+xQs3PmsWPH56X26Vofqs/JzulQb63T/bVG34FvQ4fhwK7KXFQIEYTmzJcIXCmlPORj6AigMTrjCR3H8R59itTt94qU8kMpZU8pZc9mzZr5P3GFQlEhlUvzs/u9fenCXYQUgN7+PDrPUvZIH6dUBhSKmsRbZEqhUCgq4oYbIK/EjLZxY1i8uGJRUl/Qp/rt2VP+2A0b4KWXtGVzXD45Q/5gQs5hbvr+Dzcb9fL6UNVX/BVT7wP3lPR0ShJChAgh2gsh/g7cBbzn7wWFEAHAXKAXcJWUcms5w28HcoH/edm3HWgjhPB4HOIiwALs9XdOCoWi+tBHgCoWU0a/t7fYZUTa0nVbBM0Sy7aVK/ZhO+MtMqXS/BTVhefvuuoxpVAo/KGgQPsMD4dFi6B797qdT2VwOvqBK0LljcJCuO0218vOjv3zcAh31z8nDbEPlV9iSkr5EfAG8DhalOo0sLNk/U0p5Yf+nEcIYQBmApcDI6SUa8oZ2xy4AvhKSmn1MmQ+EACM0h1jAm4GFiknP4VCy0/+6ivtTVdtUFys/dEEMBrLihVP4uJu8Xt7mOGI+4aQGAZcUVZMFRWV2YTDAadPu9adDVZVZEpRXXiKKWeKjkKhUFREo0bw449w6aV1PZPK4c2EwhsTJ8LOndpyaCi89Kjm+mcUlHH989Vvqj73ofK7lE1KOUEI8S8gDYhCixgtkVKml3+kG++iiZ+XgYISy3UnhzzS/caUzM9bih9Syi1CiDnAWyXRrv1oroJtSo5VKC54PvgAHn5YW169GlJSyh9/rnim+FVUgN+p44uweyFZIXmlVZBxZ6O8uvkNGnkliz/aS0nbXoaMGUl0dNlzeotMnToFsqTCMjxcE3qgxJSi+tDXTLVpA2FhdTcXhULRcAgJgYULITW1rmdSefSRqQ0btBeXBo8wzS+/wJu6WuY33oBrUyOJi/Pu+pfYdgI7djyDPiYiRCCJbSfU1Nc4ZyrlC+KtoW4lGVbyObHkR88LwBTd+u3ANinlpnLOdweaMHsJrbbqd2BoBccoFBcMK1a4lpcsqX0x5Q+d4sbT6rv/UejoQ7BhFY2uu8rruK5p2p+P3WtXkdS7D13Thnmtj/IWmfJmiw4qzU9RfXTvDoGBmpi/yvuvsEKhUABaBGr+fO2e88MP0K9fXc+oanTrBmYzWCywfTvMnKml8zk5dQru0FnMDRsG99yjLfty/XOaTOze/TdstiOYTM1JSnqq3ppPQDliSgjRGsiWUlpLlstFSpnpx5gEfycmpayw/E5KWQg8UfKjUCg8yMlxLVdUHFodVK5eSuOM/UpO2BKREood3cHenkY+xnZNG1YqqkCLMEVEuIslb2LKl127ikwpqovmzWHVKvj9dxg1quLxCoXiwuXTT+Hbb2HQIM0Rr6HSpAk8/jj87W/a+v/9H4wY4Uqlf/xxyMjQliMj4eOP/WsZERszgqziAVrkKj6K2Bg/HyjqiPIiU/uBVLQ+UgfwbkOux1cluUKhqCOO6MqMystnri70kamKekw5ObVkG1IGIoRASsmpJdto1Nv/3OjoaHcx5S3Nz9/IlBJTinOhe/eGVTyuUCjqhiZN4K676noW1cPEifDFF5Cdrb3AfekleO01WLDA1SsL4L33IC7Ov3NuzMhnzMdrsNgcmE0GZt6d4rN3VX2gPDF1J66UvjupWEwpFIp6hj4yVdtiyt/IVN6+tTRuNgBZUtSUt28tcQzx+5rR0e5Rt3OJTKk0P4VCoVAo/CcsDP7+d7j1Vm39rbe06NTdd7vG3Hwz3OLdb8ora9LzsNjc3f4apJiSUuqNH74FipRDnkLRcCgsdI/IHD+u9bKIivJ9zLlSlTS/uaH7GbMlA1Ncd2xZm5ib5KAyLXqaN3df9xaZ8maLDirNT6FQKBSKc2X0aPjXv+C33zQX4UGDtE+AmBh4993KnS8lUXP7s9ocZdz+6iMVGlCU2I3nASOBBTU+I4VCUS0cOVJ22549NSum9JGprpHrNAeMhP7QqpfPYzZdZsMuA2h52s6h9pLfL7NV6pqejn4VGVDoI1MqzU+hUCgUinNDCHj7bejRQ3POteoaGn3ySeWfO3rERzLzbu9uf/WRCsWUlNImhDgCePHNUigU9RVvYmr37pp19HOKqbu7f8a95idhqQOMgXD7fJ+C6kZ5A8cL9lFg20FUQWdulG0rdU1PMVVRZEql+SkUCoVCUb106wb33Qfvv+/ads89VXc39eX2Vx/xq2kv8CVwd4WjFApFvUFfL+Wkph39TpyAlJbrePeqJzFgA+kAezEcWOH7oE052M/+jLRlYD/7M2zyMvFy8Ezzq4w1ukrzUygUCoWienjpJdcLzrZtYfr0up1PbeFvn6kDwGghxHpgHpCNhyGFlHKGl+MUCkUd4U1M1agJxcF1DDKtoGfXgxxrbuJAYhhFgQaCih0kNhH48udzWPeWu14R5xKZUml+CoVCoVBUD1FRsHo1/PQT3HjjhdO83F8x5SwdawH08LJfAkpMKRT1iFqNTB1cB58P5y8xFg5fHMTuDqE4jFoziaIgIzuPzYCctl6b7nUfOojFH/3ptl4ZKlszVV5kSqX5KRQKRd1SVFTEsWPHKCoqwmarXA2ton4wcCDk5mo/DYGAgACio6MJdzbIqiT+iqk2VTq7QqGoM3zVTEnpX9O88ti7Fx58UAvjv/MOGA+sALsFo7Czv31gqZBy4nAUkr7vda9iytmEd/faVST17uPWlNcfKuvmp49MBQVp/xYlruwqMqVQKBR1yMmTJzly5AjNmjUjJiYGk8mEONcblkJRDlJKCgsLOXz4MECVBJVfYkpKmVHpMysUijrFW2SqoEBrrOdv4zxvSAnjxoE9Yx2NC1ew5r/96dunPxjNHG4ssQV4v/EVFWf7PGfXtGGVFlFOYmI8ruMlMnX0qGtZH5kSQuvU7oxceab9KRQKhaL2yM3NpWXLloR4pg0oFDWEEIKQkBBatGhBVlZWlcSUXwYUQgi7EMKrFZcQoocQQjn9KRT1DL2YMhpdy+ea6rdsmSakfh47nKmDXqbXjuHajtvns6VFjM+wV1Cgr6qpc0MvjqBsZKqgALZv15aFgA4d3Pfff7/2OWaMJqwUCoVCUTdYLBaCVb61og4IDg7Gqvd0rwT+uvmVF2M14mFGoVAo6h69mOqhq3Q8VxOKqVNhYMIKzEYLJoMdg7TAgRWst7XHHF7g/SAJiW0nnNuFy+GFF1zLnpGp9evBXvK6p3Nn9zQ/gFdf1Roaf/lljU1PoVAoFH6i0voUdcG5/N6VK6aEEAYhhPOdtqFkXf8TCgwDGkiJmUJxYSCle81U//6u5XOJTK1cCb/8AssO9MdiN2O1G7E6zGw0FLH/zyEIX+9V7Gav9VLVRWCga9kzMrVqlWu5Tx/vx0c2jFYWCoVCoVAo6hk+a6aEEJOBSSWrEvitnPO8V52TUigU58aZM3D2rLYcHFx9kampU7XPNYd6cfkX8xmYsIJTrQTXFX9MVLAX5wcAi+CUpXfVL+oHeuMIz8iUXkylptboNBQKhUKhUFxglBeZWga8CExFS/ObUbKu/5kIjAQerdFZKhSKSqFP8YuJgaQk13pVxdTatbBokbZsMMCOwPa8ZxtB3+vmYsCLkJJgKoyi2Y47ad/64apd1E98RaYcDq3nhRNfkSmFQqFQKOorQgimTJlS6eOWLVuGEIJly5ZV+5ycjBs3joSEhCodW978HMV27KcsOIq92zJMmTKFpUuXVum61Y3PyJSUcjmwHEAIIYGPpJRZtTUxhUJRdTzFVPv2rvV9+7QaIr0phU8OroMDKyChP1Onujxorr49n61Ra3AIB9FRXmwDS2i7YjoOKTHtC4fkKnwRP/EVmdq9W6uHAq2ZoP7fQaFQKBSKhsDq1atp2bJlpY/r3r07q1ev5qKLLqqBWdUcjmI7ttzC0l4upqbBGALdH1peeOEFJk6cyODBg+toli78tUZ/AbQaKuAiIArYIKX0UW2uUCjqEn29VPPmmktd8+badosFDh2C+PgKTlLSiBe7BYcwk/f7fKAXQkD3oXn8sdGBEJBXFEnT4Pwyh5uKopBSIpHk2hycgxt7hfiKTHnWS6m6ZoVCoVA0FIqLiwkMDCQlJaVKx4eHh1f52LpEFttdDSCl1NYD/XkDXDf46+aHEGI8kAP8ASwFOpRs/04I8UjNTE+hUFQFz8gUQKzOmfzYMT9OUtKIF2nHYbcwMGEFAKNGwbW9ozAJA9IOc3cOx2Zz/yMn7Gaa7rkBiWT/6T8Q0afP8RuVj6/IlErxUygUCkVd8+OPP5KamkpwcDARERFcd9117Nq1y23MwIED6devHwsWLKBbt24EBgby3nuaJYG3NL9Zs2bRsWNHgoKC6NKlC/Pnz2fgwIEMHDiwdIy3NDrndZYsWUL37t0JCQnh4osv5rvvvnM7/969e7ntttto06YNwcHBJCYm8sADD5CfX/blqT8cO3aM0aNHEx4eTuPGjRk7diwnTpwoM27RokVcc9MI4nu0p3H75nRL682b//oHdrsr3c/pvPfyyy8jhHD791m/fj033ngjLVu2JDg4mA4dOvDss89SWFhYpXn7g1+RKSHEPcA/0OqmFgH/0e1eAdwA/LPaZ6dQKKqENzEVFeXalpfnx0kStEa80mbBYjOz7IBmCfjcc9A08FfeHfgyxoA8TuRFsX57Gl07LCUk0IqlMIRWe/5CWE5vHNLOgTPbCD7RHOhZbd/PE31kSi+m/HHyUygUCoWipvjxxx+5+uqrGTx4MHPmzOHMmTNMmjSJfv36sWXLFlq0aFE6dvfu3TzyyCM8//zzJCYm0qRJE6/nXLx4MWPGjGH48OFMnz6d3NxcHnvsMYqKikjSF0n7YN++fTz66KM888wzNG3alOnTp3PjjTeyc+dO2rVrB0BWVhYtW7bkrbfeIjIykvT0dKZNm8ZVV13Fav2bSj+5/vrr+f3335k2bRrt27dnzpw5PPxw2Xrq9PR00oak8dCD4wk0mNm0dTMvvPQiufl5vPrqq4CW9piamsq4ceO47777AErTIDMzM0lOTmbcuHGEhYWxfft2XnzxRdLT05k9e3al5+0Pfokp4AlgupTyKZ1VupOdwF+rd1oKhaIyFBZqZguhodq6Xkw1b6596v8mO+uIyqVVL7h9PrNfWcE/F/RnzaFejBwJTZvNY+efT2MyWwCIbJpHz7BfKNhyO/acFI6d+ZMj1t9pHuTgaFEm+bYjtOrcpXq+qA/0kSlnml9+Pvz5p7ZsMkHPmtNyCoVCoahB6lOKtqxkZ9XnnnuOxMREFi5ciMmkPXanpqaSlJTE9OnTeeONN0rH5ubmsmjRIpKTyy8ynjx5MhdddBHffvttaZSmS5cu9OjRwy8xlZuby6+//kr7kkLi7t27Exsby3/+8x+effZZAAYMGMCAAQNKj+nTpw/t2rWjf//+bN68mW7duvn9b7B48WJWrlzJrFmzuOWWWwC48sorGTZsGIcOHXIbe//995cuSykZOHQwVoeN119/nWnTpmEwGEpTF1u0aFEmjfGGG25wO75v376Eh4czduxY3n33XaL0b5arCX/T/NoAP/nYVwA09rFPoVDUMPv2QVycJpo2b9a26WumqhyZAr5Jb88Dm0ewyaH9wX3uOUjf9zoOLG7jAgItNO36LZ2CjFwWdTFCmNhxai35tiNcfuf9xCV1qurX8wtvkak1a1zbkpMhJKRGp6BQKBQKhRsFBQVs2rSJm2++uVRIAbRp04a+ffuyfPlyt/EJCQkVCim73c6GDRu44YYb3BrNdu/enTZt2vg1r/bt25cKKYDo6Giio6PJzMws3WaxWJg2bRodO3YkODiYgIAA+pc0rfRMUayI1atXYzQa3YQOUCqs9GRnZ3PfffcRHx+P2WwmICCA5557jhMnTnD06NEKr3Xq1Cmeeuop2rZtS2BgIAEBAdx2221IKdlzLo02y8HfyFQukOBjXwfgcLXMRqFQVJo5c8CZdjxjBrz9diXT/HSOfbRyOfZtzMhnwg9riOjvINxuoN3BFLp3j+Tnpdle52ELysMgBOCgZYvhdLr0FK06d6lxIQXeI1MqxU+hUCgUdUl+fj5SSmL1RcslxMTEkJGR4bbN2zhPcnNzsVqtREdHl9nX3JmKUgHe0gcDAwMp0uXJP/PMM7z99ttMmjSJPn36EBYWxqFDh7j++uvdxvlDdnY2kZGRBAQElDtfh8PB8OHDycrKYsqUKaVC7rvvvuPll1/267p33HEHS5Ys4cUXXyQ5OZnQ0FDWrVvH+PHjKz1vf/FXTC0AJgkhlgHO//JSCNEUeBz4zteBCoWiZsnSNSxIT9c+/RZTOsc+jGa4fX6poPphfR52HAgDIB30vjYPiCSRgC8pAAAgAElEQVQoMJai4rJdEkxFTXBIOw7poCC0kLSRN1Xbd6wIb5EpJaYUCoXi/KCyqXX1hcjISIQQ5OSUbSGSk5NTJuVM+JHP2LRpUwICArxGaY4cOULr1q2rPmEds2fPZuzYsTz33HOl286cOVOlc8XGxpKfn4/VanUTVEf0aTRotVwbNmzg3//+N7feemvp9gULFvh1naKiIubNm8eUKVN49FFXC9ytW7dWad7+4m+a33NAMbANWAJINMOJHYAdrYGvQqGoA/R/o/fv1246ntbo4ENM6Rz7sFu09RIOboxC2jXHPoMwcOMA7QSJbScghC4UBFiKzRxe05I/jv/G4sNzCe7UsTq/YoV4RqZsNq3JsBMlphQKhUJR24SGhtKjRw++/vprNze6jIwMVq1axWWXXVbpcxqNRnr27MncuXOROpW5ceNG9u/fXy3zBjh79myZSNKnn35apXOlpqZit9uZO3eu23ZPQ4izZ88CuF3XarUyc+bMMuc0m81lHPqKi4ux2+1l5v3ZZ59Vad7+4m+fqTwhRE/gMeBKYF/Jse8Ab0opT9XcFBUKRXnohdP+/Zq5hNWqrYeHQ3CwtuyM6qe0XEda0Ao42L/Usa80MpXQv/Rcu1dFcmRvCkGt83j+vih6xEcCEBszgv1/HONM8QcYQo5jP9uEn769j+/m96Vts63sO3Y9P02q+dQ+PZ6Rqa1boaCkC17LltCqVa1OR6FQKBQKAKZOncrVV1/NNddcw4MPPsiZM2eYPHkyERERPPnkk1U65wsvvMAVV1zByJEjuffee8nNzWXKlCnExMRgMPjd9ahchg4dyueff06XLl1o164d33zzDav0KR+VYMiQIfTr14/77ruP3NzcUje/bdu2uY3r1KkT8fHxTJw4EaPRSEBAAG+++abXc1500UX88MMPDB06lMjISOLi4oiLiyMlJYXp06cTGxtL06ZNmTFjBocP12w1kt//4lLK01LKqVLKflLKJCllqpTyBSWkFIq6RR+ZKiqCLVtc684UP9AiUykt1/Hz2OHc1uJlLb0PtNS+wRPdUvysVli3DozBGZijltGtt3ted5uwq+iw8nWSFn1Kh5Wvs2/9VWTkdWLpzpvIyOtE41q2pPGMTKn+UgqFQqGoDwwdOpQffviBEydOcNNNN3H//ffTqVMnVq5cSVxc1drZDxkyhJkzZ7Jjxw5GjhzJ3/72N6ZPn05MTAwRERHVMu+3336b4cOHM3HiRG6++WZOnz7NrFmzqny+b775hquuuopnnnmGm2++GZvNxjvvvOM2xmw289133xETE8PYsWMZP348AwYM4Omnny5zvnfeeYfQ0FCuvfZaLr30Uj788ENA67/Vo0cPxo8fz7hx44iJieEf//hHleftD/7WTCkUinqKZyq2Xkh4iqmBCSswGy2YDK60vo2t72SNrQkpjih6lIzdsgVEiy1ceeuddM6y8PE8M1FRM0iO1lyGHIeyEaAZTkjJJdHZfI/rphAZWTPf1ReekSlVL6VQKBSK+sLQoUMZOnRouWP0jXU9kV6KxkaPHs3o0aNL1w8dOsSOHTu4/vrrS7cNHDiwzLG+rnPgwAG39aZNm3rty+R5Pn9T6Jo1a+ZVjHmeLzk5mZUrV5YZd/fdd7ut9+3bl40bN5YZl5CQwMKFCyu8TnXiU0wJIb6oxHmklPL2apiPQqGoBAUF4FkPqhdTeqOcqChYdqA/FrsZiYUAs5mdQZcw5uM1WGwOzCYDM+9OoUd8JKtWQa/4+Uz+byEmO9hWFbKr3XySb9TE1NHCTCJlBCBxSAdHCzOhRIqFhIDZXLPf2xPPyJQSUwqFQqE4XyksLOSJJ54gLS2Npk2bkp6ezmuvvUZISEgZ0aGoecqLTN0KnEGzRa/IXqSB+qwoFA0bDyMcwL2/kj4y1bgxrD3ci8u/mM/AhBVM/Xd/ft7fBIttFw4JVpuDNel5pWKqc6YDkwmMErDDRZmO0nM1T+nIz8vfIcoUR87ZLBbtfsjtOrWNvtbUZtNqx0ATWZdcUvvzUSgUCoWipjAajeTk5PDQQw+Rl5dHaGgo/fv35+uvv/bLXl1RvZQnpg4A8cB64Avgv1LKgtqYlEKh8A8vbqscP+5a1ospo1ETOpsc7fnT1oS0k1GkJILZZMBqcxBgMpCSqDn2rVoFaZ0jyb4PRLgFTplpH+vK3YtL6sTlTz3Ewe1bWffb9WTkuQwnajvFD0AITTh5tpC49NLaj5IpFAqFQlGTmM1mvv3227qehqIEn2JKSpkohOgPjAXeAt4RQnyLJqx+ljWZfKhQKPzCm5jSoxdTAJHt82nUbw3C6ODB/xj46t4UZt6dwpr0PFISNce+gwchKWkeNz32AQazRTswwsLesx9gzkkgNmYEoAmquKRO7Cv0uEYdiCnwLqZUip9CoVAoFIqapFw3PynlCinlPUAMcA8QBSwEDgohXhVCdKiFOSoUCh9UJKY8m6EHx+chjFojXqvdldY3flC7Uuvz1avhrrtex2wu9jhbMen7Xi9zjU4eLuh1Jab0JhROlJhSKBQKhUJRk/hljS6lLJZSzpZSXg20BL4EngReqcnJKRSK8vFWM5XSch1P95tOSst1ZSJTzaSrEa/RoKX1bTm6hY+3fsyWo5qn+qpV0Cw62+v1iorLbu/QQUuzc1IXNVPgbkLhJDW19uehUCgUCoXiwsFva3QhRCAwArgNrXHvEeDHGpqXQqHwA8/IlLOPlNlowWI3UyDmA71K97cKjmTVbK0R75O3RWEMzuBvM+6k/X4LP7cx89SdM1i1KplevWJpHpNV5npBgWULW0NCID4enK6q9SUy1b49NGtWN3NRKBQKhUJxYVChmBJCDEATUKNKxn8LXA0sUXVTCkXd4hRTKS3XMTBhBa3DD5b2kZLSQpNTK9CLqagosGRFYsmKJOQG2PXr2zz1ZYn9+W+FbEuYz+bNyXzyyQQmTHgKc6DVdTEZQGLbCV7n0alT3Yspz8iUSvFTKBQKhUJR05TXZ+olYAxaWt9y4FGUo59CUa/IyXGPRtkcJmwOI1KC1WEmpG1/t/H6Gqr0dLjS4EDYXfbn0Rsc2GywdOkIBl6UyYChX2ALOo6pqAnNGo0tNZ/wpGdPcPbIa9Omhr5sBXhGplSKn0KhUCgUipqmvMjUs8AptPqog0Bb4CkhvLacklLKydU/PYVCUR5HjsBfElboolEwY9ct5Jgas/PkYGa16uU2vnt3CG67hdCOG1id0ZPX7xnBgc+/xWG1YggI4IB0iaVWXEfblclaFzkB4Vck+JzHo4/Cnj1ayt9NN9XQl60AFZlSKBQKhUJR21SU5hcO3O7HeSSgxJRCUYtIqUWmltn7Y7GbMRgsWGUAC+M7sFm0w9DCysaM/FKXPoDQ9lu48tY76ZxlYXucmT+iZhDz6sdkrjtA614J/PB+t9KxYR0jEDkGpM2BMBkITIzwOZeoKJg1q0a/boXoI1Ph4XDRRXU3F4VCoVAoapJly5YxaNAgfvnlFwYOHFhj18nOzuaf//wnixcvZs+ePZjNZrp27crkyZMZMGBAjV23IVFenym/nP4UCkUdsOEzbH/M47bOI/h40zhG/PwlT9yylLdWdGFn23CEAaR0WZ87ObRxPpP/W1IjZSxkWfAvBB/qht0WxY7/FZC58ySgiabOl4fTNLgLxeknCUyMIDA+vI6+rH/oI1MpKVqTYoVCoVAoFFVn48aNzJkzhzvuuIOUlBQsFgvvvfceAwcOZP78+VxzzTV1PcU6p7yaqVQp5erqvJgQ4kbgL0BPIBrIBL4BpkkpT3uMTQGmAClAAJAOvCylnK0bEwRMBW4FGgNbgKeklL9W57wVinrFhs/g+0cxAR9esxRTRAELuycy/khfbG0M4JAgJaYS63M9F2W6aqSkHUJ3hWMNdCAl2GwOokPygQgiIyEpCQyG8HovopzoI1MqxU+hUCgUDZ3i4mICvTVRrGaklFitVsxmc5l9/fr1Y/fu3ZhMLslw5ZVX0rlzZ1577TUlpii/z9RKIUS2EOIDIcRQIURANVxvAmBHq8caCvwLeABYLIQonYsQ4mrgVyAHGI1myf4R4NlJ5hO0ZsKTgGuAbOAnIURyNcxVoaif7JgHgLN68cZO88HowCFBGByc2dqKEys7cF1EiltUCqDtoBFIoxkbApvDzOmoU7S5+kk6jLqHxKueJLKN9v4kNRUMDSw23aukPMxggBHefTIUCoVCoah1fvzxR1JTUwkODiYiIoLrrruOXbt2uY0ZOHAg/fr1Y8GCBXTr1o3AwEDee+89AI4dO8bo0aMJDw+ncePGjB07lhMnTni91jfffENKSgohISE0btyYUaNGkZmZ6TYmISGBW2+9lRkzZtCxY0fMZjM//PCD1/M1btzYTUgBmEwmkpOTOXz4cFX/Sc4ryquZagGMRBMy3wHFQogf0azR/yelPFWF610rpTymW18uhDgOfA4MBJYKIcKAT4H3pJSP6cYu0Z9ICHEJmtC6U0r5acm25cB24EVgeBXmp1DUfzqNgH1LcfYl+O+O4YieBgwGB3aHgYJtLbFkRZL8YNlDQ7p149TjH7NwxgFOtzjE0Ms/xGy2AGAOPcXt977IsZMh9OnT8NTI449Dy5bQqhUkq9cpCoVCoShhY0Y+a9LzSEmMKvOSsab58ccfufrqqxk8eDBz5szhzJkzTJo0iX79+rFlyxZatGhROnb37t088sgjPP/88yQmJtKkSRMArr/+en7//XemTZtG+/btmTNnDg8//HCZa73//vs88MAD3HHHHUyaNInTp08zZcoULrvsMv744w/CwsJKx/7yyy9s2bKFyZMnEx0dTUJCgt/fyWKxsHr1arp27Vr1f5jziPJqpnLQIkf/KhE416AJq/eBoBLh8i0wX0pZtrun93Me87J5fcmn87dpFNAMmF7B6YYDVmCO7vw2IcRs4GkhRKCUstifeSkUDYqe41i7Pw+x9Qe++P1q3v9lPH/pnE/f6/P4fkYUGVnajSIpqeyhOekn2balgOjOUfS95u+lQsqJ2WzhrrteJza24YmpgAAYPbquZ6FQKBSK+sTGjHzGfLwGi82B2WRg5t1lszZqkueee47ExEQWLlxYGuFJTU0lKSmJ6dOn88Ybb5SOzc3NZdGiRSTr3gguXryYlStXMmvWLG655RZAS7MbNmwYhw4dKh135swZnnrqKe644w5mzJhRur13794kJSXxySef8NhjrhhFfn4+GzduJCYmptLfacqUKRw6dIiZM2dW+tjzEb8SeaSUp6WUs6SUt6AJnZHAfuB54KAQYq0Q4ukqzuGyks8dJZ/9gONAFyHEViGETQhxUAgxWQihLynvDOyXUp71ON92wAy0q+J8FIp6zVdrM7l5Y0dusjzJgo4dCe2aSafoSMYPasebEyO55hp47jlX2puew7vzsdscGA0QEJrn9fzNorO59NIa/hIKhUKhUNQCa9LzsNi0VHirTTNmqi0KCgrYtGkTN998s1uqXJs2bejbty/Lly93G5+QkOAmpABWr16N0WjkhhtucNvuFFb6cadOnWLMmDHYbLbSn5YtW9KxY0d+/dXdTiAlJaVKQuqrr77i1Vdf5fnnn6d///4VH3ABUOmqCCmlVUq5UEp5v5SyBZr4WQaMrey5hBAt0FLylkgpN5RsjgNCgK+Az4A0tDTA54HXdYc3AfK9nPa4br+v694rhNgghNhw7Ji3YJlCUQ84uA5WTNc+dSzclu22HtohG+ffw44dYeonW4i/6WN+P7alzClbJEWCzMFauA5rgXer85MnY2nUqHq+gkKhUCgUdUlKYhRmkwGjgABTWWOmmiQ/Px8pJbGxsWX2xcTEcPz4cbdt3sZlZ2cTGRlJQIC7dUHz5s3d1o8ePQpAWloaAQEBbj9bt24lL89dRHq7VkUsWLCAcePGcdddd/HCCy9U+vjzlYr6TFVIiePfauCpyhwnhGgEzANswB26XQY0o4mJUkpn7HOZECIKGC+EmCKlPIlWfy8pi9euwh5z/hD4EKBnz57ezqFQ1C0H18Hnw8FuAaMZbp8PJQ14h10cy4o9uaW//QW7Yom5TVvecnQL9yy6B4vdgtlo5qMrPiI52vWWy2HLwnLmv9itVg6uCqf1ZUUEBLqyYS3FQezdM6HWvqZCoVAoFDVJj/hIZt6dUic1U5GRkQghyMnJKbMvJyeHqCh3YSdE2UfY2NhY8vPzsVqtboLqyJEjbuOc5/rss8/o3LlzmfPo66V8Xas8fv75Z0aNGsXIkSP54IMPKnXs+Y5fYkoIEQikotmUxwHBQC6wC/hVSplemYuWWJrPBxKBy6SUh3S7ndJ5scdhi4D70dL7VqFFoFp7Ob3z/5LjXvYpFA2DAys0ISXt2ueBFaVianRv7dd+0kfZ5KyPpeCP1jhfUG04soH4jCI6ZTrYGS/ZcGSDm5hK3/0FHUb9SUAjK5YzAZzc0YuYDjuxBeVhKopi/YL7aT2g4dVLKRQKhULhix7xkbVuPAEQGhpKjx49+Prrr5kyZQrGkgaIGRkZrFq1yquJhCepqanY7Xbmzp3rlto3e/Zst3F9+vQhLCyMvXv3cvvtt1fr91i9ejUjRozg8ssv58svv8TQ0Ox+a5hyxZQQoh3wGDAGrZOnAzgJFKKl0QUBUgixEXgP+EJK6ajgnAHAXKAXkCal3OoxZHvJp2fEyCmhHbpxI4UQIR51UxcBFmBvefNQKOo1Cf21iJQzMpXgnpc8undrJoxsTUFJxl9+8BY+3rqBmPSTPDfLVtKU14FIcfWIys6ZhyV0HmZpBSAwzIqh0wbC/7yDyJwUrA4DXy/owtyqVj8qFAqFQqFwY+rUqVx99dVcc801PPjgg5w5c4bJkycTERHBk08+WeHxQ4YMoV+/fvw/e3ceH1WRLnz8V92dhLBkEYEkbCFADCBIhgAJRAibgqCgLCI4zuDooDJwHcXxoigqAzMjwmwOgw7gMqPARVBQXiIgiyAgEkCDsgxb2BJIIBACJOml3j9OOulOOkmHrITn+/n07dN16tSpk4v39tNV9dTEiRPJyMgoyOa3f/9+t3oBAQHMmTOHSZMmkZ6ezpAhQwgMDOTMmTNs2bKFhIQExt1AlqaDBw8ydOhQbr/9dl544QWSkpLczsfGxpa7zbqmtE1738bYw2kfxrqmr4HvtdY2lzrNMEarhgLzgBeVUr/UWn9bQpsm4CNgADBUa73TQ7XPMDbiHQy4/ku5F8hxKVsNvI6R/e+D/PYtwMPAOsnkJ25qLXtw8N7/kPnTRoI79ieqpXs2CYcD8qdH4992Hy9//yRWex4P7YQIh0Jpjclhoul/L0F/o96xo29R9D8LH79cjrZcxeZPxrLjZCCpOoDWravjAYUQQoi6b/DgwaxZs4bXX3+dMWPG4OvrS0JCAm+++SZhYWFetbFy5UqmTJnCtGnTMJvNPPDAA7z99tuMGDHCrd7EiRNp2bIlc+bM4eOPP8ZqtdK8eXP69OlTLLGFt3bu3ElmZiaZmZn069ev2HmtZbWMKumPoJT6DHhNa118Fbvn+n7ARCAnf02Spzr/xJiqNwv4osjp087pfkqp9zCCoteAPRhJKF4AZmqtX3NpbylGkPUCRnbBpzFSuPfSWu/xpt8xMTF69+7dZVcUohqVlco1PR2aNjWOW45aSPCwv+PAQdQZxbNftCarUTtuu3qczn+fQf3oaAC+2tgOT8sMHQ7FPYOMgdyRI+GTT6r88YQQQohiDhw4QIcOHWq6G+IWVda/P6VUktY6pmh5aftMjSjpXAn1c4G/lVFtSP77y/kvV69jBE9gBGVngMlAM+AE8JzW+q9FrpmAEZj9HggCvgcGextICVFbeUrl6hpMua5lbZgZQ8dUM5En7KSGtOOH6N/gsEOKWdE6MIL6+fXq+YWSk1t8S7j084UZfXr1qqonEkIIIYSoeyqcza88tNbhXtbLA6bnv0qrdx14Lv8lRJ3hTOVqtTk8pnL99OhyWj+/gcvfDST2ejumLrGD1UFK6zYcDzeWFzq0sa9USISRAj2i7VQOHngJh84paCcvtx6LFhVm74uLq4aHE0IIIYSoI244mFJK9cTYwHeH1rr6dkAT4hZQWirX5YeWs/zyGzS8ExreuZ0OnyWQZWtBZrN2+ORewYQDh8mE2Wwy9pXKFxoynOs/XeDU9QUF2ftSdj7Fxo1G9j5fX/jZz6r9UYUQQgghblplBlNKqceBplrrP7qUzceYiqeAC0qpe2VqnRCVq6RUrhtObgANSoHWcCLSRMMmk3GYzJgcdjp0vMTF6xdo371bwaiUU/O2o/BbeAfa5kBZTOyzdS44FxMDfn5V/lhCCCGEEHWGNyNTv8XIwAeAUupnGEkkfgdsBv4BzMbIvieEqGIDWw2k3pptxB7S7LxD0TBgINriCxps+hx7d6xAazunkr+kcfNZhEUWLqb0ax3A7U90JvfYZfwiAolNC4D8n0kefLCGHkgIIYQQ4iblTTDVBiM9utN9QLLW+i0ApdT/Av9XBX0TQngwcJ+DTonGdmt3HdccuCePc/oKttyT4LiCw2EH7cBus3Hqx2S3YAqMgMqvtbH/VM/W8NVXRkKL0aOr/VGEEEIIIW5qpe0ztSn/sD7whlLqdxjT+u4EcpVSG/PP1wNuc/n8vtb6w6rqsBC3uivr1nMmtBfpTaJpcn4vt51cxamG2dhtVkwmM2azCYcDzBYLLTt1LrO9/v2rodNCCCGEEHVQaanR+wEopS4Ab2qtP8nfFDcVeEFrvST/fBdgk9ZavpIJUQ3SOg3jsKURAJnBHQg0b8WRuQe0RmsHd/a7l4Dbm9CyU+dio1JCCCGEEKLyeDPN72tgrlIqBIgH/IB1Luc7AceqoG9C3NL2nd/H7nO7iWkWQ9emhTuXp1lao7mIUsrYebxJNOYrP2C32TBbLHTq21+CKCGEEEKIauBtAoqVGBvyXgWeLpIK/Rngiyrom6hldu6EAwfg4Yehfv2y6wvg1C44sRXC74aWPby+bN/5fTy57kny7Hn4mn351z3/Kgiowrs05eSPmWgNoOjSL4bbx0dy6sdkGY0SQgghhKhGprIqaK1PaK1/BtwGBGqt/1OkyqPAm1XROVF7nDwJ8fHw+OMwe3ZN9+YmcWoXfPAAbJxlvJ/a5fWlu8/tJs+ehwMHVoeV3ed2F5y7PbI5O/afIzNjFXuPnKNLQnPCIjvQ88ExqIDDbPm6F19tbMuWr3uRmraqKp5MCCGEEDVo8+bNKKXYvHlzld9rwoQJdOjQgYCAABo2bMhdd93F3//+d+x2e5Xf+2ZQZjDlpLW+pLV2eChP0Vpfr9xuidpm1ixw/jcza1bN9uWmcWIr2PNA2433E1u9vjSmWQy+Zl/MyoyPyYeYZjEF55IS1xLd/CP8zUfp0PgjftiwFoDUtFUcODANm+0cADbbOQ4cmCYBlRBCCCFu2PXr15k8eTLLly9n5cqVDBw4kP/5n//hueeeq+mu1QqlZfOrp7XOKW+DN3qdqN2ys2u6Bzeh8LtxmHzADph8MIXf7fWlXZt2ZWHYC5zdtp6w+EHc5bJm6kzydqBw097D326ny8AhHDv6FlrnurWjdS7Hjr5FaMjwSnkkIYQQQlSP3Nxc/Pz8qvw+WmusViu+vr4ezy9dutTt8z333MPZs2dZvHgxf/3rX6u8f7VdaSNTJ5RSv1VKBXnTkFKql1JqNfBC5XRN1CZXr9Z0D24+SY72jMt7ibm2UYzLe4kkR3uvr722dy85r34M3zQg59WPubZ3b8E5HdTLeNeAgsiexuec3FSPbZVULoQQQoiql5iYSFxcHP7+/gQGBjJixAgOHTrkVichIYH4+Hg+//xzoqOj8fPzY/78+QCkp6czbtw4AgICCAoK4rHHHuPSpUse77Vy5UpiY2OpX78+QUFBjB49mpMnT7rVCQ8P59FHH2Xx4sVERUXh6+vLmjVryvVMjRs3xmLxJvVC3VfaX2ESMAuYrZRKBLYC3wPpQC4QDEQAPYBhQCvgPeDdquywqBkSTJXfzmMX2GVrx07dDrMyPndrHezVtSc3JbOnw1M4TGZOOOwEbkomKjoagEu+Q1i1G7q02E5op140uTOPLV/3ArTHtur5hVbWIwkhhBA3nxtMBlUZEhMTGTp0KP3792fZsmVkZ2fz6quvEh8fz759+2jevHlB3cOHDzNlyhReeeUVIiIiuO222wB46KGH+P7775k9ezbt27dn2bJlTJ48udi9FixYwNNPP82ECRN49dVXuXLlCq+99hp9+/blhx9+oFGjRgV1N23axL59+5gxYwZNmzYlPDy81OfQWmO328nOzuarr77igw8+4He/+13l/JFucqXtM7VCKfUZMAL4FfB7jA16Xb+xKSAFWAa8q7WWFOl1lART5Rcb0RhfiwmrzYGPxURsRGOvr70U1A6H6SooMw6T8dnp/Hn49vgQvj0+hIW/MNZJFZ3e52Qy+RPRdmqFn0UIIYS4KTmTQdnzwOwLv1hdrQHV9OnTiYiIYO3atQUjOXFxcURGRjJ37lzmzZtXUDcjI4N169bRtWvh1P7169ezbds2lixZwtixYwG49957GTJkCKdPny6ol52dzYsvvsiECRNYvHhxQXnPnj2JjIxk0aJFPPvsswXlmZmZJCUlERIS4tVzrFmzhvvvvx8ApRT/+7//yyuvvHIDf5G6p9TxOa21HVgBrFBK+QJdgTCMoOoCcFBrfarKeylqnART5detdTAfPRHLzmMXiI1o7PWoFEB4Qif2JSXhsGtMFjPhCZ0KztlshfXCmhdfJ+VUzy+MiLZTZb2UEEKIW5enZFDVFExdvXqVPXv28NJLL7lNiWvTpg29e/dmy5YtbvXDw8PdAimAHTt2YDabGTlypFv52LFjSUxMdKuXlZXF+PHjsbl8UWjRogVRUVF8/fXXbsFUbGys14EUwN133813333H5cuX+dHfqy8AACAASURBVOqrr3jrrbdQSjFLspJ5tc8UAFrrPMD73M6iTpFgqgRlTB3o1jq4XEGUU0hEIL1HBfDf75Jo370bIRGBHuv5+JS0HkrRu7f32QOFEEKIOin8bmNEyjkyVY5kUBWVmZmJ1prQ0OLT7UNCQkhJSXEr81QvNTWV4OBgfHx83MqbNWvm9vn8+fMADBw40GNfgoPdv4t4uldpAgMDiYkxMgsPGDAAX19fZs6cyTPPPOM2VfFWJCvHhFckmPKgCqcOnD18gI2LZ2O32TiV/CWNm8/yuBmv1RqKr+/ZYuWyTkoIIYTA+P/Lv1hdI2umgoODUUqRlpZW7FxaWhqNG7tP/1dKFasXGhpKZmYmVqvVLaA6d+6cWz1nW++//z6dOnWiKNf1UiXdqzxiYmJwOBwcP378lg+mvN5nStzaJDW6BxXYR6osp35Mxm6zoR0OI6D6MdljvfPnpmIy+buVyTopIYQQwkXLHnD389WefKJBgwZ069aN5cuXu21wm5KSwvbt2+nbt2+ZbcTFxWG321mxYoVbedF05b169aJRo0YcOXKEmJiYYq877rijch4q35YtW1BKERERUant3oxkZEp4RUamPKjAPlJladmpM2aLBbvNhtlioWWnzgXnOnd5lXXrlqBMDsBEQEAsOddPkJObSj2/UFknJYQQQtQSM2fOZOjQoQwbNoxnnnmG7OxsZsyYQWBgIM8//3yZ1w8aNIj4+HgmTpxIRkZGQTa//fv3u9ULCAhgzpw5TJo0ifT0dIYMGUJgYCBnzpxhy5YtJCQkMG7cuHL3f82aNbz33nvcf//9tGrViitXrrB27VreffddJk6cSFhYWLnbrGskmBJe0S45HEvY0+2Wk+Roz5y8l+imfyTJ3okXHO3pVklth0V2YPQrszj1YzItO3UumOJ34OCrRER8ROHovINLl7YTFjaeDlFvVNLdhRBCCFEZBg8ezJo1a3j99dcZM2YMvr6+JCQk8Oabb3odiKxcuZIpU6Ywbdo0zGYzDzzwAG+//TYjRoxwqzdx4kRatmzJnDlz+Pjjj7FarTRv3pw+ffoUS2zhrbZt2+JwOJg+fTrnz58nKCiI9u3b8+GHH/LII4/cUJt1jdLa8940t4qYmBi9e/fumu5Grec6tTY4GC5erLm+1Bb/2HSEuesO4dBgVvDcPXcwqV+7si+sgK82RmIMhRVlZkD/w1V6byGEEKIqHThwgA4diq8PFqI6lPXvTymVpLWOKVperjVTSimTUupOpVRfpVSDG+inqAMayP/mgcJ9pMyKEveR2nd+HwuTF7Lv/L5KuqunQKq0ciGEEEIIUVW8nuanlJoEzACc3xi7A3vyN/bdqLX+WxX0T9RCEkwZytpHat/5fTy57kny7Hn4mn351z3/omvTGxtmL2SmpJEpIYQQQghRvbwamVJKPQn8FfgMeBhwzae4FRjp6TpRN91ywdTu9+HfDxrvRXRrHcykfu087iW1+9xu8ux5OHBgdVjZfa7i00nDwsbiaWZuWNjYCrcthBBCCCHKx9uRqeeAuVrrF5VSRX8CPwi8ULndErXZLRVM7X4fvvgf4/joRuM95pdeXRrTLAZfsy9WhxUfkw8xzYpNsy23DlFvsHUrhLdeislsB8w0bz5Wkk8IIYQQQtQAb4OpNsCXJZy7CgRVTndEbWQvMqvM399zvTrpwCo0xlCsBtSBVV4HU12bduVf9/yL3ed2E9MsphKm+BmSf3iDib82gqe//Q0GDqiUZoUQQgghRDl5m4AiAwgv4dwdwJlK6Y2olYruMWW6hbZ6/rZePOj81PA6/3M5BCVZiVwZSFCStWo6KIQQQgghaoy3I1OfA68qpTYDKfllWil1O/BbjLVUoo4qGkxdu1Yz/agJb2fF09z6K4aYd7HW3oMzWfH09PLaE2u/Y+3KCzhMQfy48gJD+I7wId29vnduSha5xy7jFxGIX+uAG3sAIYQQQghRZbwdY5gO5AL7gQ0YM57+BhzASC0mCzbqsKLB1O7dYL1FBlqG3BnKUscAfmGdxlLHAIbcGer1tSd3ncBhMoMy41BmTu464fW1uSlZZCxMJmvdCTIWJpObknUDvRdCCCGEEFXJq5EprfUFpVQM8CxwL3A0/9q3gT9rreWbXh3maWTqu++gV6+a6U91GtezFQBr96cy5M7Qgs9O+87vK3FNVKse4fzwf/ux21Mxm0Np1eNOr+975ugnnIpdgK3eBSw5jck9+hQRrR+v+AMJIYQQQohK4/U+U1rrK8DM/Je4hRQNpgA2b741gikwAqqiQRSUvY+Ub9uG2HJXYbfb0GYLvm1jvbpfatoqUtRcHP45ANj8L5Ci5uKf1pjQkOGV81BCCCGEEKLCvN1nKlIp1beEc32UUu0rt1uiNsnOLl62aVP196O2KWsfqVM/JuPQDgAc2sGpH5O9avfY0bdw6By3MofO4djRtyqn40IIIYS4qW3evBmlFJs3b67W+27fvh2TyYRSCpvNVq33rq28XTP1F+D+Es4NA/5cOd0RtZGnkalvvoG8vOrvS23i3EfKrMwe95Fq2akzZosFZTJhtlho2amzV+3m5KaWq1wIIYQQoqpZrVYmTpxIs2bNarortYq3wVQM8HUJ574GvE9RJm46noKp69dh1y7jOCcHHnsMhg+Hs2ert281ybmP1G+if1Nsih9AWGQHRr8yi95jHmX0K7MIi+zgVbv1/DwnuSipXAghhBB1T25ubrXcR2tNnhe/kM+ZMwetNY8/Lmu4XXkbTDUCcko4ZwUCK6c7ojbyFEyBsW4KYP58+Pe/YfVqeOedautWrRCS3YboMwMJyW7j8XxYZAd6PjjG60AKIKLtVEwm952RTSZ/ItpOrVBfhRBCCFH9EhMTiYuLw9/fn8DAQEaMGMGhQ4fc6iQkJBAfH8/nn39OdHQ0fn5+zJ8/H4D09HTGjRtHQEAAQUFBPPbYY1y6dMnjvVauXElsbCz169cnKCiI0aNHc/LkSbc64eHhPProoyxevJioqCh8fX1Zs2ZNqc9w9OhRZs2axfz58/Hx8anAX6Pu8TaYOgYMKOFcf+BEpfRG1EquwVTjxoXHzmBq9erCsjO30PbNaccu89ncJHZ+dpTP5iaRduxypbQbGjKcqKhZ1PMLAxT1/MKIipolySeEEEKIG7Dv/D4WJi9k3/l91X7vxMREhg4dSsOGDVm2bBn//Oc/2b9/P/Hx8Zwp8qXp8OHDTJkyhcmTJ/Pll18yYIDx1fuhhx7iiy++YPbs2SxbtgyLxcLkyZOL3WvBggWMHDmSjh078sknn/DOO++wf/9++vbty5UrV9zqbtq0iXnz5jFjxgwSExPp0qVLqc/x9NNPM2rUKPr06VPBv0jd4202vw+BmUqpk8BCrXWuUsoPeAIjXfprVdQ/UQu4BlNDh8KHHxrH33wD58/Dtm2F54v8t1onLD+0nA0nNzCw1UBG3zG6oPzE5h+x5pzGYTuLwxLGic31CImonBSHoSHDJXgSQgghKqiszLtVbfr06URERLB27VosFuNrd1xcHJGRkcydO5d58+YV1M3IyGDdunV07VrYv/Xr17Nt2zaWLFnC2LFjAbj33nsZMmQIp0+fLqiXnZ3Niy++yIQJE1i8eHFBec+ePYmMjGTRokU8++yzBeWZmZkkJSUREhJS5jP85z//Yffu3Rw8ePDG/xB1mLcjU28Bq4G/A1eVUueBq/mfVwN/qpruidrANZi64w5o1844zsmBmTPBbi887ynz381s+aHlvLHzDbaf3c4bO99g+aHlBef0qZ3kZa/ElvMNedkr0ad21mBPhRBCCFFUWZl3q9LVq1fZs2cPDz/8cEEgBdCmTRt69+7Nli1b3OqHh4e7BVIAO3bswGw2M3LkSLdyZ2DlWi8rK4vx48djs9kKXi1atCAqKoqvv3ZPfRAbG+tVIHXx4kWef/55Zs+eTdOmTb167luNt5v22oFRSqn+wCCgMZABrNNab6667onawDVAatAAEhLgyBHj84IF7nXr2sjUhpMbin12jk7Zm5hA20AB2mZ8FkIIIUSt4cy8a3VYPWberUqZmZlorQkNLZ5AKiQkhJSUFLcyT/VSU1MJDg4utk6paEa98+fPAzBw4ECPfQkODi7zXp5Mnz6dZs2aMWbMmIJ1Wjk5RhqFy5cvU69ePRo0aOBVW3WV15v2AmitNwIbb/RmSqlRwCMY2QGbAieBlcDs/E2BUUqFA8dLaCJYa12w4k4pVQ9jE+FHgSBgH/Ci1rqkzIPiBriOTDVoAP36wcKFxueiWwzUtZGpga0Gsv3sdrfPThED7yXpm83YbTbMPhYiBt5bE10UQgghRAmcmXd3n9tNTLOYap3iFxwcjFKKtLS0YufS0tJo7LoQHVBKFasXGhpKZmYmVqvVLaA6d+6cWz1nW++//z6dOnUq1k6jRo3KvJcnP/30E8nJycX6CnD77bczfPhwPvvsM6/aqqvKFUxVgqkYAdRLwGkgGmO9VT+lVC+t83c4NfwBYwqhq6LjHouAocALGEkyJgFfKqXitNbVv8qwjnINpho2hNLWHta1kSnnKJSnNVNhkR0YPeMPnPoxmZadOpcrY58QQgghqkfXpl2rNYhyatCgAd26dWP58uW89tprmM1mAFJSUti+fbvHJBJFxcXFYbfbWbFihdvUvqVLl7rV69WrF40aNeLIkSP84he/qLRn+Mtf/lIsc+D777/PBx98wIYNG2TPKUoJppRSdiBOa71LKeUAdCntaK21N4HZ/VrrdJfPW5RSF4EPgATcR72Oaa1LXISilLoLGAc8rrV+L79sC/Aj8AbwgBf9EV4oOjIVFgaRkXD4cPG6dS2YAuh4vhd+B9rRtl5TuMP9XFhkBwmihBBCCOHRzJkzGTp0KMOGDeOZZ54hOzubGTNmEBgYyPPPP1/m9YMGDSI+Pp6JEyeSkZFB+/btWbZsGfv373erFxAQwJw5c5g0aRLp6ekMGTKEwMBAzpw5w5YtW0hISGDcuHHl7n/RNVwAm/PTOfft29dtLditqrS/wBsYo0fO49KCKa8UCaScvst/b17O5h7A2ONqmUv7NqXUUuB/lVJ+Wuvq2e2sjisaTIGxbspTMFXXpvn9uPUMGxYvx5H3X47vbQ+MptPd5f2nWrmKTq0UQgghRO00ePBg1qxZw+uvv86YMWPw9fUlISGBN998k7CwMK/aWLlyJVOmTGHatGmYzWYeeOAB3n77bUaMGOFWb+LEibRs2ZI5c+bw8ccfY7Vaad68OX369PEYFInKobSucIxUsQ4o9RTwT6C71nq3y5qpDCAYI2vgFuBlrXWyy3VLgWit9R1F2huDEWDdqbX+saz7x8TE6N27qy+zy82oe3dw/ol27oSePWHpUnjkEaPMYnH/gm+3g6mO5GL4cNq7pB8rnG3aJOIBHvvDr6u9H6dPw/LlsGwZfPttYfnf/gZezBIQQgghar0DBw7QoYPM9hA1o6x/f0qpJK11sQwmZX7lVUr5KqUuKqUqfdqcUqo5xqjXBq21M6LJBd4BJgL9MNZZdQa2K6Vcn/A2INNDsxddzpd0318rpXYrpXanp3saLBOuPI1MDRoEgYHG8YgRheXO+jYbZGRUXx+rijUjqdTPZclNySJr0ylyU7LKfe/0dPjHP+Duu6FlS3juOfdACqBz53I3K4QQQgghKkmZEx211nlKKRuQU5k3Vko1BFYBNmCCy/1Sgadcqm5VSiVirIV6GSNzH+QnpPbUdFn31lq/C7wLxsjUjfT/VlI0NTpA48bGpr07d8LIkRAVVRh0nTkD99wDaWnGCNZDD1VjZ0/tghNbIfxuaNmjws21zckiSbt/9lZuShYZC5PRNgfKYuL2Jzrj1zrAq2sPHDBGAD2tQbNYjGD2qaeM6ZZCCCGEEKJmeLtq7DNgFLCuMm6an9J8NRAB9NVany6tvtb6lFJqG9Ddpfgi0MpD9WCX86ISeBqZAujUyXgBNGoEziydv/kNnDplHP/859UYTJ3aheP9+8GeB2ZfTL/8vMIB1V3DRpD717mkBTYg5PJV7vqfn3t9be6xy2ibAzRom4PcY5e9DqYWLnQPpEwmIyX92LHw4INGMCuEEEIIIWqWt8HUWuBvSqlPMAKrVIqMCuXvQVUmpZQPsALoAQx0XQdV1qVF7vkj8KBSqr7W+ppLeUcgDzjiZbuiDEVTo3viWv7VV4XH164Vr1tV/rvuXdracjApsNnySN23juYVDKaCH36YHsCVdetp9MtBBD/8sNfX+kUEoiymgpEpv4hAr69ds6bwePp0I0CV7KNCCCGEELWLt8HUivz3h/JfTprCIMdcViNKKRPwETAAGFpa6vMi17UCegOfuhSvBl4HRmOkVkcpZQEeBtZJJr/KYbdDbv5fUinw9/dcr8hecNXu4HcbaHPyU+MfowY7JnbYOzKqEtoOfvjhcgVRTn6tA7j9ic7GiFREoNejUkePwqFDxrG/P7z0Usl/dyGEEEIIUXO8Dab6VdL9/oER/MwCriqlYl3OndZan1ZKzcVIjLEDSMfY2Wca4ABmOytrrfcppZYBf8kf7ToOPA20AcZXUn9vea6jUvXrGwGVJyWNWLVvX/l98iTzp420w4FSYNeKT+x9iYou/Z/tnj1GQodHH626YNCvdYDXQZST66jUgAESSAkhhBBC1FZeBVNa6y2VdL8h+e8v579cvQ68hjF972ngl0AjjBTpG4HXtdaHilwzASMw+z0QBHwPDNZa76mk/t7ySlovVVRJwUh1BVPBHftjPfYv0DasWGgS/0u6tQ4usX56urEGKSsLFiwwkmmUFBDeqNS0VRw7+hY5uanU8wslou1UQkOGl3ndF18UHg8dWrl9EkIIIYQQladc2xYrpQKAOzE22D0D7Ndae53eTGsd7kWdxcBiL9u7DjyX/xKVLC+vMJEElB5MlRSI+PpWbp9KEtV9IAdZQuZPGwnu2J97ug8stf7WrUYgBfDDD/DYY/DJJ+XfHys3JcvjNL7UtFUcPPgyDsd1AHJyz3LwoPH7QWkBVXY2bHH56eK++8rXHyGEEEIIUX28DqaUUq8CzwMNKUw/fkUpNUdr/fuq6JyoOadPw113wUWXnIg3MjJVnaK6D4QygiinPUXGLj/9FF5/3Xh5q7TU58eOvlUQSDk5HNc5dvStUoOpDRuMIBaMPaRaecpXKYQQQgghagWvfodXSjmn4C0DBmFsojsQ+D/gdaXUa1XUP1FDfv5z90AKan8wVR5FgymAN96A5cu9b8NT6nOnnNxUj9eUVO7kul5q2DDv+yKEEEIIIaqft5OangTmaq1/rbXeqLX+Mf/9SeDPwK+rrouiJmzeXLystDVFlb3eqCppDUlJhZ+7di08/sUvPAdanjhTn6Molvq8nl+ox2tKKnf2yzWYkvVSQgghhPBk8+bNKKXY7OkLWyVLSEhAKVXs9Ze//KXK730z8HaaXyDwZQnnEjESRog6wuHwXF5XRqbOnoXz543jhg2NqXVxcfDf/8L16zB8OOzeXfa+TqWlPo9oO9VtzRSAyeRPRNupJba3dy+k5g9c3XYbxMaWWFUIIYQQotp06dKFd955x60sPDy8ZjpTy3gbTH0LdAc2eDjXPf+8qCMOFc2ZmO9GElBUF7sdVq4EHx8jGCophTu4jzxFR0PjxrB6tRG8XL5srBd78EHYtAn8/Eq/b0mpz53rosqTzc91VGrwYDCXuXObEEIIIeqq3Nxc/Mr6IlIJtNZYrVZ8S8ka1qhRI2LlV16PvJ3mNwV4XCn1glIqXCnln//+O+Bx4DdKKZPzVXXdFdVh+3bP5bV5ZGr5chgzBsZN3cfvVixk3/l9JdZ1DaZ+9jPjPSoKli4tzOa3Ywc89ZQx9S7721TSFyWT/W3p652KCg0ZTu/eWxnQ/wi9e28tMy26TPETQggh6p7ExETi4uLw9/cnMDCQESNGcKjIL9cJCQnEx8fz+eefEx0djZ+fH/PnzwcgPT2dcePGERAQQFBQEI899hiXLl3yeK+VK1cSGxtL/fr1CQoKYvTo0Zw8edKtTnh4OI8++iiLFy8mKioKX19f1rh+CRHl4m3g8wPQFvgjcBTIzn//Q355MmDNf+VVfjdFdbqRYKqmR6a++QaC+iwnYtoEErP/zpPrniwxoHINprp1KzwePBjmzCn8/P778NnsVC59eoTc/17i0qdHyh1Qeev8edi1yzg2mYy+CCGEEKLiru3dS8Y773Jt795qv3diYiJDhw6lYcOGLFu2jH/+85/s37+f+Ph4zpw541b38OHDTJkyhcmTJ/Pll18yYMAAAB566CG++OILZs+ezbJly7BYLEyePLnYvRYsWMDIkSPp2LEjn3zyCe+88w779++nb9++XLlyxa3upk2bmDdvHjNmzCAxMZEuXbqU+hx79+4lMDAQHx8funTpwqJFiyr4l6k7vJ3m9wagq7Ijova4GUemTtr2EfbYbO5Ia06b841JaXaR3ed207Vp12J1PY1MOf32t5CcbARSANd+yEC3KdwL4Pr+DBr2NJJI3OimvJ6sXWuMggH06mWsmRJCCCFExVzbu5eTEx5H5+WhfH1p9d5i6kdHV9v9p0+fTkREBGvXrsViMb52x8XFERkZydy5c5k3b15B3YyMDNatW0dXl8xY69evZ9u2bSxZsoSxY8cCcO+99zJkyBBOnz5dUC87O5sXX3yRCRMmsHhx4XatPXv2JDIykkWLFvHss88WlGdmZpKUlERISEiZz9CnTx/Gjx9PZGQkly5d4sMPP+SJJ54gNTWV6dOn3/gfp47wKpjSWr9Wxf0QtcTFi3DwoOdztXlkKsN/N31/6kjb01eAC4SmWQjrdJuRxN/F+fPGmigAf3+44w7380rBggXGurEdO2DNwdvpE34JrYyAyv/O24Eb35S3JDLFTwghhKh813Z9h87LA4cDbbVybdd31RZMXb16lT179vDSSy8VBFIAbdq0oXfv3mzZssWtfnh4uFsgBbBjxw7MZjMjR450Kx87diyJiYlu9bKyshg/fjw2m62gvEWLFkRFRfH111+7BVOxsbFeBVIAb7zxhtvn4cOH8+CDDzJr1iyeffZZGtb0l8AaJuubhJudO0s+V9p/KzU9MtUi5bb8QMqZitBOzqF0wMjSN2gQPPOMe0r0u+4Ci4efE/z8jGQWLVrAkh9CeTGxHbvPBVF/aLuCUanSNuUtL6sVvnTJlSnBlBBCCFE56vfojvL1BbMZ5eND/R7dq+3emZmZaK0JDS2+LUpISAgXi2zo6aleamoqwcHB+Pj4uJU3K5Jy+Hx+muKBAwfi4+Pj9kpOTubChQtl3qs8HnnkEXJyckhOTq5QO3WBt9P8xC2ipCl+UPrIVGBgyeeqQ1huOlhcc7or2nc3FkS9+qqR/nzDBmMKn1PRKX6uQkJg1SqIjzcCqiU/hLJsCIzJP3+jm/J6sm0bZGUZx61awZ13lrsJIYQQQnhQPzqaVu8tNkakenSv1il+wcHBKKVIS0srdi4tLY3GjRu7lSkPqYhDQ0PJzMzEarW6BVTnzp1zq+ds6/3336dTp07F2mlU5FdvT/cqD52/NqGi7dQFMjIl3NxoMBUUBI8+ahwXnTpXHfaldKPwtwETHRMeoXO/GAC2bi2st21b4XFpwZTz/PjxhZ9df9S5kU15S1J0ip/83yUhhBCi8tSPjub2ib+u1kAKoEGDBnTr1o3ly5djt9sLylNSUti+fTt9+/Yts424uDjsdjsrVqxwK1+6dKnb5169etGoUSOOHDlCTExMsdcdlfzl7OOPP8bf35/OnTuXXbmOk5EpUcBmg29ddgxr1Qpcs2mWFkwB/Pvf8PbbsHEjPPRQ1fTRE6sVNu+PISd3Or1bb+Z2h4m+sVEAnDljvDwpK5gCz9MA4cY25S2JrJcSQggh6qaZM2cydOhQhg0bxjPPPEN2djYzZswgMDCQ559/vszrBw0aRHx8PBMnTiQjI4P27duzbNky9u/f71YvICCAOXPmMGnSJNLT0xkyZAiBgYGcOXOGLVu2kJCQwLhx48rd/61bt/LHP/6Rhx56iPDwcC5fvswHH3zA6tWr+eMf/0iDsr4c3gIkmBIFfvgBrl0zjlu2hO7dyxdMQc1M98vMNN5bnDvKY+oDTMrByQn/ptV7i9l1wvOvUD4+4GEU3Gs3simvJ0ePFib8qFcP+vW78T4JIYQQonYZPHgwa9as4fXXX2fMmDH4+vqSkJDAm2++SVhYmFdtrFy5kilTpjBt2jTMZjMPPPAAb7/9NiNGjHCrN3HiRFq2bMmcOXP4+OOPsVqtNG/enD59+hRLbOGt0NBQHA4Hr776KhkZGQWp0T/++GMeeeSRG2qzrpFgShRwneLXqxc0aeJ+vrb++HDhAtxVby+vNPs9FmwoQOflcW3Xd3x73HMw1bkzlLLRd4GuXV/lyy+XYjLbATMHDo6lQ5SR1SY0ZPgNp0J3ch2V6t8f6tevUHNCCCGEqGUGDx7M4DI2kNy8eXOJ55o0acKSJUuKlTvXLbm67777uO+++0q914kTJ0o976pdu3asXbvW6/q3IgmmRIGiwVR2tvv52hxM9aj/HUrZUcrYr0mZTNTv0Z1vl3q+xnWz3pIcOPgqbdt95LKGyc7Zsx8BFARUFeUaTA0bVilNCiGEEEKIaiIJKESBHTsKj3v1gqJZM2vrNgIXLsCua92xaj90cFss7YfS5LnX8esSze7dnq/xZr3U2bNLPSaDOHu2hAitnLKzwfWHKFkvJYQQQghxc5GRKQHA2bPgHPX19zf2YMrIcK9TW0emLl6E73OiWRawgGfic0Epco+bOPx1FtnZAR6v8SaYAns5y8tn/XrIyzOO77zTSPghhBBCCCFuHjIyJQD3Uanu3Y0EDUVHpiozmEpKyeQfm46QlJJZ4bYuXICfhWXxVD8rJpPCbAJtc5C6+7LH+mazsWaqbOZylpfPypWFxxY9dwAAIABJREFUxw88UClNCiGEEEKIaiTBlACKr5cCKLK5Nv7+lXOvpJRM5iz8kGtfvcmchR9WOKC6cAHiWl1GKV2wZgql2Ha8MLVgu3aF9Tt29O5ZwsLG4mFtJ2FhYyvUXzBGpD7/vPDzyJEVblIIIYQQQlQzCaYEUHIwdeedxvHEp1axffvdfLWxHd98czepaatu+F7H927iPdPv+a15Oe+Zfs/xvZsq0HMjmNpxMhCr3YTNDjaHwta7LSu3F07xe/HFwj2jvB0F6hD1BkePjMduM6M1aG0mLGx8pSSf2LQJLucPnLVuDdW8j6AQQgghhKgEsmZKkJMDSUmFn+PiIDVtFYcP/4k//+UcdnsAFst1cnKtRv3cs/z004scPjwTm+0SFksQdnsOWhsb2DZsFEz//q+wcaPntOFx5p/wwYZFOUDbiDP/BNz4Lr8XLsCeswGMXdqZuFaX2XEykH+MDCA52TivFIwZY6wDO3y4fKNA+/a9wVNPGcHT/PkwcMANd9ON6xS/hx7CY6ILIYQQQghRu0kwJUhKAqsRJxEZCVbbKg4cmIbWuSgFFkuWh6us2GzG9Dznu5PJlMm0l55j2kvPobWxN5P18kTS9qcTcmcTunS9h5ykL7lqi8LPcpDmXe+pUP8vXjTe95wNYM9ZYzTq66/B4TDKO3aEgABjLVj37hW6VaWw2+Gzzwo/P3TjcaQQQgghhKhBEkwJt+QTcXFw7OhbaJ1boTadIy1KGXszKdsnmMNzuZjRmN2ZTxCSNwvt0CiHookjCj8v2rRa4de/htRUePfdwux3Fy4Ur/vVV4XHPXtW6FEq3fbtcP68cdysmfE3F0IIIYQQNx8JpkSx9VI5uamVfg9tMYIzu/8FLjveIqtPPbTPVSw5jcnaN46OrZ8ts42lS+H9943j3//eCKjAczC1bVvhcY8eFex8JXOd4jdihJFdUAghhBBC3HwkAcUtTuviwVQ9v9CSL6gMJjva9yoosPlfILXBAq8SWuzcWXi8davxrrURTPXvv4oVK7qxfkNb1m9oy7//HUP//kabtWlkSuvi66WEEEIIIcpj8+bNKKXYvHlztdwvMzOTZ599llatWuHn50eLFi345S9/WS33ru1kZOoWd/w4nDtnHAcEGOuLzp2fysGDL+NwXC+op5QPZlMDbPbLWMyB2O1X0VgrpxMmK8eOvkVoiOeEFU579hQeHzxorJWqVw96917F1BdexNe3sD+BQZn5ZXDnnaW3W5327IGTJ43joCBISKjR7gghhBBClCozM5P4+HiUUvz+978nPDycs2fP8s0339R012oFCaZuQampqzh46E84HOewWpvRv/+LbNw4nLg4MJkoCGqOHX2LnNxU6vmFEtF2Krfl9iP32GX8wgM5c/QTTl1fgK3eBUzWhjhMeWDOQwMK5//wXllTC202+P5797Jdu6BTJ/jVr95yC6ScfH2tPPHkW1gstSeYch2Vuv9+8PWtub4IIYQQovbKzc3Fz8+bVeUVo7XGarXiW8KXkmnTppGdnU1ycjIBAYXbzowdW/F9N+sCmeZ3i0lNW8UPydNwOIzhKB+fczw/dRr9+68q2F8KjICqd++tDOh/hN69t3Jbbj8yFiaTte4EGQuTadpgCO12/pk7NrxP5Dfz6Rm4keisRLplJZJ+YRh2hwmtjYx6WpcdWZU1tfDQIbh+3b1sxw5jil+TpiUHYoGBlbf+y2areBsyxU8IIYS4tSQmJhIXF4e/vz+BgYGMGDGCQ4cOudVJSEggPj6ezz//nOjoaPz8/Jg/fz4A6enpjBs3joCAAIKCgnjssce4dOmSx3utXLmS2NhY6tevT1BQEKNHj+akc0pMvvDwcB599FEWL15MVFQUvr6+rFmzxmN7V69e5cMPP+SJJ55wC6REIQmmbjFHjryFxeKeqc/PL5df/eqtYlnlclOyyNp0ityULHKPXUbbHKBB2xw4rtm4/YnOBNwTzu1PdKZhz1Bue7A9wQ+2570j4/jm07s5/p92bPu0LztTHibvqi9agy3Hgna4/7PT2peItlNL7bfrFD+nnTuNYCr9fMmBmMNRsfVfjRsXHv/1r5DlKUu8lw4cMKYnAtSvD/dULCO8EEIIIbyQduwySYknSDt2udrvnZiYyNChQ2nYsCHLli3jn//8J/v37yc+Pp4zZ8641T18+DBTpkxh8uTJfPnllwwYYGxu+dBDD/HFF18we/Zsli1bhsViYfLkycXutWDBAkaOHEnHjh355JNPeOedd9i/fz99+/blypUrbnU3bdrEvHnzmDFjBomJiXTp0sVj/5OSkrh+/TrNmjVj1KhR+Pv707BhQ0aMGMHx48cr6a90c5NpfreYvDzPIzVNmqbS0yXrXW5KFhkLk9E2B8piInBYBMpiKvjsFxGIX+sA/FoX/kqRlJLJzmMXGHHxI65lnCMLCwHXztHiZDOOfvsy9txTmP1aMnCSmVPp81BcRHMbd3aaXuZ6KddNhZ2+/RbS02HRoqm88LsX8PGxu523Wi00b156kFaWX/0K/vY3uHIFjh6Fp56Cjz7yvMluSgpMmgTNm8Pbb4OPj/t511Gp++4zAiohhBBCVJ20Y5dZ9ee92G0OzBYTw38bTUhEYLXdf/r06URERLB27VosFuNrd1xcHJGRkcydO5d58+YV1M3IyGDdunV07dq1oGz9+vVs27aNJUuWFEyru/feexkyZAinT58uqJednc2LL77IhAkTWLx4cUF5z549iYyMZNGiRTz7bGHm5MzMTJKSkggJCSm1/2fPngVg6tSpDBkyhNWrV5Oens60adNISEhg//79NGrUqAJ/oZufBFO3GK1DUepssfJLl0JxHb0taSQq99jlgkDKVVJKJr/9+2c0zT7NwGuHATPGwinNxVMn0D79sdQLw4GdI4cbMmzUd+Xqt6eRqcuXjUyEGzcagdhvJr9Go0bG0FF2dgAffvAaK1ZUbL1UmzZGCvZHHjE+L1kCgwbBhAnu9RwOGDu2MOPgXXfBM8+411mxovBYpvgJIYQQVe/M4UzsNgdag93u4MzhzGoLpq5evcqePXt46aWXCgIpgDZt2tC7d2+2bNniVj88PNwtkALYsWMHZrOZkSNHupWPHTuWxMREt3pZWVmMHz8em8u6hBYtWhAVFcXXX3/tFkzFxsaWGUgBOByOgj4vXboUlf9rctu2bYmNjeU///kPTz/9dJnt1GUSTNVxqWmrOHz4T9hs57BYmnEpcyD+9VdSr17hAqScHH8U7iM4fhGBZY5EuVrzfysYdmo1CgfZWFBoQANgjwjAccYODnCY7JwNPMK1vfW4tus76vfoTv3o6FKfweGAvXsLP3frVjhS5Zziu3HjcFJShnP0aGG9Bx7wPIJUXmPHwoYNsGiR8fk3v4HYWOjQobDOf/7jnrr9o4/cg6njxwufwdcXhg6teL+EEEIIUbrmkcGYLSbsdgdms4nmkcHVdu/MzEy01oSGFl9yEBISQkpKiluZp3qpqakEBwfjU2S6S7Nmzdw+nz9/HoCBAwd67EtwsPtze7qXJ43z1zsMHDiwIJACY8QrICCAva5f0G5REkzVYalpqzhwYBpaG2ukbLZzBAR+wuerRxEXt4mmzVKpVy+UNm2mEtHGfQTHr3VAqSNRrjZ+vYt6u1djwpE/FgVXLbfjZzaRW68xA558lJc+mUmTS+GkB53gD+aHOTnhcXReHsrXl1bvLS41oDpyBLKzjeOmTWHkyMJg6tixwnqtWuEWTFXmZr1//asxCnbgAFy7VjgK5e9vrKP63e/c62/fbgRQbdoYnz/9tPDcwIEgaziFEEKIqhcSEcjw30Zz5nAmzSODq3WKX3BwMEop0tLSip1LS0srCFSclIdfgENDQ8nMzMRqtboFVOec+9rkc7b1/vvv06lTp2LtFJ2K5+lenjjbKqm+ySTpF+QvUIcdO/pWQSDlZDbnEhe3ifHjt5KWeoT43luLBVJOfq0DCOjXstRACiD5u6SCQAo0CgjyH0iD+o9ym2kIP2w5yexRr3D3/R2YPeoVmv/3EjovDxwOtNXKtV2lT/lzneLXrRvFEmU4tW7t/rkyN+tt0ACWLQNnhtIffoCp+YN5M2cW7tXlaunSwmPJ4ieEEELUjJCIQLoNDq/WQAqgQYMGdOvWjeXLl2O3F67rTklJYfv27fTt27fMNuLi4rDb7axwXSsALHX9kgH06tWLRo0aceTIEWJiYoq97rjjjht6hhYtWhATE8O6devQWheUO6cVdu/e/YbarUtkZKoOK2nvJmcq8fDwirW/8etdJH+XRP2AQLIUoDUKhS2wK36mMBQKjeZM8hUeG92Vrk2NecDXemiUry/aakX5+FC/R+n/IboGUz/7GXTvbuyHlT+Nt0CrVoXHShn1KlPnzvCXv4BzavD8+dCypVHmNHw4rFplHH/8MUybBqmpxkgVGP1+4IHK7ZcQQgghaqeZM2cydOhQhg0bxjPPPEN2djYzZswgMDCQ559/vszrBw0aRHx8PBMnTiQjI4P27duzbNky9u/f71YvICCAOXPmMGnSJNLT0xkyZAiBgYGcOXOGLVu2kJCQwLhx427oGf74xz9y7733MmrUKJ544gnS09N5+eWXiYqKuuE26xIZmarDStq7yZlKvCLB1Mavd/Hd/Nnk7fp/ZH61lA7Bvljq9cKn0Rjqm/oAoPPXTDXv3Ihre/eS8c67XNu7l/rR0bR6bzFNpkwpc4ofFA+mGjQATxk877rLCFacx4FV8APUxInGNEOnadMK95+Kj4d//9uY+gewf78xgrVqFTh/zOnTB5o0qfx+CSGEEKL2GTx4MGvWrOHSpUuMGTOGp556ig4dOrBt2zbCwsK8amPlypXcd999TJs2jYcffhibzcbbb79drN7EiRNZvXo1hw4d4uc//zlDhgxhxowZ2Gy2YoktymPAgAF8/vnnnDx5kgcffJDf/va39OvXj82bN+Pv/NJzC1OuQ3a3opiYGL179+6a7kaVSE1bxcGDL+NwuCebmDd3FtlH+rHuvcvUa1v6eqiS/HXuP8nb9f8w5QdMlnpxmP1jUSgcODiYexn/+jlcUI34x69almuNlCutjb2eMjONz8ePG0Hg00/DggXudX/6CTZtMpJSvPpq5U7zc5WZCdHRRip0J5PJWMfVtauR+c85+v7ii0YwuH698flvfwMPW0MIIYQQt7wDBw7QwTW7kxDVqKx/f0qpJK11TNHyah2ZUkqNUkqtUEqlKKWuK6UOKaX+oJQqMUG9UuodpZRWSv3Hw7l6Sqk5SqnU/PZ2KKX6VO1T3DxCQ4YTFTWLen5hgMJkCmPe3FlcOtiPj0Ync2X9CTIWJpOb4t1OtGcPH+DbT/+Ps4cP0Ll7t4JUeVqZwKdlwbQ+rTTbL19j7vzxXDrzANd2fVeuNVKuTpwoDKSCgwvXRXlaN3XbbUYGvTVrqi6QcvZjyRIwmwvLJk40AimA8eMLyz/80AjwnEaMqLp+CSGEEEKI6lXda6amAieBl4DTQDTwGtBPKdVLa+22CkYp1QsYD5T0bX8RMBR4ATgGTAK+VErFaa33VckT3GRCQ4YXbIi7Zg1s3AiTYk/hYy7cQyr32OUyR6fOHj7A8pkvY7fZMFss9B/xCA0aPojVmorJJwyHTzMc2o5Wmm1tVtJhfXueaf4E5zMHUb9H93KtkXJVdIqfM5lMbGzxurfd5nWzFRYXB3//uzHK1KGDkYTC6Z57jL5cvGisl3Lq0cNYYyWEEEIIIeqG6g6m7tdap7t83qKUugh8ACQAG50nlFI+wLvALGBi0YaUUncB44DHtdbv5ZdtAX4E3gBkmX8RJ04Y7ztOBuLAhFkV7iFVllM/JmOz2kA7sFlt/Pe7vWhLPyyW1oCdw013kuWXSVrgMR4+HkmseSE0ANK+Iffwa7R6b7HX+0q5KhpMObVvXxiwgJFqvMgWDFXu6afh5z+HevXAZS8+fH1h9Gh45x33+pLFTwghhBCibqnWaX5FAikn55yv5kXKXwDMwNwSmnsAsALLXNq3AUuBe5VSfhXrbd1z/LjxvudsAOsbdCbgnnBuf6JziaNSrtP6rjYOx44JjcKOiattmmAz2XFgx2ayE9ftNu6LDOKt3K503XcCKBxFurJuPfWjo7l94q/LFUhB8bToTkq5j04V2aqh2jRs6B5IOXlKbiPBlBBCCCFE3VIbUqM7k+wfcBYopdoC04GhWuu8EjYK6wQc11pfK1L+I+ALtMs/vuXlpmSRe+wypAUCRuDUsF0AAf1KntpXdFqfqfcT+DQcibKeRvu04DvfyxzoOJ/QrLakBRxl8pFw2i3eBA4HpvwYXWtAQaN7Bt1Qv7Uu3JwX3EemwJhq9//+n3FcU8FUSeLjjSl9p04Znzt3NkbThBBCCCFE3VGjqdGVUs0xpuRt0Fq7ptRbAKzUWm/yfCUAtwGZHsovupy/5eWmZJGxMJmsdSd4OjSZn4UZy8/KSot+6sdk7DYb2uHAbrPR6NxxLJZQfPx7YrGEEs2dXApK5YcWm2icfZq2izYaOcIdDpR2sOHKAL652ptPQ14j+OGHb6jvZ89Cev5YZqNG0Lat+/mEhMLjoudqmsnknohi1Kia64sQQgghhKgaNTYypZRqCKwCbMAEl/JHge5AVFlNAJ7yunscxipy718DvwZo5brTax2Ue+wy2mYkmzArB3GtLrPnbECZwVTLTp0xWywFI1NN28LlczZwmHGY7LRtkclC8wuc3baeFlf9UI6NhRcrE4szf8X3OdGMqMDGua5T/KKjC/eQcoqPhzfeMEavZsy48ftUlZdegpMnjX57sS+fEEIIIYS4ydRIMKWUqgesBiKAvlrr0/nlDYF5wJ+AHKVUUP4lJsAn//NVrbUVYwTKUyQUnP9+0cM5ALTW72IktyAmJqZOb7TlFxGIspjQNgdWu4kdJwPx84OQkNKvC4vsQNvhz3L0uyTadu/GWd9FfNFhLaFX2pPW6L+EHPSl6aLjhOfloSwWtI+PMTJlMpE2bDrf/6l8a6M8KSn5hKtXXqnwbapMo0bw0Uc13QshhBBCCFFVqj2Yys/StwLoAQzUWie7nL4daALMzn+5agmMAR4EPsNYD/WgUqp+kXVTHYE84EjVPEHtlJq2isOH/4TNdg6LpRmRkS8SGjIcv9YB3P5EZ05uv8zYqYHsORtAZGTxUZ6iNn9zmiMbrJjpwpENVsIGDeRSwz+R3ugEPho6nuqDzjtk7B1ltxM0ahQ+YWHU79GdgycqHkhB6eulhBBCCCGEqGnVGkwppUzAR8AAjOQSO4tUSQP6ebh0KZCMkSZ9f37ZauB1YDRGanWUUhbgYWCd1jq30h+glkpNW8WBA9NwPrLNdo4DB6YBFARUB38IYM9Zo35ZU/wAftx3DjNgyp9NmZ7WkYUhj3F263rC7h5E2/sHcXLljoK9owJHDC/M1HeisB27/cafy5uRKSGEEEIIIWpKdSeg+AdG8PMWcFUpFevyaqG1ztFaby76AnL+f3t3Hh9Vdf9//PVJQhK2hAgKAQIBJbKIgiAmgBJFhQg/oVIFcaF+y7e0WtBWW+vSohWXFuXb+qUqVlHrGkWsKCVA/QKKghRESxBBoIR9DyBbyHJ+f9xJmEkmBLLNEN7Px2MeM3PuufecO7lJ7mfOuZ8L7PC93w3guylvJvAnMxttZv3xgq52QBheQVNz1q97itKxo3N5rF/3FAcPwv79x+8xBScXTMV3OEhhRD5FFFIYkU/zmNXEPPoWyXO2EvPoWwC0eXkqZ48bR5uXpwakPE9MPL6dpUt9Wf1O0Y4dsGWL97p+fehY0RV0IiIiImeI+fPnY2bMnz+/Vtop77F4celxkTNPbU/zy/A9P+h7+HsEePgUt3c73mjVBKAJ8DUw0Dn35QnXqmOO5m0rt7x5cy+Y8b8nU3Kyl/p808oVJHXpSsuUTmXXTfyOfzf7Oyk7zmNNs3Wcv7UF7tgxb1pffj6Hl/yr3PtGXXLJ8RvqbtsGy5ef+sjS8uXHX3frBpGRp7a+iIiIiFTNxRdfzKJFi8qU//jHP2bv3r1cckkVMo3VEbUaTDnnkqtzPefcEeCXvscZKzYmkaN5W8uUHzmSyGHf1WTz/JLMt4wLvIfUDb99rExAdcmavfScvo6ownUURELEj8/HoqNLpvU16FX+L09kJAwcCG++6b2fOfPUgylN8RMREZEzWV5eHjExMTXejnOO/Px8oqOjyyyLi4sj1f8beSAnJ4dVq1Zxzz33EKlvu0N7nympHu3PvZeIiPoBZRER9fn003uD1m9YGHgPqU0rV5Sp02rpCqILHJEOogsdLXfuKHdaXzCDBx9/PXPmqe+TgikRERGpC7KyskhLS6N+/frEx8czdOhQVq9eHVAnPT2dvn378uGHH9K9e3diYmJ49tlnAdi1axcjR44kLi6OJk2acNttt7Fv376gbU2fPp3U1FQaNGhAkyZNuOGGG9i4cWNAneTkZG655RamTp1Kx44diY6OZuYpnKy99tprOOcYNWrUKX4SdZOCqTogscUQOnZ8jNiYloARG9OSjh0fY9Y/hgStf/4lXYmIjAKLICIyiqQuXcvUaZCeQUQkYI6ICO99g+7dy53aV9qAAcczBi5ZAjt3nto+KZgSERGR6rB1zSq+eP8dtq5ZVettZ2VlMWjQIBo1akRmZibPPfcc2dnZ9O3bly3FF4f7rFmzhnHjxjF27Fhmz55N//79Abj++uv56KOPePzxx8nMzCQqKoqxY8eWaev5559n2LBhdO7cmWnTpjFlyhSys7Pp168f33//fUDdefPmMWnSJMaPH09WVhYXXnjhSe/T3/72Ny6++GIuuOCCSnwidU/Ibtor1SuxxRASWxwPnoqK4LvvvNdtm67i3LNXsG5XV3Yc6kSzc1oS3eiH5B/dSL3YNkREtSyzvQYDRtJmEhyeP8sLpAaMPKX+nHUW9O4NCxd612zNmgUn+wVGbi785z/e6+ho6Nz5lJoWERERAbxAqqJLG2rSQw89RPv27Zk1axZRUd5pd1paGikpKTz99NNMmjSppO7u3buZM2cO3bp1KymbO3cuCxcu5K233mLEiBEADBgwgIyMDDZv3lxS7+DBg9x3333cfvvtTJ06taT80ksvJSUlhZdeeom77767pDw3N5dly5bRoqIbj5ayaNEivvvuO/785z+f2gdRh2lkqg7JyznAgXmbyMs5wObNcPSoF0iN6fcgAy54nTH9HuSSTqvY+l0uWAuiYnuBtWDLmtyg22swYCTNnnjtlAOpYoMGHX99KlP9/Eelunb1AioRERGRU7VpZcWXNtSUQ4cO8eWXXzJ8+PCSQAqgXbt29OnThwULFgTUT05ODgikwAteIiMjGTZsWEB5cWDlX+/AgQPcfPPNFBQUlDxat25Nx44d+eSTTwLqp6amnnIgBfDqq69Sr149Ro6s3LlhXaSRqToiL+cAu19cgSsowqIi2NStKxDHuWevICqygAgrwiigS9IKmrp2WMExnEVirpCmbheQXO19GjwY7vdud8Xs2ZCfD/Xqla135AgcOgTNmnnv/YOpHj2qvVsiIiJyhkjq0pXIqKiSkalglzbUlNzcXJxzJPrfM8anRYsW5OTkBJQFq7dt2zYSEhKoV+oEqnnz5gHvd/qup7jqqquC9iUhIaHCtiqSl5fHO++8w6BBg2hWfNImCqbqirz1+3EFReDAFRRx+Lv9QByHC9sTYRGAIyIigviz2/P9qo+48N9LOBDfgbj93/F9p16QUf2pLbt0gTZtYONGOHAAPvsM0tMD6+za5dXbvRveew9+8ANdLyUiIiLVo2VKJ2747WMnvB1MTUlISMDM2L59e5ll27dvp2nTpgFlZlamXmJiIrm5ueTn5wcEVDt27AioV7ytV155hS5dupTZTuPGjStsqyIzZswgNzdXiSdK0TS/OiKmfTwWFQEGFhXBV7viAUiJP0Z0w+uJiu1DdMPraVv/GAsS8ml46D8kbZpDw0P/YUFCfo30ySxwqt9HH5Wt8/e/ewGVc/DUU16ZgikRERGpLi1TOnHpD26s1UAKoGHDhvTo0YN3332XwsLCkvKcnBw+//xz+vXrV+E20tLSKCws5L333gsof/vttwPe9+7dm8aNG7N27Vp69uxZ5nH++edXeX9effVVmjZtyiD/kzvRyNTpaNv2D1i/7imO5m0jNiaR9ufeS2LbITQb3ZW89fuJaR/PgjvjAEjYt5aoyHMoikokwhWSVLiWLxLT+P2Ij+i8qYBvkqLokphWY30dNAiee857PXPm8YCp2Jo1x18vWuQlnigui4z0rpkSEREROR09+uijDBo0iMGDB3PHHXdw8OBBxo8fT3x8PPfcc0+F61999dX07duXMWPGsHv3bjp06EBmZibZ2dkB9eLi4pg4cSJ33nknu3btIiMjg/j4eLZs2cKCBQtIT0+v0nVOO3fuZPbs2fzsZz8rM+XwTKeRqdPMtu0f8O23D/pu0us4mreVb799kG3bP6Bw7zqOrZlF4d51JQHJIhdLl+xnaLfhI7pkP0NBz1iGdurDKvsZ756XwSr7GUM79amx/l55JdT33QLr229h/frA5f7BlHPw5JPH33fpArGxNdY1ERERkRo1cOBAZs6cyb59+7jxxhv56U9/SqdOnVi4cCEtW5bNphzM9OnTufbaa7n//vsZPnw4BQUFTJ48uUy9MWPGMGPGDFavXs2tt95KRkYG48ePp6CgoExii1P1xhtvUFBQoCl+QZhzLtR9CKmePXu6pUuXhrobJ+2zzy7zBVKBoiOaEfUb2B0TSbO8Qn6e/TxfHupOs0Evctmlf6bL5iJWto7k8qvGcXfaaJbl5LJ4/R5S2zelR9uEIC1Vn8GDj2fze+YZ8L81QufOsMrvtg/16nmJKgB+9CN4+eUa7ZqIiIiEiVWrVtGpU+1OxRMpVtHxZ2bLnHM9S5drZCoEUrdZAAAgAElEQVRMHV6+nN1TXuDw8uUB5UfztgWtf6xwN4uTmrGm+VksTjqbPufMBuDQtz1Z3SKG91OjWN0imvRzvWOgR9sE7rzivBoPpKD8FOmFhbB2bWDdfL/Lt3S9lIiIiIiEM10zFSYOL1/O4SX/okEvL6vextv/C3fsGBYdTZuXp9Kge3cA6uU3Jr/egTLru2ONKIrwsvYVmZF3TjT8Bzqf15a9m0YT2WgtRYfOo/BIW2+FTUtgw6eQfBkk9arRffMPpubNg4MHoVEjyMkJDJ5KU1p0EREREQlnCqbCwOHlywOCp/ghQ3DHjkFRES4/3wuyfMFUQoM0dh6bDX4ZLSOIpujgcGAJUAhEkmve3NiE8/ewNz+J/L1JRBosXr+HHhHfwavXQeExiIyGUTNqNKBq0wYuuACys+HYMfj4YxgyBL77rvx1zOCii2qsSyIiIiIiVaZpfmHg8JJ/BQRPABYdDZGRWL16JaNV27Z/wO7CTwICKRyc03gI9dpdTWTcECJj04iMG8KKY979BC5KbEp0VASRBvWiIkht39QbkSo8Bq7Qe97waY3v4+DBx18XT/XzTz7RqlVg/Y4doWHDGu+WiIiIiEilaWQqDDTodQkWHY3Lz8fq1SN+6BDihw4pmfZXPCq1ft1TFBUdCVzZYPe+BXzX4jxmXjSDxAPnsrXRF+zeVghcwuWdE7jpotTAZBMRl3kjUsUjU8mX1fg+Dhp0PFPfP/7hZe7zD6Z+/GP4wx8gL897r+ulRERERCTcKZgKAw26d6fNy1PLBE/Fz8XKSz5RELGTns17MqXJFHbFbaQgrx6HvvUSTaSkQMe2CYGJJpJ6eVP7aumaKYDUVEhIgNxc2LIFvv46cJpft25wxRWQleW9VzAlIiIiIuFOwVSYaNC9e5ngqbTYmMSgadEL8xvR7Zxu/PWav7Jo81LuHd6TI+u6EREB7dsTPNlEUq9aCaKKRUXBwIHw1lve+48+ChyZSkmB+++H+fPhrLPg5ptrrWsiIiIiIpWiYOo00v7ce/km+z6IOJ4Cr6gggp3mBUXdzulG1M5uHPalG09OhugdS2o12cSJDB58PJiaPt3L5gdesolzz/Vu0rtnj3evKd1cW0RERETCnRJQnEYSWwyhcP0Aoo40BQdRR5qSuzKVC7rfCcCynFyem7+W6Ja5gDfaE4pkE+UZOBAifEfc8uVQVOS9btMGYmO91w0aKJASERERkdODRqZOM3Gtr6HF/CFEWARFroj9vXLodk43luXkcvOLi8nLL6L5iAh2vJ1KSkqCN7WvlpNNlOessyAtDT77LLA8JSU0/RERERERqQqNTIWp7ev3syxrA9vX7w8oT712ENvTj7AqYQ3b049w3Q9vB7z7Rx0rKMIBFlFEbJs9dOjA8WQTVz4Y0il+xfxv4FtMwZSIiIjIyZs/fz5mxvz582u8rcOHDzN+/HhSUlKoX78+SUlJ3HbbbWzYsKHG2z4daGQqDG1fv5/3Jy2jqNAREWn84Jc9aNE+vmR56rWD4NrAdVLbe/eTOppXhCuK4OjGpseDlFpONnEigwbBAw8ElnXoEJq+iIiIiMiJjR49mr///e888sgj9OzZk40bNzJ+/Hj69+/P119/TaNGjULdxZBSMBWGln75DQUFhUQQSUFBIUu//IbB7dNOuE6Ptgm8MTqV60bvYfc3TTm2NSEsg5SuXSEpCTZtOl6mkSkRERGRQHl5ecTExNR4O8458vPziY6OLrPsyJEjvPPOO/z617/mV7/6VUl58+bNycjI4LPPPmPAgAE13sdwpml+YcJ/Wt/W+LUURRRSRCFFEYVsjV97UtvokJDA1n+ex7GtCURHe4kdwo1Z2al+CqZERESkrsrKyiItLY369esTHx/P0KFDWb16dUCd9PR0+vbty4cffkj37t2JiYnh2WefBWDXrl2MHDmSuLg4mjRpwm233ca+ffuCtjV9+nRSU1Np0KABTZo04YYbbmDjxo0BdZKTk7nllluYOnUqHTt2JDo6mpkzZwbdXkFBAYWFhcTFxQWUN2nSBICi4mxiZzAFU2GgeFrf4g/W8f6kZXRM6MjsC/7K0jZZzL7gr/S6qGuZdZbl5PKXeWtZlpNbUuZ/E9zzzoPIyNro/anzD6aioqBt29D1RUREROq2vJwDHJi3ibycA7XedlZWFoMGDaJRo0ZkZmby3HPPkZ2dTd++fdmyZUtA3TVr1jBu3DjGjh3L7Nmz6d+/PwDXX389H330EY8//jiZmZlERUUxduzYMm09//zzDBs2jM6dOzNt2jSmTJlCdnY2/fr14/vvvw+oO2/ePCZNmsT48ePJysriwgsvDNr/xo0bc+utt/LMM88wb948Dh48yMqVK/nVr37FRRddVNLHM5mm+YWB0tP6Dmwo4L4eo1ixfCFdu4+i2zndAuq/+cVGfvdBNkXOER0VwRujU+nRNiHgJrjhOMWv2JVXQuvWsHmz9zpKR6GIiIjUgLycA+x+cQWuoAiLiqDZ6K7EtI2reMVq8tBDD9G+fXtmzZpFlO+EJy0tjZSUFJ5++mkmTZpUUnf37t3MmTOHbt2On/fNnTuXhQsX8tZbbzFixAgABgwYQEZGBps3by6pd/DgQe677z5uv/12pk6dWlJ+6aWXkpKSwksvvcTdd99dUp6bm8uyZcto0aJFhfvw8ssvM27cOK688sqA7c6dOzfo1MAzjUamwkDpaX2bji7mq8mvcGzBt3w1+RW2rllVUndZTi6/+yCbgiJHkYNjBUUsXr8HgCNrlvCbvk+T2npJWE+da9AAFiyAqVPhzTdD3RsRERGpq/LW78cVFIEDV1BEXqksyTXp0KFDfPnllwwfPrwkkAJo164dffr0YcGCBQH1k5OTAwIpgEWLFhEZGcmwYcMCyosDK/96Bw4c4Oabb6agoKDk0bp1azp27Mgnn3wSUD81NfWkAinwAsLXX3+dp556igULFvDaa6+xZ88eMjIyOHTo0Eltoy7TmEAY6HVRVx747lHO3pfMriYb+AmXs76gAFdURGFBAZtWrqBlSifAS4FeWORK1o0wI7V9U9i0hJsLryPyimMcK4xmbuIMIDwy+AXTvr33EBEREakpMe3jsaiIkpGpGL/syDUtNzcX5xyJiYlllrVo0YKcnJyAsmD1tm3bRkJCAvXq1Qsob968ecD7nTt3AnDVVVcF7UtCQkKFbQWzcuVKnnzySV588UV+/OMfl5QXj3i9+OKL3HXXXSe1rbpKwVQY6HZONx7/4W9ZumMpPZvfyjn7YsiZvYDCggIio6JI6nL8mqnU9k2JqRfB0fwiKDJ+0PYCerRNgE8/JZJjREUU4twxusZ9SjgHUyIiIiI1LaZtHM1GdyVv/X5i2sfX6hS/hIQEzIzt27eXWbZ9+3aaNm0aUGZmZeolJiaSm5tLfn5+QEC1Y8eOgHrF23rllVfo0qVLme00bty4wraCWbFiBQCXXHJJQHmHDh1o0qQJq1atCrbaGUXBVJjodk6349dGnQM3/PYxNq1cQVKXriWjUuClQH9hRCpDfrKHwxuaMnlvAj+/Ftq0vYxjhdE4d4z8omjiul4Woj0RERERCR8xbeNqNYgq1rBhQ3r06MG7777Lww8/TKQvM1hOTg6ff/550CQSpaWlpVFYWMh7770XMLXv7bffDqjXu3dvGjduzNq1axk1alS17UPxVMAlS5YEJKlYs2YN+/bto1WrVtXW1ulKwVSYapnSKSCI8neWS2Df58eHa++9F559thfX/W0G6cmfsmTHZfxzgkalRERERELp0UcfZdCgQQwePJg77riDgwcPMn78eOLj47nnnnsqXP/qq6+mb9++jBkzht27d9OhQwcyMzPJzs4OqBcXF8fEiRO588472bVrFxkZGcTHx7NlyxYWLFhAeno6I0eOPOX+X3bZZVx00UXcc8895Obmlty0d8KECcTHx1dr4Ha6UgKKMLF1zSq+eP+dgGQT5dm2DVJbH082MW0aPP88LN7ciycX3kNuo16c5OitiIiIiNSQgQMHMnPmTPbt28eNN97IT3/6Uzp16sTChQtp2bLlSW1j+vTpXHvttdx///0MHz6cgoICJk+eXKbemDFjmDFjBqtXr+bWW28lIyOD8ePHU1BQUCaxxcmKjIzk448/ZvTo0bzwwgtce+21PPTQQ1x88cV88cUXtAnHm5rWMnPOVVyrDuvZs6dbunRpSPuwdc0q3n30wZJrpG747WPljkoB/GPKEtI3Xkd0pJdsov/fZrBkay+K75s2fDiUGv0VERERCWurVq2iU6fyz39EalJFx5+ZLXPO9SxdrpGpMLBp5QoKS2XvO5EWO98iJvIoURGF1Is4Rnryp/jfgDqc7zElIiIiIlJXKJgKA0lduhIRGQUWUZK9b1lOLn+Zt5ZlObmBlTctoWvB60SYwzkoIor5GwKTTYTzPaZEREREROoKJaAIA9a4E/9Y/xjRR1fwwJNd2RbTgptfXMyxgiKioyJ4Y3Sql/4cYMOnRFCIGRQWGevjR7KnfmCyCY1MiYiIiIjUPI1MhZhz8IMfwNxFnZi5/EZG/qQT//x6D8cKiihykF9QxOL1e46vkHwZ+UXR5BdGklcYy6HzRvLnPwduUyNTIiIiIiI1T8FUiJnB5MnQsKH3PicH3vhTU6IjI4g0qBcVQWp7v5u6JfXi1rkz+N38B+n/txk0PL8XGRnw3//tLb7tNjjrrNrfDxERERGRM42m+YWBnj3hnXfguuugsBBWzEvg8oRUfvizPfTu0PT4FD+8kax/rOjF4cPe1L7ERK98yhSYOBHiav+edCIiIiIiZ6RaHZkysx+a2XtmlmNmR8xstZk9YWaN/er0MLMsM9tiZkfNbLuZ/cPM0oJsL9bMJprZNt/2FpnZ5bW5T9WleZdcbnl8LdEtvYQTBxdH0viDGLq4yIB6338Phw97r2NjIT7ee23mvdb9pUREREREakdtj0zdC2wEHgA2A92Bh4ErzKy3c64IaAKsBV4BtgHnAL8AFphZX+fcEr/tvQQMAn4FrAfuBGabWZpz7qta2aNqsCwntyThROtbIzh71oW8dtUG6kUWsXlyBLPrd+WKm+Lo3Nm7YW+xxEQFTyIiIiIioVLbwdT/c87t8nu/wMz2Aq8C6cD/Oec+Bj72X8nMsoDdwK3AEl/ZRcBI4L+ccy/7yhYAK4HfA9fV7K5Un8XrjyeciLQibrxiF/Uii4iKAFwRq/65n59PiOOCC6B79+PrFU/xExERERGR2ler0/xKBVLF/uV7bnWCVQ8BeUC+X9l1vveZftsvAN4GBphZTNV6W3tS2zclOup4wokrbjgbZxEUFEF+UQSLNnpz+bKz4bXXjq+nYEpEREREJHTCIZtfP9/zKv9CM4sws3pm1gaY7Ct+0a9KF+A/zrnDpba3EogGzquJztaEHm0TeGN0Kr+85nzeGJ1K9z6taPnDSOJTNrGrQyTte8dRv37Z9VqdKPwUERERkTpp/vz5mBnz58+v8bYOHz7ML37xC1q1akVsbCxdu3bljTfeqPF2TxchzeZnZq3wpuT90zm3tNTid4Bhvtc7gWudc9/4LT8LyA2y2b1+y08bPdomlGTt27ZyEut3/S9H2xmxeY5nHh7Lyy//kg8/hMxMmDULYmLg5ptD3GkRERERqdOuv/56Fi1axIQJEzj//POZPn06t9xyC0VFRdx6662h7l7IhSyYMrNGwAdAAXB7kCq/Bv4AJOEllvjIzK7yC7oMcME2fRJt/wT4CUCbNm1OvfM1aNv2D/h2xxSKYr1Bw6Oxxrc7ptCx6bncdNMQbroJjh6FoiJo0CDEnRURERGRGpGXl0dMTM1fteKcIz8/n+jo6DLLFi5cyOzZs3n55Zf50Y9+BMA111zD5s2bue+++xg5ciSRkZFl1juThGSan5nFAjOA9sAA59zm0nWcc+udc/9yzk0HMvBGpyb4VdlL8NGnBL/lQTnnXnDO9XTO9Tz77LMruxs1Yv26pyiiIKCsiALWr3uq5H1srAIpERERkdNBVlYWaWlp1K9fn/j4eIYOHcrq1asD6qSnp9O3b18+/PBDunfvTkxMDM8++ywAu3btYuTIkcTFxdGkSRNuu+029u3bF7St6dOnk5qaSoMGDWjSpAk33HADGzduDKiTnJzMLbfcwtSpU+nYsSPR0dHMnDkz6PYWL14MQEZGRkD5wIED2bZtW8nyM1mtB1NmVg94D+iFN3VvRUXrOOeOAf8m8DqolUA7MysdVnQGjuGlVz/tHM3bdkrlIiIiIlK+TZs28emnn7Jp06ZabzsrK4tBgwbRqFEjMjMzee6558jOzqZv375s2bIloO6aNWsYN24cY8eOZfbs2fTv3x/wptl99NFHPP7442RmZhIVFcXYsWPLtPX8888zbNgwOnfuzLRp05gyZQrZ2dn069eP77//PqDuvHnzmDRpEuPHjycrK4sLL7wwaP+LR51Kj1oVj5hlZ2dX7oOpQ2p1mp+ZRQBvAP2BQc65kwpnfQFTT8A/jJ8BPALcgJdaHTOLAoYDc5xzedXY9VoTG5PI0bytQctFRERE5ORt2rSJV199lcLCQiIjIxk1ahRJSUm11v5DDz1E+/btmTVrFlFR3ml3WloaKSkpPP3000yaNKmk7u7du5kzZw7dunUrKZs7dy4LFy7krbfeYsSIEQAMGDCAjIwMNm8+PrHr4MGD3Hfffdx+++1MnTq1pPzSSy8lJSWFl156ibvvvrukPDc3l2XLltGiRYsT9v/8888HvBEq/9GpRYsWAbB3b7kTwc4YtT0y9Re84Ocp4JCZpfo9WgOY2RQze8LMhplZPzO7DZgPJOI3zc93U95M4E9mNtrM+uOlRW8HjK/d3aoGm5bAp0/TvskPKJ3V3SyG9ufeG6KOiYiIiJyeNmzYQGFhIc45CgsL2bBhQ621fejQIb788kuGDx9eEkgBtGvXjj59+rBgwYKA+snJyQGBFHhBS2RkJMOGDQsoLw6s/OsdOHCAm2++mYKCgpJH69at6dixI5988klA/dTU1AoDKfCuj+rUqRPjxo1j0aJF5Obm8tJLL/HWW28BEBERDonBQ6u2E1AUh7QP+h7+HgEeBr4ARuMliGgIbPGV/TjIlMDbgcfwgqwmwNfAQOfclzXR+RqzaQm8eh0UHiMxMhp+8GvW7JlGQcEOoqKak5JyH4kthoS6lyIiIiKnleTkZCIjI0tGppKTk2ut7dzcXJxzJAa5MWiLFi3IyckJKAtWb9u2bSQkJFCvXr2A8ubNmwe837lzJwBXXXVV0L4kJCQEvA/WVjBRUVFMmzaNkSNH0rt375K2n3jiCX7xi1+c9HbqsloNppxzySdRZyowtaJ6vrpHgF/6HqevDZ9C4TFwhV5AtdeRePnnoe6ViIiIyGktKSmJUaNGsWHDBpKTk2t1il9CQgJmxvbt28ss2759O02bNg0oMyubkDoxMZHc3Fzy8/MDAqodO3YE1Cve1iuvvEKXLl3KbKdx48YVtlWezp0789VXX7FhwwYOHTpESkoK06dPB6BPnz4nvZ26KqT3mRKf5MsgMtoLqCKjvfciIiIiUmVJSUm1GkQVa9iwIT169ODdd9/l4YcfLknmkJOTw+effx40iURpaWlpFBYW8t577wVM7Xv77bcD6vXu3ZvGjRuzdu1aRo0aVb074lM8qpefn8/kyZO55pprOPfcc2ukrdOJgqlwkNQLRs3wRqiSL/Pei4iIiMhp7dFHH2XQoEEMHjyYO+64g4MHDzJ+/Hji4+O55557Klz/6quvpm/fvowZM4bdu3fToUMHMjMzy2TRi4uLY+LEidx5553s2rWLjIwM4uPj2bJlCwsWLCA9PZ2RI0dWah+eeOIJ2rZtS8uWLdm4cSN/+ctf2LhxI5999lmltlfXKJgKF0m9FESJiIiI1CEDBw5k5syZPPLII9x4441ER0eTnp7OH//4R1q2bHlS25g+fTrjxo3j/vvvJzIykuuuu47JkyczdOjQgHpjxowhKSmJiRMn8uabb5Kfn0+rVq24/PLLyyS2OBWHDh3iwQcfZOvWrTRp0oSBAwcybdq0kIz2hSNzzoW6DyHVs2dPt3Tp0lB3Q0REROSMtmrVKjp16hTqbsgZqqLjz8yWOed6li5XPsMwkZdzgAPzNpGXcyDUXRERERERkZOgaX5hIC/nALtfXIErKMKiImg2uisxbeNC3S0RERERETkBjUyFgbz1+3EFReDAFRSRt35/qLskIiIiIiIVUDAVBmLax2NREWBgURHEtI8PdZdERERERKQCmuYXBmLaxtFsdFfy1u8npn28pviJiIiIiJwGFEyFiZi2cQqiREREREROI5rmJyIiIiIiUgkKpkRERERERCpBwZSIiIiIiEglKJgSERERERGpBAVTIiIiIiKnkfnz52NmzJ8/v8bbevXVVxk2bBht27bFzPjRj35Ubt2///3vdO/endjYWNq2bcuECRMoLCys8T6GkoIpEREREREJ6vXXX2fdunVcffXVxMWVn3l69uzZDBs2jEsuuYRZs2Zx1113MWHCBB544IFa7G3tU2p0EREREZEwk5eXR0xMTI2345wjPz+f6OjooMtnz55NRIQ3/pKVlVXudn7zm9/Qt29fXnjhBQCuuOIKDh48yIQJE/jFL35BixYtqr/zYUAjUyIiIiJSJ23b/gGffXYZH//feXz22WVs2/5BrfchKyuLtLQ06tevT3x8PEOHDmX16tUBddLT0+nbty8ffvgh3bt3JyYmhmeffRaAXbt2MXLkSOLi4mjSpAm33XYb+/btC9rW9OnTSU1NpUGDBjRp0oQbbriBjRs3BtRJTk7mlltuYerUqXTs2JHo6GhmzpxZbv+LA6kT2bRpE1999RW33HJLQPmtt95Kfn4+s2bNqnAbpysFU2EgHH7RRUREROqSbds/4NtvH+Ro3lbAcTRvK99++2CtnmdlZWUxaNAgGjVqRGZmJs899xzZ2dn07duXLVu2BNRds2YN48aNY+zYscyePZv+/fsDcP311/PRRx/x+OOPk5mZSVRUFGPHji3T1vPPP8+wYcPo3Lkz06ZNY8qUKWRnZ9OvXz++//77gLrz5s1j0qRJjB8/nqysLC688MIq7efKlSsBuOCCCwLK27VrR4MGDfjmm2+qtP1wpml+IVb8i15UdASg5BcdILHFkFB2TUREROS0tX7dUyXnV8WKio6wft1TtXaO9dBDD9G+fXtmzZpFVJR32p2WlkZKSgpPP/00kyZNKqm7e/du5syZQ7du3UrK5s6dy8KFC3nrrbcYMWIEAAMGDCAjI4PNmzeX1Dt48CD33Xcft99+O1OnTi0pv/TSS0lJSeGll17i7rvvLinPzc1l2bJl1Tb1bu/evQAkJCSUWZaQkFCyvC7SyFSInegXXUREREQq52jetlMqr26HDh3iyy+/ZPjw4SWBFHijNX369GHBggUB9ZOTkwMCKYBFixYRGRnJsGHDAsqLAyv/egcOHODmm2+moKCg5NG6dWs6duzIJ598ElA/NTW1Wq9hcs4BYGblLqurNDIVYqH+RRcRERGpi2JjEn1T/MqW14bc3FyccyQmlm2vRYsW5OTkBJQFq7dt2zYSEhKoV69eQHnz5s0D3u/cuROAq666KmhfSo8YBWurKs466yyAoCNQ+/btK1leFymYCrFQ/6KLiIiI1EXtz7034FIKgIiI+rQ/995aaT8hIQEzY/v27WWWbd++naZNmwaUBRvVSUxMJDc3l/z8/ICAaseOHQH1irf1yiuv0KVLlzLbady4cYVtVUVxmytXriQtLa2kfMOGDRw+fJjOnTtXa3vhRNP8Qsz7hS6dijK61n7RRUREROqixBZD6NjxMWJjWgJGbExLOnZ8rNaul2rYsCE9evTg3XffDbhxbU5ODp9//jn9+vWrcBtpaWkUFhby3nvvBZS//fbbAe979+5N48aNWbt2LT179izzOP/886tnp8rRpk0bLrroIt54442A8tdff5169eqRkZFRo+2HkkamQiyxxRD27tnDhpw/ERNziLy8hiS3vVvJJ0RERESqKLHFkJCeUz366KMMGjSIwYMHc8cdd3Dw4EHGjx9PfHw899xzT4XrX3311fTt25cxY8awe/duOnToQGZmJtnZ2QH14uLimDhxInfeeSe7du0iIyOD+Ph4tmzZwoIFC0hPT2fkyJGV2odvvvmmJBvfkSNHyMnJYdq0aQD069ePs88+G4DHH3+cwYMHM2bMGG666SaWL1/OhAkTuOuuu+rsPaZAwVRY6NLlv4iLu5oNGzZwfkoySUlJoe6SiIiIiFTRwIEDmTlzJo888gg33ngj0dHRpKen88c//pGWLVue1DamT5/OuHHjuP/++4mMjOS6665j8uTJDB06NKDemDFjSEpKYuLEibz55pvk5+fTqlUrLr/88jKJLU7FO++8wyOPPFLyfv78+cyfPx/wUqynp6cDcO211zJt2jQeeeQRXnnlFZo3b84DDzzAgw8+WOm2TwdW1zNsVKRnz55u6dKloe6GiIiIyBlt1apVdOrUKdTdkDNURcefmS1zzvUsXa5rpkRERERERCpBwZSIiIiIiEglKJgSERERERGpBAVTIiIiIiIilaBgSkREREREpBIUTImIiIhIWDjTs0xLaFTluFMwJSIiIiIhFx0dzZEjR0LdDTkDHTlyhHr16lVqXQVTIiIiIhJyzZo1Y/Pmzezdu5f8/HyNUkmNc85x+PBhtmzZwjnnnFOpbURVc59ERERERE5ZfHw8MTEx7Nq1iz179lBQUBDqLskZoF69ejRv3py4uLhKra9gSkRERETCQmxsLElJSaHuhshJ0zQ/ERERERGRSlAwJSIiIiIiUgkKpkRERERERCpBwZSIiIiIiEglKJgSERERERGpBAVTIiIiIiIilWBn+g3RzGwXkBPqfvg0A3aHuhNy2tFxI5Wh40YqQ+Q+0dYAABG6SURBVMeNVIaOG6mMcDtu2jrnzi5deMYHU+HEzJY653qGuh9yetFxI5Wh40YqQ8eNVIaOG6mM0+W40TQ/ERERERGRSlAwJSIiIiIiUgkKpsLLC6HugJyWdNxIZei4kcrQcSOVoeNGKuO0OG50zZSIiIiIiEglaGRKRERERESkEhRM1TAzSzKzaWa238wOmNl0M2tzkuvGmtlEM9tmZkfMbJGZXV7TfZbQq+xxY2Y9zewFM/vWzA6b2UYze8PM2tVGvyW0qvL3ptR27jczZ2YLa6KfEn6qeuyYWScze9fMdvv+X602s7tqss8SelU8x2ljZq/6/k8dNrM1ZjbBzBrWdL8ldMystZn9r++c9rDvf03ySa4blufFCqZqkJk1AP4P6AiMAm4FOgDzTvKPxUvAfwO/AwYD24DZZtatZnos4aCKx80IoAvwDJAB/Aa4GFhqZkk11mkJuWr4e1O8nfbAg8DOmuinhJ+qHjtm1hP4AogBRgPXAk8DkTXVZwm9qhw3vuX/BC4HfgsMAl4E7gGm1mC3JfTOA24EcoFPT3Hd8Dwvds7pUUMP4C6gEDjPr6wdUAD8soJ1LwIccLtfWRSwGpgR6n3TI2yPm7ODlLUFioDfh3rf9AjP46bUdmYDU4D5wMJQ75ceNf+o4t+cCGAl8H6o90OP2n1U8bi5xneOc02p8id96zcI9f7pUWPHTYTf69G+4yD5JNYL2/NijUzVrOuAxc65tcUFzrn/AJ8BQ05i3Xwg02/dAuBtYICZxVR/dyVMVPq4cc7tClKWA+wCWlVzPyW8VOXvDQBmNhJvJPP+GumhhKuqHDvpQGdgUo31TsJVVY6baN/zgVLl+/ACdKuuTkp4cc4VVXLVsD0vVjBVs7oA2UHKV+L986lo3f845w4HWTcab5hU6qaqHDdlmFkn4BxgVRX7JeGtSseNmSUA/wP82jm3t5r7JuGtKsdOX99zrJktNrN8M9tpZs+YWf1q7aWEm6ocN/8EvgP+YGadzayRmV2JN9r1vHPuUPV2VeqAsD0vVjBVs87CmxNa2l4goQrrFi+Xuqkqx00AM4sCnscbmXqp6l2TMFbV42YisAZ4pRr7JKeHqhw7LX3PmcAc4Grgj3jTd96srg5KWKr0ceOcO4oXiBdPE/0e+Bj4CPh59XZT6oiwPS+OClXDZ5BgN/I6meFrq8K6cvqrrp/9ZKA3MMg5F+yPkNQtlTpuzOwy4DbgYuebiC5nnMr+zSn+UvZ159zvfK/nm1kk8KSZdXbOfVMtPZRwVNm/ObF4Afg5eIkrNgK98BILFAA/q8Y+St0QtufFCqZqVi7BI+UEgkfX/vYCwdKLJvgtl7qpKsdNCTN7AvgJMMo5N6ea+ibhqyrHzRS8kcvNZtbEVxYFRPreH3HO5VVbTyXcVOXY2eN7nluqfA5eMoFugIKpuqkqx82P8a63O885t85X9omZ7QdeMLPnnXNfV1tPpS4I2/NiTfOrWSvx5niW1pmK/7msBNr5Uo+WXvcYsLbsKlJHVOW4AcDMHsRLi36Xc+61auybhK+qHDedgJ/inQAVP/oAqb7X+pa4bqvq/yoo+41x8bfFlb3YXMJfVY6brkCuXyBVbInvuVMV+yZ1T9ieFyuYqlkzgFTffVsA8N2YrI9vWUXr1gNu8Fs3ChgOzNG3xHVaVY4bzGwcMAF40Dn3vzXURwk/VTlurgjy+Brv4vIrgGnV310JI1U5dmYBecDAUuUDfM9Lq6eLEoaqctxsBxLMrHTSgEt9z1uqqY9Sd4TtebFpenzN8d2U7mvgCPAQ3jd3jwKNgQudcwd99doC6/DuA/R7v/XfxvuH9CvgP3jfDg8GejvnvqzFXZFaVJXjxsxG4F30PRt4pNSmD+jahbqrqn9vgmxvPhDlnOtbXh2pG6rhf9V4vBuv/hHvJq49gfFApnPuR7W3J1Kbqvi/Khn4N15Q9RjeNVM98Y6jNUCvKqTQljBnZj/0veyPNyviDrxEWbuccwtOt/NiXTNVg5xzh3ypPv8HeA1v2sPHwN3Ff2R8DO9O8aVHCm/H+yMzAWiC90droAKpuq2Kx81AX/lAyn5TvABvjrrUQdXw90bOUNVw7PweLxvbHcC9wDa87JCP1nDXJYSqctw45zaYWSrwMN45TjNgE/AC8JgCqTrv3VLvn/U9F5+nnFbnxRqZEhERERERqQR9MykiIiIiIlIJCqZEREREREQqQcGUiIiIiIhIJSiYEhERERERqQQFUyIiIiIiIpWgYEpERERERKQSFEyJiIiIiIhUgoIpEZEQMbOhZvbLIOXpZubMLD0E3QrKzHqY2WEza+V77DOzN8up+7KZHTCzpNruZ5C+jDCz981so5kdMbNvzez3ZtYwSN1mZvaKme01s4NmNtvMOpWqE2lmT5jZXF89Z2YjTqIft/vqrj2Juh19dct7DPWr+2Q5dd4+iXaamNnDZrbIty+5ZrbQzAaXU/8KM1vs+xy3mtkfzSymVJ07zCzLt/yQma0ws7vNrF6Q7SX7fjYHzGy/mb1jZq1K1bnJzDabWf2K9kdEJBR0014RkRAxs1eAq5xzrUuVxwGdgW+ccwdC0bfSzOz/8Przc9/70cBfgcHOuZl+9a4C5gI/dc5NCUln/ZjZcuBbYAawDegBjAeWA+nO90/QzCKBRcA5wH3A98BDwLnAhc65Hb56scBO3/qbgJuBm5xz5QYvZtbM14d84JBz7rwK+hwLdAuy6I++/rdwzn3vq/skcC/Qt1Td3c65EwZuZtYT+AB4GVjoK74VGAmMds69VKruZ776U4DzgInA+865UX71duB91lnAXiAduB/IdM7d6levMfBvYD/wOyAKeAwwoJtz7qivXgSwEvibc+6JE+2PiEgoKJgSEQmR8oKpcGNmFwPLgAuccyv9yucCHYHOzrnvzawBkA1sAPq7WvoHY2Yxzrm8cpad7ZzbVarsJ3gBQR/n3Oe+suHA20Bv59wiX1lTvH15zjn3a7/1I5xzRWZ2AbCCioOpvwHxwBGgZ0XBVDnbiAO2A++VCkqeBO51zkVVYpuNgILiwMWv/DPgbOdcil/ZLKANXmBZ6Csr/hxLjotyPu/H8QKq1s65Lb6y+4BHgfOccxt9ZR2Bb4CfO+ee9Vv/l8CvgSTnXP6p7qeISE3SND8RkRDwBVKjgFZ+U7M2+JaVmeZnZvN9U7AGmtlXvqlWy83sUjOLMrPHzWybb7rWK6WnsZlZAzP7g5n9x8yO+Z4f9H3zX5H/Bv7tH0j5lTcB/uB7/xjQHG9UoySQMrPGZva0meX42l5nZr82M/Or09DMnjGzb3zTw7aa2d/NrEOp/fip77NJ800R2w8sKK/jpU/sff7le/afUnYdsL44kPKtuwf4BzCk1DaLymuvNDO7EhgGjDvZdcpxI1AfeLWK2ynhnDtYOpDyWYrfZ+MLkq8C3i4OpHzeAgrxPrvibZ7o827pV3Yd8GlxIOVb91tf3YDPGy/IbQ78v4r2SUSktp3yN1kiIlItHgXOBi7h+Mlo0NEVP8VTqx4DDuJN+5rhe0QBPwI6+ersxPs2HzOLAmbjTR18FG80JRX4LXAWcE8F7Q4EZpYudM5tMLP7gWfMbB1ewPBL59z64jpmFg38E2jna3sV0AeYgDda86CvagMgBngY2AE0A34OLDKz832Bjb9M4HVgMhBZQf9L6+d7XuVX1gVvVK20lcAPzSzaOXfsVBrxTdd7HpjgnMvxix0rYxSwGfi/IMsizWw73vG0EXgDeLS80boT8QW4lxH42aTgHV8Bn49vNHIj3nF1Iv2AAsB/2mEXggeGK4GrS7Wz1Xd8DQSmn8RuiIjUGgVTIiIh4JxbZ2a7gGPOucUnuVpTvGlo66HkepIPgHbOuat8dWab2eXADfiCKeAmvGtq+jnnPvGVfew7uR9vZn9wzu0M1qCZNQeSga/L6dNf8EZNngI+B/631PJReAFjmnPuC1/ZP30B3r1mNtE5t883ojHGr91IYA6wy7f950pt9w3n3APl9KlcZtYW7xqdj5xz/sHBWcBXQVbZizeLI97Xl1PxEF4Q8dSp9tOfmbXHC0CfDDIqthr4Fd7Px4AMvGu+ugFBE0lUYCzQHfihX9lZvufcIPX3+i0P1veewM+A551zub6y4s/zVLa3HO8LABGRsKJpfiIip481/qM+eEkNwBt1olR5a79pdAOBHOBz35TAKF8wMweox4lPUounZgUNJHzT+Sb43j4W5GR/ILAGWBak7VigV3FFM7vZzP7lm7pXABzAG606P0jT75+gz0GZWTzeKN5BYHTpxUCwa7wqNZxkZp3xgpw7quE6n9t8/SgzkuOce9k595Rzbq5zbo5z7hd4QdwgM+vr64v5f/a+QDVYn6/BC/xecM6957+ouLlgq5XXafOyOb6Pdx3UfVXc3i4CpwmKiIQFBVMiIqeP0t/kHztBeRTHp7+dA7TFyybn/1jiW970BG3G+p5PNGXsWKlnf+fgBUOl2y4eIWsKYGY34E3b+woYAVyKN6K1368P/radoD9l+K4hm4l3Qn5NcXY+P+WNiCQARb5+nIrJvva+Mi8FeRO8wDXC9z7YPpXnVmCxc271SdZ/y/d8ie95DIGffelr3zCzPnhT6P4B3FFq8V7fc3mfz97ShWZ2Dl5Wxzwgwzl3uHiZ77qrA6eyPbzkHUqPLiJhR9P8RETqvj3Af/CmywWzoYJ1wTvJrWzbq4FbyllePNI2AljpnPvv4gW+xAfx5ax30pkCzbsX0gdAV+BKX6KD0lbiN0rmpzOw9lSvl/Kt1xz4QZBluXhJO35T0UbM7DKgPd51cCer9MjPe3hJJYodKdXGxXiB32JgeKkkE+D9/ArwrnN632+9RngZ/v5aansJeIFUI6Cvc257kD6u9G2vtM54I1mlnQXsDlIuIhJSCqZEREInj9r5tj0LL6PcwXICiRPZABzFO6GvbNsDgVzn3LoT1GuAN2ri70eVbLOEb0rhO0AaMNA5t6ycqjOAm8zs0uJru3xBwbV46b9P1fVAdKmy3+GN0t2MlyjiZIzCO04yT6Htkb7nL6Akw17QaZq+6Yiz8QKYocGSVjjnDpvZx8AIM3vCL9gagTf6+aHf9hrh/cwTgcudcxvK6eMM4PdmluSc2+RbNwVvNC1Y5sN2eEGdiEhYUTAlIhI63wBnmdnP8EYOjjrnVtRAO28At+MlnXgaL1lBNN4Naa/DO4k+HGxF59wxM/uC4KM2J+NlvIBgnq/tbLzroM7ztT3Ad3KeBfzJzP6Adz3VpXiJCw5Wst1if/W1Mx7INzP/68M2Oue2+l6/i3fz27fNuwfS93iZBo8CT/tv0MyuwJuemOQrutTMCoBC59z7AMX3ryq13k+BNs65+aXKFwJNnHMXlCqvj5cIYkZx8oZSy2Pxbrb7Gt51aYYXuN4B/N0/zXswZtYS77MG+D1wQamMg8v8rvf6na+tN83M/6a9rxcn8vBdo/cB0BO4E2hS6vP+zi8r43N4P98ZZvY7vKDscWAdMLVUPyPxblb8B0REwoyCKRGR0HkRL/nD43j3a8rBy5xXrZxz+WY2AG9a2U/wvuU/hHfiOpPg1zr5ywQmmllD59yhU2w7z8z6Aw/gnWC3xQuQ1vraLk5Y8Re865luw0uJ/gXeqNDcU2kviAzf8yO+h7/7gSd9/Sw0swy8wGkKXrD5GZAeZJraE3jBXrG7fY88gl/fVZEogv8/Hoo3zbG8e0sV4E2TvAtogXcd9Fq8lPcnk0HwQo7fT2pWkOWJeDcKxjm3xPf5PI53XVUuXqD6kF/9GOBK3+vS2RfByyr5tm97+827j9qfgDfxpiTOAe52zh0ptV460JBTG50TEakVVks3qBcRkdOUmcXh3ePoDufc66Huj5xZzOxloLVz7uoKK4uI1DIFUyIiUiEzexAYDlzk9I9Daokvvfp3ePdI+6Ki+iIitU3T/ERE5GRMwruuJRHYWkFdkerSFhirQEpEwpVGpkRERERERCpBN+0VERERERGpBAVTIiIiIiIilaBgSkREREREpBIUTImIiIiIiFSCgikREREREZFK+P/yseJlhjBKcQAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 1008x576 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"## part b\n", | |
"Z_st=np.block([[yr_st_train**0]]).T\n", | |
"Z_st_test=np.block([[yr_st_test**0]]).T\n", | |
"\n", | |
"max_N=20\n", | |
"\n", | |
"SSE_train_st=np.zeros(max_N)\n", | |
"SSE_test_st=np.zeros(max_N)\n", | |
"\n", | |
"for i in range(1,max_N):\n", | |
" Z_st=np.hstack((Z_st,yr_st_train.reshape(-1,1)**i))\n", | |
" Z_st_test=np.hstack((Z_st_test,yr_st_test.reshape(-1,1)**i))\n", | |
" A_st = np.linalg.solve(Z_st.T@Z_st,Z_st.T@price_st_train)\n", | |
" St_st=np.std(price_st_train)\n", | |
" Sr_st=np.std(price_st_train-Z_st@A_st)\n", | |
" r2_st=1-Sr_st/St_st\n", | |
" SSE_train_st[i]=np.sum((price_st_train-Z_st@A_st)**2)/len(price_st_train)\n", | |
" SSE_test_st[i]=np.sum((price_st_test-Z_st_test@A_st)**2)/len(price_st_test)\n", | |
" if i==2:\n", | |
" order_2_price_st=Z_st@A_st\n", | |
" if i==3:\n", | |
" order_3_price_st=Z_st@A_st\n", | |
" if i==4:\n", | |
" order_4_price_st=Z_st@A_st\n", | |
" if i==5:\n", | |
" order_5_price_st=Z_st@A_st\n", | |
" if i==6: \n", | |
" order_6_price_st=Z_st@A_st\n", | |
" if i==7:\n", | |
" order_7_price_st=Z_st@A_st\n", | |
" if i==8:\n", | |
" order_8_price_st=Z_st@A_st\n", | |
" if i==9:\n", | |
" order_9_price_st=Z_st@A_st\n", | |
" if i==10: \n", | |
" order_10_price_st=Z_st@A_st\n", | |
" \n", | |
" \n", | |
"fig = plt.figure(figsize=(14,8)) \n", | |
"plt.plot(yr_st,price_st,'b-',label='original data')\n", | |
"plt.plot(yr_st_train, order_2_price_st,'.',label='order 2')\n", | |
"plt.plot(yr_st_train, order_3_price_st,'.',label='order 3')\n", | |
"plt.plot(yr_st_train, order_4_price_st,'.',label='order 4')\n", | |
"plt.plot(yr_st_train, order_5_price_st,'.',label='order 5')\n", | |
"plt.plot(yr_st_train, order_6_price_st,'.',label='order 6')\n", | |
"plt.plot(yr_st_train, order_7_price_st,'.',label='order 7')\n", | |
"plt.plot(yr_st_train, order_8_price_st,'.',label='order 8')\n", | |
"plt.plot(yr_st_train, order_9_price_st,'.',label='order 9')\n", | |
"plt.plot(yr_st_train, order_10_price_st,'o',label='order 10')\n", | |
"plt.xlabel('time (Year 2014.75-2020)')\n", | |
"plt.ylabel('price ($)/Metric Ton')\n", | |
"plt.title(\"Various polynomial Fits for Steel Prices/Metric Ton\")\n", | |
"plt.legend(loc='best');" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The highest order polynomial fit shown is order 10 (yellow-green marker). Notice that this degree order fit begins to fit the errors of fluctuations of the data, more than the general trend." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 347, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAH/CAYAAABHBwyQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXxU1f3/8deHkERACBFkVwGVgriA0Eo0Sioqq4qigKAI1oqVolbbr/IVBTdqpVDbUrcqYl0gX4RakRqQCigFfwqoNS5QREGQLRpE9gDn98e5k8xMJskkZCO8n4/HPGbm3DPnnjtzZ+Z+7lmuOecQERERERGRilOrqisgIiIiIiJS0ynwEhERERERqWAKvERERERERCqYAi8REREREZEKpsBLRERERESkginwEhERERERqWAKvESqOTO70cycmV1b1XWpLszsoeA9Sa/qulS08tjWinq/zKx9UO6T5VluHOutY2YTzWytmeUFdWhfmXUoLTN7JKhnt6quC1S/+lRXZvaume2t6nrUVGa22cw+r+p6iFQWBV4iRTCzGcGByeUl5OsU5FtaWXUTqShmVjvYn4u7HVtCGRV9MHUP8GvgC+AR4H4gpwLXVyQzO9HMDgXvyy+rog5SIOxkQPhtn5l9aWbPmNlJVV3H8mRm/YNt7BU8nxG23YOKeV12WL4yn7Qws5uDMgaXtYzyFATKJf1+hd+aVXWd5ehSu6orIFKNTQUGASOAfxSTb0Rw/1wF1WMmsAT4poLKl+rtMeBFYF0lr3cT8HQRy/YH92uBDkBupdSoQG/gO6CXc+5gJa872nDAAIf/LZhSpbWJ3yRgGvBV1VajwnwCvBI8TgEuBH4G9DezHzvnvoyznEFAcgXUr7xcBuwEFkalH8Dvj5nRLzCzHwMdgzxVfRyYDpTnd/gZICsq7UagJX6f3xm1LPq5SIWq6i+cSHW2APga6GNmxzvntkVnMLNEYAiwmxh/cOXBOfc98H1FlC3Vn3Muh6ppzfnGOTe+uAzOuf1AVXQTag5sq+qgy8wMH3htBeYB15nZWc65j6qyXvEIfs8K/abVINnh+6+Z1QJeAgYDdwE3x1OIc66yT3jELdimvsA859y+qMVZ+P+uls65jVHLRgD7gLeBiyu+pkVzzq0p5/KeiU4LWgNbAr93zm0uz/WJlJa6GooUwTl3CHgeSASKGl91KdAYmOWc2xFKDMZlvW5m64JuLtvM7FUzOzu6gPAxXGY2wMzeM7NdZrYgennU68zMbjKz5Wa228x2mNliM7s0xjpeDMpoFc8yM0sws1+Y2Qoz225mO83sCzN72cw6lPTemdlFQZljg8dLg23aZmZ/NbNGMV4T9/bEeO2Fwfp+X8TyS4Llk8LSNpjZGjNrYGZTgu5xe4P3/8IiyulkZrPNLCf4XFeb2QNmVjcq3ynB+p4xs9PNLCvYnhwzeyqU38wuDda3O6jP/8RYZ6HxWWaWbGa3mdkCM9toZvvN7Jvgszy5pPervFjUGK/Qc6Ap8COL7NIzOMhT28xGmdnKsH1rjZm9ZGY/KmF9jwTlN48qPyssT4Mg35rgM9pqZv9nZqfFKO/d4DOvZ2a/N7P1ZnbA4u82lQG0AWbgW4+goAW8RFZMN61Yy8LfbzM708zmBfvVNjN7wszqBPkuN7P3g/3qazO7M0b5hcZ4mVmvIO1uM0szs4XB5/OtmT1vZsdFlZGfP0b5hZaZ2TGhz8vMTjKzV8wsN9gPplvwu2Bm55v/7u8MPr/fmVlCvO9rLMHv+RPB065hdSp2H7AixniZH2c4xsw+NP/b9r2ZfWBm95sPiMLz/tj878bWYJ9cE3yv68Yod4j538tvg8/vq+C158TYrG5AE+C1GMuewx/jDYsq/xjgmuA13xX1fpn/zcwys++C9+cTM/t1+OdgZjMoeE+nh30fPw/Ls9nMPjezxuZ/DzeZ75rbLXx5jPWnmtlvzewzM9sT1ONdM7utqDofDvP/ebea2UfB+rab/329KEbeKcF2nm5mI83s0+A9+tLM7qqI+knNocBLpHjT8F2IhhexPJQe3c3wceA4YD7wB+AtoBfwbzPrSmxDgZfxXX+mAP8uoW6PA08BjYAngReA04DXzOzWEl5bkt8H5dfCb9vjwPvARcBZpSgnHZgLbAD+BHyK7/axKMZBx+Fsz0JgDTDMfCtktBuC+6lR6cn4ls3u+BbLmUBn4A0z6xie0cy6A0vxZ5j/if9cc4F7gX+ZWazuSKfgu4kexHfb+wq4Cfir+fEX04FVwTIH/M7MhpawrQDH47vNGP4A6g/4z2cw8J5V3TiWHPx4q13At8Hj0C07yPMHCrrjhfat5cAlwBkllL+giPJfBDCzesBifIvGFmAy8CZwBfD/zOwnMco0YA5wJX5f/QvxtwSF9qsXgEX4/XyomSXF+fqyage8A+Th952v8S04Twb7z4v4lsi/4rfv91bMeJ8YzsP/Zm3Hfxe/wB/Azy6n+jfG/741xn8nP8Lvu7PNLAPfWrMFv225wP/gx/QdLismPe59wMzq49//CfjfyKeC7dgC/C+QFJZ3EP5340L8dv0Jv5/cA2SZWe2wvHfiW+UaBfd/CtbzY+D8GFW5DP/bMjfGsk+B9yj839UfaEgxXeODeszD/9b/Hf8d3QNMJPiuBV4JW/csCr6P0d1t6+C/l93wv7FPU0wXPzNrCawA7sZ//n/Gvx/78N/tivAC8EfgGHz9ZwBdgPlmNryI19wPPAz8P/w2JQGPmFl57KtSUznndNNNt2Ju+AMqB5wdld4Uf+CzFrCoZW1ilNMR/2eTFZV+Y1B+HnBujNeFll8bltYjSFsJ1AtLb4Efm7MfOCks/cUgf6sY5RdaBuwA3gVqReWtDaTE8Z5dFJTpgCFRyx4P0u87jO15KMifHpZ2V5B2ZdT6jgP2Asui0jcE+f8PSAxL/1mQ/pewtATgS/xBTvg6jYLg/H/D0k8J2/6bwtITgf8Ah/AHaWeFLTsBf2CxMqqesbb1GKB5jPf9wqCOT5ZURjGfXe0g7zfA+Bi3n4TlbR/kjV7fZuDzIsrfhQ9Go78ziUCDOL+TMcsHfhv92QXplwTpn4SvN9jHHT4IODaedYe9tkGwLZ+FpT0SlDcgRv7Qsm5haTcHaYNj5C+0LOz9dsANYelJwbYdDN6b08OWtcb/trwXR316hZXfL2r/XxKkd46R/+4Y9S+0LNhvQ+U/EPU9mh+kfwdcFPU+5wTbZdHribHe0Hs0Iyq9Fv5g2gFPxLsPBMv3RqWFfsMei7EfNyf43Qwe78KfXGkale/eoIxfhqV9iv8/SY7Ka0BqjLp9CrwdlRbaxvZh+9C5YcvnARuDzzQ/b9jyzsF+9DZQP+r9+2uMfaPIfTjsu+rwQVpiEcs/j0r7Z/CaX8XIX+g/LI59IvQZNyti+YBg+dvh7z3QFh/47QIah6VPCfJ/DbQMrxs+QN1Y2jrqdvTc1OIlUrLngvvhUenX4g9SpznnXPgCF2PgtnPuE/wPe/fws5xhXnHOxTsz4vXB/Vjn3K6wdXyDbwkJjT0rK4c/2DgUkejcAefHnMUr2zn3clTaeHyAEd51sjy2Zxr+APOGqPSh+JatZ4t43R3Oubyw5y/gA6Pwlsnu+APYWc65JWH1c/gz3PvDtiHcKvzBSih/Hr7VwIBXXdhYIOfc18Ay4PTorkrRnHN7nXObYqS/FayzUPeYMmgOjItxi9VqFBczC7U47I3xnclzYd11y2gY/iDp3qiy5+MPOE8j8nMNuc85V9pB9oOBukS2ALwQ3Mfd3bCMPnXO5bfeOj/W7u/4g+NZzrnssGVf4c/Inxn2/pdknnPu9bAyDlKwbUW12JdGLr6lIFR+6AQI+BMkC8KW7cC3FDUFSjMD3elmNj64/QF/UmcQPoj7XYz8ce0DQVe94fgTQmNi7Mebwn43R+D3kTudc1uiivotfuxudDfT/URNNuG8iAlszHcp7kDsboYh0/EnnUYEr2mF/214wRU9PvIX+P3oFufcD2F1OASMCZ6WZQbDu6J+Z2MKWut7Ax/gA9sIzrkNZVh3SUK/3Xe7sLFyzrm1+NbPusDVMV73Oxc2fi6o2wKghZk1r4B6Sg2gyTVESvYKvqvDEDP7dXCQA/7P11EwtiOfmbXDH5Bn4A9go7sepVK4K8vyUtSpU3C/OMayRVF5yuL/gBvNbAV++9/BnzHfX/zLCinUXdI5t9XMVgNnmFld59xuymF7nHNbzGwOcLmZtQiCNvAtWLuIPflJTvQfuXNuv5ltw3fHCQmtexFRnHPfmNl/gY5mVsc5tyds8X+iD8zwZ3jBd6+KthkfZB6PbxErkvmZyX6D7xbWhMjf893FvTZOK5xz5XGQnc8558zs/4DhZvY+vntSaN8q8aCsOGbWBN9Cusw5F2vsyiKgJ/6zfD9qWWm+eyEj8N//l0IJzrlPzOxDoJeZNY8VHJeTovad4pYl41t/v42j/A9ipIUOMBvGWFZan7vCk0GUVH8oaAGPR8fgBj6Y2Yg/CfKQc259jPzx7gOn47vOvR71XY8lNC4ro4gu5vvwLVMhmfgTUx8H35PF+P051npClzkpMvByzn1vZn8HBgZjo67HB1XTSqjzAeAqM7sqxvL9UXWOx3bn3Bdx5v1xcL8gxm9nRemE365lMZYtwncLjfX/U9L3pKK+/3IEU+AlUgLn3K7gT/Bn+Mk0ZgV/oqfj/xwi/sTNXxPl/+HPki3At3D8QNANDj+OJdZ4oK2lqFYDYGd461CYzWF5yuoWfNe64fhxDAA7zOxpfKtU9EFTUYoaJ7EF/z7UxwcJ5bU9f8W/x8OBCWbWBT9OYWr42dswRbXeHcB3xQkJrbuoYGgz/iCvAb6rSUisFpwDcSyLNU4tXzDe7M0g/zz8+LbdBF3Q8Aeo1dVI/Jih6/Fn/QG+N7OngHvLENyHxPMZhecL2V/KVtzQd7wb8E7QohTuBXwr7TBit6yUhwrZr8LEej9CZRzWJBeBiq4/QKZzLt6WmdLsAynBfTyX9whNRlJocpMw4RN3PIhvkbsJuC9I22NmLwG/jqrjZcAq59zqEurwHH4yjdDv4rvOueJmIj0Of2w4rpg89UpYZ7TS/LeV5v0tLw2ArUUEesX9/1T090RqIHU1FIlPdHfD4VHp4X6F/5Ee4pzr7Zy7wzk3zvmpjYtrxSjN2b0dwLGxZsXCd8kJ5QkJdX2J9WdQ6A8l6PY1wTnXDt/F7gZ8F7ZfUxCIxeP4ItJDdQwFQ6XdnqLMx1/vakTQrSrU7bCobobxCq27aRHLS1PH8vC/+IPQDOfcFc6534TtY/EGxVXCObffOfeQc+5U/IyAP8MHjv+DP/Asq7J+RmU5qx7ar863yJkbHT7ogvi6G5bqe1kNHen1DynNPrA9uI/n5EZoXzvBOWdF3OrkV8K5Q865vzjnzgrKH4KfmONGwq6pZ2ap+Jbu4roZhvwLPxbpEfzY01j/WdF13gfULqbOJc5sG6Wi3t/ysgM4voiuuJX92y41nAIvkTg45/6NDzx6BX3Qr8Gf7Yo1y1doOu854YlBUHE43f/CfRjcXxBjWfeoPFDwZ9Yyqk61gDOLW5Fzbp1z7jl8t8k9+DOt8TovOiHoEtYO+G/QzTC8rvFuT1F1PYSfXewUfLeyIfhuTfGOnStKkfUL+vK3A1bH0fWovJwMbHHOvRdVlxb4QLmqHSSOM77Oua+CsUoZ+IO90uxb0WVtxXftOcPMYnWHi3s/Kk4wnfZ1+PGEzxZxW42f7v7cEoqL+b0MdD6celaSI73+ZfEJ/ncw3YLp+4sR+n52KzZXDMFYsen437H1wKVhgUFffKtUiYGXK7gsSsug3iVdb/I9fI+MeD+/0Fix8mrhCXX5vKgUYxIP14f4bY41ZX+5/G6IhCjwEonfNPyf3cv47hjTnXOFru+C/5OEsKAjCHB+h58+uTz8Lbh/IPzP38ya4Vul8vADq0NWBPcR13QB7gBOCk8wf32a7hSWim9lKU1wcbqZRU+KMR7/Jxc+KUFpt6c4z+IPBp7F97M/3NYu8GMt1uHHPUT/OT+MH8P3t0Kvqjjr8Wdo24USgunsp1A9upB/BzSJnkTG/LWSYgXXx1H6fSuWvwHHEtVNysx64Afsf0bZxnOF64Of5GGOc+7GWDf8NNNQeKKXaKHv5eDwyyCYv2ZbrMH81c0n+K5y/YMp1oH8Ma63VFmtKlDwm/8cfuzuhOjgwMyahU2O8wx+n/69mbWNLsv8tarOCnveM8bEOsfiu/aFT0hzGb5LYrwnlP6Ev6RCrzi6VP4F35L5RHCSLLrOzS3yenuh8ZSxgu9Sc/6C1f/EB36FrtkVTDVf3kK/3Q9HfQ9bA7/Ef4avVMB65ShUHf6gRY4Uz+On5Q6dxY6+JlTIk/gA5zXzF5jcgT9rdgJ+VsNYB56l4pxbYGZ/BX6OH4j9D3wwMxDfve+OqLEns4K6jwxa7D4BzsaPs3qHyGvE1MNfZ2s1/uznBvyBcX/8b8bkUlR1HvCcmfXHdyc7D7/92fhrhZV1e4rknNtoZm8A/fAB22EHRM65g2Z2A/6AYJGZZeJbV36KP0v6Xvj2VIIpwbqXBXU5hJ+trBbwMX72vqq0EBgN/MPMluHHPfwDP5vdYjNbhZ/gYgP+mkX98XUvzb4Vy0P4AOv2YHzfEuBE/H60Cz8F++EO2A91ISyuy9bf8S3iA83s1rCW3QjOuS/M7HX8vvqemf0rqO9lwOsUTKBQLQXjX5/BH5yuDCa3aYw/yJ+PH1dUE92Nb8W6HehhZm8G6T/CX7qgAT5Q2mhmw/ATsHxqZv/E/w7Wx7daX4D/v7g9eP0/gC1mthR/cqUeflxxI2AsQBAY9AT+7qJmnS2Kc24b8GqceZebv47XZGBNUOd1+P+Advjf8F/je4CAn0ApD/iNmTXGB2LfOuf+Wqjw+N2E/+7+wcwG4v+jjsGPq+5AOXdDdM69EozjHgj8J9iP6+NnwWwI3Bi8hyKHTS1eInEKZiibFzz9xDkXPTNaKN97+IO//+B/uK/DTybQDd/XvryMxE/9uwN/dvl6/EVTr3DO/SGqTjvx18r6Jz7I+jl+fFU3ClroQnbgpw3+Gn9dqDvwB4YrgYudc9NKUccl+G4xrfAHFx3xLVAZMQ5G496eOISmvp4TdEE7bM5P1X4ufh+4FP++NMK3eF1YiglHyqMus/HdKL/Gjze8Cn/2O53qMRbhPnzA+2N8689v8ZOc5OLHp22kYN/qi2+Fusg592LM0uIU7OcX4C/02gp/gNgTf0DbzTn37uGUb2bH478LW/BTnBdVjz34ayTVp+SWq6H4lpFWwCj8CZq+xZVfzdyBf7/r4et/Fn5M0uEceFdrwUQ95+P38wT879XP8AHBw/gZ8kJ5X8F/D2biL8VwO/772ggf3DweVvRv8CelzsO39lyNv67XVc650PT7P8UHdvGM7yoT59xj+JOFC4L1/Qq/3yfiW5NnhuXdjO96vwF/suW3FD+ZSDzr34i/bMHv8TO23o7/ntShdGOMS2MIfjvzgFuD9X2AbyUs6iSrSKlZ5c3WKSJHCzO7CD/r3r3OuYeqYP0T8MFjX+fcPyt7/SIiFcHMpuAD28au9NeeE5EqphYvEalRgrEmPwO+4shpNRARicelwFsKukSOTBrjJSI1gpmdj+8e0w/fPeXn8Y6BEBE5EjjnTio5l4hUVwq8RKSm6Ancg79Y58OUz2yGIiIiIuVCY7xEREREREQqmMZ4iYiIiIiIVDB1NYxT48aNXevWrau6GiIiIiIiUk2tWLEixzl3fKxlCrzi1Lp1a5YvX17V1RARERERkWrKzNYVtUxdDUVERERERCqYAi8REREREZEKpsBLRERERESkginwEhERERERqWAKvERERERERCqYAi8REREREZEKpunky9GOHTvYunUreXl5VV0VOQokJibSpEkTGjRoUNVVEREREZESKPAqJzt27GDLli20bNmSOnXqYGZVXSWpwZxz7Nmzh40bNwIo+BIRERGp5tTVsJxs3bqVli1bUrduXQVdUuHMjLp169KyZUu2bt1a1dURERERkRIo8ConeXl51KlTp6qrIUeZOnXqqGuriIiIyBFAgVc5UkuXVDbtcyIiIiJHBgVeIiIiIiIiFUyBl4iIiIiISAVT4CUVxswYP358qV+3aNEizIxFixaVe51Chg8fTuvWrcv02sOp3/jx43nrrbfKtF4REREROXIp8JIKs2zZMm688cZSv+7ss89m2bJlnH322RVQq6p1//33K/ASEREROQrpOl5S7vbt20dycjLdunUr0+sbNGhQ5teKiIiIiFRHldriZWaLzMwVccsKy5dqZs+YWY6Z7TKzBWZ2RozyjjGziWa2ycz2mNkyM7sgRr5aZjbGzL4ys71m9pGZDajo7T3SZWVlkZaWRp06dUhJSaF///6sWrUqIk9GRgbp6enMmTOHzp07k5yczOOPPw7E7mo4ffp02rdvzzHHHMMZZ5zBa6+9RkZGBhkZGfl5YnXlC61nwYIFnH322dStW5fTTz+dV199NaL8NWvWcN1119GmTRvq1KlD27Zt+cUvfkFubm6Z3oNt27YxZMgQGjRoQMOGDRk2bBjbt28vlG/+/Pn06dOH5s2b59dt0qRJHDx4MD9PaAbChx9+GDOLeH/ef/99rrrqKlq1akWdOnX40Y9+xP/+7/+yZ8+eMtVbRARg2jTo0wcWL67qmoiISGW3eN0CNIhKSwMmA68BmD86fQ1oA4wGcoExwEIz6+Sc2xD22meBvsBvgLXAKGCemaU55z4My/cg8GvgHmAFMBiYaWb9nHP/LN9NrBmysrLo27cvF154IZmZmezcuZP77ruP9PR0PvzwQ1q2bJmfd/Xq1dx6663ce++9tG3bluOOOy5mmW+++SZDhw7lsssuY9KkSeTk5HD77bezd+9e2rVrV2KdvvjiC2677TbGjBlD48aNmTRpEldddRWff/45p5xyCgDffPMNrVq14rHHHiM1NZW1a9cyYcIE+vTpw7Jly0r9Plx55ZV89NFHTJgwgVNPPZXMzExGjx5dKN/atWvp0aMHo0eP5phjjmH58uWMHz+ebdu28cgjjwC+62VaWhrDhw9n5MiRALRq1QqA9evX06lTJ4YPH079+vX55JNPeOCBB1i7di0zZswodb1FRHbsgJtvhn37YPNmWLmyqmskInKUc85V6Q0fPO0DjgueXw444KdheVKA74A/haWdFeQbEZZWG1gFvBaW1iQo//6o9f4L+E+89ezSpYsrzqefflooDarPrbS6dOniTjnlFJeXl5eftnbtWle7dm33q1/9Kj+te/fuzszcBx98EGP7cePGjct/npaW5jp27OgOHTqUn7ZixQoHuO7du+enLVy40AFu4cKFEeupXbu2W716dX7ali1bXK1atdzDDz9c5Hbk5eW5d955xwFu5cqV+enXX3+9O+mkk4p9D+bPn+8AN3369Ij0Xr16FapfuEOHDrm8vDz30EMPuYYNG7qDBw/mLwPcPffcU+x6Q69/4YUXnJm5nJycYvPH2vdERL78suA/oFGjqq6NiMjRAVjuiognqnRyDTOrA1wNzHHOfRckXwZ845xbGMrnnPsemIMPygjLlwdkhuU7AMwAeppZcpDcE0gCXoxa/YvAGWbWpvy2qGbYtWsXK1euZNCgQdSuXdAo2qZNG8477zwWR/VZad26NZ06dSq2zIMHD7J8+XIGDBgQcdHfs88+mzZt4vsITj31VE499dT8502aNKFJkyasX78+P23//v1MmDCB9u3bU6dOHRITEzn//PMBCnWTLMmyZctISEhgwIDIXqmDBw8ulHfTpk2MHDmSk046iaSkJBITExk7dizbt29n69atJa5rx44d3HXXXZx88skkJyeTmJjIddddh3OO//73v6Wqt4gIwIEDBY/Va1lEpOpV9eQaVwL1gefD0joC2THyfgIMM7NjnXM7g3xfOud2x8iXBJwSPO6Ib/FaEyMfwGnAl4ezETVNbm4uzjmaN29eaFmzZs1Yt25dRFqsfNFycnLIy8ujSZMmhZY1bdo0rnrF6sKYnJzM3r1785+PGTOGP//5z9x3332ce+651K9fnw0bNnDllVdG5IvHpk2bSE1NJTExsdj6Hjp0iMsuu4xvvvmG8ePH5wd9r776Kg8//HBc6x0xYgQLFizggQceoFOnTtSrV4/33nuPUaNGlbreIiJQOPByDsLOe4mISCWr6sBrGLAVeCMs7Tjgqxh5Qy1iqcDOIF+sGRNC+Y4Lu98eNP0Vl6/cFVrjESI1NRUzY/PmzYWWbd68mUaNGkWkWRz/5I0bNyYxMTFm68+WLVs48cQTy17hMDNmzGDYsGGMHTs2P23nzp1lKqt58+bk5uaSl5cXEXxt2bIlIt8XX3zB8uXLeeGFF7j22mvz0+fMmRPXevbu3cs//vEPxo8fz2233Zaf/vHHH5ep3iIiAGFz++Ac7N8PyclF5xcRkYpVZV0NzawFcBHwUtBFMH8RfuxWoZfEeF6e+WLV8SYzW25my7dt21ZS9hqjXr16dOnShZkzZ0bMyrdu3TqWLl1K9+7dS11mQkICXbt2ZdasWYTHwCtWrODLL8uvwXH37t2FWqiee+65MpWVlpbGwYMHmTVrVkR69GQXu3f7Rtfw9ebl5fHSSy8VKjMpKanQTIX79u3j4MGDheo9bdq0MtVbRAQiW7wAdkf3DxERkUpVlS1e1+IDv+ej0r8jditUanCfG5YvVjNJatjy0H2qmVlUq1d0vkKcc08DTwN07dr1CG2/KpsHH3yQvn370q9fP2655RZ27tzJuHHjSElJ4c477yxTmffffz+XXHIJV1xxBTfddBM5OTmMHz+eZs2aUatW+ZwD6NWrF88//zxnnHEGp5xyCrNnz2bp0qVlKuviiy8mPT2dkSNHkpOTkz+rYXZ2ZE/YDh06cNJJJ3HPPfeQkJBAYmIif/jDH2KWedpppzF37lx69epFamoqLVq0oEWLFnTr1o1JkybRvHlzGjduzNSpU9m4cWOZ6i0iAoUDrz17IDU1dl4REal4VTm5xjDgI+fcR1HpoXFZ0U4D1gfju0L52phZ3Rj59lMwpusTIHQJ90UAACAASURBVBk4OUY+gE/LUPcar1evXsydO5ft27czcOBAbr75Zjp06MCSJUto0aJFmcq8+OKLeemll/jss8+44oor+N3vfsekSZNo1qwZKSkp5VLvP//5z1x22WXcc889DBo0iB9++IHp06eXubzZs2fTp08fxowZw6BBgzhw4ABTpkyJyJOUlMSrr75Ks2bNGDZsGKNGjeKCCy7g7rvvLlTelClTqFevHpdeeik//vGPefrppwF/fbMuXbowatQohg8fTrNmzfjjH/9Y5nqLiMQKvEREpOpY4aFPlbBSs67A+8Adzrk/RC3rD/wdyHDOLQ7SGuAnwHjZOTc6SOsEfAAMd849H6TVBj4G1jjnLg3SmgBfAxOcc/eHrWcB0NQ5V+jCzLF07drVLV++vMjln332GR06dIinKAmzYcMGTjnlFO655x7uvffeqq7OEUn7nojE8u9/Q3p6wfOPP4bTT6+6+oiIHA3MbIVzrmusZVXV1XAYcAB4Ocay14BlwItm9hsKLqBswKOhTM65D80sE3jMzBLxgdkv8BdeHhqWb6uZ/QEYY2Y/ACuBQcCFRE5PLxVsz5493HHHHVx00UU0btyYtWvX8uijj1K3bl1uvPHGqq6eiEiNohYvEZHqpdIDryBIugbIcs5tiV7unDtkZv2A3wOPA8fgA7GfOue+jso+AngYeAhoCHwE9HLOrYzKdw9+JsTbgGb4iywPdM7FN+2clIuEhAQ2b97ML3/5S7799lvq1avH+eefz8yZM+Oakl5EROKnwEtEpHqp9MDLOZcHHF9Cnu+AG4Jbcfn2AHcEt+LyHcQHZw+VqrJSrpKSkvj73/9e1dUQETkqhE8nD5rVUESkqlXl5BoiIiJSQdTiJSJSvSjwEhERqYEUeImIVC8KvERERGogBV4iItWLAi8REZEaSIGXiEj1osBLRESkBlLgJSJSvSjwEhERqYGiAy/NaigiUrUUeImIiNRA0dPJq8VLRKRqKfCSSrVo0SLMjEWLFlXoejZt2sSYMWPo2rUrKSkpHH/88fTo0YO33367QtcrIlJdqKuhiEj1osBLaqQVK1aQmZnJ5ZdfziuvvMK0adM45phjyMjI4PXXX6/q6omIVDgFXiIi1Uvtqq6A1Dz79u0jOTm5wtfjnCMvL4+kpKRCy9LT01m9ejW1axfs4j179qRjx448+uij9OvXr8LrJyJSlRR4iYhUL2rxkiJlZWWRlpZGnTp1SElJoX///qxatSoiT0ZGBunp6cyZM4fOnTuTnJzM448/DsC2bdsYMmQIDRo0oGHDhgwbNozt27fHXNfs2bPp1q0bdevWpWHDhlx99dWsX78+Ik/r1q259tprmTp1Ku3btycpKYm5c+fGLK9hw4YRQRdA7dq16dSpExs3bizrWyIicsRQ4CUiUr0o8KrGVqzL5S8L17BiXW6lrzsrK4u+ffty7LHHkpmZyRNPPEF2djbp6emFApfVq1dz6623Mnr0aObNm0ePHj0AuPLKK3n99deZMGECmZmZ1K5dm9GjRxda15NPPsmAAQM47bTTeOWVV3jqqafIzs6me/fu/PDDDxF5Fy5cyOTJkxk3bhxZWVmceeaZcW/T/v37WbZsGR06dCjDOyIicmTRrIYiItWLuhpWUyvW5TL0mXfZf+AQSbVr8dKN3ehyUmqlrX/s2LG0bduWN954I7/lKC0tjXbt2jFp0iQmT56cnzcnJ4f58+fTqVOn/LQ333yTJUuWMH36dAYPHgz4rn69e/dmw4YN+fl27tzJXXfdxYgRI5g6dWp++jnnnEO7du149tlnuf322/PTc3NzWbFiBc2aNSv1No0fP54NGzbw0ksvlfq1IiJHGrV4iYhUL2rxqqbeXfst+w8c4pCDvAOHeHftt5W27l27drFy5UoGDRoU0V2vTZs2nHfeeSxevDgif+vWrSOCLoBly5aRkJDAgAEDItJDQVh4vh07djB06FAOHDiQf2vVqhXt27cvNAtht27dyhR0vfzyyzzyyCPce++9nH/++aV+vYjIkUaBl4hI9aIWr2qqW9tGJNWuRd6BQyTWrkW3to0qbd25ubk452jevHmhZc2aNWPdunURabHybdq0idTUVBITEyPSmzZtGvF869atAFx00UUx65KaGtnKF2tdJZkzZw7Dhw/nZz/7Gffff3+pXy8iciTSdbxERKoXBV7VVJeTUnnpxm68u/ZburVtVKndDFNTUzEzNm/eXGjZ5s2badQoMgg0s0L5mjdvTm5uLnl5eRHB15YtWyLyhcqaNm0aHTt2LFRO/fr1S1xXcf71r39x9dVXc8UVV/DUU0+V6rUiIkcytXiJiFQvCryqsS4npVZqwBVSr149unTpwsyZMxk/fjwJCQkArFu3jqVLl8acICNaWloaBw8eZNasWRHdC2fMmBGR79xzz6V+/fqsWbOG66+/vly3Y9myZVx++eX06NGDF198kVq11LNWRI4eCrxERKoXBV4S04MPPkjfvn3p168ft9xyCzt37mTcuHGkpKRw5513lvj6iy++mPT0dEaOHElOTg6nnnoqmZmZZGdnR+Rr0KABEydOZNSoUWzbto3evXuTkpLCxo0bWbx4MRkZGQwZMqTU9f/888/p27cvjRs35je/+Q0rVqyIWN6tW7dSlykiciTRrIYiItWLAi+JqVevXsydO5f777+fgQMHkpSUREZGBo8++igtWrSIq4zZs2dz6623MmbMGBISErjsssuYMmUK/fv3j8g3cuRITjjhBCZOnMjLL79MXl4eLVu25IILLig0aUe83n33XXJzc8nNzeWnP/1poeXOuTKVKyJypFCLl4hI9WI6AI1P165d3fLly4tc/tlnn+n6UFIltO+JSCy//CX85S+RaYcOQSmHyoqISCmY2QrnXNdYyzToRUREpAaKbvEC2Lev8ushIiKeAi8REZEaKHo6eVB3QxGRqqTAS0REpAaK1eKlwEtEpOoo8BIREamBYgVemtlQRKTqKPASERGpgdTiJSJSvSjwEhERqYEUeImIVC8KvERERGogBV4iItWLAi8REZEaSIGXiEj1osBLRESkBtJ08iIi1YsCLxERkRpIsxqKiFQvCrykUi1atAgzY9GiRRW+rhEjRtChQwcaNGjAsccey1lnncWf//xnDsY6DSwiUsOoq6GISPVSu6orIFJR9uzZw+jRozn55JMxM+bNm8dtt93GmjVr+OMf/1jV1RMRqVAKvEREqhcFXlLu9u3bR3JycoWvxzlHXl4eSUlJMZfPmDEj4vkll1zCN998w9SpUxV4iUiNp8BLRKR6UVdDKVJWVhZpaWnUqVOHlJQU+vfvz6pVqyLyZGRkkJ6ezpw5c+jcuTPJyck8/vjjAGzbto0hQ4bQoEEDGjZsyLBhw9i+fXvMdc2ePZtu3bpRt25dGjZsyNVXX8369esj8rRu3Zprr72WqVOn0r59e5KSkpg7d26ptqlRo0bUrq3zDSJS8ynwEhGpXhR4VWdfvwfvTPL3lSwrK4u+ffty7LHHkpmZyRNPPEF2djbp6els3LgxIu/q1au59dZbGT16NPPmzaNHjx4AXHnllbz++utMmDCBzMxMateuzejRowut68knn2TAgAGcdtppvPLKKzz11FNkZ2fTvXt3fvjhh4i8CxcuZPLkyYwbN46srCzOPPPMYrfDOceBAwfYvn07s2bN4vnnn+eOO+44zHdHRKT6U+AlIlK96NR/dfX1e/D8ZXBwPyQkwfWvwQk/qbTVjx07lrZt2/LGG2/ktxClpaXRrl07Jk2axOTJk/Pz5uTkMH/+fDp16pSf9uabb7JkyRKmT5/O4MGDAejZsye9e/dmw4YN+fl27tzJXXfdxYgRI5g6dWp++jnnnEO7du149tlnuf322/PTc3NzWbFiBc2aNYtrO+bOncull14KgJlx9913c++995bhHRERObJoVkMRkepFLV7V1Vfv+KDLHfT3X71TaavetWsXK1euZNCgQRHd8tq0acN5553H4sWLI/K3bt06IugCWLZsGQkJCQwYMCAiPRSEhefbsWMHQ4cO5cCBA/m3Vq1a0b59e95+++2I/N26dYs76AI4//zzef/991mwYAF33303v//977nnnnvifr2IyJFK1/ESEale1OJVXbU+37d0hVq8Wp9faavOzc3FOUfz5s0LLWvWrBnr1q2LSIuVb9OmTaSmppKYmBiR3rRp04jnW7duBeCiiy6KWZfU1NQS11WclJQUunbtCkCPHj1ISkriwQcf5JZbbqFly5alKktE5EiiroYiItWLAq/q6oSf+O6FX73jg65K7GaYmpqKmbF58+ZCyzZv3kyjRo0i0sysUL7mzZuTm5tLXl5eRPC1ZcuWiHyhsqZNm0bHjh0LlVO/fv0S11UaXbt25dChQ3z55ZcKvESkRlPgJSJSvSjwqs5O+EmlBlwh9erVo0uXLsycOZPx48eTkJAAwLp161i6dGnMCTKipaWlcfDgQWbNmhXRvTB6ivdzzz2X+vXrs2bNGq6//vry3ZAYFi9ejJnRtm3bCl+XiEhVUuAlIlK9KPCSmB588EH69u1Lv379uOWWW9i5cyfjxo0jJSWFO++8s8TXX3zxxaSnpzNy5EhycnI49dRTyczMJDs7OyJfgwYNmDhxIqNGjWLbtm307t2blJQUNm7cyOLFi8nIyGDIkCGlrv/cuXN57rnnuPTSSznxxBP54YcfeOONN3j66acZOXIkLVq0KHWZIiJHEgVeIiLViwIvialXr17MnTuX+++/n4EDB5KUlERGRgaPPvpo3EHL7NmzufXWWxkzZgwJCQlcdtllTJkyhf79+0fkGzlyJCeccAITJ07k5ZdfJi8vj5YtW3LBBRcUmrQjXieffDKHDh1i7NixbN26lYYNG3Lqqafyt7/9jWuuuaZMZYqIHEk0q6GISPVizrmqrsMRoWvXrm758uVFLv/ss8/o0KFDJdZIxNO+JyKxNGoE330XmXbGGfCf/xTOm50Nr78OAweCemKLiJSdma1wznWNtUwtXiIiIjVQvNPJ5+VBnz7w9dcwaxa8/37F101E5GhUJdfxMrM+Zva2me00sx1mttzMLgxbnmpmz5hZjpntMrMFZnZGjHKOMbOJZrbJzPaY2TIzuyBGvlpmNsbMvjKzvWb2kZkNiM4nIiJSU8Q7xmvdOh90ASxfrnFgIiIVpdIDLzMbCfwDWAFcAVwNzATqBssNeA3oBYwGBgCJwEIzaxVV3LPAz4H7gH7AJmCemUUPDHoQGA9MAXoD7wIzzaxPOW+eiIhItRBv4PXll5HPv/qqQqojInLUq9SuhmbWGngM+I1z7rGwRfPCHl8GpAMXOucWBq9bBnwJ/A9wa5B2FjAEuME591yQthj4BHggKAczawL8GnjEOff7YB0LzewU4BHgn+W+oSIiIlUs3sk1ogOvtWtBw0ZFRMpfZbd43QAcAp4sJs9lwDehoAvAOfc9MAe4PCpfHpAZlu8AMAPoaWbJQXJPIAl4MWo9LwJnmFmbsm2KiIhI9eRc7DFee/f6ZeGiA6/o5yIiUj4qO/BKBz4HBpvZF2Z2wMzWmNmosDwdgewYr/0EONHMjg3L96VzLvr83Sf4QOuUsHz7gDUx8gGcVrZNERERqZ7Cg66EBEhKKni+d29k3rVrI58r8BIRqRiVHXi1AE4FJuK7+V0CvAlMMbPbgjzHAbkxXhuaFDc1znzHhd1vd4XnzY/OV4iZ3RRM/LF827ZtRWUTERGpVsK7GdauDXXrFjyPHuelFi8RkcpR2YFXLaA+MNI591fn3FvOuV8AWcCYYGINA2JdXMxiPC/PfIU45552znV1znU9/vjjS8ouIiJSLYQHXgkJUKdOwfOSAq/oFrBYpk6FVq1g7Niy11FE5GhT2YHXt8H9m1Hp84GmQHN8S1SsVqhQS1eolaukfN+F3acGQV1x+URERGqE8E4ayclFB147d0JOTuRrv/yy8DiwcM7B//wPbNwIDz8MmzaVT51FRGq6yg68PikiPRQUHQrydIyR5zRgvXNuZ1hZbcysbox8+ykY0/UJkAycHCMfwKfxVV1EROTI8MYbBY/POScy8Aqf2TBWt8IdOyA3Vkf+wLp18O23Bc8/KeqfXUREIlR24PX34L5nVHpPYINzbjP+Gl4tzax7aKGZNQAuDZaFvIa/vtfVYflqA4OA+c65fUFyFj4QGxq1zmuBbOecerNXokWLFmFmLFq0qFLXu3TpUmrVqoWZcSDWHMsiIjXI3LkFj/v2LbrFq6jxXMWN8/roo8jnn+r0pYhIXCr1Ol74a2YtBJ4ys8bAWuAq/CQbI4I8rwHLgBfN7Df4roVj8K1ij4YKcs59aGaZwGNmloi/ztcvgDaEBVnOua1m9gf8GLIfgJX44OxCIqenlxoqLy+PkSNH0rRpUzZv3lzV1RERqVC7d8NbbxU879sXZs4seB5P4LV2LXTpEnvZhx9GPlfgJSISn0pt8QpmFuyPv9bW/cDrQDdgqHNuWpDnENAPPw7scXwr2UHgp865r6OKHAE8BzwEzAVOAHo551ZG5bsnyHMb/mLN5wEDnXNzynkTBdi3b1/JmcqBc479+/eXmG/ixIk457jhhhsqoVYiIlXrrbcKpow/7TRo0ya+Fq/atWOnR1PgJSJSNpXd1RDn3A7n3CjnXFPnXJJz7kzn3MtReb5zzt3gnDvOOVfXOdfDOfdRjLL2OOfucM41c84d45w7xzm3KEa+g865h5xzJznnkoN1vlKBm1kjZGVlkZaWRp06dUhJSaF///6sWrUqIk9GRgbp6enMmTOHzp07k5yczOOPPw7Atm3bGDJkCA0aNKBhw4YMGzaM7du3x1zX7Nmz6datG3Xr1qVhw4ZcffXVrF+/PiJP69atufbaa5k6dSrt27cnKSmJueH9aWL44osvePjhh3n88cdJTEw8jHdDROTIEP6z2K+fvy8q8AqfwfCccwoelybw+uST4ifjEBERr9IDL4nfh1s/5JmPn+HDrR+WnLmcZWVl0bdvX4499lgyMzN54oknyM7OJj09nY0bN0bkXb16NbfeeiujR49m3rx59OjRA4Arr7yS119/nQkTJpCZmUnt2rUZPXp0oXU9+eSTDBgwgNNOO41XXnmFp556iuzsbLp3784PP/wQkXfhwoVMnjyZcePGkZWVxZlnnlnsdvziF7/gqquu4oILLjjMd0REpPpzDl5/veB5377+Pp4WrwsvjJ0ebvt2+OqryLTvvoucRVFERGKr7DFeEqcPt37Iz+f/nP0H95OUkMRfL/krnZp0qrT1jx07lrZt2/LGG29QO+h/kpaWRrt27Zg0aRKTJ0/Oz5uTk8P8+fPp1Kmgfm+++SZLlixh+vTpDB48GICePXvSu3dvNmzYkJ9v586d3HXXXYwYMYKpU6fmp59zzjm0a9eOZ599lttvvz0/PTc3lxUrVtCsWbMSt+HFF19k+fLlfP7552V/I0REjiAffwyhn9iGDeHcc/3jWLMaOlc48HrwQf+4qGt5/ec/sdM//RSaNCl7vUVEjgZq8aqmlm9Zzv6D+znEIfIO5bF8y/JKW/euXbtYuXIlgwYNyg+6ANq0acN5553H4sWLI/K3bt06IugCWLZsGQkJCQwYMCAiPRSEhefbsWMHQ4cO5cCBA/m3Vq1a0b59e95+++2I/N26dYsr6Pruu++48847mTBhAk10NCAiR4nwboa9ehWM26obduGVUItXTg7s2uUf168fOZnGunVw6FDh8qO7GYZonJeISMnU4lVNdW3alaSEJPIO5ZFYK5GuTbtW2rpzc3NxztG8efNCy5o1a8a6desi0mLl27RpE6mpqYXGVTVt2jTi+datWwG46KKLYtYlNTU14nmsdcUyduxYmjZtysCBA/PHle0NRpt///33HHPMMdSrVy+uskREjhTR08iHxOpqGN7a1aaND74aN/YB2f798M030KpVZPnhgVfLlv4iyqDAS0QkHgq8qqlOTTrx10v+yvIty+natGuldjNMTU3FzGJOvb5582YaNWoUkWZmhfI1b96c3Nxc8vLyIoKvLVu2ROQLlTVt2jQ6dix83ez69euXuK5YPv30Uz7++ONCdQVo3Lgxl19+Oa+++mpcZYmIHCnCL2YcPmYrnsArdJ+T4x+vXVt84DV4MEya5B8r8BIRKZkCr2qsU5NOlRpwhdSrV48uXbowc+ZMxo8fT0JCAgDr1q1j6dKlMSfIiJaWlsbBgweZNWtWRPfCGTNmROQ799xzqV+/PmvWrOH6668vt2147LHHCs2gOG3aNJ5//nkWLFhQqOVNRKQmCL8+fPh5q9IEXu+/X7A8fF6ivLzIwO6aaxR4iYiUhgIvienBBx+kb9++9OvXj1tuuYWdO3cybtw4UlJSuPPOO0t8/cUXX0x6ejojR44kJyeHU089lczMTLKzsyPyNWjQgIkTJzJq1Ci2bdtG7969SUlJYePGjSxevJiMjAyGDBlS6vpHjzkDWLRoEQDdu3ePGLsmIlJThAde4T9zJQVebdtG3kcvB/j8c98FEeCkk6BTJ1/unj2wZQt8+y3E6GQgIiIBTa4hMfXq1Yu5c+eyfft2Bg4cyM0330yHDh1YsmQJLVq0iKuM2bNn06dPH8aMGcOgQYM4cOAAU6ZMKZRv5MiRvPbaa6xatYrrrruO3r17M27cOA4cOBAzgBIRkdiKCrzCJ9cIzWoYPnNheItXSHTgFd7N8KyzICEB2rcvSFOrl4hI8XTaX4rUq1cvevXqVWyeUCtSLMcffzzTp08vlO5iXGmzT58+9OnTp9h1fRV98ZhSGj9+POPHjz+sMkREqivnIgOvoJc4ULquhiHRU8qHB16hc2KnnQYffOAff/opnH9+2eouInI0UIuXiIhIDRA+/XutWv4WEh14HTwI69cXpLVu7e/jbfEKBV7hcyJ99lmZqi0ictRQ4CUiIlIDFNXNEAoHXhs3+skywF/4OHR1jRNPLAjYvvkG9u3zj52Djz4qKCMUeJ18ckHaYXZKEBGp8RR4iYiI1ADxBl67d8fuZgiQlFQwhbxz/kLK4AO1b7/1jxs0KGghC92DAi8RkZIo8BIREakBihrfBQUtWlB84BX9PDTOK3pijdAlFRV4iYjET4GXiIhIDXDwYMHj6Bav8MBr167YU8mHxBrnFWt8F8Dxxxe0pn3/PURdPlFERMIo8BIREakBiutqeOyxBY937ow9lXxIeCCWmQk7dhRu8QoxU6uXiEi8FHiJiIjUAMUFXsW1eEUHXuFTwi9eDOecA0uXFqRFX15RgZeISHwUeImIiIT5/ns/scSRpjQtXsUFXhkZcPfdBc8//xw2bfKPExIip5AHBV4iIvFS4CUiIhJ4+mlo1AjOPTdyzNSRoLjAKzm5YJr4/fv9VPHg0044oXBZv/0tvPxy5GyIAB06wDHHRKYp8BIRiY8CLxERkcCf/uQDrnffhfffr+ralE5xgZdZZHfDkBNOgMTE2OVdcw38+9/+2l4hP/lJ4XwnnVTwODT9vIiIFKbASyrVokWLMDMWLVpU4evKyMjAzArdHnvssQpft4gceZyDL74oeB7qXnekKC7wgsjuhiHR3Qyjde4My5fDiBHQsyeMHVs4j1q8RETiE+OnWaTmOPPMM3nqqaci0lqHHyWIiAQ2b4a9eyOfH0mKu44XxG7xKinwAj9l/NSpRS9X4CUiEh8FXlLu9u3bR3JycoWvxzlHXl4eSUlJReapX78+3bp1q/C6iMiRL7y1C2DLlqqpR1kVdx0viN3iFX0Nr7Jo0sSP+9q711/Ha/t2aNjw8MsVEalp1NVQipSVlUVaWhp16tQhJSWF/v37s2rVqog8GRkZpKenM2fOHDp37kxycjKPP/44ANu2bWPIkCE0aNCAhg0bMmzYMLYXcXXN2bNn061bN+rWrUvDhg25+uqrWb9+fUSe1q1bc+211zJ16lTat29PUlISc+fOrZiNF5GjTvi1raDkFq9//cuPg5o/v+LqVBoldTUsa4tXSaKv5aVxXiIisSnwqsZ2f/ABOU89ze4PPqj0dWdlZdG3b1+OPfZYMjMzeeKJJ8jOziY9PZ2NGzdG5F29ejW33noro0ePZt68efTo0QOAK6+8ktdff50JEyaQmZlJ7dq1GT16dKF1PfnkkwwYMIDTTjuNV155haeeeors7Gy6d+/ODz/8EJF34cKFTJ48mXHjxpGVlcWZZ55Z7HZ88MEHpKSkkJiYyJlnnsmzzz57mO+MiNRUpQm8du6EAQNgxgwYOBD27KnYusWjIsZ4xUvdDUVESqauhtXU7g8+YP2IG3D792NJSZz43FTqdu5caesfO3Ysbdu25Y033qB28A+elpZGu3btmDRpEpMnT87Pm5OTw/z58+kUdlXNN998kyVLljB9+nQGDx4MQM+ePenduzcbNmzIz7dz507uuusuRowYwdSwQQTnnHMO7dq149lnn+X222/PT8/NzWXFihU0a9asxG244IILGDp0KO3atWP79u387W9/48Ybb2TTpk2MjTVCXESOaqUJvDIz/fW+wN8vWQIXX1xxdYtHVbV4gQIvEZF4qMWrmtr93vu4/fvh0CFcXh6736u8eY137drFypUrGTRoUH7QBdCmTRvOO+88Fi9eHJG/devWEUEXwLJly0hISGDAgAER6aEgLDzfjh07GDp0KAcOHMi/tWrVivbt2/P2229H5O/WrVtcQRfAAw88wM9//nO6d+/O5ZdfzqxZs+jfvz8PP/wwO3fujKsMETl6lGaM1zPPRD6fN6/861NapQ28jjkG4vw5LZECLxGRkinwqqbq/uTHWFISJCRgiYnU/cmPK23dubm5OOdo3rx5oWXNmjXju+++i0iLlW/Tpk2kpqaSGHWBmKZNm0Y837p1KwAXXXQRiYmJEbePP/6Yb7/9tsR1lcY111zD3r17+fjjjw+rHBGpeWK1eDlXfONpLQAAIABJREFUOF92tr/OV7jqMM6rtF0NW7f247PKgwIvEZGSqathNVW3c2dOfG4qu997n7o/+XGldjNMTU3FzNgco5/N5s2badSoUUSaxfjnbt68Obm5ueTl5UUEX1uiTiGHypo2bRodO3YsVE79+vVLXFdpuOAo6nDLEZGaZffuwl0L9+6FHTsgJSUyPbq1C+Djj/11vw7z3NBhKe108uXVzRB0EWURkXioxasaq9u5M41H3lSpQRdAvXr16NKlCzNnzuRg2PzE69atY+nSpXTv3r3EMtLS0jh48CCzZs2KSJ8xY0bE83PPPZf69euzZs0aunbtWuj2ox/9qHw2KvDyyy9Tp04dzjjjjHItV0SObNGtXSHR3Q337oUXXih4Hn4eqqpbvUrb4lWegZdavERESqYWL4npwQcfpG/fvvTr149bbrmFnTt3Mm7cOFJSUrjzzjtLfP3FF19Meno6I0eOJCcnh1NPPZXMzEyys7Mj8jVo0ICJEycyatQotm3bRu/evUlJSWHjxo0sXryYjIwMhgwZUur6v/POOzzyyCNceeWVtG7dmu+//57nn3+e1157jUceeYR6sUaZi8hRq6jAa/NmaNeu4Pnf/w6h3tZt2sCNN8I99/jn8+fD9ddXbD2LU9oxXuVxDa+Qpk0LruWVm+snHIluKRQROdqpxUti6tWrF3PnzmX79u0MHDiQm2++mQ4dOrBkyRJatGgRVxmzZ8+mT58+jBkzhkGDBnHgwAGmTJlSKN/IkSN57bXXWLVqFddddx29e/dm3LhxHDhwoNCkHfFq3rw5hw4d4r777qNPnz4MGzaMbdu28fLLL3PXXXeVqUwRqbmKC7zChXcz/NnPoFevgudvvgmHDpV/3eJV2gsol2eLl5m6G4qIlEQtXlKkXr160Sv8qCKGRYsWFbns+OOPZ/r06YXSXYzR6n369KFPnz7FruurUvRfOeWUU3jjjTfizi8iR7fwGQ3NCibVCO9q+MUX8NZb/nGtWjB8uB/TdfzxsG2bv334IZx9dqVVO0JpW7zKM/AC391w1Sr/+KuvoITLLIqIHHXU4iUiIke98Bav8CGg4S1e4ddf79MHWrb0AVj49buqcpxXdQi8QjTOS0SkMAVeIiJy1AsPvM49t+BxKPDKy4PnnitI//nPCx5fcknB4+oceIV3NWzY0N/KkwIvEZHiKfASEZGj2qFD8OWXBc/T0goeh7oaPvZYQRDWvLlv8QoJD7yWLIGirs++YAH07AnPP18+9Y5WUuCVmlrw+OSTy3/9CrxERIqnwEtERI5q33wD+/b5x40bR85iuHkzrFkD991XkHb77ZGBTfPmBd0T8/Jg8eLY6xk50reI3XRTwcyI5amk63h16QIZGVCnDsQxOW2phU+uocBLRKQwBV4iInJUC+9mePLJ0KxZwfNNm3zAtHevf96pE/zqV4XL6Nmz4PG8eYWX79hRsJ79++Gjjw6/3tFKavGqVctPDpKbC9dcU/7rD2/x0qyGIiKFKfASEZGjWviMhm3b+mtShXzzTeRMhs88A4mJhcsI7264YEHh5WvWRD7/z3/KXt+ilBR4gZ+xMTm5/NcN/n0Llf3ddz7YFBGRAgq8RETkqBbe4tW2re+K16BB4Xx33um768Vy3nk+MAM/pfru3ZHLV6+OfP7xx2Wvb1FKuo5XRatVS90NRUSKo8BLRESOatFdDSGyuyH4Vq7x44suo25dOOUU//jQIfj008jl//1v5POqavGqaG3bFjyO3uYjwdat8M9/+u6gIiLlTYGXiIgc1aK7GkJkd0PwXejq1i2+nPALBke3aEUHIdnZkS1U5aE6BF4/+lHB49DFlI8U+/dD587Qty+MHl3VtRGRmkiBl4iIHNWiuxpC4RaveAKZ8MArukUrOvDasydyveVBgdfhWbXKj+kDePPNqq2LiNRMCrykUi1atAgzY9GiRZWyvtzcXG6//XZOPPFEkpOTadWqFcOHD6+UdYtI9ffDD7Btm3+clAQtW/rH0YFXrOnZo4WmlIfiA68LL/wH/5+98w6Pqkr/+OfMTBohjUAKNQkQA0gJECAU6UIIiooUsYGysujq6oLLjxXBtq4uoLvq2lBEVwVEWAFRilSBSAAB6RFCAqRQE0IgZcr5/XEzfdIgQcDzeZ48uffcc9swZO533vf9vl980YvM4y3YsqUXOblLKz32wUPTWbuuJWvXNWftuuasW3+r235KeF0dRUX25YsXf7vrUCgUNy/X9E+zEKIPsN7DpgtSymCHeSHATOAuwA9IAZ6RUjolbwghfIGXgQeAYGA3MEVKucllng6YAkwAIoDDwEtSysU1c2eK65G8vDx69uyJEIJXXnmFqKgosrOz2bJly299aQqF4jrBsXFydLTdIMM11bC6Ea+AgKVs3jKLkpIcvLwiad9+MgBPPPEygUF5CKHNKy7J5tCh5wCIjBjm8bgHD00nO/sLpzEpizhw4C+kHX4Jk/kCvj6RxDTvy+LFKwgMygdg46YQYmOfL/e4tYGr8JIS271e7zgaoijhpVAoaoPf6DsxngK2O6zbvqcTQghgGRANPAnkAVOB9UKIDlLKkw77fQwkA88C6cATwCohRKKUcrfDvJeBycBzwE5gNLBICDFUSvldTd/c752SkhJ8asuv2AEpJUajEW9vb4/bp06dSmFhIXv37iXQwaJs9OjRtX5tCoXixsBTfRdcWaphVBT4+0PXrkv5w2PPUVKihVCMxmwmPzsFAG9vo9t+FksR6UdnlSuQsrMXlHtOk1kTWcUl2TRp8oWTyDGZ8jRxlvbyNRNgDRtC3bpQWAj5+Vo0MSys1k9bIzhGvEpKtJqvcj5eFAqF4or4rVIND0opf3L42eGw7U6gJ/CglHK+lHJl2ZgO+Kt1khCiPTAGLRI2R0q5FhgJHAdecpgXhia6XpNSzpJSrpdSTkCLvL1Wy/d5Q7Ny5UoSExPx8/MjKCiIu+66i8MuuSN9+vShZ8+eLF++nPj4eHx8fHj33XcBOHPmDGPGjCEwMJDg4GAeeugh8vPzPZ5ryZIldOvWjTp16hAcHMyIESM4fvy405yoqCgeeOAB5s6dS1xcHN7e3qxYscLj8S5dusRnn33G+PHjnUSXQqFQOOLJ0RCqJrxycpeyZUsv1q7TUgZPnV5K27bw6KOz8PUtcprr7W30KLqsFJfkVHCVVXPhKC+ypAmwKWzc1Nl2rVVJb7wShIDYWPv6jZRu6NoCQEW9FApFTXM91njdCWRLKW0piVLKC8ByYJjLPCOw0GGeCVgADBJCWEMugwBv4HOX83wOtBVCRNf4HdQQuekX2Lkyg9z0C9f83CtXriQ5OZm6deuycOFC3nvvPfbt20fPnj3JyspympuWlsZTTz3Fk08+yapVq+jfvz8A99xzD99++y2vvvoqCxcuxGAw8KQHq6j333+f4cOH07p1a77++ms++OAD9u3bR+/evbno8sm3fv163njjDWbMmMHKlStp55jb48DOnTspKioiPDyce++9Fz8/P+rWrctdd93FMcfcIoVCcd2yZg107AjPP1975/BkrAHuwiuxu7PIOnhoOocOPUdxSTYgbSmDyUOX0iCsIhHlGV+fyAq2VqHArFKMmEx5OF5rbYmvG7XOq8hZKyvhpVAoapzfKtXwCyFEfSAfWAX8n5TSGt5oA+zzsM9+4CEhRF0pZWHZvGNSysse5nkDLcqW2wAlwBEP8wBaA9fdk3hu+gWWvrkLs8mC3qBj2DPxRMQEXbPzT5s2jZiYGL7//nsMZV/1JiYmEhsby+zZs3njjTdsc8+ePcvq1avp0KGDbWzNmjVs3ryZ+fPn21L7Bg0aRFJSEidP2rNFCwsLmTJlCuPGjWPu3Lm28a5duxIbG8vHH3/M008/bRvPy8tj586dRLg+FbmQXWZNNXnyZJKSkli2bBlnzpxh6tSp9OnTh3379hEQEHAVr5BCoahtnnkG9u+HXbtg1Ci49daaP0d5qYbh4ZoJxqOPzqJBWDZCCIpLJKCl9WVnfwlIp2NZLEV06jSLM6cjCY/IrvI1SIsXMc0nl7u9YcPRZGV9UaO1Uo7pjTm5S0k/OovikpyyWrHJV5WWeKMKLxXxUigUtc21jnhdAGYD44F+aLVXA4CUspRAgHpodV2unC/7HVLFefUcfudLKWUl864rstLyMJssSAlms4WsNE+3WjtcunSJn3/+mVGjRtlEF0B0dDQ9evRg48aNTvOjoqKcRBdASkoKer2e4cOHO4271lelpKRQUFDA/fffj8lksv00btyYuLg4Nm1y8kmhW7dulYouAIvFYrvmBQsWMHDgQMaMGcNXX33F8ePH+fxz1wCoQqG4nsjP10SXlR9/rJ3zlBfxgqVMfnYK4RHZ6HQghOtHiOu6hrd3Dh9/PBmLyfl7TYtZh8Xs/JErJZSWemM+fEeFQqdV3Ev4Hu+GlAIptf0w68DifrzqUFySQ07uUo+Ru6uJht2owss14lVQ8Ntch0KhuHm5phEvKeUuYJfD0EYhxCYgFc1wYxog8PyJ5vpdX03Pc58gxGPAYwBNmzatbHqN0ig2BL1Bh9lsQa/X0Sg2pPKdaoi8vDyklERGuqe+REREkJmZ6TTmaV5OTg4hISF4eXk5jYe7WIWdPn0agAEDBni8lpAQ5/v2dC5PhIaG2o4rHL4m7tq1K4GBgezatau8XRUKxXXAzp3O61u3wsSJNXsOsxkyMuzrMTFa3davh2diNOVckbGCl1ck69YNo2+7PcQP/Bofn0uUlPiza829GC/70/vO+Vh886A4iNKj/aif3ZO6XSv/u1Z0eBhxhybYr12ayWqyEVPMd5h8z2EoDsWSE4el8S6klxa6qSxC5usTSfrRWVgszorDYiniwIHJHDjwFwyGcGJjp1QrAnajCi8V8VIoFLXNb5VqaENK+bMQIg1IKBs6j+colPUJPM9hnic1FOKw3fo7RAghXKJervM8XduHwIcAnTt3ruZ3iVdHREwQw56JJystj0axIdc0zTAkJAQhBLm5uW7bcnNzbaLGivDw6R4ZGUleXh5Go9FJfJ06dcppnvVY8+bNo02bNm7HcU0H9HQuT1iPVd58ne56LG9UKG4OSkpg7lyoXx9GjLiyY6SmOq9v3Xr11+XKyZNgLPO7CA+HgotLOXjwb0hZXIWv5tyt0qXFi5YtJ9O4MTz/r+n84WAXunc6xtad0cxZNZi6dWHU4J7kbDzB3iNe1PMzsulSJK+91rXSczVM7sHP89cR5eNPkamEoyY9zX2H02hTX3SABfipwEi3tHHohZ6CiBTOxi7G5HsOYfRHGopBZzfpEPgQ03wyBw5MKueMWtaAyXSKAwf+6mJbX3EqoqO5Rnq69hq7fAdXq6xaBYcOwbhxUB1vJVXjpVAoapvfXHiV4RiV2g/c7mFOa+B4WX2Xdd7dQog6LnVerYFS7DVd+wEfoDnOdV6ty34fuPrLrx0iYoKuqeCy4u/vT6dOnVi0aBEvvPAC+rLOoZmZmWzdutWjQYYriYmJmM1mFi9e7JReuGCBsy1y9+7dCQgI4MiRIzz88MM1dg+NGzemc+fOrF69GimlTYBZUxsTEhIqOYJCobhS3n8frKWZ330HSUnVP8b27c7r6emQm+tuenE1uKYZph+dpYmuKiAtXgR4DeTspY22qFbjoIlERgyjXTtN1M1ZNRi/W2DOKm2fFi2g9d1dCb+tKwPqa2Pe3vBiCVTWgaNNr0ZAPw5sycY/2If+tzcDYOO+c4QIyJOwr7gxRvMvNPUuxSe9KVE5ryOEwCItnGy0BnOLtbboWJ1zQ4jsN6ystquyejSTk219ZX3H/P2hcWPtNTCZtNfZMQpWm6Slae83KSErC/75z6rvq1INFQpFbfObCy8hRGcgFviqbGgZME4I0VtKubFsTiBwB/Clw67LgBeBEcCnZfMMwChgtZSypGzeSjQhdn/ZfCsPAPuklNedscb1wMsvv0xycjJDhw7l8ccfp7CwkBkzZhAUFMSkSeV9Q2pn4MCB9OzZkwkTJnD27FlatmzJwoUL2bfP2TclMDCQmTNn8sQTT3DmzBmSkpIICgoiKyuLjRs30qdPH8aMGXNF9/Daa68xaNAg7r33XsaPH8+ZM2d47rnniIuLu+JjKhSKypk+3b48ZEj1a4/AXXgBpKTA3Xdf+XW54molX7Glu4aU2ERW+x4TObr9EMcOHCGudQuaJ8TZjmXFsSTWGgkKDdVE2JEjWq+o3buha+VBL9r0alQmwOz0/rOWGdEuNoQ106C+PocLRokQEGw8Q6i+hDz8aBGQRIONA9EJHRZp4XKiPwAxzSdz8MBUJCWeTumRyvqOgSa0rD5Khw9fO+G1fbv9/bZtW/X2VamGCoWitqmS8CoTNJOA+9DS+3xdpkgppX8VjvMFmoPgz2iOhvFozZGzgLfLpi0DUoDPhRDPYm+gLADbd1dSyt1CiIXAv4QQXmXHnYjWePl+h3mnhRBvAlOFEBfLzj0Kzdyj9rtJ3qAMHjyYFStW8OKLLzJy5Ei8vb3p06cP//znP2nYsGGVjrFkyRKeeuoppk6dil6v58477+Sdd97hrrvucpo3YcIEmjRpwsyZM/nyyy8xGo00atSI2267zc20ozr079+f5cuXM336dO6++278/f1JTk5m5syZ+Pn5XfFxFQpFxdSvf3XRgpwc+0O7I1u3Xrnw2v9jFkd3naZ5fJhNvLg6Gvr6RFYY/ZFSD+fHEBc12i6yEuJsy1Ycs7H37rUvt2xpX+7SRRNeoKVVVkV4ecIxM+J8Mby1riNdWuZw++3Qoc8tFF8y0iE2hKy0PLakphKqK+Gc9CHOT3MSiYwYxsnVu7gcqtWKIXWgs1R63spE6i23wNq12vK1rPM6c8bzclVQqYYKhaK2qWrE6zXgL8BaYB1U46sxZ/ahibcngTpALrAEmCGlPAsgpbQIIYYCs4B30UReCtBXSnnC5XjjgL8DrwDBwB5gsJTyZ5d5zwGFwJ+BCOAwMFJKufwK7+N3weDBgxk8eHCFczZs2FDutgYNGjB//ny3cXeDSRgyZAhDhgyp8FwZjlXwVSQpKYmkK8lzUigUV0znzs7RpPR0V8dAz5SUwLFjzg/qXl72OqwrrfPasm4SRZal+LeR5JQI8tcNo0e/2W6phjHNJ3Pw4FTsCRP26El+fn169PhblUwmHIWXxUHDtGwJl3ft4nLqdu6pG4R/vQukXk5g27Z4qpDBTd7CheR/vRhDWBih4x+lTny87Xh1uiRgMsVz7FQQx04Fcd9kaNPLef8dXmFcMGstShwNm/wDkmiw8TZ0QseFiK2cvvUz0Jff7BnsfcdycpeSlvY6JtMpJyOO38pgo8yvyW25KrhGvFSqoUKhqGmqKrxGAy9KKV+sdGYFSCn/AfyjCvPOA4+U/VQ0rwhNEP6lknlmNHH2SpUvVqFQKBRXhKt3zQ8/wGOPlT/faNTMOF56CbJdAk6jRoG1+8OOHZo4q6weypGDh6ZTJL9BlF2TEJIi+Q0HD/mTnv6SbV7z5vaaJauQuFQYzr//PYV167TxqqZMWoVXl+ZfkRi2hpTTA0k9OpI4sYuMsWOhtJRWEmIbgEl6Mz11HloCSPnkLVxIzowXbOsXN2wgcvrznPrHa8jSUoS3N41D59LeF4YFLiX8G8grboU5/wJ1uiQQER9frmFTkV84uwrKomEFLYgIegBD+FJMvufRGf2xGIqcomBWY46c3KVOQtVkOsXBg1MBaNXKLlD3eerMWUs4iq3z57UaM0MVn3RUxEuhUNQ2VRVegUAtdVFRKBQKxc2EyeS8vnatZ+FlscDChVpN2BHXFvdlDBkCP/1kr4f6+WdITHSfl5t+waOoyM5e4GarLoQ2fvSoXXhZI3KREcNsAmzNGli3ThtPSoLdp3ez49QOOod3pkOYlga9Z91XZG9eQ8OeA2nfbySgpVp2af4VH/jOwJAHY303M6E5iBMHsJSWopeam5QBQFdKU9NSzp+Pp14FXSV//d9/qYvdbNFiNpP17WJ0paUIiwVLaSkdLyzlsaaL8RYmSIGcFBA6HcLbm6afzCUQMGRup054Ao5Cr1FsiFM0TO/bjpPLY21piU3a7kY2+8HNmGPLll5O0UEAKUs4cGAyQvcXFiwM58MPpvDTT8Mwm6HMp6lWcRReUsK5c5pjZVVQES+FQlHbVFV4fQ90R0szVCgUCoWiXDwJL4vFORJmNsM998CyZRUfq0sX6N7dLsy2bnUXXrnpF1j65i7MJk04DHsm3kF8mfGMmfNlzUR8fT27JQ4cCP+a8Fcif/2Roi638vrcnbQ8VsraaG+mPDIXsS8N+dQMmpjB9NVm9rwF7fuNJDQUEsPWYMgDvdQu4bZGa0i/pQlxem1dJ7UrM+thf0MdqalQUWb3tjgd/Xfb7X/NOtjd2pd2uywYJJh0FkoDjuJVaLKJMwlQJsoufLOUvG/+Z/N2j5o3jzrxmviKiAli0BB/jqdm0LRLFL63RHI4JdcmxPx8B9Ng4wA3Y47y67wsCAH1659i0uSpzJ4FR44MuyYGG67phWfOVF14qYiXQqGobaoqvF4HvhBClALf4aH3lZSyMj9ahUKhUPwOcBVe587BL7+Ao1fOypXOoiskBKKjtYiWlXr1tEhU9+7w2Wfa2NatMGmSc4Qr/cgiom5/D32dfMyXg0k/MpGImPFlRylTOm7Ywy8xMc6i0BrFMhcUMHDDL9rggs3E6zTBZNpSxOEWywg8cIImZru4OrF5jU14pZweyFjfzWAGkx6Oew3k/ttief2Bb2h5rJQLfpLAIsG+SG9SP7+zUuEVcd+DfJD/Av32WMirC98letO2T0uWWXbR6riFQ830iNMmepwGL4fbNQtNlB29cJTgsmibubSUo+uX0rZMeF3etYviqY/RoLSU4v95E/bJXCchdk408GjMUZkZCYCPTwmPPjqLPXuujfByNdSoTp2XcjVUKBS1TVWF146y369Rfo3WNUgiUCgUCsX1jqvwAq3Oy1F4zZtnXx4xAj78UJvj2HC5c2ctLbB7d/vY1q2Qc/QCy/6lRbiCorYR0ekzDP6lABj88ymSs8nJbUBkxDAaNhxNdvYXbtdTXGzvL+ho/LFn3Ve2KJYVa6NJvQV0AGZofdyCpedATF/ZxVXDngMBrcYr9ehIJjTHVuPVInwkHcJgyiNz2XFqB0HeQWzYdoFVL3Wm6GiHSq3PR9wyAibCgiNLCPML42+3jgNg2dFlHGlixEvnhTxyDy+MPEjvg9prcSxCEFgEh5rpaVPfxF0/YLvWw011tC079uXU7VgcUhYvfLOU4qVLbUIs9B8fclFfnwtmiU4vbMYcMc0nc2DfFNBVbMTRICyH9etg5MiK77Em8BTxqiqqj5dCoahtqiq8Hsee4aBQKBQKRbmUJ7wmT9aWz593jna98AIEB0PPns77tG+v/W7dGgIDtQfh3FzYty2PusbThOpKEK2/Bl2p846i1NZnqlWcVseVlfUl2seYoFGjMSxf5l7fBZC9eY0timXVXtYPP6kXWCTovLyI6juMOvHx7HlLi3Q51nj5+2uNkVOPjiT1qDaW9IB2jA5hHWz1Ye2Ad8ss7bdt02qSXOvRHBlxywhNgDkw5/Y5trqzCW93YNWmlmzrvpz+d57lQNFmzNKMl86LkQn38Pr5w8RmlJIW5c2U2+60HSOrZTBSZ09ZPFt0Fr2DEPP5aQXxe3Zz3j+KepcyCLwwA4gnMmIYWTuOcEkswOR7vlwr+jOnI9m9WzM6yc6ej5QWhNDRsOF9tn+fmuDyZSgsdB6rTsRLpRoqFIrapkrCS0r5fm1fiEKhUChuDjwJr82b7cJiwQLNKAMgIUETVuBeZ9W+vT2lMKl3CAuXa3VblwsW0/iOsof9cnCsP9on2rJ5uQ/dDkt+ukXQc2JbNyt5Kw1dolgnB7dDf+Q4hn696NHrPpt1u7U+qn2/kTbBZUUILeqV41AC5djDy3EsOBjy87V0zIMH7a9FVXEUciYTFB3tQNHRDvz5KTA0dTYDaflIS3ac2sHdDuYgANsbFLDyPoMtZbFPEx09vnMQYsVnCTj/K4FnDyN1Ou01KLt/YRjOyW+aEKor4VKjAwR3/cZJCBtLfPj448kkJEy3RR41cWmxrdeU+PIU3apOxEulGioUitqmqhEvG0KI5kA94JyUMr2y+QqFQqG4ufjlF83+feRI5zRAK2YPJVWXLmkCIyTEOc1w7Fjnef/5DzzxBMTFQc+OdtOMng11pIbHE91mA/4xczAZqtZnCiB3/n+ZsFKLxLQ/Jlkb/F/S0+2Ro+bN7fu17zfSKYo11EVUWQVHZVRFeOl00L8/LF6srS9ZUn3h5Yij4DUYnEUZuK9b6RzemQ+a+dpSFs81r88rDkKsdxMdPVfYhVhWy2DqW+9TnqHAHEi+RY8uowGN4upT4P0lujr5WC4H88V/J7Nu3TCmTHnW4zVnZy+oVeF1NREvlWqoUChqmioLLyHEg2jNihs5jGUBU6WU7gn0CoVCobjpMJth2DDIyIAvv4SsLK3JsSOeIl6gCZHsbNi+XVv39obRo53nPP443HuvZqyx54c8SotOYjGeROfVmJaRUTz86CxEJaJLCK3PlJWuhzTRZa3V6nrIwr+O2ue7Nnf2FMWqLo5NlMGz8AIYPtwuvL7+GqZNu/JzOgreqvauAk2QOaYsAiw/utwmxNo1b+AkxAY1KKAsC5S6x3fR4Zel5Ae1IPjCEYqD7uHXi6+B0IM0E3FZc0DU6ct3l6wpPImsqgovKd0jXkVF1esDplAoFJVRpT8nQoiRwKfAFjTxlQtEAmOAz4QQJVLKr2vtKhUKhUJxXbBliya6QIsw5OZCkybOcxyFl5+fPZKQnQ2rV9u33XknTr2rHJ0KDWFBePucJaB0C2G+jThdvIWCS3E0CPNsYW5tbnypVE948z/aenEBtLz7QXJ2v2Cr1YoZ9iD1uhawAAAgAElEQVSZDp9Y0dFVv/+q4ii8QkO1SJ8nkpO1htAlJbBnj2ab36LFlZ3TNeJVHVyjYa5CzNHEwzoGWn2Y36V0AgrSMenBYslEZ2mERYBOmmmpPwJ0x2LWozd4dpfMyV1KWtrrGI2nkDKEhpGP06bNI9W7ATyLrKqmGhqNWssDVwoLtXRQhUKhqAmq+qd5KvCVlNLlu0neF0IsAP4GKOGlqJQNGzbQt29f1q9fT58+fWr9POWRkpJCt27dau38CsXNytcuf+nPnKlYeDVpAmlp2vLJk/Df/9q3OaYZeurFdensN0SP2oHJdzXRxfUYFRbKmdORhEe4W5jr86DB896Y9LBxYj66fK0HGEDIqFEAXFy9hoDbB5LfZZQtOtSwoSYOaxpH4RUbW/68wEAYNMhuNrJ4MUyZcmXnvBrh5UpFQqzi+rB82r77FoUBLal78Vd2DRwLy2D58tEMu+sLZ/MQCcEhXTl4cCpSliAECJFHTu7fuVy0j4TOb1Trmq8m4uUa7bJSUKCEl0KhqDl0lU8BIA74pJxt84BWNXI1CkUN0bFjR1JSUtx+WrduTUREBAkJCb/1JSoUNxwWiz0tzoqniIKr8LLy6adahAy0prbtW15g58oMW6SrrvE0MSKLuqbTpB9ZxOV6izH5nQcBJr/z3Hr7YlJS+lJa6ty9RJoEdZfq0UswmCHtXxa6dtUaN1sJGTWKph9/RMioURytIM2wpnAUXuWlGVq59177squwrQ6Or7u+hhu8dAjrwPi2491qxDqHdyazmS/Le3iR0dSHcy3q89bQE6RE/8Dbd5zkbBetUOqdd14if287sOi0fE+LDnm8HcVFGUhZ4nRMIaCgYCk5uUurdY1XY67hWt9lRRlsKBSKmqSq34ldQkst9EQEUFjONsXvkJKSEnx8fGr9PFJKjEYj3t7ebtsCAwPdIlqZmZkcPHiQSZMmoa/ppxKF4ndASoqWLuhIdYTXhg325fFjLrDibXuEq2O8jh6B9dEJPRZp5phuNlI428QLQymJievZ/Vk3ut29BUs90J0H/5Nt8f8lHYvOiBkvtpzU0gy/+04zr3ClPEfDmqRTJ/tyr14Vz73jDq1OzmiEHTu0VM6oqOqfsyYjXlWlsvqwZ27tzCtlc09vGk7R/iTq60s5a/bGR9QhtNkL5R7b2hKgqniKbuXlaa+rax2iK+VFvJTwUigUNUlVI16rgFeFEE5hAiFER+Dlsu2Km4yVK1eSmJiIn58fQUFB3HXXXRw+fNhpTp8+fejZsyfLly8nPj4eHx8f3n33XQDOnDnDmDFjCAwMJDg4mIceeoj8/HyP51qyZAndunWjTp06BAcHM2LECI4fP+40JyoqigceeIC5c+cSFxeHt7c3K1asqPL9/Pe//0VKycMPP1zNV0KhUIDnaMzZs+5j5QkvR7q3y8NssiAlmM0WiopXktn7//j19kfI7P1/WISHA6M14134v2cIfr4uEU/6EP5KXW7tM52oefMI//PTTLfMY0+x5jx47JjnczsKL0dHw5rk7rvh/ffh7bfdnRtdCQ6GgQPt665RxaryWwgvcI6GWYXYn+L/xJzb59A9qoOtZi398nkKdM1Jl60o0DVHNDzv5D7pimNLgIooLNSMRcpLK/T0HnWlvIiXcjZUKBQ1SVWF11+BEuAnIUSaEGKjEOIwsB0wlm1X1DDZaQfZ9r+vyE47eM3PvXLlSpKTk6lbty4LFy7kvffeY9++ffTs2ZOsrCynuWlpaTz11FM8+eSTrFq1iv5lXzHfc889fPvtt7z66qssXLgQg8HAk08+6Xau999/n+HDh9O6dWu+/vprPvjgA/bt20fv3r256PJ14/r163njjTeYMWMGK1eupF27dlW+p88++4yOHTty6623XsErolD8vrFYPAsv14iXxeL8EOtJeHXqBB1vCyFEd57m+iwimvyAMXYJJr9zZWmF58q9jnPnItlTHM+4zHlw39NEzZtHnfh46sTH433fYyxPs9u9lye8rkWqoV4PEybAn/5UNRFUE+mGjq/7NUg6KBfXtMQOZdmJX9+6n1yv+RiKD5LrNZ+Fcfs190np+TgViTIrK1dCgwZaHZ3jv6sjVanzUqmGCoXiWlDVBspZQoh2wASgF1ofr0PAB8AcKaX601TDZKcdZNHLz2E2mdAbDIx4/u80jL12pXTTpk0jJiaG77//HkPZU0NiYiKxsbHMnj2bN96wFz2fPXuW1atX06GDPfd/zZo1bN68mfnz5zO6zC960KBBJCUlcfLkSdu8wsJCpkyZwrhx45g7d65tvGvXrsTGxvLxxx/z9NNP28bz8vLYuXMnEa6dVishJSWFX3/9lX//+9/VeyEUCgUAqamaOYYrrsJryhT7PIMB2rRx32fsWDBnZ5LoXw+d0HOs3VuYdC4W8VbvdwczBmEx8PNOzSZ+T3E8WyPiaePQVmvnTru7IVQt4lVbwqu63HmnJtbMZvjpJ+01bNy46vsbjfbojBAQFFQ713kltG+vickL2wfwv3EvAdsA0K+YTvjIYRz+aQWmgLVOxhtCettaAlhdD02mUxgM4cTGTrGlIH74IRQXO/+bgpaq6ei+WRkVmWsoFApFTVFuxEsI8ZAQwlYeLKW8KKWcJaUcJqXsVfb7DSW6aocT+/diNpmQFgtmk4kT+/des3NfunSJn3/+mVGjRtlEF0B0dDQ9evRg48aNTvOjoqKcRBdoQkev1zN8+HCn8dEuTXtSUlIoKCjg/vvvx2Qy2X4aN25MXFwcmzZtcprfrVu3aosugE8//RQvLy/GjBlT7X0VCoVzFKZ+ffuy40PtzJkwa5Z9fcIECKt7gds7ZBAdfgHQam3uuw/Sf/3Sllpo8j3v+aQC9OcFSO1387qP06CBveZn61bn6ampzusXLmg1Pq5ci1TD6hIaCv362deXLKne/o73GRJS8+YaV4P14yF/0wiyPplO4b7uZH0ynV8+H8GCBaBr/AeyfhpH6aV6SAmll+pRculRIiOGkZO7lIMHp2IynQLAZDrFwYNTbcYbnr4MAGfBryJeCoXieqGiiNcnQCJQfs6HotZo0qYteoPBFvFq0qbtNTt3Xl4eUkoiI93TPCIiIsjMzHQa8zQvJyeHkJAQvFwqmsPDw53WT5d9Ig4YMMDjtYS4NL/xdK7KKCkp4auvviI5OZn6jk+MCoWiShiNWrNkK488Av/8p7ZsFV7z5sFfHZLOHx5xgXu65vDDhzkkJ0jMZh1vr4gnvkcQpcallDT9H0KU02m5DF+fhsQ3f4vLqdup0yWBOvHxdHdoBeUqvKyNmR05dsy5h9b582AtNa1TB8LCKr73a8m998KaNdry11/DU09Vfd9zDp/Urs2bf2vat7cv528aQf6mEbb1556DKUv2sM7rBD2/exUhBWadiTp3a2+s9KOz3FwPpSwhLe11jvxaD5MpCnDOZ61Tx9mcxPHLgYsXYcwYTWh9/jlYv8dT5hoKheJaUJHwEhVsU9QyDWNbMeL5v3Ni/16atGl7TdMMQ0JCEEKQa/V9diA3N5dQl091IdzfKpGRkeTl5WE0Gp3E16lTp5zmWY81b9482njISQoICKj0XJWxbNky8vLylKmGQnGFLF0KOWU+BxERWsTKUXgtXw7jx9vn3z3oAl3DfubgFkkwZwk1lHAaH1pG5jF2bBDpR2dVKrp0aKlmdSK0+i0rnTrZHQDT0jTjBOv3KeUJr44d7euuaYZX8Cel1rjrLpg4UauT27wZjh+Hpk2rtu/1LLwaN9YaZZ/3ENjMyIDMzZ05Gvke5+tk07CgBaeDMnmt/XSgfIMNo/EUMJaXX/Zn3ryn+fpre8PlsDCt7suKY8Trvffg22+15bffhr//XVtW5hoKheJaUFVzDcVvQMPYVnS9e+Q1FV0A/v7+dOrUiUWLFmE2279ezszMZOvWrfTu3bvSYyQmJmI2m1nsYs+1YMECp/Xu3bsTEBDAkSNH6Ny5s9vPLbfcctX38+mnnxIaGkpycvJVH0uh+D1SZlQKwB/+oDUdtpKZCSNHYmtI3L49/HFUDhaTJrp6BNandUBTbguuT5f4X0hKqsStToK3rj5xrV/zaCXu6+ts1Z6Sov0+dUoTKq641nldj/VdVsLCwBr8lxI++6zq+zoKr3r1ava6rhYh7OmGnpjzYgfe6vkxvTt1oUXfEF4bMd1mzFGewYbWbBl8/S4x/tHXefnOP9PedxegvY6OkUzHiNePP9qXd++2L6uIl0KhuBZUZq7RSAhRpY8mKWV65bMUNwovv/wyycnJDB06lMcff5zCwkJmzJhBUFAQkyZNqnT/gQMH0rNnTyZMmMDZs2dp2bIlCxcuZN++fU7zAgMDmTlzJk888QRnzpwhKSmJoKAgsrKy2LhxI3369LmquqzTp0+zatUqJk6c6Jb2qFAoKufgQVi/XlvW6+Gxx7QHeyE0cVDikAUWE6O5zB1aB411WbT0C0Yv9AihAyQ9Y3MxGLSH6eKSbLdz+fo0pEePH93GXeneXTOgAPjPfyA52XO0C+wGC1Ycne+ul/ouR8aOhdWrteV587RUvKpE5a7niBdognzdOvt6TIz2/jl2TLv2FXM68Oqr7uospvlkftk7BYPe6LbNisHbRJdxq+h2Zi+Td82mQYN4jxEvKe1CHeDAAfuyY8QrMNAe6VLCS6FQ1CSVRby+Bn6t4o/iJmLw4MGsWLGC/Px8Ro4cyR//+EdatWrF5s2baej4dXcFLFmyhCFDhjB16lRGjRqFyWTinXfecZs3YcIEli1bxuHDh3nwwQdJSkpixowZmEwmN9OO6vLFF19gMplUmqFCcYW8/759+Y47tLQxg8G5bgogPFwTDBERUHRiKx0DmiEbH+DX2yZxaOBYjtw2mTodNLEV03wyOp2f0/46nZ/Nxa4yHK3XV62C2bOdhVezZvblGyniBVq6odWR8OhRLeWwKjim8V2Pwsv1T7m/P7zyin39zTc9G2VERgxjT+p4m/GGLMd6XhdgpOS5M4wa8VG5Ea9ff3UWqBkZcOmStuwY8XLcV6UaKhSKmqSyiNffgXI6YyhudgYPHszgwYMrnLNhw4ZytzVo0ID58+e7jUsPn5xDhgxhyJAhFZ4rw/Wr6yrwzDPP8Mwzz1R7P4VCoT2Ufvqpff3xx+3LDRrYH/YDA+H77+0RpJCzXhQ0TCH31k9Ab9Sc4f3yMMqF5OTG21II04/OorgkB1+fSGKaT/aYWuiJxER49lnNRRHgb39zNlMYOdK+7UYTXn5+Wg2dVfB+8gn06lX5fjdCxMsRgwFGj9ZE888/a5bwM2bAxx+777thzR/wyuiIXidpOfT/8PZ3LxbT0g4v0/H+Hwjb/m8abPKjvW8Ce4rjbREvVzMW0CK6nTs7R7zCw+HIEW1ZRbwUCkVNUpnw+lZKmVrJHIVCoVDchMyfr1myA7RoAWW90QG4/XYozb9AXJM8/jQlhPh4e+OoS20WUtjkoFuKnBSlpB+dRWTEMNvPlfL3v8OmTbBtG5hM9gdlcBZeGRlalMR6Ldd7qiFo6YZW4fXVV/DWW1C3LrBjHuz6DAIioMfT0KQLnEiFjB8JKugFdKFXhx/oZP6MbW8JiGyH5fI5Qlr3Iy5hgG0uUb20fR2paFsN0MqlVLmwEHQ6zaTFWtc2bx68/LJzDSFA6r4gDh3qRMvIPJqb/8I9972EEKUez2PwMhET9zZM92FuE28eOTEX/zw4+8F2MtYnAPFO8w8c8Cy8rCjhpVAoapIqNVBWKBQKxe8LKZ1NNSZO1B6UrUyaeIFY006wSDI3CHI7diIiJoiDh6YjPYguKxUaa1QDLy9YsEBLYbOKQ4DgYM18IzhYs40vKtKMNyIioLQUTpzQ5gnhnJJ4zSgTOBlFvuTkZNlFkQNdumhC5eBBLeq4eDE83GYe8ts/2+bIw6vQJc/G8v0UMJfydKg3mX2n869e0/G2mLRGMOe+wYKgNH0OGXkv0HTbS2AuBb03urHL7QLrRCqWeXc4bTuUW0DegXW26zu0/QendU/3VJFo8/Z2Xv+1rEChf3+Ij4dduzQ3xyNHnIXXxYtaNO8cQRw7FYRhXxRPPAEnTr6Boc55j+8zc4gk6+1iuGhh/Kdv0n3/Xs78u5S7LN584zuXPcV28WWt83JMNXQUXirVUKFQ1CRKeCkUCoXCjdRU7WEYNCfBsWOdt+/df4Agyxka6Eo5Y/Jmx88HGBqTSHb2ggrNIMpzqbsSoqK01DTHmq+EBE1URUfbr//YMU14HT+uPdwDNGqk3Vdt4iZWbAKnhGZS0hiBMX0Oh5jvJGaEgHHj7H3RPvkEBt67kEiHyJ20mMj+aSFhplIMwoJBlHJv228wYLbPkaAXEi9povSXb7CUzTWZSsnZvZpGZSIpa/dqwh22HVk9h2bHv6EFJozpc9iW8X+02/eabd3peqsg2qxER0P/kHkMb7WUxQeHAWMB54bcrrburqmiJhP4Bd1Hh6AhbN87mDoB7t2Rbe+/wFJu+eNPmP4rYIcOvTTSpc52j8JLRbwUCsW1oCJzjReBcnrCKxQKheJm5r337MujR2tOhpt2bOf9eV+zacd2Cs/vpVdgA1oHNKVXYAMKz+8tm232eDyonoFGVRk+3Ln2zJq2Fh1tH7M+vDvWd11JmuGh7T+Q8unfOLT9hwrHrOPNvr2PhPT3aPbtfRza/gNZu1djMZWiQ6tzNQiJFybyDqzDlQce0FwkATZuhG8uJwDYDCZM6PnenIARAyapw4iB5ef7YELvZEJhkgIjBvYH9XGam2JubTtXirm107YT5y/hhQmDsOCFCb8jK5zWHa/Xfk8WLKZS0lbPcbtvK3/pPY8Ph/6ZQc3X8eHQP2upk2h1bd0ap/LukKeJ/fUZLYJWhqvwAi1aFhETxP+W/h8lJRWrZ52XmYt3S/a3bsXp0AakXk4gsd4u/lDvQ9r77qo04qWEl0KhqEnKjXhJKV+8lheiUCgUiuuDc+e0ND4rEydqomvX3HPoLEHsSj1H22ALOqFHV2YVH3XK+nGipzzxFRf396uq6yqPN9/U0gYvXYI/l2XjOZptWB/eHeu7KjLWcIxUXcjYg9+RFRSGtCY+Z6FT1Aeg2bf3eYwE5R1YR4sysYLUxMq+oM4kYwBpRI+0iaKQ1v3criEyEgYPhhUrtPVpi8ZzfGAho/QbyJUhzJVDubvbcMZ9G0onuZ+tpW34bt1D/LyvK68+8BleXs41Xk3DOjHuo7p0kvvZKdrwbHxf27mi4/sybuc027ZH2kZjTFkD0oQRA0UtkjHu22tbd7zeFHPrsnsy2URbjMt9U/aaDLplIRTZWxFk/7SQhp3H0jYklWkPJ+OjL4WzYPnkc3TjVkCTLrZ/u26NU+kT9SMbMnpx5EgXBg2CFSuGkZkJjz02k9D6uYD0GG2VwWaCn9hDcUkd+iz9nEd+XIcwl2KU3jx6ci5FRfFOES/HCFxhoRYl1amupwqFogZQqYYKhUKhcGLePHt/rk6dtPS9Dz7NRGcJQoceLHApZDfHWn+Myfc8huJ6BJzoCjxCw4ajyc7+wu2YDRveXyuiC7T6IWtanpXKIl7lCS9rpKoFJizp7+NlFZE5O7EAeoFdUICbuLKKjJDW/TCmz3ESK95hnWwCJ58Abmusp1mn291rpsoYO9YuvPJ2NOWd0qeZ1/4ezBd9Wfmv5nRqFsItEQ/xU/o5fngklNLsEH7MHkD85gH4+7sf79nx2txnY0Lp1MzeD6BTsxC3bYdC59vEZ9eEARyKau85fbAS0eYo0jb5JdCiaKstGve9OYFHgVtCVuOlN9pEk8VsJKssFfLYMU10rX34Drx1pZRavPnw2HJMx+CR2B/ZkNaL0aM1z/0vvuhFeIR7fzjrcX19LzNk+HJKLwv8t+sAIwl+2zl8ON4p4lW3rvZTWKitFxZqzp0KhUJxtSjhpVAoFAobFotzmuHEidqDa+tbm5Hx0xEa6IwUNtpPnY4bMAmtqa3J7zwXYteSk7uUVnEvAZCdvQAt8qWnYcPRtvFrhaPwysiAbYtmc5fXCoruTOY/yyaVm2roGKmylAkEa4QGhFuUylVcWYlLGMAh5ruJFavA6ecifjxxxx1aiqfVtv/SL0259EtTADr9Txvr1CyEuPoh/ClDW/fxgTp1PB+vU7OQcs/pui0uYYBNRHpad9yvItHmKNL8uo1n6tJCkvSpfG/uQrtu4wHYLlozEj06aQK0NMoUc2vuRRPN/duuxluv1aAhSokpnYf472Je7qsJsUlbpxMRkcXmHwYzdMSX+PgUl/ua6g1mLg4T+G7XY0JP6uUE+hyAyIJd/KHedlIvJ+DnF09AgF14FRQo4aVQKGoGJbwUCoVCYeOHH+wpeUFBWk8pgCZpp2kaGI5O6DnW4W2b6LJiwW4V3yrupWsutFxxFF6dw2bTZd9L4AXdO+wEICZmksf9HCNVFgRemG0Rmm2RDyD8Ap0EhSdxZcWTWKlI/Lji4wP33w9vv13xPNceXhWZm9QGlYk2K2O6NgWe5qN9OSTdGlm2Dvn0ZVTR8wz33oQAltGbKWWpkOnpcLmxVoNmFbgXKUSaSzHoLCBKeKvX8wgkRgz8e+UoEm9fhcm3zEWlHNfDLUOHc8JwnLSvBad/3MUz+Y+gr6+lH8qsuQQExJNTZsCp6rwUCkVNoYSXQqFQKNh9ejc7Tu3g6wWdgQ6AlupmjZ5c+OUk9UQcOqHD5OvewBZqzir+SnB1EHSs8RrUUMvXs0auhrdYUa7wco1UWWu8ilok032E+z7liYyaYuzY6guv65kxXZvaBJeVRj4hLPzsYTbd2p+uXeCV8Y3p1CwEKbWI1695fbmv7TQSvfaTYmxDSXYY94R8D9KERKDDgl5IkCa66g7TI/UsBmFhc5cQSnz1btcgpaB50pc0LvHnr74fwroOGChFLyyAEd2R7QQG2p0PlfBSKBQ1RZWElxCiG9BUSvmVh20jgONSym01fXEKhUKhqH12n97NH1b/gVJzKaZu3vhtmkPR0Q5MnGifo+uSwxGfOVh88xBSB8LidpyatIqvDEehBZ5NLsLDtR5ei39Npk+HnbbI1bKMZPrUL//YTmIqYQDgWaRdC+LjoV07+OWX8ufcSMLLE35+UJodQml2CJ27QKey/mpnzpS5DV4OYdPSh9je7BxnD2g3+GDLaSSI/Zy3BPCCz2d4lUXDvivoQ7fA3SBNNE0v4XBsADqD3exFStDptDeCr+8lenRfy+ojt2A+owNpwSwEfp0SCNhgvz7Vy0uhUNQUVY14/QPYVM62VsBEwN2WSaFwYcOGDfTt25f169fTp0+fWj3X5cuXef3115k/fz4nTpygfv369O3bl5deeokox6/DFYrfOTtO7SA4P5LIguZk+adzOm4Hic06cMst2vac3KWcDfkKKUu0zC0Poqs2rOLBQy8snA0wjOlz+CV0iM3u3NHkIjpaE17/WTaJjvEQfXEFi48kszlz0jVPx7tSrD29nnmm/DmOwqtevdq/pprGsZ9asUN5lqOVfNM6IQQUh5Bd5p1xdPtDrLl0juLjoaSEJdG/1TrWHuzHSUMnTjTU3Bu357Sh4cls7u61REs9lCBc3Al1BhNd7/mUf8RZiD0hSGtiYWLQQQICVMRLoVDUPFUVXu2Bf5azLRV4qmYuR6GoOcaPH88333zDiy++SOfOnTl+/DgzZsygf//+7Nmzh7p16/7Wl6hQXBfElrTnjv2N0Vn0WISZ7JxQHv+bfXv60VlIWeJhTz1gwdcnkpjmk6/atdBVZLkKLGsky9WqXZbV97iaXERHw08/acdesHUSa9Zokau7776qy7zm3H8/TJ4MZgeXfkeL8/MOmZ83asTLiqOtu6Pwio6G4GDYrBkYsndDCGazVlf2Y/YAftytifI2bewGJmO8Qhk1CjLMDUn02k+n/ms9lXwRHHSBQK8ONAmN45TXIbYd/5bAwDG27Up4KRSKmqKqwsuX8pst6wEPxrWK3yslJSX4+PjU+nmklBiNRry9vd22FRUV8dVXX/HXv/6VZ5991jYeHh5OUlISW7ZsYdCgQbV+jQrFjYD3L0bqCwP1fQ2cNQr6Bhi580779vJrtyz073fkis+7MzOPn9LP0S0mFP/TO91ElqdeWCQMcLNqD058iEwecouMORpsrF1rX66oh9f1SIMGmsPhN9/Yx4qKsFnG3+iphlWJeEVHO9+buZw+3WFhdrOP/HwozYbvv3yI9U3P8XHCfkKCct32KS3xYfStmVh8d9O8OISzZzqTEWDfrlINFQpFTVHVloAHgTvL2XYncLhmLkdxPbFy5UoSExPx8/MjKCiIu+66i8OHnf+p+/TpQ8+ePVm+fDnx8fH4+Pjw7rvvAnDmzBnGjBlDYGAgwcHBPPTQQ+Tn53s815IlS+jWrRt16tQhODiYESNGcPz4cac5UVFRPPDAA8ydO5e4uDi8vb1ZYW1y44LJZMJsNhPo4gEcHBwMgMXiniqlUPxeqXfmBN0DvIjz1dE9wIvBUSfw8rJvL69262pqunZm5jHzo8+4vPafzPzoMzJ3rralC3phsokoIwZMUucUyYpLGEDm0Plsj5lI5lAtChaXMIDEh1917jHlILwc/8uXZyV/PWNtDG3Fse/UjS68qhrxatnS8/6PP25ffust+3JQEHh5afVjBT+14NiRv6LT+TntW1rqhZeXCemXp5mv+OVRr9EGWrZcapujIl4KhaKmqGrE633gAyFEATAHOAk0Ah4DHgUer2BfxRVSkllASfoFfGKC8Gl2bZuIrFy5kuTkZPr168fChQspLCxk+vTp9OzZk927d9OoUSPb3LS0NJ566imef/55YmJiqFdWZHDPPfewZ88eXn31VVq2bMnChQt58skn3c71/vvvM3HiRMaNG8f06dO5ePEiL7zwAr179+aXX34hIMD+1eP69evZvXs3M2bMICwsrNxarYCAAB588EHeeustutqSLa0AACAASURBVHbtSkJCApmZmTz77LO0b9+e/v371+wLplDcwBj1wVpagxAgLcS2C3baHtN8MocOPYfFYn8qrmpNl2NUy9Fy/Niu9XyiewUvTBj5Hyv1T7ulC5bXCwuq5iboKLyc7ucGi3gBuJbEXrqkRcLgxhdeVYl4xcRAZDk6f9o0uPNOLdp16632cSG018haFxYVNYy4OC11trgkB5MpkqLLRQQF5zkdT+iN3HLLLEBLna228DqRChk/QlQvaNKlmjsrFIqbmSoJLynlHCHELcAzwF8cNwFvSik/rI2L+z1TklnA2Y/2Ik0WhEFH/fFtr6n4mjZtGjExMXz//fcYDNrbJDExkdjYWGbPns0bb7xhm3v27FlWr15Nhw4dbGNr1qxh8+bNzJ8/n9GjRwMwaNAgkpKSOHnypG1eYWEhU6ZMYdy4ccydO9c23rVrV2JjY/n44495+umnbeN5eXns3LmTiIiISu/hk08+4amnnqJfP7vvS9euXVmzZo3H9ESF4mbEahPfObwzHcI6eJyzN/8yMaKIU/oLhJuD8KovnbZba7esD6xVqenatmg2Xmnfsr2oEZepw8x1bXh2/EM28ZWoP+BkiNElQpLZwV1kXY1d+80kvADi4uDQIW359xDxSk+3L0dHQ+PG7vsaDBAeDuVljnfqpAmvOnWgd28ICxtme9+mpoJO18Ljft4+9vTaaqUankjFMu8OMJeCzoCu4/3QfowSYAqFAqhGHy8p5WQhxHvAACAUOAv8IKVMr3hPxZVQkn4BadJcmKTJokW+rpHwunTpEj///DN/+9vfbKILIDo6mh49erBx40an+VFRUU6iCyAlJQW9Xs/w4cOdxkePHs3KlSud5hUUFHD//fdjMpls440bNyYuLo5NmzY5Ca9u3bpVSXSBJh4///xzZs2aRUJCAsePH+fFF18kKSmJjRs34u+vShMVNzeONvHeem/m3D7Ho/g6E5JGQKsv8PO5xJkSf0L973ebExkxrMrmGdsWlTUsBuL1P2NBUIoXK3Y1oVOzewBo1OF2LLvfxmI2ojN40ajD7drDaQ32xGrSRDOgcEwz1OmgWbMaO8U1xfFPVnnC62ZxNTSbwTHbPCpKE09hYXD6tH08MtJuMuKJd9+Fjh2hb19tX0datYLlyyMJj8h2289stofXqhPxytq9mnBTKQZhQZpLseyYB7vmoxu7XIkvhUJRvQbKUsqjwNFauhaFAz4xQQiDzhbx8okJumbnzsvLQ0pJpIe8joiICDIzM53GPM3LyckhJCQEL8dCETRzC0dOl32CDhjg+WErJCTEad3TuTyxf/9+XnvtNT766CMeffRR27g1kvbRRx/xZ9eiCYXiJmPHqR2UmkuxYMFoMbLj1A434ZWTu5TYtvMwGEoBrbfRJfM8cnLjKhVa5aUR+h1xblisFxIvaSJRfwDQhBdNumgPo7WYkuXlpUVJHB/gmzSBGzXgbW1mDTd/xOvkSbB+Fxcebr/3Fi2chVfDhhUfu3FjeOEFz9sCAuCbbybz8Njn8PV1TqMtKban0VZHeKWYW5OMASGN6JDokJhMpeTsXk0j63tcpSIqFL9byhVeQoimQI6U0li2XCFSyuOVzVFUHZ9mgdQf3/Y3qfEKCQlBCEFurrv7U25uLqEun+zCQ0OcyMhI8vLyMBqNTuLr1KlTTvOsx5o3bx5t2rRxO45jfVd55/LE3r17AUhISHAab9myJcHBwRw8eLBKx1EobjQcUws7h3em67EYmudGcTQig86DO7vNTz86yya67JSSfnRWhcLLao7RSe53SyMsapEM++wNiy0IdAZvLarlSJMutf7gGR3tLLxu1DRDKF943eh28p4iXq7GGlZatICtW+3rlQmvyigoGMYbs+HRR2fRICyHCxci6dFjMnt/GeYwp+rHi47vy/OrxzP49BYSwg/jX78UIwZSzK25F5xTEfXe6JJeh6JzSoQpFL8TKop4HQMS0fp0ZaDVc1WEvoauSVGGT7PAa26qAeDv70+nTp1YtGgRL7zwAnq99k+bmZnJ1q1bPRpkuJKYmIjZbGbx4sW2Gi+ABQsWOM3r3r07AQEBHDlyhIcffrjG7sGajpiamkq7du1s42lpaeTn5zuZgygUNwuuqYVveE8lPmsCFp2e+CwzwTuNkOS8T3lW8Z7GHftsHcsqcDLHcEwj7DpiEtvQIl/6hu1oE9PkN3uwjI4Gx+zoG9HR0Ion4WU2Q56DN8SNmGroKeJVnvBydTa8WuHVujW8+eYw1q3ThFaPHnDvcMhwOH91Il6tzmfwyJbvkaVGMg82YNttt7K2fiLPxvcFnFMRzaYSzCsmIaRFE2EqHVGhuOmpSHg9gj2t8BEqF16Km4iXX36Z5ORkhg4dyuOPP05hYSEzZswgKCiISZMmVbr/wIED6dmzJxMmTODs2bM2V8N9+/Y5zQsMDGTmzJk88cQTnDlzhqSkJIKCgsjKymLjxo306dOHMWPGlHOW8unVqxft27dn0qRJ5OXl2Roov/LKKwQFBdWoyFMorhdcUwtPbM/EorsVhB6LgOOpGUQlOUeBdbpILBb3GhdXq3jXZsb6psOczDGc0gjRxBdU/reitnE12LhR67vAs/DKz8cWWQwK0swmbjSqG/FypCaElyNWEejYiaQ6Ea/LqdsRRiNCWhBSR6tcHZ3vjCe+LBpsTUXUGn8LhMWMXqh0RIXi90K5JalSyk+llNbM8f8BC8rGPP5c6QUIIVYKIaQQ4hWX8RAhxEdCiLNCiEtCiB+EEG097O8rhJgphMgRQhQJIVKEELd5mKcTQkwVQmQIIYqFEHuEEMNd5yk0Bg8ezIoVK8jPz2fkyJH88Y9/pFWrVmzevJmGVfykW7JkCUOGDGHq1KmMGjUKk8nEO++84zZvwoQJLFu2jMOHD/Pggw+SlJTEjBkzMJlMbqYdVUWv17N27VrGjx/Phx9+yJAhQ5g2bRodO3Zk27ZtNG1aafasQnFDsOjwIiasmcCiw4voHN6Z1jl67kmRtMrW0SShGcHyLM11JwnmLE27RLntfyF/MsXFzr2NPFnF5x1Y59Rnq9hkQWfwxoLecxrhdYKr8LqRPXU8Ca8bvb4L3CNeFgt89519zDE9tKaFl2uGu/U1dsxyr07Eq06XBKSXASkEWCyEHtqN39Q/c3nXLkBLRRxnmcab5hG8YB6HES9bn7oUc5kKLEtHtKx9RUtLPJF6FXeoUCiuJyr9bkwIYQDOAXcDy2vy5EKI+4D2HsYFsAyIBp4E8oCpwHohRAcp5UmH6R8DycCzQDrwBLBKCJEopdztMO9lYDLwHLATGA0sEkIMlVI6/IlXWBk8eDCDBw+ucM6GDRvK3dagQQPmz5/vNi6le/B0yJAhDBkypMJzZWRkVLjdldDQUGbPns3s2bOrtZ9CcaOw6PAiXvpJcw/cmr2VfwSP5anljcmvG8PgvelEPOFDk+BgdEKPRZrxCvBxO8aePcPYtAn+n73zDo+qSv/458xMKiUJNQmEkNACKBIDGHpHEDUKAoqIgij70xV1BVFBsaCuCLrrrq5KlVURRaQuTUEEBWkJCCG0kIAp1FATkszM+f1xMpmSmRRIgMD5PM88c8u5954JYXK/933f7/vU/00mIOg0JkMNmkVNLFLfFdSiB/nJ0wv7bHndPhRD8F+u+6fyrsKrMkaEbDgKr4sX1fuNILxcI17ffAPbt9v3Of4ZKm/h1by587pNBF6u8NpfT/DeQ0bi1udzy2EwSok1L4/sLVvxj44mJjyIcaOGszn5FPX8vRmxrAExcg/bRUu36YhFImEajaZSU+KfICmlWQhxDLCU54WFEIHAh6jeYF+77L4X6AT0kFKuKxi/CVV39iIwpmDbbcBQYKSUcnbBtvXAHuDNgvMghKiDEl1/l1JOLbjGOiFEY+DvgBZeGo2m0vHjkR+d1tPXJ3K0xVNYDUYMVgsx8X9iMNUh03CWYGt1/BJyqNepldMxe/dC/ukq3PVHSkG91jlSq1YhxKVrg8dmxtf5DeGNKrzcRbwqY30XOEe8srPhlVfs688/D44luYGBUKsWnDyp1q9UeAUGqnPYmiy7i3idO6cMPTp0KPl8245tIzHEQm4nA1FHLWABs8FKWpNAahWMiQkPKjSiaRasRNg4B2dQx3REJ2OOApK2/kj+jq+pW92XOp0eu+7/D2o0Gjul/RP0JTCK8hUoU4A9Usp5Qgh3wivdJroApJRnhRBLUa3kxziMywfmO4wzCyG+AV4SQvhIKXOBOwHvgs/h+rlmCSEipJSH0Wg0mkpErwa98F2+kdh9ks3NBFUadOfMPqOq6TLAqcb7sIZ9hK/PRY7lVqGGeAiVIGAnMREG3rLWqV4rK3Gt235aV9LM+Frh2oHCVkNUGXEnvCq7oyEoe39b6wGzGWwdS2rVgvHji45/5BH48ENo1apoxOpyaNHCLrxsItBkgl694MeCZxsPPAA7dkBJbSTb1G2Dt9Gbg/VzefMhaHlEkhRu5M7a5wrTe7Lj41UErF1bYgqiYI5ERHdnxPaJRSJhoERXxLIheGOGdLAc+A7jiOVafGk0lYTSCq8UYKgQYiuwGMjAxWxDSjmrtBcVQnQChuMmzbCAlsBuN9v3AMOFEFWllBcKxh2WUma7GecNNC5YbgnkAgfdjANogYqmaTQaTaWhV4KVlitVd+DbDktMf/NjmzGLGuSSHZaIV+NlCGHvz5XNXDIyWxSmEVossH8//GTswYtN7GmEQS16XLPPVN64Ntc9evTazKM8cNdA+UZINRRCpRTm5Dhvf/11ZRjiyrRp8PjjyuHQWA5+yi1a2AWWY/RtxgyIiVE/44wMGDwYfvpJ9YfzROs6rZneZzpLDi1hsWExyWEWvAxetKmrWjlkx8dzZMRIZF4ewtubBrNn4R8d7XQOx3TEcS498rIS19IEC4WdVSz5pOlURI2m0lBa4fVxwXs9IMbNfgmUSngJIbyAz4CpUsp9HobVQIk9V2zP9oKACwXjsooZV8Ph/YwsWlzkOk6j0WgqDedXryE9pAPHa0dT50Q8dbduokPQXRiEkcOtPsIsiu/Pdfgw5ObChoReDAmYx8sjXNIIb0DOnr3WM7h8blRzDSgqvJo2hSefdD9WiKKmGFfCvffCRx+p5c6d7dvDw2HePFVjZrXChg3w4osq2lYcreu0pnWd1tzb6N7Cnnq2xuXZW7ZizctDWK1Y8/I4u2hxYfTLUYA5piM6EtSiB+bkzzBI1V3ajLFIKqJGo7l+Ka3wiih5SKkZD/gBbxczRuDevt61e255j3PeKcSTwJOAdsHTaDTXHZkt72afSRWjZAU1p0r1I+QaL5BpOIuf72m3xzj250pMtG+/aOxF+0dvTMH13nv2lLXnn7+2c7kSbmTh5efn3I9sypTiI0vlSc+eSlTl50O3bs77eveGyZPtdWf/+Ae0awcPPeT5fGkbd3Em4Si1W4cxqtMo531NApEGKyYJVmEla+H3CIvVY/TLlai2vVh9ajYnNs5BAstEV6dURI1Gc31TKuElpUwtj4sJIRqgXAVHAT5CCEeLLZ8Cw43zqEiUuyiU7fGP7ev5NOBOEQU57Le9BwkhhEvUy3WcE1LKz4HPAdq0aaP7mGk0muuKTFM4DUwphHgZyci38GeDJPwbrcDX5yJWKTCIol9bjv259u61by+PWpnrlWefVbU59erBLbdc69lcPo7C68IF9X6jCC9HZ8POnVUU6mrSqZPnfePHw++/w+LFan3UKPV7dGuRBjdKdOUvOUk1UZX8IydJY5eToc3W2udY+ZCJ5kes1D4HPRPMCImT82FJ9Ol7L9ubd3abiugOx8bnN3I0W6OpDJRKeAkhLEB7KWWRZhJCiBhgi5SyNJnWkYAvRU0uQLkOjgWiUbVX7prCtACOFNR3UTDufiGEv0udVwsgD3tN1x7AB2iEc52XrXWiw3NfjUajqRw0MJ6nZlV1t+0Xvon0qEUYjCoFSQiJlNhrQQCD8Hbqz+UovFwbyd5I+PjA8OHXehZXjqNRyNq1ym3vRhFekZGQnKyWp051/r291hgM8MUXKtK1f7+KNg4YAFu3KldER47sW0BO1/9h9c3CcCmIgF1x1ApriE+46sjcpm4bPgv35WBYPs3SoMsfuZjcOB+WhKdURFdcG58nMU+LL43mGuKxgbILxX0FGnGfxueOBKC7mxcoMdYdJYyWAPWEEF0LJyBEdeCegn02lgBewCCHcSZgCLC6wNEQYCVKiD3sMp9hwG7taKjRaCojhqMZJBnTWOmdQEbT+YWiy4a6eVVf876mWkQ1/7tTf66bJeJ1oxAbC1FRavncOfj88xvDTh7g449h9GhYsEAJnOuNgABYuNBucHLwoBLzVqt9TEbmYi6Gf4v0y1IujX5ZnGnyFQcX/Yfc1HOA3Xzjr9F/5ZZuA5n8kIn5XQy8PdSLrbXPlfu8XRufZyWuLfdraDSa0lNsxEsIYcAuugwF6474Af2Ak6W5mJTyDPCzm+sApEopfy5YXwJsAr4UQozD3kBZoGzobedLEELMB/5RYNpxGPg/VE3aww7jjgshPgReFkKcB3agxFkPlD29RqPRVDpSms7Er0EyEW5SCu1IevY4VHSr1MKrsmEwwAsvwBNPqPV//EM5U9qozBGvpk3h00+v9SyKp2VLmDULhgxR60uXwrvvwoQJaj350FSEId/5IGM+Jxt/j/ePXWjyeHvAbr6RcDyBJYeWcDAs38n5EJwt50uTfugJ18bnN5JjqUZTGfEovIQQk4DXClYl8Gsx5/mkPCclpbQKIe4Gphac2xclxLpLKV3NgEegjDomA4HATqCvlHKHy7gJKCfEZ4FgYB8wWEq5tDznrtFoNFeDvUmv4R9+qMSULMeaLkfS0uD8ebUcGAh165bzBDUVwrBhMHEiHDum/g0dqczCq7IweLCq9/rgA7X+6qvQpg3ceaezcY0jZt9TpOQvpAntnbbbol9FnA9LYTlfWjw2PtdoNNeE4iJePxe8C5QAmwn86TImF1UftexKJiGlLHLrIKU8DYwseBV3bA7wt4JXceMsKHE2+fJnqrlSfv75Z7p37866devo5mofVc5kZ2czYcIEvv32W06dOkWTJk146aWXePhh14xTjabykZ7+TYmiy2Dwc6rpcsS1vut6qqnReMbXF555RokvR0wmqFbt2szpZuO992D7dli/XkWOhw5V674+IVzKTS96gABDk2VkZHZySvUFe/TLEVfL+dKabniiMjY+12huVDwKLynlemA9gBBCAtOllG6+UTSa65MBAwawadMmJk+eTLNmzVi4cCHDhg3DarXyyCOPXOvpaTRXiKWYfQJfnxAiG40tcqNnw9FKXqcZVi7+7/9UitvFi/ZtNWtq8Xy1MJlg/nzVXDktDU6fVmYbixePJXHvBEymnKIHCXsPvcQffufsrqMEtAqjxf13FBnqaDlfVtMNjUZzfVNaO/k3oLDmqwVQE9gmpbxY7IGam5Lc3Fx8fHxKHniFSCnJz8/H29u7yL6NGzeyatUqZs+ezWOPPQZAnz59+PPPPxk/fjxDhw7FaCyNEadGc71ixL34MtKzx/4Sj9b1XZWXGjXg8cftTX9BpxleberWVUYgXbqo/l/x8bB2bRxz58LLr/zNrQi+lJtB4g+/47/pIlVFbaybLpLI70XEl6PlfFK4kTtrn+O2q/S5NBpNxVJaV0OEEE8DmcAuYC3QrGD7IiHEmIqZnuZasnLlStq3b4+fnx8BAQHcd9997Nu3z2lMt27d6NSpE0uXLiU6OhofHx8++USV/J04cYKhQ4dSvXp1AgMDGT58OGfOnHF7rYULFxIbG4u/vz+BgYEMGjSII0eOOI1p2LAhw4YNY9asWURFReHt7c3y5cvdnm/z5s0A9OvXz2l73759ycjIKNyv0VRWQkMfLNN2V24WK/kbleefV2YbNrTwuvrExjqnfC5YAAcPxnH8WKjb8b4+IZzMWExq15c40GckqV1f4mTG4iLj2tRtQ2q4L0s7epHSwMfJdANUDdjJzz4nOz6+XD9PiRzdAhumqXeNRnNZlEp4CSGeAP4JLAIG42wvvwEYWP5T0xw9epQNGzZw9Kirn0jFs3LlSvr370/VqlWZP38+//nPf9i9ezedOnUizaWie//+/YwZM4ZnnnmGVatW0bNnT0Cl+i1btox33nmH+fPnYzKZeOaZZ4pc69NPP2XgwIG0aNGCBQsW8Nlnn7F79266du3KeVv1fwHr1q3jgw8+YNKkSaxcuZJWrVoVOR9QGM1yjYbZInG7d+++vB+MRnOd0DzqTUJDH0ZFvgCMhIY+TPOoN0t1vI54VW4aNoRBg+zrldlKvjLjmLW+erUyqpk5cyyXLvk5jTMY/KhRszv5zX7A7HcKBJj9TpHfZCG/fPIKiT/8XjjW0XJ+ep/pTjVgNuONE//4B6mPDCdr/vwK/4wAHN2Cdc49WH+ajHV2f1j2vBZgGs1lUKpUQ5RxxTQp5XghhGt+VhIwrnynpTl69ChffPEFFosFo9HIo48+SlhY2FW7/sSJE4mMjGTFihWYTOrXpH379jRt2pRp06bxgc3SCTh58iSrV6+mdWv7H4c1a9awceNG5s2bx4MPqifwd955J/369ePPP+0eLRcuXGD8+PGMGDGCWbNmFW6/4447aNq0KTNnzuS5554r3J6VlcX27dsJDg4udv7NmjUDVOTLMeq1adMmAE6fPl3mn4lGc73RPOrNUgstR06ehBMn1LK/PzRoUM4T01wVJkxQlubZ2cpVT3P1iYiA22+HHTsgL0890MjPV3WVjz8+lbrBGYX1lsmHpoLIcz6BMR8Z/iP+63s5pR26M92AAuON3FyElEizmcy3JuPTtOkVmW+UhrSE1dQ152ESVqQlD+u22RD/NYbHlkLYddh4TaO5TiltqmEEsMrDvosoG3dNOZKSkoLFYkFKicViISUl5apd++LFi+zYsYMhQ4YUii6AiIgIOnbsyPr1653GN2zY0El0gRI4RqORgQOdg6E2EeY47ty5czz88MOYzebCV/369YmKiuKXX35xGh8bG1ui6AJVz9W8eXPGjBnDpk2byMrKYubMmcybNw8Ag6HUWbYazQ2HY7SrWTPnlDVN5eHWW2HXLvjtN/jLX671bG5eHnjAvpxf0MZr7do4Hn54A40bHaRjxw2EBMcVazfvKe3QlbQmgViERKJSj6TFQvaWrVf+IUpgk6UF+ZiwFJhQG5BYzXmkJaxWA3QaokZTKkr75/Yk0NDDvmZAmod9msukYcOGGI1GhBAYjUYaNmx41a6dlZWFlJKQkKL9f4KDg4tEi9yNy8jIICgoCC8vL6ftdV2aBR0/fhyAXr164eXl5fT6448/OHXqVInXcofJZGLBggVUqVKFDh06UKNGDSZMmMC7775bpvNoNDciur7rxqFRI2jfXjsaXksGFlNskZxsX/bUU68w7bDZD2RkFi++ttY+x8w+BiwGsAjIM0rSmlT8s++I6O6MsE5knqUHeZgwSwP5mNhkaeGchjjnHi2+NJpiKG2q4VLgNSHEz0BqwTYphKgFPI+q/dKUI2FhYTz66KOkpKTQsGHDq5pmGBQUhBCCzMzMIvsyMzOp6VLFLdz8xQ8JCSErK4v8/Hwn8XXs2DGncbZzzZkzh5YtWxY5TzWXxjTuruWJFi1akJCQQEpKChcvXqRp06YsXLgQgI4dO5b6PBrN5bA9NYvNyaeIjaxJTHiQ076TJ8FqhTp1rs3cdH2XRlN+NG0KrVqp6KMrycnQvbtajmw0lqSkCVitbuzmwcly3hNt6rbh49u9OVI7n5ZHJHsbGOh7FVwPY8KDGDdqON/v6MEj29fSlj1sFy0ZF92dtISPC9MQzeY8MhJWU+9YIuxdDM3joM1jFTw7jabyUFrhNRHoAewGfgck8BEQBRwHyl5koCmRsLCwqyq4bFSpUoWYmBi+++47Xn/99UKjitTUVH777Te3BhmutG/fHovFwvfff++UXvjNN984jevQoQPVqlXj4MGDPProo+X7QQqwRQvz8/P597//TZ8+fWjUqFGFXEtzcyElnDkDQQW6yia2gvy9WbLsB2LkHt5f25Jxo4YXiq+dO6FdOzCbYd06ZUd9tdE9vDSa8uWBBzwLLxs2QZV8aKr7RstQmI6YsSmdM7tOEtiqFiHt7S6Jreu05pU7XuEd3uFQfSveRu8irocVRUx4EDHhQWy/vT6bk08xruCh0oL4FvTHBNJMPiYyjh0ndPv76qBDa5UbmxZfGg1Q+j5ep4QQbYDngDuBQwXH/hv4UEp5ruKmqLkWvPXWW/Tv35+7776bp556igsXLjBp0iQCAgJ44YUXSjy+d+/edOrUidGjR3Py5EmaNGnC/Pnzi7gJVq9enffff5+nn36aEydO0K9fPwICAkhLS2P9+vV069aNoUOHXtZnePfddwkPDyc0NJQjR47w8ccfc+TIEX799dfLOp9G44iUcM89sHw5vPoqxD2exfsz5hIj95BONZ73n0eCn4nnc5ZxOD6MmPABAMycqYrwAT788NoIL51qqNGULw88AK+9VnT74cPO6yHBcYQEx/Hrr53dii9fnxAyNqWTt+gAVRDkJWeRAU7ia1CzQTQJasK2Y9toU7eNWxOOisQmwGxERHdnxPaJxEgVBXvn3HKQKv1VSkjfPJ9QLbw0GqD0ES+klOeBtwpemhucvn37snz5ct544w0GDx6Mt7c33bp1Y8qUKYSGuu9R4srChQsZM2YML7/8MkajkXvvvZd///vf3HfffU7jRo8eTVhYGO+//z5ff/01+fn51KtXjy5duhQx7SgLFy9eZMKECaSnpxMYGEjfvn1ZsGDBNYkiam48EhKU6AKYOhVubb2O2YbJeGEmwceHv4TUJF8IvAIl71p/AZTw2rDBfo4VK+D8eXDJqK1Qzp8HW4cKk0nVCGk0miujeXP1cnyoAc4R7JhM6AAAIABJREFUL0ciI8cSnzABHx972qHB4Edko7Fkfr2fmggMQmCVVjI37XcSXuDZ9fBaYEtDtEXB1i06RQS/I6Xav8LSlsev7RQ1muuGUgsvzc1H37596du3b7Fjfv75Z4/7ateuXegi6Ii0fRs7cNddd3HXXXcVe62yOjtOnjyZyZMnl+kYjcbGuXMwZAgkJcHcudC5s/P+H3+0L+fkQOPTiST6GIj3q0qayUjDdGh+RJLUAFIbBwBw9qxKNbSRmwv/+5+6ztUiKcm+3KQJuPjfaDSay+SBB+Atl0fTnoTX2bNxTJuqLOdr18ngxPEQtm8fS+dOceyr/RLnmv2E2fc0pks1kKd7At0qevpXhGMUbF/sKF5efIF+xi2ssLSjVewo58FHt8DOeYCE24ZqO3rNTYVH4SWEmFuG80gpZcUU6Gg0Gk0ZmT4dPv4Ynn8eLrd08LnnYOVKtTx1alHhtWaNy/r5SL4NqU2+gKg0ycR5VkwWMBtBtFfGMb/+Cq7PHRYsuLrCSxtraDQVgzvhdeKE+6j2mjXKcn7tWmcjjaCgxXTouAQpcwEw+51G1F9CRmb7Yk03iiM7Pp7sLVvxb9e2wvt9AQy9owHwHDN2Z9DvlpCC9QKObsE6uz/CqvKt5Y6vMIxYrsWX5qahuIjXMOACykq+JCu5oiEMjUajuQZcugRjxqj3p56CBx8EH5+ynWPxYpg9275+8KB6X71yCWf2rqVqkx5s2HCv0zHLM7JpmK2iXLXPgpcFDBIMVgN1DpyBHs5phjb+9z+4eBGqVCnjB71MdH2XRlMx3HqriiIfOOC8/fBh5XroiGPE/JZbwFb+HBk5tVB02ZAy18ntMDP5LGn7s6jXNIjgyIBi55QdH0/KY4+pBmNeXjScM+eqiS8nwVVAWsJqQix5he0PrJZ80hJWU08LL81NQnF9vFKAKsBh4HXgFillhIdX5FWYq0aj0ZTIvn1KdAFkZ8Mff5Tt+OPH4YknnLelpMDqFUvoumkEA8/MoefWEbSPXeI0xmtNdSbOszDkFyvd/rAiTCYwGjF4e+Pfri3gLLxsTYuzs+2RtbJy8SKMGwcvvmg37CgJHfHSaCoGIeDdd4s+6HFNN7Q5mtpYsACGDVPLteu4b7JsczvMTD7LumlrOLF0A+umrSEz+Wyxczq0bjHWvDyEVWLNy+PQupKbNJeVnBx44QUYO1alTxeHrRGzlCr6b8aoeoGBbsKsuSnwKLwKxFQ3IBn4B5AphJgrhOglytJMSaPRaK4irsXtW8rwN1xKJbpOnFDr3qFZVI89iDkwC3Z9gzdmjELijZnhtzq3Rog8cgZvqwGjBJM0EDRgILXHjKHB7Fn4R0eTk+M8lyeftC8vWFDGD1nAV1+pNMj334fXXy/dMdpKXqOpOAYOVKmFf/mLfZur8Nq6VY0BaNBA9QGbORN69oQTx903WbY1X05evYP2VWrQomoDOlSpRfK3W4udT2IDA2ajarZsNqr18mbmTPjgA5g2TaV5F0dEdHcesbzGV5aefGXpySOWV4mI7q6bMGtuGor9Hyil3CClfAIIBp4AagIrgKNCiL8LIZpdhTlqNBpNqbkS4TV7NiwpCGR5h2Zx19C5vNJ9Cv2GzsXf6O00Nv+MPwDVqxdcJ7stVoN3YZQr4L44ao1+sjCtZ8sWle0D0KyZSoO0sWyZempcVv7+d/vyu++WPD43Fw4dUstCqHloNJryxcsLGje2r7sKL8f60F691P9Fb2/4/ntYvXosly75OY23uR0CCK91pHZ9iQN9RpLS9UWq+2wjY5P7nmAAzbrcy3vD/Piuq5H3hvnRrMu9HsdeLtu325c3bix+bEx4EOOfGM7emDdIjHmD8U88Skx4EGkJq7Ga8zBgxWrOIy1hdbnPU6O5HijVow8pZa6U8hspZX+gPvAl8AJQij/1Go1Gc/VwFV5bi38gXEhyMjz7rH39qYfW8bX/ZF7w+o55/pNJsbbAavTGiiDX6s2sdU9iMICtn/jOS9F81XRWYZTrXEAk21emFKYCOaYZdumi6jqaNFHrFy7A6su4z7j1Vud1N4ahThw4AFarWm7YEPz9y35NjUZTMpEOBRi2hx02HOu7evWyLwcEwOTJccyZ/TbHMkOxWgVZWaFERb1NSHAcGZmLyYlYgNnvFAgw+53i+C1fkLr3C4/zaF2nNeNHziLs6ecYP3JWhVjQO9a0Obq2eiImPIi377+Vd+6/tdAJ0ZaCaJYG8jHZ0w9BpyBqbihKbScvhPAB4oBHUE2UjwGXWZmg0Wg0FYOr8Nq7t+ReWRaLcj+8cEGtN20Kz3VIxGunGZOwgjQTlJvHwj7j+GHPT+xb1pMdf7YjNhbuvhveflsdNz8hmncXRpOZfJbFH8ZjMVsxmgzEPR/NL7/Yi+A7d1ZPuR94wB6pWrAA4spoWubag+vwYecbPld0mqFGc3Vw/H+4cqV62PLkk9C3L2zaZN/Xo4fzcfXrw6RJcdx2WxxWq/qesKUlJh+aisTFeMOYx8X6XwEve5xLRff8spkPAezfr6L3fn6ex7vDtQnzuOjuakdBCiKWPDB6Y3hsqXZA1FRqSox4CSG6CCGmo4TWLOAM0B8Ik1J+XsHz02g0mlJjNqs//I5I6ZwK445p0+wpMkYj/Pe/EN62D1bhTb7VSJ7Fm8XSmzf3/Zc/jOnkxv2XwC7f0asX3H67/Sbj8GFIS4Pkg98RfuffaPrAE4Tf+TcO7f/O6WbLZk3/wAP2bUuWlFyY7ootemVj8+bix2tjDY3m6tCsGQQF2dc3bIBHHoGwMPU9BcrpsG7dosfecgtERallKe1RJJvBRhFMOWRklr9pRmk4fx6OHbOvW612h8ayYGvC7N/zRcaNGl4YCXNOQczl7Io3deRLU6nxKLyEEJOFEIeBn4AI4FmgrpTyESnlGumuC65Go9FcQw4fdu/u51rntT01i4/XHWR7aha7dsGrr9r3TZwI7doBYe34rdFSXls3gZ5fLCXex1Ycpd4C2v5Ir16qNuOOO9S2iLpn2bhiBtmGqXj5n0UI8PI/S45pKu3aqRujsDAID1fjo6MhIkItnztXtDdYSdhu4Gw4ijsbWVn2GyNtJa/RXB18fZVz4cCBYHLILbI5roJzmqErt99uX46PLzinj3vjDVDRsGuBaxollC7d0B0x4UE83b1xoegCxxREgRFJtfSN2nxDU6kpLuL1ChCEquf6DWgEjBdCvOnm9cbVmKxGo9EUh2uaoQ3HOq+vfz/C3z//guyfpvD+9Lk8+NesQrHWpg1MmGAfW61FO/6+8QU2/9mOnJ296BFv5ZVvLPRMsHJpVy9iY9W4Tp1gyP3z+GR6d2pGvIsw5DtdXxjyefxxdWNkSzME9T5okH3czJll+7yuwss14rVnjxJ2DRrAqlU64qXRXE1uu02lEB89Cu+8Y3/IYuPuuz0f6yi8duxQ7zaDDXd4jIZVMI5phjYuV3i5IyK6OyOsE/nNegtWBAak3XxD135pKiElpRpWBx4FJpbipdGUyM8//4wQgp9//rnCr/XFF18wcOBAwsPDEULw2GOPeRy7aNEioqOj8fX1JTw8nMmTJ2OxWCp8jpryxVFYdOxoX7ZFvLanZrFn6T/52vQmfzN+y2zjZEL9VUMdX1+VYujlZT/uYkACtfrPwK9RAq1/tDJ6pZXbDktGr7Tyl4vWwn49XbosZuToN/CqchZPzTZs/Xm6dHHePmKEfXnpUkj3bFBWhLQ05/WEBGd3xHffhbNnVRTw2WdVjzMbWnhpNFeH4GB4+WUlUlatgtGj4cMPoVs3z8c49ji2Ca+Q4DhMpiC344uLhlUkFS28bCmI60IeJw+vQvONfee8tf28plJSXB8vQxlexqs5aY2mNHz55ZccOnSI3r17U93m+e2GVatWMXDgQNq2bcuKFSt49tlnmTx5Mq+88spVnK2mPHAUXoMGKTEFcOSISrc7HL+O142zMWHBKCRe5BNrUI4TU6bY6yoAEo4n8MLmJ6g74F9EvPgEPQK/BwoyDSX08LXnBfr6TcXo5RzlcsXWn8dW32UjKgq6dlXLFkvpo15SFo1wmc32erasLOf+YPv22WvIQkIgMLB019FoNOWDwQB9+sCnn8Jzz+HxIQ1AawcvjN277f93mzZ9FYPBs928OzKTzzo5rJYn7oTXrl0lO6yWhZjwIO7ufx8jrBP50DKIEdaJ1BAXnOznj2+co6NfmkpBcTVe7a/mRDQ3DrlldQi4TKSU5Lkr6Clg1apVJCQkMGPGDKoVY2n30ksv0alTJz7//HO6d+/O3/72N1555RU+/PBDMjMzK2LqmgrCUXjdeqtzus7WrdDemIjAihDqxkBKIz/90YdeveDpp53Pte3YNsJTL3H/72aaHctlQ51gkPYbiqD+vQvH5uUVn+Zz6ZIfM2eOpWZN95Emx2ar06crAVYSBw/CyZNFt9vE2Jdfejbr0NEujeb6JjDQ7lpqNtsNK0KC44iKehtfn1BA4Otjt5t3R2byWdb/M55TK1NY/8/4chdf7oTX2bPqYVd54mq+cdC/daH9vAUDQfu+1dEvTaWguFTDjUKIDCHEZ0KIvkIIr2LGasqZjMzF/PprZ35a25hff+18TRyLVq5cSfv27fHz8yMgIID77ruPfY65SkC3bt3o1KkTS5cuJTo6Gh8fHz755BMATpw4wdChQ6levTqBgYEMHz6cM2fOuL3WwoULiY2Nxd/fn8DAQAYNGsQRl2/uhg0bMmzYMGbNmkVUVBTe3t4sX77c4/wNhpLb1B09epSEhASGDRvmtP2RRx4hPz+fFStWlHgOzbVh+nSVjjN3rlqX0i68vEOz2HLhII3aZRWO37IF6rXug8Hko9JVrCaeWj6NpAvtmD1bPY12pO2J6kycZ2bIL1Zem59PYmYnJmW+zq8XOzI1+3VaPjekcGxxaT75+aF8MO1t1q6Nc6rvcuT++6FWLbV89CiU5tfut9/cb9+0Sf0spk/3fKwWXhrN9Y87gw1Q4qtjxw307HGQjh03eBRdJ07ArEmZ3OEriPIxcIev4PjW0j1MTElR0bmBA+HiRRVBv/deuOsu5wc+jsKrfn37csOGMGCAMg0qLxzNN2y1Xx9aBvG9tRtCWnTzZU2loLg703rAm0A4sAg4KYSYL4R4UAjhOW9Lc8VkZC4mKWkCl3LTAcml3HSSkiZcVfG1cuVK+vfvT9WqVZk/fz7/+c9/2L17N506dSLNpbBk//79jBkzhmeeeYZVq1bRs2dPAAYMGMCyZct45513mD9/PiaTiWds3WYd+PTTTxk4cCAtWrRgwYIFfPbZZ+zevZuuXbty3tbApIB169bxwQcfMGnSJFauXEmrVq2u6HPu2bMHgFtuucVpe0REBP7+/iQ6Nj7SXDdkZ6vGxQkJ8Ne/qifC6enK2tg7NIu7hs7FuGUKOX5z8Q5V4mvrViCsHXkPLmXSzxPpOmcFM3Y8xscfO98w2Kh34AzeVgNGCcZ8A7dlnWHBuSE8mTaD7I5DnIRaZKOxSFk0/adFiw/48r8bWLtW3Ri5phna8PGBkSPt659+WvLPwNHBcMgQ5+1bt8Iff6h1Pz944gnnY7Xw0miuf9zVeZWFadOgdp2lpHYZx4E+I0jtMg6LXFricWYzDB6sXFYXLlT1aO+/r2pQV6ywR+izs+11pkajEmaO/PADvPlm2eddGhwjYGebPeC5+bJGc53hsYGylDIT+A/wHyFENeBuVAPlTwFfIcR64AdgiZSyDOXgmpJIPjQVqzXHaZvVmkPyoaken2yVNxMnTiQyMpIVK1ZgKvDCbd++PU2bNmXatGl88MEHhWNPnjzJ6tWrae2QlL5mzRo2btzIvHnzePDBBwG488476devH3/++WfhuAsXLjB+/HhGjBjBrFmzCrffcccdNG3alJkzZ/Lcc88Vbs/KymL79u0EBweXy+c8ffo0AEFBRQuWg4KCCvdrri/27rWn0Z0/r2zkU1PVeudb1/G1/2S8MJNv/IF7bg3jp/QBbNmiIkFphna884tqwFm/Pjz0kPtr+Ldri8HbG0tuPvlWL7Zkty3cFxrqPDYkOI5TJ2HXrqnUrpPByZMhdO06lpDgOH75xT7Ok/ACJY6mTFHLK1aoVJ0GDTyPd4x4Pf44LF+uGkBnZMBrr9n3DR6sbn7++1+7lbUWXhrN9Y87Z8OycP78YhrcMwOzt6o/Nfud4rTPDDIymxR7L/Hee85OsAsWqIhXu0bf0r7OGjYl9AYGk5xsH9OwIcTEFD3Xxx/DCy+outLyJiY8iJjwILan1mTEPjfNlzWa65CSc7EAKeV5KeU8KeWDQG3gfuAw8CpwVAjxuxDipQqc502FJ1vYq2UXe/HiRXbs2MGQIUMKRReoKFDHjh1Zv3690/iGDRs6iS6ATZs2YTQaGThwoNN2mwhzHHfu3DkefvhhzGZz4at+/fpERUXxi+NdKxAbG1tuogtUnRiAcJP/pVvVXb+4Nuhc/nsWc7YcxDs0i1hDIl6YMQkrXpjp6qeilqdPK4HmWLYXGuq5wN0/OpoGs2dxovcYRh6dRedRP7B6TRPW/NiIfnc1YW/Sa07jW7aMY8yYDfTpfZChD20gJzuO1FSVOghQpYrzE2xXGje29/WxWmHGDM9jz52z/wwMBmjfvqD3WAGrVtmXn3hCuaq9UdD045ZblP29RqO5vnH8vti5s2j7iOKwWqFT56mYvF1Mfwz5xfb82rnT/l3huK1R4Ld85juJUVkb+cx3EjvXfuuUZti4sbLPd+XSJSXkKhJPzZed2DYH/nu/etdoriGlEl6OSCnzpZQrpJR/kVLWAzoBPwPDy3tyNyue6kWull1sVlYWUkpC3DyiCg4OLhIFcjcuIyODoKAgvLycSwPr1q3rtH78+HEAevXqhZeXl9Prjz/+4NSpUyVe60qoUaMGgNvI1pkzZwr3a64vdu9WKYXVYw9SpdURNu6ZS6uLU+g3dC6/ZMRiFd5YMWIweXNS9Ck8bssWZ+FVkob3j46m6vAn6TzqB+Lu+wqDQRlzGAxW0tK+chJfQhStydiwwb7eoYNzI1V3OJpszJgB+R6MEn//3W7y0aoVVK2qxJcrUVHqugDjxqlo2I4dqumzRqO5vqlTx54GfemSczuIkjhwAGrVKttD3Lw8GD7c/fdOqyprMFnAKMFkhvSPPuTA5m8L9zduDC1bqpRDVz79tGjri/LGXfPlQrbNQS57FnloLXLZs1p8aa4pZRZerkgpN0kpx0spdVJtORHZaGyZ7WLLk6CgIIQQbh39MjMzqVmzptM2d9GikJAQsrKyyHf5Bj927JjTuu1cc+bMYevWrUVen3/+eYnXuhJatmwJ2Gu9bKSkpJCdnU2LFvrX+npky6Es+g2dyyvdp/D0Xf/kv96T+ZvpO+b5T8a77jm2RC3F0HMChseWUq2FPRS0dWvZhBeoFJp77vmmSGRMCEhP/8Zpm2tqUGnTDG3ce699ThkZ8NVX7sc51nfZhJWtmbMjo0Y5N2sODnbuU6bRaK5vLrfOa9s2ewsLVzw9xH3rLWUFD6oVh2Mz+U3He2M2ggV14xiWdIbeyybRrpESX40bq2OaNSt63txc1VPwWpG+eT5IeyuQ9M3zr91kNDc9pRJeQggfIUQ3IcRLQoiPhBDThRDvCiEeE0JEVvQkbzbKahdb3lSpUoWYmBi+++47pybCqamp/Pbbb3S1NR0qhvbt22OxWPj++++dtn/zjfONaocOHahWrRoHDx6kTZs2RV7N3H2LlyMNGjTgtttu4yuXO9wvv/wSLy8v+vXrV6HX11wegWId8/wn84LXd0z2no03+YWphbGGRELatoPOL0BYO6cUPFvEy6+RaozsFZ7g8RoZmYtZ/0sHdu5qhMHoyd/debvrTZJjxMu1cbI7vLxUc1UbL76oUiRdcazvskW6XIWXl5d6eq3RaCovl1vntX07zJw5ltxcH6ftQvi4fYi7dauzOHr3XRg71v6gZsuhwYy+9AbxtQOxAkbAZIH2dVQ/w8aN1Th36YagXFbL22K+tKywqPpcW5aAbV2juRYUm/gihGgMPAc8DAQAVuAskAPUAHwBKYTYDnwCzJVSWit0xjcJIcFxV01oueOtt96if//+3H333Tz11FNcuHCBSZMmERAQwAsvvFDi8b1796ZTp06MHj2akydP0qRJE+bPn89ul+Kc6tWr8/777/P0009z4sQJ+vXrR0BAAGlpaaxfv55u3boxdOjQy/oMiYmJha6EOTk5pKamsqCgo2zXrl2pXbs2AO+88w533303o0eP5qGHHiI+Pp7Jkyfz7LPPlms9mebK2J6axebkU7SsXZNbc+x1XGYpsEojVinJt3qxIakPbzS0H9fW4W/s9u0Q0Pk7Il9+BwxWfhXeJByfTus6zjWKGZmL2bv3ZaRUDh6eA63OeTWON0m//aaMP0DdvDgKwOIYOxZmzVK1YSdOwCuvOLscWq3OjZNtEa9atdTNj63u4r77oOBXXKPRVFIuV3ht2wYbNqh7iCdHv0fNmsfw8qpL06bji9xbXLoEjz5q7x/YpQuMGaPqR3v3hv/9T23fcmgw/wY+850EFjAbVSQMwPv8t6x4cw2tw3ozj8GF5/byUqmLeXnw9tvw2Wdl/hFcMX6xo3h58QX6GbewwtKOVrGjrv4kNBobUkq3L+DfQC7wO/A8EAOYXMbURTkdfg6cBvYCd3g6Z2V+xcTEyOJITEwsdn9lZMWKFTI2Nlb6+vrK6tWry3vvvVcmJSU5jenatavs2LGj2+OPHz8uH3zwQVm1alUZEBAgH3nkEblo0SIJyHXr1jmNXb58uezWrZusVq2a9PX1lY0aNZIjRoyQe/bsKRwTHh4uH3744VLPf9KkSRJw+3K9/vfffy9btWolvb29ZVhYmHzjjTek2Wwu9bWuJTfi754r21JOyyET/yGnTHhCDnrlH7Jz6zXy4oQ6Mu/VIHlxQh056vbZ8qVOU2Vs/d9lq1ZFj69fX7VL9msUL1vOaC3vn9xSTnyyhRww+RY5fdf0IuM3buwkf/wpssRX4t5XnY6zWKSsVk1KW3tm26tDh7J93oUL7ccKIeXmzfZ9u3fb99WpI6XVat/317/a97n8ims0mkrI0aP2/9PVq6vvmJIwm6WsWtX5O8jd96KNsWPt46pUkfLQIfu+WbOKfp+1azRfzv6/UfKOxvMlSBnbZL6Mbxkl/4iKkvEto2S7RvMLxz7zjP04k0nK5OQr/5lcDl9tTpXDZmyWX21OvTYT0NxUANukBz0hpAfnNiHEIuB1KaXnXBzn8T7AaOCSlPLzksZXNtq0aSO3bdvmcf/evXtprj2aNdeAm+F3b8GihfSPH60s4jFxz++fcXFPfbo13MDPKZ3Z/Kc9nDRkCLhktDJggOopU6v/DIZGfsioH60IK5hNID56g9t6DHYa/9PaxiiN7oz969JIvXoP0jyqaJOaLl2cUwwBXnqpbDUOUsI99yiLeIDWrVUqkMmkTDdsfbni4mDRIvtxZ87Av/+t6iwGDSr99TQazfWJlMpkw9a0+MABFdm2WlX7iOpuuqru3Quu5ckRETjZv9v49VdVf2r7bvvPf5xNfk6fhrp1izoqjhkDH32kll/q8QQPp2/EKMEiYEZQJ/65SXVwX7xY9ROz1buOHAkzZ5bxh6DRVDKEENullG3c7fNY4yWlvK+0oqtgfK6U8qMbUXRpNJprS3ujs0V8rCGRzX+2Y+rmF5xEF7jvUWVL84tMqs6oH60YrSpJ0NsiqHfgTJHxnorPjx8LpXevQ+zZvd+t6ALn1CAbpTHWcEQI+Ne/VPNjUI2iP/5YLTvWd9nSDG0EBsLEiVp0aTQ3Cq5uqTt2qJTA2FioUcN924nt24tus6U9O3LxIjz2mF109e7tXGMK6hrd3bTF+vln+3JGlQLjDWFPPxze5kXmdmrPkZUvOjVR/uILnGzoNZqbjSt2NdRoNJqKpl7rPhhMyiLebPXmpz+URXyfPkXHuhNetjqv27LOgEUgUDcbwmjEv13RQuvIRmMROBel5+f6MHOmKkovzhbeVXgJAR07eh7viYgIJaJsvPoqpKc7Oxq6s5DXaDQ3Fq7CKyFBRcAtFpjqpiWXu+Qcd8Lr5ZftIqh6dRWJclfP+sAD6j2i7ln6tE4hou7ZQvdDAL96gxEfvcHRhzohPnqD1sHbGH9+KTEnztBj7VLydr5Iz55qrMWi3BM1mpuVyxZeQog7hBB3CyFqljxao9FoSmZ7ahYfrzvI9tQs5x1h7TA8thTRYwL3/bC0MMo1eHDRc7gTXm0KAv5bstuSL30wSwNmTAS/OhF/N12NQ4LjaN7iXUzUVhmH5tq8P/Vd1q5VRellEV633QYBAZ7HF8fYsaoXF6gbp5EjISmJwjm0cZvIoNFobiQcv6Li4yEnx76+f79KOXTEnfDKzXXuz7V2rYqq2/jnPyEszP3177sPIoPP8kz/ePq3TeaZ/vFE1D1buL9xY7itx2D6vTad23oM5p5AlWtt03DmtRucmjJ/+aX9e+y65+gW2DBNvWs05UCJwksIMVII8ZLLtk+A34AlQJIQwk1yjUaj0ZSe7alZvD9jLtk/TeH9GXPdiq9jTV9g1R4luqpWhb59nYcYDNC0KSQcT2DGHzNIOK6ypQMClIDZeSmakUdn8a+Tz/KqmEvQkCEe5xMSHEfXHpvp2fMQraI3F4oucN8k1EZUlOpnY6OsaYaOeHvDJ5/Y11etsi9HR9tTETUazY2La8TLUUBJCTt32tctFiXObDh+V9miXufOqYc4Nu6+W7kaeqJOHejTIQuj0YrRAEajlX4xyYXiy2Ylb8Onj/rSs5XEmnp0pmNHuPNOtW614pR+eN1ydAvWOfdg/Wky1jn3aPGlKReKtZMv4HmgsMlRgcj6C/Ai8DPwMfAO0NfdwRqNRlMcNpt4Y9pWZhsmFxho/MDy+DBiwgc4jXXsRnDLLerR7XjbAAAgAElEQVSGoGZNOHVKbYuMhL1nE3hi9RPkWfLwNnozvY+yi2/bVj1l3Xkpmp2Xoul6a+nnWKuW87rrE2ZHTCYV5fr9d7V+JcILVH3FsGHqKbEjrvVdGo3mxiQyUqUCnjunTDZSUpz379hhT2dOSoLsbLUcGqqE19Gjav38eVWzNXYspKaqbUFB8PnnxbXMUDwwahNm81SM/mewZAcSsHMgjYM78K/l0TRu7BzS7z1mCmtQkS5Tj870HjMFUGLL9vDou+9UauP1/PAoLWE1dc15qm2JOY+MhNXUCytlXxCNxgOlSTWMABxNNu4C/pBSTpVSbgNeQlnN3/R4cojUaCqKyv479/XvR/j7519w8ccpVN/3nZOBRntjYpHxrsJLCGf3rubNYduxbYSnXuLe38w0PJLLtmMq78ZmsNGjx2K+md+Bia82Yv0vHcjIXFziPF1vSmw3Mp4YN07dULRtq9wJr5SpU5VxhiO6vkujuTkwGJzTDbe4BF4cI1yOxhoxMVCtmn39/HlYuVI1M7bxyScQ4t5LqJCMzMUIn7cwVTmDEGCqcob67eZSP2IVTUKyiIwsekzvMVPot2hToegC9R0cGaka2AfeOYOVu5z92774Qpl9XC9piJssLcjHhFkayMfEJksLnXqouWI8RryEEOsKFv2BN4UQL6JSdm8BcoUQawv2+wI1HNbnSCnnVtSEr1e8vLzIycnB39//Wk9FcxORk5ODl5fXtZ7GZbE9NYs9S//J16bZCKxYMCINRqxSYDB5Ua91UecMV+EFSnjZ7NubN4e2J6rTZp4ZkwXMRisiVvktt20Lf/3ra8Td91WhkDKbj7F378sAZWpYXqVK8fsHDoT+/cHHp+QnyaWhbl145x146in7Nh3x0mhuHqKjYf16tbx1q/M+x8bKjvVdbdrA8eP29aNHYZRD7+AHHlDtN0oi+dBUJLnOG0351IhdQPfjtfDze4HM5LOk7c+iXtMggiM9F7U2iE2gVZORtEzP46sfjZgDJzKo2SDS0pToAmU97876/moTEd2dEdsnEiP3sF205PV61VXKoSUPjN4YHlsKOgKmKSMehZeUsjuAEOIUMEVKuUAIYQIygHFSynkF+1sB66SUPa7GhK9X6tSpQ1paGvXq1cPPzw9RHndbGo0HpJTk5OSQlpZG3bp1r/V0LovD8et43TgbExYlTqSFgzUf4tiZxtx6T2dquPmD5k54DRumUmUMBnjoIaj3+xmOWw0IacVgNVDnwBnoASGhi51Elw0pc0k+NLVE4fX11zB0qKoXGzOm5M/nWOdVHjz5JHz/Pfz0E/To4bkQXqPR3Hg41nm52sXv2QOXLqnvHNeIl2NPwTFjlDMqQO3aKtpVmluVS7kZ7ncYrMTcPZ2kXaGsnx6CxWzFaDIQ93y0R/HVsvYSRi3IwWQGabAw++SbNHm5CYe3tC4cc/hwgetsMXNbtkyJs5EjVb1vRRATHsS4UcPZnHyKcZE1qbbrY6wOqYeHVn/OSdMiglr0IKptr4qZhOaGozQ1Xr8A04QQwUAnwAdY7bC/JVCqZxNCiDuB8UALIAg4gTLpeF1KmegwLgh4H7gP8AM2Ac9LKf9wOZ8v8BYwDAhEpUSOl1L+4jLOUHDd0UAwsA94U0r5fWnmXRqqF3QxTE9PJ9+x8lWjqSC8vLyoW7du4e/e9Y6tlis2siYx4UG0NyZiwIoQBX9kDUae+ucI1h1sx8AEWLDA+Xir1b3w6tQJVv2RwO6z2yC0Df7t2mLw9kbm52Pw8iq0iz96ZKrHP+QebywceOghe++cy3UpvBKMRtVQec8euLUM9Wkajaby464/oA2zWX03tm7tnHbommro2D/rs8+U+CoNvj4hXMpNd7vPYMon/cRHWMxvIyVYLFbS9itjJHcRsPZnrJjMqo+itMKIVWYSOy6hfkhrp/MeP64i/e7YscOewp2VBZMmle5zXA4x4UHEhAcBsCC+Bf0xgTRjwUCDIz8QgZX85OkkMU+LL02pKK25xkLgI+Ai8H9SylMO+58ClpXyejWA7cAnKNHVAFUjtlkIcauUMlWoUNESVG3ZM0AW8DKwTgjRWkr5p8P5ZgL9gXEo8fc0sEoI0d6l+fNbwFhgQsH1HwS+E0LcLaX8XynnXiLVq1evNDfBGs3VxOZYGCP38P7alowbNZyY1n2wJvwLqyUPDAb2RUxj3UEV5XJ8SmsjNVU1/ARldlGnjlpOOJ7ArKUjaXI4j/civBk/chZNZ88ie8tW/Nu1LbSLL05ceWqY7EpEROk/c0Xg41P8DZhGo7kxadZM1Y06Wsk7Eh+vIl62/fXqQXCws/CyMWwY3H9/6a8d2WgsiYkvAXlu90txnMZ3jcPgfwZrdiBW32dY9EE4FrPEaBLc97fbC8VX3bZxWDd/px66AcIKLY5YyarjfM6kJM/Cy5ZyCaqn2dUgOxv+u7Q7X9aYSHuvPdQ3nGSIcR0mYQVpJitxLWjhpSkFJQovKWUKcLsQIhA4J6W0ugwZBhwvcqD7c80D5jluE0JsAZKAB4BpwL2oyFoPKeW6gjGbgMMoJ8UxBdtuA4YCI6WUswu2rQf2AG8WnAchRB2U6Pq7lNLWanCdEKIx8Heg3ISXRqNxz+H4dUUdC+8boHLkUzZAw878vNSeWnj8uHIOdEwhcY127TyRwLZj27iUsIvxX+aomq5fc9jXeAmtH3itSH8uj09tpbqx0Gg0musVkwlatbK7pbqyYwc4lvvaevy5Cq/QUPjoo7JdOyQ4jtOnTpGe8Q4Gg3tDJ2OVM4Xv5/Lfwz/kEc4fjcViliRtzigUXmG9opn4ymu8GvwWQlgw+njTsHscm7OU6UaVqG1cTGpDUlJrunZ1P5/9++3LnoRoeZKcDAMGwM6dQXiHDmddg1M8fFsiA+puAGkmHxMG/5ps+uIVnXaoKZHSRLwAkFKe8bA99QrnYIue2fLz7gXSbaKr4BpnhRBLgTgKhFfBuHxgvsM4sxDiG+AlIYSPlDIXuBPwBlzMmPkSmCWEiJBSHr7Cz6DRaIqhvTGx0LEQaXMsHKAKkwtquRzTYEDl+Tum1DkKr7A77Jbx92+SmCxglIAFIs4d5NdfO3MpNwNfnxAiG40lJDhOPbXdPR4Mjk1wILTew2Uy1tBoNJprwe23Fy+8HBu7xxR4TbsKrxkzlIV8WWnZUjX+Ss+YgsFQQjmFMY/Q2JmI2JlIKbDk9ANUt+aICFh4YQgHjjSlnf9WHn2/LacvRrNmTwJ3DlOmG3vaeLP5yCxG09rt6a+m8FqxQtX2nim4A85LDyIvPYit5sakfjKPrMS1GPxr0mr339WDRZ12qCkBj3byBfVTZaY0xwkhjEIIbyFEE+AzIBP4pmB3S2C3m8P2AA2EEFUdxh2WUma7GecNNHYYlwscdDMOVL2ZRqOpQOq17oPB5I0VIwaTt1vHQlfh5epq5Si8fBrbLePP+VmRXkasBsGlWMHFhlsLIluSS7npJCVNICNzMSHBcYTWHIP5gi9SgvmCL6E1XqB5VGXo5KnRaG52iksz3rULNm+2r9siXk2a2Lc9/jj063f512/ZciQBAe9x8mRdpISTJz0bOwkBCBAGCf7/Y2/Sa4BqCh8ervopTj/9JJ0ej6ZzZ9i0aAmTFuTw4AYLkxbkYE5f4vHcBw7YlytSeP30k3KntYkux2bUKSkQ1bYX7R99B2v2KadWKFmJa92eT6OB4iNeKUKI94DZnqJdjgghOqDqtbaiaqqK43fsvb8OotIKbemKNYAUN8ecLngPAi4UjMsqZlwNh/czsmjDI9dxGo2moghr55RW6M6CtyzCq5+1OpGFlvEgnxtFXUs19jabidV60uk4qzWn0LWwefRTBFTpztE9fxDW8lZCmzYvr0+o0Wg0FUpxwuvSJWcreVvEa+hQVR9rscCECVc+hxbN4+jeLY7sbGjaFGbN6uzReKMQAenp3xQ+5OrW7izt6qma2y0HQjh8LICWR6yYTCpzQVqg3i7XqhZFdrZzH8WKFF6rVyvjJ4D69VXT5y5dID9fNbK+eFG1Fglq0YP85OmFaYdBLW5qk29NCRQnvJ4G3gbeEUKsBDYAO1GmGLkoARQJtAPuRhllzAY+L8V1HwGqFxw/FlgjhOhUUE8mAHdJxK5+ZOU9rugAIZ4EngRo0KBBScM1Gk1xOKQVumKxwKFDztschVd+PqTkJVCrv8r/b5dzhnOOlvGWatQa/SR5a6fgDkdjjdCmzbXg0mg0lY6WLVU6odlc/LiwMLv5kK8vvPFG+c2halWYMwfmz4fnnlP1sXv3voyq7CgOCwBJu+Yx+OEPMPmfJj+7Bn13DuCH9U9x/lwc5nM/IMnHbPVi1d44XssGf39loLTt2Dba1G2DIdM5/bAihZejQfVzzylX2wYN7H+rUlNVH8motr1IQqUd6hovTUkU18freyHEIpSl++PAZFSzZEcRI4BUVJ3V51LKUtnKSyn3Fiz+LoRYgYpwvQT8BRWJcheFsmUl26Jcp1Fiz9O40w7vQUII4RL1ch3nbp6fUyAk27Rp476iVKPRXDFpaZDnYpjlKLz+F59A/eefQJjywOLNqUbj8CmwjM+5Q7K32cwC0WXA9gfekdK6Fmo0Gs31io+PutHftav4cbZoV0UxaJB6KVR97P7972E2HyvmKCMZmYtJO/EWXlWUSPOucpr67Wfwwh3H6dL7Q7Lj5/DWkK2sONqWnZeiOXAAZEgC781SrrU/RXhzR+QscKj9unSpQj4i4CxwbcYlDRvahVdKivr3ACW+PLkaJm39UYsyTSHFmmtIKS3A98D3Qghv1G97KEqAnQKSpJRHizlFiUgpzwghDmKvydoDFC0AUbVYR6SUFxzG3S+E8Hep82qB8jw96DDOB2iEc52XrbYrEY1Gc9mUxx8V1zRDcBZeaw9uo9mxS7T808qeMMnW2HMMnT2LPxPncC5ktUN6oUU9GnKMZ1u8tGuhRqO5IXC1WG/cuOj3p62+62oREhxXaFC0N+k10tO/KjImNPRBkg9NBeEcGRMC8o1LyMjshgjoRnZMEOfOBcElZSnPgSVOrrUfD3wPv0bjyTmkxFdFRrwchZfNuKRhQ/u2lJSSz5G09UfClz1E45vceCM9HUaMUBHML79UKZo3Kx7NNVyRUuZJKbdIKRdJKb+RUq65UtEFIISoC0TB/7N33uFRVekf/5xpCQkQQigJIRBCR8FEEoqCaAR0pURRBGyIiq6rawVs+2MRu2DH1VWQVRdpawFEBSGAIB1pEkINPaGGljoz9/z+OJlMyUwIkEAC5/M8eeaWc889QzQz3/u+7/fFlWg0E4gWQnTzGFMT6FN0Do9xVqC/xzgLMACYK91x719QQuxun1vfA/ypHQ01mnPH9aGStPMTGv84iPRV885pHn/CKyNDNU0GsM2rycipDgb8ZjByip22h3ewNvcJ9kb9iOHbW0YAhgkkWPJqYz00WLsWajSaS4Jatbz3k5JKjqnoiFdptG41mgYN7gZMRfVRJho0uJvWrUaX2ktx25YxzHhvLc3DdvL3XmtpUv8E6emqx5fLtdbigOSV67npngeo1lQ18Krswis7LVUbbwDPP69q5n74AV588WKv5uJSZjv58kAI8T3wB7ABOAm0QDVodqB6eIESVMuA/wohhuNuoCyA4gIOKeU6IcRU4H0hhBXV5+tRVOPluz3GHRJCvAe8IIQ4VXT/AUAyrhi5RqM5K1xRLtOJ/V428efaRNKf8CoogMxM1TQ096fjmMNMmIVB/tUGOcZ3yILAhQ5SGDi+G8UhqnHDsz3Oej0ajUZTGfEVXo0bQ926cPiw+9jFFF6gxJc/t9iAvRQBuyOTxj2HF9d+9ZWPkJ7+EE1HpLDry+8xCgsxSWibIWm9N4/sxjNZCYS2Ws26Q4nE1/NvPX8+lIfw0sYbiq+/dm9/+il88MHFW8vF5oIKL2A5cCfwLMryfS+wEHijyFgDKaUhhOgNjAX+hUprXAbc4CfCNgRlAPIqUAtl/nGzlPIPn3EvoZwQnwQigS3AnVLKWeX8/jSaSx7P1AknJpyo6NL5fKj4E16g0g2XLYPfTyTxYE0bQtg53deODNDE04XNEkV4n67Etwgvbtyp0Wg0VR1f4WW1KrfDOXPUfqNGSohVRuKaDiNt0zP+rc0EWENVyb0t9Bg9+7/H/6bXJSQhhZA3x5M2fR61/lxM+MkMpBPanTjM4RGq7vehuTbG9/y83MVXeQgvbbyhCApSD1OhZD335cYFFV5SyreAt8ow7hjwQNFPaePygGeKfkob50SJs1fLvFiNRuOX7LRUmhVHuWB1RB9kWMNyq/Fq0kSlGYJqlDluHDS/Zg87HrIRXu+k6g9TCsKw0bzNcKIiY89pLRqNRlNZ8W1+bLF4C68LXd91NkRFprBv3yJOnJhxxr/jQUH59Og5liWpuZxyvIft7qOczA3HPiuCmotOsSGsbnHd7+ZGkpk7ZhY7H56NAJMSJk5UYuDBB90mGnBm4bV7d9nuUZrxBqho5RdfQOfOyq6+qrNxI8yeDffeC9HR6ljt2iqDxZclS2DRInjgAYi6TDywLnTES6PRVEE8DTR8Uydqdb7vvJ7iSekWXtWarqPNfavJ+iqRvB3xfPABNG8+g2eefYng4DMk80uw5NemcO/1RHXXWcQajebSwzfiZbEoh8E331R/SwcNujjrKitJie+ydGkM2ccnEhSUQ0FBKMHBOX7H1qlzgNOFr2ArckG0hmZjHwD7etWgxdQ8/jbV1cvR4A3Td3zbQGIz2/j8LKJfH3wATz+tts1mGDrUfa7AwwfE1Tw5KkqJM7sdDh1SfcVCQs76n8GLJ56AKVOU9X96ukofraqcPg3du6t/m08+gU2bVAuCOnVKCq9t2+DGG5XoXb4cZl0mOWhlNtfQaDSXJ74GGgC7e09mVdyj7O59/g5NmZmqQLpa03XcdO8DXL3//eLi6Y0b4cEHx55RdEmHGfuy68iYmkhkywHntR6NRqOprPgKL7MZEhLUF/bVq+H22y/Ous6Ga655mnZtZxNk+w/t2s4mOKiB33HSMGO1lXRBDKlxitvv/Z7CeAOzBKshuHa9nb5LHcTuKWD1wdV+5/Pl+HEY7VGKtmCBe9sw4Pff3fsuMWQ2q3ROF2WNepXGsmXqNT8fvv/+/Oe7mMycqUQXwJ49MGqU2o6IKDn2jTfcaYfz55+5P92lwllFvIQQJpQNewSwWkrp/zGFRqO5ZPBOLVQGGp0Hv35OJhr+cEW7OjSeyT+nK9vgfmZVPL1oRzx16wVwwioq87LkR+Dceh25tua0H9KetjdU4lwbjUajOQ/8RbwAWrS48Gs5H2JiYoiJiQHAYi3ZhLmgIAibLXBTZkuQnVOD4eQQMB230HGGJPQ3Mw6zgehUs0xreOstyM5273v2R1u1Cg4WtSWrW9fbPdK3l1fr1mW6nV8MQ/WxdDFrlmrWXFX55hvv/fffh/vuKym8MjK8DTfy8iAtDdq1q/g1XmzKHPESQjwGZKEMLFKBlkXHfxBCPFExy9NoNBeb8DbJ2LHgkKYKcWX6bfs66vQaT7sTh4ttg81OuGKP8pI/fMh/4rclvzbN506g8aI3iYztT78Rj2jRpdFoLmn81XhVdaIiU2jd+g0sFtWkrKCgPu+MfYNDB/1HwooxqwiYDHdwarCTrHGFHHvZoFrm76VfhxI777/vfSw93Z1eONOjeVHv3u5UQ/BOBSyLwUZpHDzoHen57Tc4ceL85gyEw6Heo6tNS3lz9Ki71tCF0wmPPgomH7Xx/PMlI1yryxaorPKUSXgJIYYCHwA/oKzYPcsiFwNVILit0WjOhVZJ3cs1tdCT6Vums/bAYB5p8B50+g3DZMEwCRyGjd/3qTqtCROGIWWQ13VCBBEqB7I/5Ai5nUNpc1vHcluTRqPRVFYCRbyqOlGRKXS7bik3Ju9AGktJTU1hwoRh2AttZbpeCLcI2xc5l8ysGaWOf/llldrnidNZ1LQZmOFxed++3uPO1tmwNPb6eHU7HCXFS3kgJdx2m4rO3Xpr+c8P8L//ucVU06Zuo5KlS+Hnn73HTptW8vrLRXiV9X/ZZ4B3pJTPCSHMPufSgeHluyyNRnOhmfvLTI5vTqVW62R63uz9SXMmV6ZzYd2hdSz7dDSj5jgQBpzumMeBt2xYqxVw8lgNIj7dA6kJ5OWl0MCyh6zTX2IEZ2PKDyey+mDa9P479C7XJWk0Gk2l5lIVXp60aqVeU1PVw7enn/o/gkNyzuiE6EKKQnbuGEtUpLp+c/pI9h/4RqkPIQipdhcTJriLuxo2hH371PaGDcoMYtMmtR8UBD18WkGWp/By3deTH3+EO+88v3l9WbFCzQsqnXHfPvW+yxPPNMMnnoCsLFXHBcp0wx9hYe4I37kKr9y1a8lduYqQDkmEJCSc2yQXkLL+L9sECKTBc1A9tDQaTRVl7i8z6bZsCBacOJZ9zVwmlhBf5c2W32YyZI4DswF5iU5yBjqxBikTjZoRR3jm2ZcAePjhFPJXNaLZ4XcwCROGdHKk7gnoVqHL02g0mkqHP3ONS43YWCUoHQ4lvlJTU3jg9incPWQsRnA2QprAVHq+XH6Bqg1WomuSStMSAJLc3En87W8wbtxoevSATp3glVfUdRs3qpQ5F927Q2hoyfW5OF9zDd+IF8BPP6nom+t36+kqfK4ZJ5984r2/YIGyey8v9u6FxYvVtsmkhGPNmjB5cuni9KOPVA0YwPr1ymzDVrYgJ6BE154hDyALCxE2G40mflHpxVdZa7yOALEBzrUE9gc4p9FoqgDmjVOw4cAspHrdOKXC79lmj0H+1U4OvVLI8SFO8M4mJDg4j6efHkv//pBfvSaGdBb9GORXL1vxtEaj0VxKBAd779vtF2cdFYnZ7N1PC2DN9oEMfziVH/6xkIUzX8HpCPJ/cRHBQao2+MCBKSX6NQsBffqoz7g33/Q2dNiwwbu+K8VPZ5KKTDUEJfyWL1fbvq7C6avmnfU9jh6FqVO9j3k6OJYHU6eqgCIoi/jISGWz/9FHga+5+mq45x7VuxOU6Przz7O7b+7KVcjCQjAMpN1O7spV5/YGLiBlFV6zgJFCiDiPY1IIUQd4GlX7pdFoqiiNaoeUul8R1LwmnJP3OHFGQIlPxiKqhWRiMkFcz6tZlnOMtNN7WZZzjLieV1f4+jQajaayEyiFq6rja7wwcCD8caAmHy+PYffxgSxb9gYnj9ZFSvcXfhfCsBHXdFjRntPv/Cazk4ED1Zf/tm3dx1etUgYXLnr7SWdv0MAtDA8eVLb0pfHaa3DVVfDttyXPeaYaekYzXT2tstNSsRa5CltxcGLZ1yz78sWzEmATJ3r3JIPyF16eaYaeveR69w5cU/aPfygR7Nn0+2zTDUM6JCFsNjCbEVYrIR2SznzRRaaswusfQAHwJzAPZeT8IbAZ9V/16MCXajSayk7zng9jmG0YCAyzjeY9Hy73e6xPncbPo4eyPlVV1e4q+ArOkFLgemoZGRfGDc/2oG6frtzwbA8i48LKfX0ajUZT1bhUhZdnP7Ibb1TOeJ07qx5aTz4JBw+m0O/O5fTovoPJn7yGOTcCJJhzI7Dm/7O4vgv852IahplXX1XbzZq5I4nHjqk0P4ChQ2ewdds1zE9tyqLfrmFz+kgW/XYNCxc1ZcrUa7jjji/o0mUx8+b5CVsVsXatEhgbNsDf/lbSUdAz4nX//e7t8eNVpMrTVdiJifijP55V9Msw4NNPSx7ftUtZupcH6enqfYKqievXz/v8Bx+UbDJ9xRXuaOLZCq/ctWs58u/PyF27lpCEBBpN/IK6TzxRJdIMoYw1XlLKo0KIROAp4CZgR9G144D3pJQnK26JGo2mvFizO5vlO4/SKS6C9o09fIljOmAeMht2LYbYrhDToVzvuz51GvKJfxLjBMe0Jaz4cC0OSn9MKAjyeGqpxJcWXBqNRuPm1KmLvYKK4c03YdEiJYI+/liZMCxdWuyP4RVh+eLbgaxbdgudG51g2Z4wbv1rTboWRaoaNBjIgf2TvLIqpIRduwbSs8g0w2xWQmDNGveY5OQZ3NH/BRwOFSpyOA5y4MCk4vNhYQd55K+vAWC320hNDUJyCoulPi1aPFcs/D74ABo23Ets7C527Yplw4YY4uPd9/GMeD34IHz3nWo8fPSoslz//PPupDOZ7LRUxIl9JB6d5dVT80ymV7/+6u45VquWSqt0RfQWLHCn+QUiNxdGjlQRyNdeK1nvBqqOy0WvXup35UmjRkr8uWq5bDb1O3VZzJ+N8ApU01UVBJeLMvvhSClPAa8U/Wg0mirGmt3ZjBn/Fe3lJsakXsHwh+4rIb7KW3C5OLDkV2KKenThhCP5MxDB/sdKiXIudNzj8dRSo9FoNL74fsm9VGjcWAkQ8HZudDkbVqvmPf6PAzX544Cq/a2zxH28davRnFy7n9N1fwNhgDTh3Hodt97hnajVrp238HrwwbGYzYEbOHuuxWYrRFIIKIG2efMLAJhECvkFX/DJp+8THJxDfn4oq1Y9RXz8A4ASlZ7Nk5s2VTVRrkjQhAkwahSERrbkcH4QIu8wu37/g/0yimgyy9RT81//cm/ffz9ERXkLrwceKP36KVPgnXfU9smT8MUX3uel9BbBd93lf55771UpiIahhK6nKczVHpUDGzcqm3/fWkYX/mq6tkYLVh9cTWL9ROLrxfu/sBJRJuElhGgBREkpF/k5dx2QKaXcVt6L02g05UfG2gVMNL2KFQd2vmf22hjaN+535gvLgdpd6nC4TSFGOJiyCSi6kBC54SGqZ3ZkX+PDF2RtGo1GU5X4z3/Ul+jateGppy72aiqO0qzyfYXX3XfDpKKA1NKlKkLjur55zKvkzHJ/Rf3d2px69byv96zzAqhXP/McVw1SFrBzx1jWrYfBg8dgsxUWrTmHRo3HkJkVQVRkCllZ7rTGOnXUe+rbF7p0gcqOyGkAACAASURBVCVLlKiZNWsvR458idPpxGQyIU39MaSB2WTm/siWXvfdu3cvu3btIjY2lpiYGPbscVvIA/z1r0o8uViwwB1BDISnMJw4UQm1Ll3cx9asge3b1XaNGnDLLYHnCvT7rFULmjeHbdvU7239eujopzVn7tq12A8cQFgsSKcTYbWyv3kths4dSqGzEJvZxuc9P6/04qusEa/3gTSghPBCddJpg+6oo9FUajqb04qLdJEOOpvTgIoXXplZM8g1zcKorfbVq0CVinpjFNjYs9nJofzpNLqyf4WvTaPRaKoagwdD165Qr57qOXU54iu8nnlGpSbu26fq3jZscEdSftwZxS+/wC0tj7D4QB3G/hxVYj5PZ0OAvLwoQkIOnPP68gsyiYgYWyy6XFgshewo6jHmmWYYE+Pe7tNHCS+AY9nfkHD1NIKCcnDYg5BIrNZCCgpC2bEjiJiY5wDYtOkLdu1+n6CgHDZsDOXkyaeYMuWB4pqyG2+Eli2VsKlZUwmw/fuVaGrePPD78DU5efRR+OMPt7mIZ7SrX7+Sv5eykpSkhBeodENf4eWZYojFQq077iDs1hS+sayhcG8hBgZ2w87qg6srvfAqq7lGIvBbgHO/AZXfRkSjuQxZszubjxdsZ83ubKLje2Ky2DAwY7LYiI7veUHWsHPHWAwjz+doSdGF04qx/ma22S3khnSlTZf2F2R9Go1GU9WIi7t8RRd4f8GPi4OEBO9IjKunFCgjickborh3eltqdo6iRo2S8/kKr5CQYeD08bT387EVCIcjiogI/1GzgqIeY57GGp7NjHsWfTQnJ88gIf5LgoNV82irrQCbrRAhIDg4B0N+SWbWDDKzZpB1cEzxuODgHLIOjmHTphnFcz76qHoIunhhEt9+15Tvv00iOXlGQHfD/Us2sGncbOqd3sCgdpl83X8jg9pl8uef8P77aozTqVIRXQRKMywLZ6rz8koxdDhYZ97P1mhBYv1EbGYbZmHGarKSWD+x5MWVjLJGvGoA+QHO2YFLNMtYo6m6+K3pun/WORlo7NihUhKaNTv7dbgaWZZAgsgPxwjOxpQfTt2tt5Nf/1q6JDQiukW4NtLQaDQajV8864IefFCly3Xt6hYCS5Yo90PwjtoEEqt16yrxtnatqi+7rmsKP/44j9q25TiCj2HJr43jcBMsdXfhCC7qsBwoRc+wMX3aMJKTx1I/smTULD9fRdw8hZdnxKtdO6hfX9WZ2YIC15m5UhoVhT5nC7njjrF8/30KDRpAx04zSNv0PJgKEUCNWscYPvx5Fi8B8K6lTlv0EYdPf4Wj9TGubBLB9Q1vp2ZWZ7o1yQZg1KgoBgxQ3wuur5vJLV1UJDE5uWQksaycSXi5bOONwkIKTQYTzMvZPXcdn/f8nM97fn7p1XgBO4Ebgbl+ziUDu8prQRqNpnzwW9N1a7+AgisvT1npRkd7H1+2DK65Rm0vXAjdup3dOoKDosgv8JOyYa9F3KK3MQkzIPnjeBoxtzWi/c2xZ3cDjUaj0VxWdOgAP/2k+mjde6865hnxctVICeGuo4LS68ZmzFCugrfcolLpmlz7ID98cJCE7J6sDd/G1Ql/od2ixpiEiRORyzjW4jscwccQ9lAEAsN6Gkt+BEbGzUyYkEJGBjw/4jlMVneXa8NuZdbMYfS6hYCphiYT9OgBdeuduc4s4INN3NcPHQq7d40F4S3OrLZC2rYdi5QpxXVemVkzyLR/DNXUmh3VjpLV7jOy2n0G0sTgRtcx+fEJPPkk9GyYyVs3q/zAbk2yyV8D1Tuem/hKSFC/KykhLQ2OLVuLsWEVIR2Sil0LC959gVU/T+SXWvvY0hDMRamFD7V9qEoILhdlFV5fAa8IIfYA46WUBUKIIOAhlMX8qApan0ajOQs87eLPpqbr5Elo0QIOHVIFyp4NEKdPd29Pm3b2wiuu6TA2b34BKd1P7oQI4tSB21mYNZ16wdEcyt/P6aAudGoRXspMGo1Go9GoL+l/+Yv3sSuuUC6PJ05AVpaKyDRr5h3xKk14xcS4o2QALfZL7vxxC9j/pLnVysaEK3m9zmySjrdktWMr7bcPIjStFvuzQ7gzth4mYcKQBhMz6wCQmprC4BvSaJzwXXHUbM2v/Rg/PoW33w6caggq3fDwoSi/ETNPXL0u/T3cPHwoCrNZCa/0Lf4FWkREJunp0Lq12t+5YyyY7N6DXJE9YWButZDHHx/JuHGj+evH/2BrC7dbZPWd19Gx44RS1xuI6tXVGtLSoK1tLVkPP4Bwui3jt0YLhh4YQ8GVBUjAhKnKpBb6UlbhNRZVx/UR8IEQ4hhQG1Uj9i3wVsUsT6PRlBXf1MJRfTsRZbFhOO2YLNZSa7o++kg9OQSVp+0pvNLT3dtpaWe/rqjIFLK37CHr9JfFaYWR1QdzxHQfx0yzyc7fg8nahe73Xa/TCzUajUZzTpjNcO21KhIGKup1NsLLl9yVqxB2BxgSHE7a7DH4wdjJvmPpHK9h4d+ROyns5MCw21g1+2/cdZWd0DbRvHaPu2Csace/seeH5oSTx357NcbN7IHT6TYCceEZ8QIV8br77mGMGP48FptvGqHCs9fl5s0vIqW7IqigIJgJE4aRkqKyWHbt8p95cvhQFNu2uoVXaRE0UIK3Tx+Vz2luudBLlJ2ut5DN6SNp3Wp0wOtLIzFRfcfoELIK6ShESLdl/OprTBQ6C5FITJjo1KATj171aJWKdLkoawNlJ3CHECIZ6AFEAEeAuVLKhRW3PI1GU1ZKpBbu/zetyljTdexY4HnPJLzWp07jwJJfadClB1cl3+l3DrkxjmZ73yl6IujkVEwOB2UY437pRfOobNp0COeKrlp0aTQajebc6dLFLbwWL1a2+57Cy7N/1Jlw1RVJux1htdIwujX/9/r3YDdwWhy8PMDJloYgLIVs7vshI80Gpjwbttho8nbEk5wM1/YIo2nTHuzfms2SueFkHFSfc/PmBa7xAoiMhKNHU/h52mH+ctsnmEOOYxSEIBCIoByMvNpUtz1S3OsyY8NhThb8G0vIMey5tZn7/SOkpqYwb56aT2We+Bdn4eHwt7+pYwFLAzwwmZ306TOlpA29gAMHpgQUXvuXbOD4ur3Uio8huku7EucTE+Grr2BlbhIOYcEi7AiLmZAOSSTWF9jMNuyGHavJWmVFF5xFA2UAKWUqkFpBa9FoNOeB39TCmMA1XZ6EB8jwy89XjlAuDh2CI0dUzxFQoks+8U9inOCYtoT1H+JXfInoOhh7cgCJIQ1EdB12/w4ZB8PIOBhGN+0cr9FoNJrzpGtX97bLkr2sNV6+hCQk0GjiF+SuVLVGnhEws0Ny/SZBmz2SjdGwLcYAYeA07IS2Wk3ejvjitMXIuDAi48I4aoLX3lPH5syBAx76xre2GuCmm2D6l/1pLJphtRpYLAIkGFJiNptIeTqheGxcs/7MeK8ZDrtBod3EzJ8SaNECkot6LEdFpniJM4eHOAsOVp/t9er5F2glMWMyOwOc83/c07DjyInanFh0H226/d1rjMtgY2u04OWBZq7c72RbEzPPRQvi68VXORONQJyV8NJoNJWX6PieGOs+KlNqoS+BhNe2barY1ZPNm90fblnpX2P7ZyFGbTAdg8L0r/0Kr7xq9Vl7ciURpgKOyiBaVYtj9273+UaNyrxUjUaj0Wj8kpgINhsUFsLWrdCgARw/7j5/NsILKDZ2cOGKgJnMZpI3GkiHwW1SMHqglW2NBNJhJSc9kbg46NXLe64uXdxr27LFfbxePQgKKnnvnj3h7bfD+Gh2Ap3aZvPuv9UH9f6t2SWcfyPjwuj7VAIvPJHNb2tUZO29572bI8c168/37zTBcEpMZkH6dqV08vNVucErr5QUaOA9h5QQHT2QvXunYPYrvkqGFEsadhwj0/4x4VmNCNkYTd4fu6l2dWOuujYRsxlCW61ma0Mn2xoLzMIo7s3l+qnqBPxPUAjhBDpLKVcKIQxK72AgpZRaxGk0F5OYDpjO0S7et+lhbi6EhHh/OLhIS4Oa9mlkpX+NucUWjKJugEYEWCK2kZk1ozj9wUV0i3BWW+txwmlgtpiIbhHO/v0eS/dJs9BoNBqN5mwJDlbNeH//Xe1n+pQshYae+9yeETD7gQMcnz4dISUWKbl60jU0rlvAskM9yNsRz9/fc6c1rju0rjhSc8018Sxc6D2vr7GGi2uvVZ/NrsyQ1wQ0aULAWuhdh8L48id1rlo11Wjbk+NHV3FLzZEcsreinjWdmneNZs7i7gCMGwcjRkCNGu7omdNpUKfdJGo3cxtoVDP1pXWr0Rw9Cvn5k/yKMl/8GnaY7GzZNBJRaMORqIxHYpbexRVXPM229ESkw4bZbK+yBhqlUZpYGg3s89g+i9ZxGo3mohDT4awElwunz4Orw4dVLxPP+i4XeYdf4FjENCwt8dPHxM7OHWNLCK/IuDBSnk7welJX4NGe5HJuBKrRaDSa8uP552HAAPUA0ZOWLaFPn/Ob2xUBy127lhMzZiDtdqTTTB+xGPNRB/eZVvN47eYMGaKiZOsOrWPo3KEUOguxmW10ueVzFi70jtoEevAYHAzXXw8//6z2586FRx4JvLZPPnFvDxpUMpMlOy2VZrbNNA7ahEOaiAtOpVmz7mzfrqKCn30Gzz7r/Xn96dfvkvbBaeLjDpF4Yz2GPKNyIrtcO5qpU6F2xGRUbMZEdPQgv/VdgQw7nJyGooe+jmrHyHB+yu23x/HPf6aQ8fbn9H96NU/3r9pphf4IKLyklC97bI+6IKvRaDQXBc/iYwgsvJKTZ9Am6X8Y1sBzBfoj68pz93fPs03/0Gg0Go3GH717q1rk7Gzv41FRlDSEOEc8o1/LZx2g8bbpqr4aO0M7ryIsTAmv1QdXU+gsxMDAbtip0WY1UDbhBSrd0CW85swJLLyOHIGpU937jz5ackx4m2TsOz8H6cCOhfArkhkxAh5+WJ1/9114/HGV9uj6vM4eD0vTw1iaHs30Id7zDRgwGrt9NGaz6j0WiICGHb6/C7ODDh3HAink7YinYHE88Y+pU9nZan1NmsADDwS+V1XgjF93hBA2IAu4X0o5s+KXpNFofPHsz9W+cfn3uvInvMCdatih6TQ61/uVLn/9A7PVKHUuV1+Rs7nn2ThNaTQajUZTGtWqlUyhL29c0a8aYi32sTMAO3Zp5dpHkorHJNZPpE2mmRa7nGyNNZHSI5EPaqremS4CpRqCEl4uUlPBMPyLnG+/VbVjoFItE/1k57VK6k46k8lOSyW8TTKtkroT2xZGjlR9zw4cgP/+Fx580H3NmR6QWkt5COsirukw0jY9B8Ij3VDiJ2MGrNZMkpNn8PDDY4iok8VviyJp3nI4H32YwhtvqDH165esn6tKnFF4SSkLhRAOoDSLE41GU0Gs2Z3Nd5+/Sk+xgu/md4Sh/yh38eUv1VBKFfEaOugFBvWbhlGGWwrh7ityJnTES6PRaDRVnaR7Erj1tS+IPb2KiOuSeKOP24yjxX7J/012gt2AZU5ib5LccAPMmOG+vrSIV+vWykX4yBHVGHr3bhX18eXQIfd2jx6B52uV1B2SuhfvBwfD00/Dc8+p/bffVhb8roehnuma5/qANCoyhc0/fkte1FqCgnMpyA8h2OIEa0GJsWZzLZ4d9iJBQUpy2J2ZbN78IitWQJP619M8KptRI8Lp1avqtp8pJTjoxQ/AHRW5EI1G45/dc//Fq+bxXGfayKvm8eye+69yv4e/iFdmJnToMIPb7/sfRm3U06kAaRpSgsgLp3rOoyXqu8pyTy28NBqNRlMVCQmBb9YkcOfUhxk1JcHrnMuCXhgS4XCSu3IVN97ofX1pwksIaJ28jjq9xlOt6To2bPA/zvPz1GY7u/X/9a8QVqRjtm6FH35Q28ePq15oLpo2Pbt5PTlcqxnV3grj+MdXUe2tME4WdEAIbytHtS+LRZcLKfP56yNj+HuvtfRK2sldndaStfPEuS/mIlPWrzs/Ax8KIf6HEmGZ+JhtFPX40mg05cyVJxYC6g+wlK79l8r1Hr7C68gRFe168MGxWGylpxZKp5WoTUOokdmRVTk5dOhdtnuea28VjUaj0WgqE3XqQPfuJY/7NmEO6ZBE92DvMaWlGq47tI4TNw+lvixEOmx8v2MEhzeeKNHL6nxS92vWVA2UXal8b74J/frBtGnKah4gIQHatDm7eT1peV1f3tr+Ay12bWVrBxvPdXqK42lzyMmbRFBQDgUFoYSG3I3T+bnf68MjMql+63CsRQ2iV6TeQ0fuD+jwWJkp69edb4te+xX9uHBlaUr8mfdrNJpzwrOmK6LdrfD7yuJ+WrZ2t5b7/fxFvNLToXkL/0YZrrUUFIRSa2sKNTI7YkiDn9bWoZtHg+Wy3lMLL41Go9Fcavg2YQ5JSKCVhFat1GdsVFTpwmv1wdVIUYgwGUAha8JfZ+0fBjazjc97fl4svhwOqNZ0HaGtVpNdLRFfA48z8eSTyryioABWr1b1ZP/5j/v8/ff7v276lunM2zOP7o26079l/4Dzx9eL57kHvmD1wdXcViQa9xZE8OWXdpxOJ2azmcGD72LPnh/9G3EAttBjxa/mRp8w59uj3HT7s1VOfJX1684NFboKjUZTzJrd2YwZ/xXt5SbGpF7B8IfuA0Bsnols3ZfYno+V6/1OnoTly72PHT6sjDVq1YqifmTJP4Km/HBylz5JpFGT06dOkWbs5ZAjiH25cYwbB6NGnfm+WnhpNBqN5lKnRBNmAd9/D5MmwW23lW5QkVg/EavJRoHDDlIghRMDid2wFzcWBjhiW0eTEUMRlkLmm2ysO/S5Xxt2z55inufr11dugS5L+sc/Xszp+KXUNK7BGpLF2qbzmL7FW1xN3zKdJZ+M4votkiUtl8CjnFF8ed4zJiaGwYMHs2vXLmJjY4mJicFiHcb69c9jtRZ6XevrRmm22GmQ8A0bN9Yi6/BfSP9zG62ubE58x9aB/zErCWX6uiOlXFTRC9FoNIqMtQuYaHoVKw7sfM/stTG0v/UxKGfBBSqX+/HHYf9+uKPmVHrW+JW5p3qw//AA8vPhzz+HMWz489hs7j+CDruVBlv7EeaIwZAGmwoLOW2KoNBpYltmOGvGwfDhZ25UqYWXRqPRaC5HWrWCV14587j4evH8u/5wJo3+ldVGK+rcNIl2WYVsjTWReLPbuvBItdUISyHCbGBIb1HmwrenmGfEDGDYMPj3v6F60mKsff5OLeGkVtI3IAxWH4HVR5YCbnGVNflrHvlFlSJclSGZX+trGBVYePkjJiaGGI8it6jIFF4edZTefd4nOFilIAYH5/i91mSSGKGf8fuqDRw+HEv6nnVA/0ovvs7q644QoiZwJRAN7Af+lFKeLP0qjUZzNnQ2p2HFoXqCSAedzWl4Z/ieP/v3w9//rp66Abz3zCDa3rwSTPBXYwHbF/3A619PZs+eFDq0TKNL78nFedhbf0vh4LFm1LOoKNeyrHY8+EgwT/0jnIyDKuT/xRdq/kCcOqUKd11UtO2vRqPRaDRVjdy1a6n+3Bs8mFfIYLkSJhtYTQaiyCGRempczROJyDo2wI7ZZCWxfkk/ed+eYr7iLC5ONZ7OiPyW6AN2Wu+BTY0MYg5Dpy2S5S0F8xrMKxZeHdOV6HLVG7n2z5cVKx5g9uwexMbuYuTIWIKD7gqYfmgy2YmN+4PDR2JBGqT/ue3SEV5CiJHAs0B13N5mp4QQY6SUr1bE4jSay4X0VfPcvTXie2Ks+wjDacdksRId3/PME5QRpxM+/RReeEGJH4DHHx/JlbesdP9fbYamN6yk74mRjBs3mnr721F/8RVkmU4QadRk73Y4GhbGcQycThPmiCiSeoVx1y5Y+ria4p13lFNSoBSK335zm2tcddWZo2MajUaj0Vxu5K5chSwsxCwMBHYkYJISihwSXSmM5oPxVP92OJ3r/Upcjx5+0wx9e4p5RsxcjBgBM18+Tt+5BhYnSAHmIj11VYZkY/0QKLKrb37bvWSuG1XstNf8tnvL5T1Xrw7r1sWwb18MQUGqD9iG9S9g8WM/DxAUlEOXrl9TUBBKRM165bKGiqRMwksI8TLwf8B4YApwEKgPDAJeFkJYpJSjKmqRGs2lTPqqeTT+cRDNcGDf+TnpvSfT6v5ZsGsxxHaFmA7lcp9Tp1TTQU97WIC+KVNK5E8LAX36TGHcuNHsLqjDbc4c6hk1MaTBsn2hLF7SiuZR2WzLDOfZ/1NRriFDVG3XkSOq18j06XDXXf7XMm+ee7u0niMajUaj0VyuuFwRnQV27IbysBPCibnIIdHpVJ+766au5YuYN7AeLUR8u5rcW5t71ZWB/55i+OiU+HhYfywGm2M5AoEsctISCCSSuIXr4QU1NnzAAABOzf2VGj17FO+fL54PYk+fVumHI0fCnf2HYTKXjKq5vr8EB+eQ5/gXmVnRZW5rczEoax+vocA7UsqHpZSpUspNRa9DgfeAhytuiRrNpUn6qnks+/JFji/7qji10IqD7LRUJba6PltuogtUWqGn6GrZEhYuBJPJ6Xe8yayOy9r1+f3kEdJO7WXJySNkFdQn42AYc9fFknEwjKQkNT4kxDu98O233e6HvngKL38WvBqNRqPRXO64XBGP9nyC+/f+h/v3/ocfaz5Bo4lfkN84gV694NVXoUPIKqyiEIswMBt2cleuKjGXv55i/ug8rB8OgjAQCJMoSoaRCKBGwzyvseEDBtBowvhyE12gIl4ucorKu9asTuHNN8diLwjyf1ERhpHHzh1jy20tFUFZUw3DgDkBzv0CPFo+y9FoLg88o1xOTDgxgQQ7FsLbJFfMPdPd2/37w1dfqa7181PNQEnxZTjV07UakeGcttfjhNNAmpSBhgurVaUKunjsMXjrLdXtfv16mDMHbr7Ze97MTPjzT7Vts0GXLuX1DjUajUajubQISUigYVgC6z9U+/szEugJ3J4IGRnq2MrcJAyTDYQdYVPRsBLz+Okp5o8WfRLIbfgfcleu4gR7qL14PKf2VqNGTB4nBpRSvF1O+Ea8QJUmpKaqKNbjj75BjfDDQEm3Q4D8Av9tcCoLZRVeK4AkYJ6fc0lF5zUaTRnJTkulWbGBBqyJ6IsRFq1qvJIqKgQ0g2nfvE543SMYhXXIPv4iUZEpNGgwkP37J3n9AZMSZs0aCECTK8LodUMC+7dmU2AJJ+MTd8+Mq66CII8HUBER8NBD8GHRB8Tbb5cUXvPnu7evuUbXd2k0Go1GUxqxseqzMidHpfN37qx6brno9UwCTft9Qf5qd78wX/z1FAuEywK/DrCrSRRi80xOVEA7G394fidwRbxcLsipqSn06pXCs/1h0qSuftvdBAdFVfgaz4eyCq8ngO+FEA5gOu4arzuBB4AUIURx2qKUsnysTTSaS5TwNsnYd34O0oEdC2Gd761AwQWZWTO47rrnsRbZwpuDj5Ce9jwArVuN5sCKLRjRaxBCIqXAsbM948aNBpTtbWRcGJFxYRQWgtnsNsZI8vPA7Jln4OOP1ZgFC2DVKu9xOs1Qo9FoNJqyYzJB27bunpsu0VWjBnz9NaSkACRQvX1gMQUle4qVhdieFdPOJhD+Ug0928/ccgvMmAETJgxj+LAXsAa5FaggiLimwy7QSs+NstZ4bQCaAm8CO4DTRa9vFB3fCNiLfgoDzKHRaIpoldSd3b0nsyruUXb3nlyhogtg546xxaLLhUFhcS507ZODCZ//Hvmp/yR8/nusmzm4eFzLlu5rbDZo3ty938FPCVrjxjBwoHv/rbfc21Jq4aXRaDQazdnSrp33fps26sFmykX0kVgx/R02vJHMiunvlNucvqmGhgEnPRpXWSzw2msq+pWZeieWvAiQYMmLoMa+Oyu1sQaUPeI1GghQJq/RaM6FVkndoYIFl4tAOc+u4yci4jixeRXR1mD2FR5n/QkVooqIgDp1vK/p3VvVi4WGQs8ATvcjRsCkSWr7u+9g2zYl2LZsUT3EAMLCILGkm61Go9FoNBof+vaFzz5T2/37q36ZntGhC82K6e/Q4U+VGcOfa1gBdOz/7HnP6xvxmjkTsrLUfmgoNGwIzZqpyNf/ZvfjY3EdJmHCkAbWvnX8T1qJKJPw0lbxGk3VIzNrBtvTX6fQeQQwgSj57MQzF3qfEc2+Am8nwlatSs776qsqv7x1a2jQwP+927WDv/wFfv5ZzTd2LPz73/Drr+4xyckqbVGj0Wg0Gk3p3HILpKaqz9QbbvBvLHEhqbZ9NqDWIaVr//yFl2/E65VX3PuPPaZMwUB9F7n66nY8xga6N9tLhztjuLaLT1iwElLWVEONRlOFyMyaQXra8xQaR1RjZGGUsHaXhrU4F7pVpyjMFvVX3OEUrNymBJlnmqGLoCDo108Jr9IYMcK9/eWX6omVTjPUaDQajebsEUIJruTkiy+6APKa9QLcD2td++eLZ8Rr9mz44w+1Xa2aqiF3kZAAd94JP21uxzOzejH668ovuuACCy8hxB1CiG+FELuFEHlCiC1CiDeEEDV8xoULIcYLIY4IIXKEEPOEEG39zBcshBgjhMgsmm+ZEOI6P+NMQogXhBC7hBD5Qoj1QojbK/K9ajQXk507xmL4lFsKAYYhkBLy80Mx7721OBc6Mi6MW5+5mjpXxvHhj1eTcVA5F/qLeJWVbt3cNWAFBfDuu8psw4UWXhqNRqPRVE069n+WlVeOZGNwe1ZeObJc0gzBO+J1wMO08OGHoX5977GjRyvjEYC5c2HlynJZQoVS1hqv8mIYsAd4EdgHJACjgBuEENdIKQ0hhABmAk2AvwPZqD7ZC4QQ8VLKfR7zTQB6AcOBncBjwBwhRGcp5TqPca8U3fslYA0wEJguhOgtpfypwt6tRlOE06mEj6kCH3VkZs1g++bX3VEuP5iEJDd1JPWdYVTv6G25GhkXRquuYWQcdB87H+ElBDz3HNxe9Ijj0CCCtwAAIABJREFU3XfdbogxMd4mHRqNRqPRaKoWSmyVj+By4a9uzWaDYX7MClu2hPvvhzVrlOGGP6flysaFFl59pJSHPfYXCSGOAV8C1wOpQF+gC5AspVwAIIRYBmQAI1DW9gghrgLuAh6QUk4sOrYI2IQyA+lbdKweSnS9KaV0tbNeIIRohnJp1MJLU6GsXKnqnWrVgiVLIKoCWkxkZs1g05/PI0yFAUUXgCO3FtZsE9tkIa2q1S9xvm5d731/qYZnQ0qKEljbtrlFF0CPHpUjVUKj0Wg0Gk3lwV9vzyFDlKmGPz74AEJCKvbBdnlyQZfpI7pcrCp6jS567QsccImuoutOALMAT4/Ivij7+qke4xzAFOAmIYSrretNgA34r899/wu0FUI0Obd3o9F4k75qHsu+fJH0Ve5CJinhqafg2DHYuRM++qhi7r1t21glukrB6bBwYO0d7JDRnLbUI7pFeIkxdeqoPGpQf8ianOf/HWYzDB9e8rhOM9RoNBqNRuOLr/Aym+H55wOPr1696oguqBzmGt2KXjcXvV4B/Oln3CagkRCiuse4DCllrp9xNqCZx7gCYLufcQBtznHdGk0x6avm0fjHQSTt/ITGPw4qFl9LlsCyZe5xU6ZQwuSiPCgs9G8XLyXFNV0rf76bVz/5G0m94kh5OoHIuLAS4202GDNGpRi+/z5Yree/tnvvhchI72PJyec/r0aj0Wg0mksL31TDe++F2NiLspQK4aIKLyFENCotcJ6UcnXR4dqoui5fjhW9hpdxXG2P1+NSlvi66ztOo/HLrFmqX9XUqYHHZKelYsWBRRhYcZCdlgrA2297j8vIUA0Py5P16+HQIf/5i468MHb//CT7Zz/D4oX3YQSH0aF3rF/R5eKxx2DzZhg6tHzWFxwMTz7p3m/btmSBrEaj0Wg0Gk2tWu5tkwleeOHiraUiuGjCqyhyNQNwAEM8T+G/WbNvRUh5j/O3xoeFEKuFEKsPH/aXJam51JESHnxQ9Z8aMkT1lPDElV5oConAjgWHNGHHQnibZP78E378seScU6aU7/qeeAImjB+G3e4dnpKGlaOb+pN/+kpy8mPZlhlO06bld++z4bHH4OqrlRX9Sy9dnDVoNBqNRqO5OKzZnc3HC7azZre/mImbiAi4+25VB/6Pf0CLFhdogReIC22uASgbeJRzYRzQzcep8Bj+o1CuSFe2x7hGpYw75vEaLoQQPlEv33ElkFJ+BnwGkJiYWAEJYprKzqFD4NLceXmwdKmKfoE7vbAZDuxY2HDl8xi5Rwlvk0yrpO4MHuyep1Ej2LNHbU+dqhoKl0dO8rRp8NtvACnUq5XL4PvHYAk5gSM3jEYxw7my/y1Mm5jNR5+Hk3EwjJ63nv89z4UaNWD1amUr72p+qNFoNBqN5tJnze5sxoz/ivZyE2NSr2D4Q/fRvnHJOnMXX38NX3yhyh8uNS648BJCWIFvgQ5AdynlRp8hm4Cefi5tA+yRUp72GHebECLEp86rDVCIu6ZrExAENMW7zstV25V2ru9FU7GsXw8zZ8Jdd3HRIjUZGd77ixa5hVd2WirNitILkQ6M3KN0Hvw6oETWN9+4r/vvf1XT4SNHVF+KJUvguhId586OnBxve9U2DTqzbdZYTCZwGmDqFkebu8PYdtxtEX+x/h1BPb3Sokuj0Wg0msuLjLULmGh6FSsO7HzP7LUxtG/cL+B4IS5N0QUXvoGyCZgE3AikSCmX+xk2E4gWQnTzuK4m0KfonOc4K9DfY5wFGADMlVIWFB3+BSXE7va5zz3An1JKn6/WmsrAsWOqQ/vIkXDHHRdvHTt3eu8vXOjeDm+TXCK90MX774PDoba7dlU//fu7rz2bdMPN6SOZP7858+c3Zf785mxOHwnAm2/CvqJYcb16MGhoOAYmnAY4nSZOOtXTpB073HNdTOGl0Wg0Go3m8qOzOc2rDr6z+fKNeVzoiNfHKKH0GpAjhOjkcW5fUcrhTGAZ8F8hxHDcDZQFUGxVIKVcJ4SYCrxfFEXLAB5FNV6+22PcISHEe8ALQohTwB8ocZaMtz29phLxwQeQXZRUum6dqq3y11SvvPn9d/V67bXq1TfitWoV5OYqq/VWSd1JZzLZaanF6YWgRONnn7mvee459TpwIHzyidqePh0+/BAsZ/g/cHP6SA7sn+RRkWhwYP8kTp6EMWNGF497801o1i6MfdYENizNZltmOI+0UAYaWnhpNBqNRqO5WETH98RY9xGG047JYiU63l9i2+XBhTbX+EvR60soceX58xCAlNIAegO/Av8CvgecwA1Syr0+8w0BJgKvArOBGOBmKeUfPuNeKhrzJDAHuBa4U0o5qzzfnKZ8OHFCiRJPtm2r+PvOng1duqifL79Ux3yFl93ubQ/fKqk7nQe/Xiy6AP71L5UGCHDllXDLLWq7Sxdo0EBtHzkCqalnXtOBA1P82sWcPDmFgqKYblISxfVkcVeGMXddLBkHw0hLU02LPd9DXNyZ76nRaDQajUZTbsR0wHT/LEw3voTp/lkQ0wEou+HGpcSFbqAcK6UUAX5GeYw7JqV8QEpZW0oZIqW8UUq53s98eVLKZ6SUkVLKYCllRynlQj/jnFLKV6WUjaWUQVLKdlLK/1Xsu9WcKx9/DMePex/burXi7/vLL+7tp59Wphou0dI1fh6jBr1I1/h5LFoUeI68PG/ROGKEylUGZaYxYID7XKB0w8ysGSxK7cT8+U1RzxxKIoT7+EcfuY062nh0pdu0SaUi2u1qv149ZXKh0Wg0Go1Gc0GJ6QBdn/USXWPGf0Xu/LcZM/6ry0Z8VYYGyhpNMTk58O67JY9fCOHleY/sbCWawkzzmPDIYH7tO4CXmn/CnL6DOJA+L+Ac//mP2wUxJkalF3riuf/ddxRHrVxkZs1gc9oLODhcasMDw2kGlMV9x47u457Ca/Nm2O5hJ6PTDDUajUaj0VQGXIYbT5unM9H0KhlrF1zsJV0QtPDSVCo+/RSOHi15/EILL4Ad6+Yx6ZpB3F//B2weRaGNbank55e83uFQNvEunnkGrN6ttUhKcqf7nTgBc+ao7f1LNrBp3Gy2pr2BxEeN+SAlzJo1kJo14Y03vM/Vrat+QNWieaYzauGl0Wg0Go2mMnC5Gm5o4aWpNOTleQuXQYPc2xUtvAoKYPdu72M3tk7FigNTUeTJKQV2LPy6KZnlfvw4v/3W7YIYHg4PPVRyjBDuqNctrTeQM3s2f0x7le0nHiSr9RM4pP9G3VIW/RiCFYtuZdy40YwcCfXrlxzrGfWa5VHFqIWXRqPRaDSaykB0fE9MFhsGZkwW22VjuHFRGihrNP6YMAGystR2dDS8/jpMnqz2t25VwkOUkn53PuzYoeYHqFNHicD5m5MZ0fxzkA6cmPipsBfv/XIfi9d1Z9EiuP569/VSwttvu/cffzywC+PAgZC39yNSBnyFI/iY6gh+hvdlFvXZs/hjPptSj6Xp0YSFwWOP+R/bpg3FdWgbPbrkaeGl0Wg0Go2mUlBkuMGuxRDbtbj261JHCy9NpaCwEN56y70/YgQ0bqzEy+nTymzjyBF3Gl1544qodY2fx4CuqRiRyTzxUnduYjI3tk7lVI1k2l/fncVvqnG+Bhvz58MfRV6a1arB3/8e+F516szgL3d/jMNqL9PaDGmhzRXPMembBJamq2MDBwZuRuwZ8fJECy+NRqPRaDSVhpgOfgXXmt3ZLN95lE5xEbRvHH4RFlZx6FRDTaVgxQrvZsAPPaSiWy1auMdUZLrh1q1KdM3pO4hHwj/hoYJBDOw1j8XrujNq8uuE1O9Ot27u8cuWeRtjfP21e/uBB0oXiDt3jsV0BtHlSi08VRhEjZjHqFkjhWnT3Ofvvz/wtVp4aTQajUajqYpc6m6HWnhpKgWnTrm327dXDYrBW3ht2VJx99+2zV3T5Sr0vP+mVCIiVB3VPfeoHlzNmqnx+fmqmbKLFSvc23fdVfq98gsyz7ges60Ou+q9QOzV39CpxRN8/73736hlS28nQ1/8Ca/QUCVoNRqNRqPRaCorl7rboRZemkqBw+HeNpvd2xci4pW+ah5tbS9yOCcCOxYc0oQdC407JXPoEOzd616HZ9TLlW54/LhbFFoskJBQ+v2Cg6JKPW9goVXzF3mo7UPE14sHlE29i8GDS691q19fmXt40rRpxdXHaTQajUaj0ZQHl7rboRZemkqBp/CyeFQeVrTwSl81j8Y/DuJvdT5hTPybDF/3PL9FPcru3pNpldQdk8nbEt5TeC1cqF7XrFGvjSM2M/C6aWTv3VzqPeOaDgPp7TPvSi3Mdpio0fAxoiJTis/t3u22hRcC7r239PckRMmol04z1Gg0Go1GU9kJ5Ha4Znc2Hy/YXuVTD7W5hqZScKGEl5Twww9gGNCvH2SnpdKs6MkK0kG9GkfpNvR1r6ibJ57Ca+lSsNtVymHjiM28dNM4GoQ2YP5bi7jxucdp0KK13zmiIlNYuHchIYdnExrkJKfATDrXEBHThcT6icVRLhf/+5/bcbFHD2jY8Mzvs00b+P13974WXhqNRqPRaCo9ftwO1+zO5u7xyyl0GNgsJiY91KnKmm5o4aWpFAQSXs2bu7e3bwenk4CiqCxMneruD/bZZ9A1Phn7TmUZb8fCpmPJpc7fqBE0aQIZGapB8fJvNhCzYy+PX3OSHtG3YxJmDOnk4PL0gMILoHXjwdy3YQmGsCMdVh6o8RQP3RLvd+yBA+7tG28s2/vUES+NRqPRaDRVEh+3w+U7j3KFM52Ops2sdLZm+c7mWnhpNOdDIOFVq5YyhTh0SLkI7t0LsbHnfp/PPnNvv/46bNvWncmrJrNzSSrzNydTu3H3M87RrZsSXre03kDMpiM0rl2dk202sLvFeziCj2LJj6DmqTtLnSO+Xjwddn/OjD9Wk5OeSN79/kUXeP/b2GxnXB6ghZdGo9FoNJpLgxur7+IB6+tYUQ/Jv9wfyZrdVdNqXtd4aSoFTqd72+LzOKC80g0PHHDXZQHs2gXffQcZR5Rl/OJ13b3uFQhXumGfNhmYhJlTUcs5dOVXOKodBQGOakc5VvcLMrNmlDpPYoN4jsx+iLwd8WzfHnhcIFFaGlp4aTQajUajuRRolb+eYJPbcONU+gLuHr+8StZ76YiXplJQmrho2RKWLFHbW7dCz57ndo/p0921Ui7GjPEWdr7C68DWzezdtBFxtBrO/QWEtYuhWzfl5Z7bMI3t132LEZxd0jFQFLBzx1gvkwxffNMoA1GaKA1EdLRqQL17t3I5bNSobNdpNBqNRqPRVCpiuyLMQRiOQpwIojjClc70KplyqIWXplIQyE4eyi/iNXlyyWOrV3vP6SmGDmzdzLw3x9EouCWx1dtiEjUxluWQywr698+i9c1fI20FBHJpP1O/LldPMFB9xAJxLhEvIVQ928SJcPfdZb9Oo9FoNBqNplIR0wEGz+TokonUTJ/GQPMCbjcvZnf1tkCzM15emdBfxzSVgtLERXk0Uc7IcDc5tljgtttUBAzg5En3uJA9K1j28l7C2sVw7MAurqtzO2ahFiSEACQnNuzl7ns+wGYrKPWeZ+rX1bChqtkqLFQ1bCdPQs2aJcedi/AC1WS5tEbLGo1Go9FoNFWCmA7UbbgYudVASAOzcNIqfz1rdrdn+c6jdIqrGjVfWnhpKgVlFV7nGvGaMsW9fdNN8Nprbpv2+zqu4MamezlRYKXuxhqYRF0V2QoKxSTMCCHIEsfJNGVT31mTsHYx5ISWHs0yYVP9ukrBbFa1V5uL2n7t2OG/+fK5Ci+NRqPRaDSaS4ailEOchQizjfTgq6qczbz+GqepFJQmLpo2ValzUqqapfx8CA4+u/k9hdfAgSql8NZbocaBFbx8XQ4mUReQgMAkTIAkv+5ytjf9BSM4GykF1YTkcEEooY2fwnIkCqfzQIn7SAmnCwWRTR8ttb7LRbNmbuG1bZsWXhqNRqPRaDR+KUo5dPX4mr+9Nlc4Z1Upm3n9NU5TKcjJcW9brd7ngoKUhXxGhhI2O3bAFVeUPl/6qnlkp6US3iYZI7Q7Gzao48HBkFKkh4YPh23j9mISdTEJE4Y0kFJi4ORE5FIK2vwPTHYEIIQsuj6HrINjaNCgP7sypmMLKiy+p90Jk49bWZ8XzOMNQ+hUhvftWecVyGBDCy+NRqPRaDQavHp83Zg1z8tmvirUfGk7eU2lYONG97anwYWLs0k3TF81j2rfjcSyMYtq341k1jfzis/17g01aqjtzp0hPT8GQzoxpJMTkb+z7YZn2NrzQQ61mwgme4A7FHLs6AJS1z7KyXyBlHAqXzD9RDXW5wVjNVlJrJ9YpvddFmdDLbw0Go1Go9FovPG0mQ82qZqvyo7+GqepFPzxh3v76qtLnm/RAubMUdtnEl57V6xhR/b/YWDBhAOLYw2gGiMPGuQ99qYnsthw7BVCaqpeEG5beKPUe+QXZFLtqhD+LysUYTYwYeb2Fv3oXL0BifUTia8XuCGyJ2VxNizN8VGj0Wg0Go3mssSn5ovYrhd7RWdECy/NWTNnjhIJQ4ZAaOj5z3fsmGpmDMrlz7f5L5zZ2XDT4v3sWHuIpgn1cAa3pwZHiTAVctSwsTazPaAiXX/5i/uazKwZOI0XCA0r3Z3QH8FBUfS7MpGf5thwGHasZit9m/Yts+ByUZaI17n08dJoNBrN/7d333FSVff/x1+fmW0sCAJSll5EWlQQRFRiFBvGgsYS/RnrV0xM0SRfLES/sbfYYmJMFFuiiT2KGhOxRoIaxEBUqvQOS5G6deb8/jh3mdnZWdjd2WFnlvfz8ZjHnTn33HvPLOexez+ccz5XRJq1hDVfVVMQM5lu46Renn4aLrzQv1+5Eu68M/VzzpgRe3/ggT74ShQ/MrRoEaxZtJmV8zfR9YC2bFi5jQXPvkfX3HwWzP2StgOKGNC6AyELE3URJm/w0eEZZ0CLFnHnWXgvztU/6KrKWFjUcQiPnTiR6Wun12uUK1737n5NW0UFrFnj08p37Fi9jqYaioiIiCQRt+YrG+g2Tups/ny44orY58mTGz/wSpbVD6BPH+jdaTP9ijaRW57LpAe+IlIZJZwTolfOUg7ZpzcAnQpgzeKVrC9oyZrQZjpHWzOkYwl/ouY0w9094BiACH4lZBRcqGbGwiEdhzQo4KoSDsOhh8JHH/nPDz8MN91UvY4CLxEREZHsp9u4LDRz3cyURlkaoqzMp2GPzz44e7afBpfquqPa1nfFj2oVROEnp8wgHIqCM1pVFNM+VMaGynz2C+cxN7ySJeFiekU6EO4+nZIBb1OQv521ZS1Zt/k82rc/mWOPrX7dgvwiSstqpoSPyeW9xTmEP3N82cP4qpsRtnCdMxbW1U9+Egu8HnoIrrkGCgtj++Mf8KzAS0RERCQ76TYuy8xcN5Nxk8dRHiknL5zHxBMm7pHg69prq49MgX+e1sKF1ddfNURV4HXEgJW0Kl7HrCkdad+1FZMemLFzVKv/4Z3ZL7SODjlllESh6777sDZcSr9IHiv6P0Fh99n0DlK+RxwUBPk6Cwq2c9Rpf2KfboPIza3+XK0+fcczd/Z1RImlhMefgtBGKC/uxxstlxE9wifaMKxeGQvr6qyzYMIEv85twwZ46in44Q/9vldfrR6Y9uzZqJcWERERkT1EgVeWmb52OuWRcqJEqYhW8PrC19M++vXaa/Dgg7HPrVrBtm3+/ZdfphZ4LfpiMz0LN9F/RCXHD1nGllXwwZ830XvIfrSqWLdzVCtS+i+6jn2VaMEm9qkoZAOVtMgtZ1MkTMtwJC4bIdXeA+TllXPYyHuB6oFXUeexbH33PVblvUGknQ+2Wr4epvDTMJVhWHH70eRtfY6KaAVhC3P6/qdzat9TG/3nnJMDP/sZXHWV/3z//fD978PWrbEADODSS6FHj0a9tIiIiIjsIQq8sszwTsPJC+ftDAZeXfAqldHKtI1+rVjhsxdWGTsWeveGX//af/7iC/jOd+p2rtVrJrFo4b2Ulq2mIL+IgtwjKF77Plffs4FoRR6h3ArAgTMim/an6NT1RAs20bmiEHJKcaEoBpC3g6r8Gzk5kdovWP3qSUu7DbqYyos/wFVUEM0J8cRoaHWUY27PMCf2acPETqklz6irSy/1a7s2bfKjiK+84tfQrQ6a3bkz3Htv2i4vIiIiImmmwCvLDOk4hIkn+GBg1bZVvDz/5Z2jX9PXTm/U4CASgfPP9+neAbp1g8cf9yNgVUpLJzF1aiyY6tN3/M7EE/FWr5nE3LnXE42W+OPKVlFa+hK5QTr6cF7cdD9zhNt9hTN2BlqpKsgvSlo+v6tx93lh+i2OMK9XDgu6hYm4yM4phakmz6irVq184pI77vCff/5zWL48tv+hh6Bt27Q3Q0RERETSRIFXFqoKBmaum8nrC1+nIlqRlrVHd98NH37o34dC8Je/QHnFJHr2upfJb69m65Y2tGy1ndKyCsAHU3PnXg9QI/hatPDenUHXTglTAqvt2sW++mtBn77jk+6ZvnY6s4sifFlkhA2+s/9YutTzIciN5Sc/8aNa5eXVg64zzoAzz9yjTRERERGRRqbAK4vFj36lI1B4+OHY+xtvhP37+VEr50oIhaDNvl/XOCYaLWHRwntrBF51St3eSJyDspJ88gvK2LppP0aO+kXSUTioPnUzN9SwhyA3ls6d/TPSHnssVtamjR/tEhEREZHsZs65pm5DVhg+fLibPn16Uzdjj1i9ZhILFtxLaekqXDRMKByhoKALkcodVEZqBls1GceOXlCtZOrUb+4mdXsqQj7awgHG6jknMOg3H5Nr5ZCTR99nnqCwtgeE0TTp+Wszdy4MHBj7/OijMG5c07VHREREROrOzD5zziWdhqYRryy0Y8YMdkz7lMIRh+4yoGiI+LVYoRAQ8skryuoRNCVbT9Wn73hmz7oOLLaWy7m6Tyl0LkxORQWRXCOnwrGlsiWFhaUU5BfRqfhIKq6btLPu1rYhcq2cHIsSjZb7n9Uufk57ah1XXQwYANddB3fd5Ue/LrusqVskIiIiIo1BgVeW2TFjBssuuRRXXo7l5dFpwnVEvt6cUhAWn20QQkBdMwUmk5d0PVVR57GsmDyDre3fIFqwiVBpWyLFg9jecj77tCsmUpFPTl4FEAXC7LvvYWzdPJdIdCPhUDvyOv6M3zxfzCGRWXxUMZiVzw1l4sVzOeA7h7L+9d9REXetwsgSIrlRLAKV4Sgr++3Lfil8oz3tzjvhttv8urrGXesmIiIiIk1FgVeW2THtU1x5OUSjuPJy1tx6G0SjWF4ePZ7c9ZS6ZBKzDdY36KqsDOGiueTkllFW1pL2rX9Q63qqLn2+Q8VrRxGyEFEX5ZkN+/F/TxwEwD33wPi4eG3up+8w6IPzyKWSCraw9JSOXHtEN954YAct5rXmkRZXkftiOctez6PF2efjpk7deeyUvn2YNWgpg1dEmd0jzEkdtnBwvb5V0wuHm7oFIiIiItKYFHhlmcIRh2J5ebiKCj8cEo36IKyiYrdT6pJJmm1wF0Kh1uzYESE/fzulpS2Z8o+L6Wd9CLXYDOVt6Hxi7VP2uo46iJV8ztczl7PvkO786dKDdu474ojqdTfNfo+u643txYXkd6hgy+QXaf3iNL5TWs7YghBGhBCOSFk5L/1nKcvGhBg5z/FJf2Nmq16s71TA/K4V5IYbP9ujiIiIiEh9KfDKMoVDh9LjySfYMe1Twvu2Ye2dd+EqKrDcXApHHFrv89Uv22AeRe2u4e1JhZSGNkFJW9bO/AZXfHMFIdrh8hx5bfJ2eYauow6i66iDKC6Gr74KzpoHhxwCm55/nq2T32afE45n39zerPygHS4CFoZ9vhUhWl5OiCjOHC7kiDg/lfCfXZayaEiI94b6dWMVX81j+a8m0nLAdG64qOkTZoiIiIiIKPDKQoVDh+4c2co/4ICUEm0U5BclzTYYjRpmDuf8tqysJb16/pTtyw+nXck02ofCFEfKaN1tOSGMkBlR54iuWA102e11P/nEbw8umMGZ/T9l80Nb2PjY4wBsnzqVVscey9ZoCMMRdUakVQGRUJQcB5Vhx5OjQ7Qug1ndwsxc25vWLKYqQee6fx1HycIhlCwcQp/v1/tHIiIiIiLS6BR4Zbn4IKwh+vQdz+w5E8CV7SyLulzmzBvO+uI+OGB7qJIVbZbzi+GH0GL+Wo5svR8hCxN1Ed7YsJyo6wo4oi7KhpJldGVYrderysg4/7NDObgAnuxxMbmlFWx4HMBhGA7H5qVzqAw7ciJQGXJMPTDE+21yGLgsyqxuIeZ1yfGBYWUu6/94CVu/GEWbQ99h86fH8fWHZ++8ntZKiYiIiEgmUOC1lyvqPJY1s2axqvRZ8gt2UFZayIrVhzBrdRk9doToFDmQ7rSleF0l0/77BQctyaWVFRGyEODIzY/w7qoXKCrsRnH5Co4feVWt19oxYwZLLr4YKio4zuWyo9s3yQ2VE3YQceDHtwCMd/tsYcrhPtCa2zPMgfvvx1IrYEH3CipKc1n1p2vI2WczZQuG7xzd+vrDsyksrH7NHPVwEREREckAui3NMpWVsHatf9+1a+Occ+3MfD7dfAaEQlg0Svt1cIyNomtBLj0KQhhGf8Is+qI9a8Iz6ew6UjXCtbFsJkcs/YTNLVrQq6SE4hWj6XLAwKTXWfj+JKzcB1ohKyev81IqNwERqAzDm8Og9zrjk/6wYDCsa+EDrdxQLtf3PY3T+p7G9LXTufIMH2wBvP8+nHoqbNvmr/HGG3DOObB+vf/cqVPj/IxERERERFKhwCuLPP00XHSRTyBx0UXw1FONc96+Q4bw6fvvEwVC0Sgtd/RiZFE+IcAwzAxclI4bN9OhXTnF03+D6zQIWzubrts2035bGR23lhExWP6vtzl49DlJrzO7R4j+YSACkTC83aE3045fxuCVlczuYcyLCyTPan0iY0edxfQ/xFHDAAAgAElEQVS10xneKZYgY0jHIQx+Gh54AM4+G44+Gt591z9w+Jhj/OuDD+Dmm+Hgg+Ggg5K1RERERERkz1LglUXatWNnAonV9UlGuBv9jj2WE5dVsHTRCrr36sbnXzpCRRCyEM45nIsSdVFK2m9j8NFjWfLHV3Br5mO5ubxXeSEHhR/bOWrVZdTxtV6n/1Gncff3XqXf4nK+KMpjx7SDuD3nJWYOyOHkkkredGOYWbmQQ9p/kxu/cxtA0oyEhx/uX1VGjIC//jX2efBgeOGFRvvxiIiIiIikTIFXFikqir1vzMBr9cer6DS3BZ05gOhXjqnRDURdPn46oWPJti9YXjKHYy+7ksIDBtLrqad2ZlKc98OhfL+4O4d3fJvDzz+e7yaMdpWUwPe+B8XF8PTTQ7j20icY/+B0PnpmONeOeIFhZSUcVh6l0oWIhjpz87gnGu+LiYiIiIhkiNCevqCZdTOz35rZx2a2w8ycmfVKUq+tmT1mZuvNbLuZvWNmByapV2Bm95jZajMrCc57VJJ6ITObYGZLzKzUzP5rZmem51umR5e4LO2ramaAr5MXXoDRo+HFF2Nlaz6ejwEhM0I42rXM4e2VL/PFpql8WPwCFUPDHDvhyp1rtwqHDmW/719O4dChHHggTFt4Dg9+PJEZy2tOMXz5ZT8aNWUK3HCDH8Fa8OfLKFk4hHfnjKaCHCpdiApyaDtodMO+lIiIiIhIhtvjgRewP3AOsAmYkqyCmRnwGjAG+AlwJpALvG9m3RKqPw6MA34JnAKsBt4ys8Q5arcCNwEPAScBnwAvmtm3U/9Ke0aHDhAK/sU2bIDy8vodv20bXHyxT0hxwQWxJB3b89cSdZHgFWXWuhJuf+vHrOraj+MmXMnx435Ua8KMU06JvZ84EXbsqL5/wYLY+7/9DZYvh6VL/efp845j8UnP8mmfK1h6yrMMOPS4+n0hEREREZEsYa5q0dCeuqBZyDkXDd5fBkwEejvnlsTVGQu8Cox2zr0flLUBFgPPOOeuDMoOBmYClzrnngzKcoBZwDzn3GlBWUdgOXCXc+7GuOu8C3Rwzu02BcPw4cPd9OnTU/36KevSJTbNcOlS6NGj7se+/DKcdVbs8403wk03war5c3jnrofYL7cLq7ev4tZ//JilGwayalX16Y3JRCLQrx8sXuw/P/oojBsX2z9uHDz2WOzzzePfwa18j3fnjMZaH8c//1n39ouIiIiIZDIz+8w5NzzZvj0+4lUVdO3GacCqqqArOG4z8DowNqFeBfB8XL1K4DngRDPLD4pPBPKAZxKu8wxwoJn1ru/3aCqpTDd87bXqnx9+GEpLocsBAznuuh+zuX+/nUFX//67D7rAP6D4Jz+JfX7wwVgCEICVK2PvvznkHa4uPI/r+/2et047jzFHvFO/LyAiIiIikqWaYqphXQwGvkxSPgvoYWat4uotds7tSFIvDz+tsapeGbAgST2AQSm3eA9paIKNyko/1S9ecTH85S/+fZcDBjJ38zks3eCnFB5zTN3Pfeml0Cr4F5k1C957L7YvPvA6duB75FJJjkXJpZLB7d5DRERERGRvkKmBVzv8GrBEG4Nt2zrWaxe3/drVnFeZWK8aM7vczKab2fTi4uI6NTzdGhp4ffyxXxeW6Ne/jo1QffBBrPzoo+t+7jZt/NqxKg8+GHsfH3glJtMoGqZkGiIiIiKyd8jUwMuAZIvPLM31qnHOPeqcG+6cG96hQ4ddVd1jGjrVMH6a4TnnQGGhf//FF/4BxCUl8MknsTrf+lb92hU/3fCNN2DhQj+NMT7YmzLzOE587Vlu/+oKLvjkWQ4drWQaIiIiIrJ3yNTAayPJR6GqRro21bHexrht2yBb4q7qZbyGjnjFB14XXQSXXBL7/MADPuiqypI4YAB07ly/dh1wAHw7yA/pHPz2t8kDwykzj+OmZ++gZWcFXSIiIiKy98jUwGsWfl1WokHAMufctrh6vc2sMEm9cmJrumYB+UDfJPUAZqfc4j0kfsSrroHXvHkwf75/37Klf47XVVdBVRj65pvwhz/E6tdnmmG8q66KvX/iCZg7N/Y5Mfvi4Yc37BoiIiIiItkoUwOv14CuZrZzwpuZtQZODfbF18sFzo6rlwN8F5jsnCsLiv+BD8TOT7jO94AvnXOLG/0bpEn8iNeqVbDyX58z66G/sfJfn9d6TPxo14knQkGBTwF/6qmx8hdeiL2vT2KNeMcfDwODx31t3Qq33x7bN2wYHHZY7HNDgzsRERERkWyU0xQXNbOqp0kNC7YnmVkxUOyc+yc+oPoYeMbMrsZPLZyAX5P1q6rzOOdmmtnzwK/NLBf/nK8rgN7EBVnOuXVm9gAwwcy2Av/BB2ejqZ6ePuN17w4928+hb4cv6NmiDRWv5bKPtaJi2XpW8jldR9V8JNmkSbH3p50We/+zn9VMMQ/1X99VxQyuvBKuuMJ//uij2L6uXeHmm+GWW3xgN2BAw64hIiIiIpKN9vgDlAHMrLaL/tM5d3RQpx1wL3A6UIAPxH7unPtvwrlaALcD/w/YF/gvcK1z7oOEemF88DYO6AzMA25xzr1UlzZnygOUV82fw99veYhOLbpQmNOa/VsfRMhCRF2Erd23M/jHJ1erX1wMnTr5dVehEKxZA1V5QpyDQw6BmTNj9QcOhNkpTLzcvh26dYOvv65efscdMGFCw88rIiIiIpLpdvUA5SYZ8XLO7TKbYFBnI3Bp8NpVvRLg58FrV/UiwG3BK2ut/WQux3Y5k5CFiboozkWJ4oi6KPsO6V6j/t/+FksXf8QRsaAL/AjVz37mk21USXUKYMuWMG4c3HNP9fKuXVM7r4iIiIhINsvUNV5Si44tehCyMCELsa3o38wZNZ75J/wPi0+4ltD+NZeqxU8ljJ9mWOXcc6tnMGxQ4LV8Gky5z2+BH/3Ij67FU+AlIiIiInszBV5ZZr8R/bCcEJs6fcTawU+R2+przCAa2sicORNYvSa2oKu0FN56K3ZsssArLw/uvx9yc30CjGR1dmn5NKJPnUr03duIPnUqLJ9Gz55wxhnVqynwEhEREZG9mQKvLJPfszUdLz+YlftPgpyKavucK2PRwnt3fv7HP2DHDv/+gAOgf//k5zzvPJ+F8NNPfcbD+lg5czLRynJCRIlWlrNy5mSgemp5UOAlIiIiIns3BV5ZKL9na3IK1yXdV1oWe7jXY4/Fys86K0nl+HPmx57rVR8fRwZRQQ6VLkQFOXwc8Y9GGzUq9kDlk06Cffap/7lFRERERJqLJkmuIanLzyuivGJVjfKCfP+grxUr4O9/j5VfussUJQ3Xe+gxXPLZDQxzs/jMBnP1UP8QMDN45RWYMwcGJ3sUtoiIiIjIXkSBVxaa+e85rF95DIVtXyInt2xneSjUgj59xwPw5JMQjfry0aOhb99GbMDyabBkCvT6JsN6juDqyy7kk0UbuLpPe4b1bLuzWl4eHHxwI15XRERERCRLKfDKMjP/PYdX33wRCNGhwwg6dZ5Lm33Xs3FjEYePHE9R57FEo/D447Fjxo1rxAYEyTSIlEM4j9DFrzOs54hqAZeIiIiIiFSnNV5ZZvHiZzn0sJcYddTT9OrzH+Z9fgInHL+Ac787hRdfHAvAu+/C0qW+frt2cPrpjXf92pJpiIiIiIhI7RR4ZZHVaybRuuNLFBRsxwwKCrYz4psvMXq0TyF/552wZQtMnBg75oIL6p+pcFdqS6YhIiIiIiK1U+CVRXyq+LJqZaFwGZd/36eQ37ABfvELePXV2P7LLmvcNvQeegyXRG/ggcjZXBK9gd5BMg0REREREamd1nhlkfhU8fHat4+V/+53sfKRI+Eb32jcNgzr2bbWZBoiIiIiIpKcAq8sUpBfRGlZkhTyBUUMHOhTt8drlKQacRkM6T4C8MGXAi4RERERkbrTVMMs0qfveEKhFtXKQqEW9O07nttuq163VSs455wULxhkMIy+e5vPZLh8WoonFBERERHZOynwyiJFnccyYMDtFOR3AYyC/C4MGHA7RZ3HcsYZMGxYrO555/ngq8GWT2Pz32/BVZYpg6GIiIiISIo01TDLFHUeS1HnsTXKzeCRR+Ckk6BFC7j++hQuEox0tYqUEcJR6WxnBsOzUjitiIiIiMjeSoFXMzJsGKxd64OwVKycOZlOleXkmKMS46PoN3iYs7laGQxFRERERBpEUw2bmVSDLkh8Vlcu7xf9D1dfdqESaoiIiIiINJBGvKSG3kOP4ZLPbmCYm8VnNpirTz5dQZeIiIiISAoUeIkXlzZ+WM8RelaXiIiIiEgjUuAlO5NpECmHcB6hi19nWM8RCrhERERERBqJ1ngJK2dOJlpZrrTxIiIiIiJposBLEpJp+LTxIiIiIiLSeDTVUGom01DaeBERERGRRqXASxjWs62SaYiIiIiIpJECLwF88KWAS0REREQkPbTGS0REREREJM0UeImIiIiIiKSZAi8REREREZE0U+AlIiIiIiKSZgq8RERERERE0kyBl4iIiIiISJop8BIREREREUkzBV4iIiIiIiJppsBLREREREQkzRR4iYiIiIiIpJkCLxERERERkTRT4CUiIiIiIpJmCrxERERERETSTIGXiIiIiIhIminwynbLp8GU+/xWREREREQyUk5TN0BSsHwa/PE0iJRDOA8ueg26j2jqVomIiIiISAKNeGWzJVNwkTJwEVykHJZMaeoWiYiIiIhIEhrxykbLp8GSKSwpKaBTNIdcKqlwYZYWHMyApm6biIiIiIjUsFcFXmbWHXgAOB4w4B3gp865ZU3asPqIm17Y1XL4ZeUFtGUb09xAjtnWS4GXiIiIiEgG2mumGppZIfAeMAC4CLgA6Ae8b2Ytm7Jt9RI3vTAcraRDeDuPRMfyZXgAI/u0b+rWiYiIiIhIEnvTiNc4oA/Q3zm3AMDMPge+Ar4P3N+EbauzuQUH07NqeiFhvnHEyfw8vz8j+7RnWM+2Td08ERERERFJYm8KvE4DPqkKugCcc4vNbCowliwJvN7d1ov3Kn7BYTbHTy/MH8SPjtm/qZslIiIiIiK7sNdMNQQGA18mKZ8FDNrDbWmwkX3aMys8QNMLRURERESyyN404tUO2JSkfCOQNXP0hvVsy58vG8knizZoeqGIiIiISJbYmwIvAJekzGqrbGaXA5cD9OjRI11tqrdhPdsq4BIRERERySJ701TDTfhRr0RtST4ShnPuUefccOfc8A4dOqS1cSIiIiIi0nztTYHXLPw6r0SDgNl7uC0iIiIiIrIX2ZsCr9eAkWbWp6rAzHoBRwb7RERERERE0mJvCrwmAkuASWY21sxOAyYBy4FHmrJhIiIiIiLSvO01gZdzbjswGpgPPA38GVgMjHbObWvKtomIiIiISPO2V2U1dM4tA85s6naIiIiIiMjeZa8Z8RIREREREWkqCrxERERERETSTIGXiIiIiIhIminwEhERERERSTMFXiIiIiIiImmmwEtERERERCTNFHiJiIiIiIikmQIvERERERGRNFPgJSIiIiIikmYKvERERERERNLMnHNN3YasYGbFwNKmbkdgP2B9UzdCso76jTSE+o00hPqNNIT6jTREpvWbns65Dsl2KPDKQmY23Tk3vKnbIdlF/UYaQv1GGkL9RhpC/UYaIpv6jaYaioiIiIiIpJkCLxERERERkTRT4JWdHm3qBkhWUr+RhlC/kYZQv5GGUL+RhsiafqM1XiIiIiIiImmmES8REREREZE0U+CVQcysu5m9ZGabzWyLmf3VzHrU8dgCM7vHzFabWYmZfWxmR6W7zdL0GtpvzGy4mT1qZnPNbIeZLTOzP5tZ7z3Rbmlaqfy+STjPBDNzZvavdLRTMkuq/cbMBprZi2a2PvhbNc/Mrkpnm6XppXh/08PM/hj8jdphZvPN7DYza5nudkvTMbNuZvbb4H52R/B3plcdj83Ye2IFXhnCzAqB94ABwEXABUA/4P06/nJ5HBgH/BI4BVgNvGVmQ9LTYskEKfabc4HBwG+Ak4DrgEOA6WbWPW2NlibXCL9vqs7TB7geWJeOdkpmSbXfmNlw4N9APnAZ8G3gPiCcrjZL00ul3wT73wGOAv4POBl4DPhf4Ik0Nlua3v7AOcAmYEo9j83ce2LnnF4Z8AKuAiLA/nFlvYFK4Oe7OfZgwAGXxJXlAPOA15r6u+mVsf2mQ5KynkAUuKWpv5temdlvEs7zFvAI8AHwr6b+Xnql95Xi75sQMAt4pam/h1579pVivzkhuL85IaH8ruD4wqb+fnqlrd+E4t5fFvSDXnU4LqPviTXilTlOAz5xzi2oKnDOLQamAmPrcGwF8HzcsZXAc8CJZpbf+M2VDNHgfuOcK05SthQoBro2cjsls6Ty+wYAM/t/+BHSCWlpoWSiVPrN0cAg4P60tU4yVSr9Ji/Ybkko/xofzFtjNVIyi3Mu2sBDM/qeWIFX5hgMfJmkfBb+j9Xujl3snNuR5Ng8/HCtNE+p9JsazGwg0BGYk2K7JLOl1G/MrC3wAHCNc25jI7dNMlcq/WZUsC0ws0/MrMLM1pnZb8ysRaO2UjJNKv3mHeAr4G4zG2RmrcxsNH4U7Q/Oue2N21RpBjL6nliBV+Zoh5/Hmmgj0DaFY6v2S/OUSr+pxsxygD/gR7weT71pksFS7Tf3APOBpxqxTZL5Uuk3XYLt88Bk4HjgV/gpRH9prAZKRmpwv3HOleKD9qqpqluBd4E3gB83bjOlmcjoe+Kcpry41JDsoWp1GUa3FI6V7NdY//YPAUcAJzvnkv3SkualQf3GzL4JXAgc4oLJ87JXaejvm6r/6H3GOffL4P0HZhYG7jKzQc652Y3SQslEDf19U4AP1jvik3IsA0bgkyZUAlc0Yhulecjoe2IFXpljE8mj8LYkj9zjbQSSpWVtG7dfmqdU+s1OZnYncDlwkXNuciO1TTJXKv3mEfyI6Aoz2zcoywHCwecS51xZo7VUMkkq/WZDsH07oXwyPlHCEECBV/OUSr/5H/z6wP2dcwuDsg/NbDPwqJn9wTn330ZrqTQHGX1PrKmGmWMWfl5qokHs/o/RLKB3kLI18dhyYEHNQ6SZSKXfAGBm1+NTyV/lnHu6EdsmmSuVfjMQ+AH+hqnqdSQwMniv/4FuvlL9OwU1/ye66n+hG7qQXjJfKv3mQGBTXNBVZVqwHZhi26T5yeh7YgVemeM1YGTwXBwAggfFHRns292xucDZccfmAN8FJut/n5u1VPoNZnYlcBtwvXPut2lqo2SeVPrNMUle/8Uvnj8GeKnxmysZIpV+83egDBiTUH5isJ3eOE2UDJRKv1kDtDWzxIQIhwXblY3URmk+Mvqe2DRFPzMEDwn8L1AC3ID/X8FbgX2Ag5xz24J6PYGF+Ocs3RJ3/HP4P2BXA4vx/+t8CnCEc+4/e/CryB6USr8xs3Pxi9rfAm5OOPUWrbdovlL9fZPkfB8AOc65UbXVkezXCH+nbsQ/BPdX+AfqDgduBJ53zl28576J7Ekp/p3qBXyOD8Bux6/xGo7vR/OBESmkHZcMZ2ZnBW+Pxc+0+CE+AVixc+6f2XhPrDVeGcI5tz1IkfoA8DR++sW7wE+rfikFDAhTc7TyEvwvpduAffG/5MY0dQeT9Eqx34wJysdQ83+h/4mfVy/NUCP8vpG9UCP0m1vwWel+CIwHVuMzZN6a5qZLE0ql3zjnlpjZSOAm/P3NfsBy4FHgdgVdzd6LCZ8fDrZV9yhZd0+sES8REREREZE00/9iioiIiIiIpJkCLxERERERkTRT4CUiIiIiIpJmCrxERERERETSTIGXiIiIiIhIminwEhERERERSTMFXiIiIiIiImmmwEtEpJkxs9PN7OdJyo82M2dmRzdBs5Iys2FmtsPMugavr83sL7XUfdLMtphZ9z3dziRtOdfMXjGzZWZWYmZzzewWM2uZpO5+ZvaUmW00s21m9paZDUyoEzazO83s7aCeM7Nzd3H9Hmb2JzNba2alZrbIzG6uQ7tHmtnjZjYv+LkvNbM/mlmPJHXDZvbL4DuWmtkMMzs1oU43M/uVmf3HzDab2Tozm2xmR9Zy/bPN7PPgfIvN7Fozs4Q6b5nZfbv7LiIi2UaBl4hI83M6UCPwAv4DHB5sM8U9wBPOuZXOuZXAeOA8Mzs5vpKZHQdcDFztnFu+55tZw7VAabA9CZgI/BR4Mz6QMLMw8CZwNHAFcA6wD/CBmXWKO18u8CMgL6hfKzPrB3wKdA+OORG4BYjWod3nA/2A+4N2Xw8cAUw3s84JdX8FTIirOwN41cyOjaszEjgDeAk4E7g0KP/QzE5IaPdpwPPAFGAM8HvgVuCmhOveBPzYzHrV4fuIiGQNc841dRtERKQRmdlTwHHOuW5N3ZZdMbNDgM+AbzjnZsWVvw0MAAY557aaWSHwJbAEONbtoT9cZpbvnCurZV8H51xxQtnlwCPAkc65j4Ky7wLPAUc45z4Oytrjv8vvnXPXxB0fcs5FzewbwBfAec6555Jc+wMgBzjaOVdZz++UrN0HAPOA651zdwRlXYM2/tI5d2dc3alArnNuRPC5LbDFOReJq5MXnO8r59wJceVzgGXOuRPjyu4AfgZ0dc5tjCv/HHjHOZfsPxBERLKSRrxERJqRIOi6COgaTFdzZrYk2FdjqqGZfWBm/zKzMWY2M5g2N8PMDjOzHDO7w8xWB9PfnkqcSmdmhWZ2dzBtrDzYXm9mdfn7Mg74PD7oiivfF7g7+Hw70Am4LD7oMrN9zOy+YLpcuZktNLNrEkacWprZb8xstpltN7NVZvZqMGoU/z1+EPxsDjc/hXAz8M/aGp4YvAQ+DbZd48pOAxZVBV3BsRvwo1pjE8652xErMxsEfAt4sL5BV23tds7NB7YktPvb+ODumYTqzwCHmllRcOym+KArKCsHPo8/X/DzHpDkfE8DBfhRu3jPAReaWW7dvpmISObLaeoGiIhIo7oV6AAcir/pB0g6ahNnf/yUv9uBbfgpZq8Frxz8FL+BQZ11wDUAZpYDvAUMCq77BX7q2f8B7YD/3c11xwB/Syx0zi0xswnAb8xsIXAl8HPn3KKqOsGoyjtA7+Dac4AjgduANvgpdACFQD5++tpaYD/gx8DHZtY/CILiPY8PDh4Cwrtpf6JvBds5cWWD8aN1iWYBZ5lZXhCo1NWoYFthZu/jv/M24FX8z+jrerYZMxsCtE7S7i1JpnVWBcmDgNW1nK8AGAFMTTgf1PxZzAcqg/PF+xDfHw8FPtr9txARyXwKvEREmhHn3EIzKwbKnXOf1PGw9vipcIvAT3kDJgG9nXPHBXXeMrOjgLMJAi/gPHwg8C3n3IdB2bvBgNONZna3c25dsgsG65t6Af+tpU2/w6+Huhd/4/3bhP0X4W/KD3fO/TsoeycIBseb2T3Oua+DEZ7vx103DEwGioPz/z7hvH92zv2iljbVysx6Ar8E3nDOxQcX7YCZSQ7ZiJ910iZoS111CbZ/BJ7Er+0aANwJ9DezUfWZihkEsL8HVgXnjG/3plraXbW/Nnfgg/9fJZyPxHM65yLB6GLi+WYE25Eo8BKRZkJTDUVEZH78aBIwN9i+lVBvLtAtbirfGGAp8FEwLTEnCHwm45NFjNzFNasCiKRBRxA83BZ8vD3JNLwx+NGSz5Jcu2rEBQAzO9/MPg1u8Cvx0+rygf5JLv3KLtqclJm1wY8ObgMuS9wNJAuELElZXVT93X7LOfdT59z7zrnfA1fhk2QcHbQpHP9zScwcGNQx4FHgEOB859zWVNttZpfg12z9n3NuWpLj6nRO59x2oIRYPxERyXoKvEREJHFko3wX5TnEpuB1BHoCFQmvqhvu9ru4ZkGw3dU0yPKEbbyO+MAp8dpVI2/twacvx08dnAmcCxyGHynbHNeGeEmnz9UmWPP2N3yAcIJzbm1ClY0kHx1qi89CuLk+1wOqpka+nVA+OdgODbZTqf5zuTbJue4HLgAucM59kLBvV+2u2l+NmZ2Jz+74UHxCjoT67RKOCeGnOdY4Hz7wapGkXEQkK2mqoYiINNQGYDF+yl4yS3ZzLMRu5Bty7XnA92rZXzWCdy4wyzk3rmpHkCWxTS3H1WeaXj5+SuaBwGjn3Nwk1WYRN/oWZxCwoJ7ru6rOl6ydVaNGVSODFwOt4vavqFbZ7FZ8+vvLnXMv1HKd1mbWzTkXf2zVWqzZCec7CXgW+At+TV5t7R5MbBohwAH4e5HE8xk+wcr6JOcSEclKCrxERJqfMvbMSME/8M9u2lZL0LErS/DPweqTwrXHAJuccwt3Ua8QP+IT7+IGXnOnYFrjC/jnoo1xzn1WS9XX8M8lO6xqLVqQgv3b+NTz9fUhfnRoDPBYXHlVVsBPAXb172FmVwM3AOOdcxNrqfYmEME/9+vuuPLzgenOuZ0jg2b2LeBl/MjfpcnWmDnn5pvZvOD4+MyG38P318kJh/TEz8qZV9v3EBHJNgq8RESan9lAOzO7ApgOlDrnvkjDdf4MXIJPqHEfPlFGHtAXn1HxdOfcjmQHOufKzezfJB8Nqosn8Qk23g+u/SV+3db+wbVPDNKc/wP4tZndjb+5Pwz/IONtDbxulYnBdW7EZxiMX8+2zDm3Knj/Iv6h0M+Z2bXAVnzGxVLgvvgTmtkx+CmS3YOiw8ysEog4516BnT+3XwB/MLPf4gO7Afj1cG855+IzCdZgZhfhk15MAqYmtPvrqoDNObfCzB7CJ0kpwWesPB+/juykuPMdGLRhFfAAMDxuOVk0YZ3XBOCvQbtfxk/5vAa4O0l2ycOC7YeIiDQTCrxERJqfx/CJLe7AT9dais8g2KiccxVmdiJwHXA5PrX7dmAhfvRjd9PongfuMbOWQTKF+ly7zMyOBX4B/Ag/QrINWBBcu2rK3e/w668uxKeR/zd+tClxjVR9VQUfNweveBOAu4J2RoJpePfhR7jy8OuvjnbOrUk47k5iAa9ljYkAAAECSURBVAf4qYA/xY8I7VyP5px7JAjI/hefsXE98ASxFPp1afdYEp4jhk+mMibu83jga+Bq/Jq6OcB3nHPxo1NH4tdotabmc88S2/2KmZ2LH227HFiDD1zvpqZTgKkJ0xxFRLKa1SPrrIiISKMxs9b4tUc/dM4lPlhX9lJm1gqf5OQHzrk/N3V7REQai7IaiohIk3DObcGPdlyTLN257LV+hF8D+FwTt0NEpFFpqqGIiDSl+/Hp6Yvw64REtuOTdESauiEiIo1JUw1FRERERETSTFMNRURERERE0kyBl4iIiIiISJop8BIREREREUkzBV4iIiIiIiJppsBLREREREQkzf4/Qd7wBRXpQJEAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 1008x576 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"## part b continued\n", | |
"\n", | |
"Z_al=np.block([[yr_al_train**0]]).T\n", | |
"Z_al_test=np.block([[yr_al_test**0]]).T\n", | |
"\n", | |
"max_N=20\n", | |
"\n", | |
"SSE_train_al=np.zeros(max_N)\n", | |
"SSE_test_al=np.zeros(max_N)\n", | |
"\n", | |
"for i in range(1,max_N):\n", | |
" Z_al=np.hstack((Z_al,yr_al_train.reshape(-1,1)**i))\n", | |
" Z_al_test=np.hstack((Z_al_test,yr_al_test.reshape(-1,1)**i))\n", | |
" A_al = np.linalg.solve(Z_al.T@Z_al,Z_al.T@price_al_train)\n", | |
" St_al=np.std(price_al_train)\n", | |
" Sr_al=np.std(price_al_train-Z_al@A_al)\n", | |
" r2_al=1-Sr_al/St_al\n", | |
" SSE_train_al[i]=np.sum((price_al_train-Z_al@A_al)**2)/len(price_al_train)\n", | |
" SSE_test_al[i]=np.sum((price_al_test-Z_al_test@A_al)**2)/len(price_al_test)\n", | |
" if i==2:\n", | |
" order_2_price_al=Z_al@A_al\n", | |
" if i==3:\n", | |
" order_3_price_al=Z_al@A_al\n", | |
" if i==4:\n", | |
" order_4_price_al=Z_al@A_al\n", | |
" if i==5:\n", | |
" order_5_price_al=Z_al@A_al\n", | |
" if i==6:\n", | |
" order_6_price_al=Z_al@A_al\n", | |
" if i==7:\n", | |
" order_7_price_al=Z_al@A_al\n", | |
" if i==8:\n", | |
" order_8_price_al=Z_al@A_al\n", | |
" if i==9:\n", | |
" order_9_price_al=Z_al@A_al\n", | |
" if i==10:\n", | |
" order_10_price_al=Z_al@A_al\n", | |
"\n", | |
" \n", | |
"fig = plt.figure(figsize=(14,8)) \n", | |
"plt.plot(yr_al,price_al,'b-',label='original data')\n", | |
"plt.plot(yr_al_train, order_2_price_al,'.',label='order 2')\n", | |
"plt.plot(yr_al_train, order_3_price_al,'.',label='order 3')\n", | |
"plt.plot(yr_al_train, order_4_price_al,'.',label='order 4')\n", | |
"plt.plot(yr_al_train, order_5_price_al,'.',label='order 5')\n", | |
"plt.plot(yr_al_train, order_6_price_al,'.',label='order 6')\n", | |
"plt.plot(yr_al_train, order_7_price_al,'.',label='order 7')\n", | |
"plt.plot(yr_al_train, order_8_price_al,'.',label='order 8')\n", | |
"plt.plot(yr_al_train, order_9_price_al,'.',label='order 9')\n", | |
"plt.plot(yr_al_train, order_10_price_al,'o',label='order 10')\n", | |
"plt.xlabel('time (Year 2016-2020)')\n", | |
"plt.ylabel('price ($)/Metric Ton')\n", | |
"plt.title(\"Various polynomial Fits for Aluminum Prices/Metric Ton\")\n", | |
"plt.legend(loc='best');" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The highest order polynomial fit shown is order 10 (yellow-green marker). Notice that this degree order fit begins to fit the errors of fluctuations of the data, more than the general trend. This is especially concerning for the end of the data, where the fluctuation in price affects the higher order fits and thus any future price predictions." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 348, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA/kAAAEtCAYAAABTdaAcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOyde5zN1fr4348xV2YYl8EkDAZR4Ry3hJTLiI5b0ldUnEhOB6cLKqlxJOnkpJv8nBTRQYRcCl/fcjvoRBQJUUMh91vuM7N+f6zP3vbs2Xtmz32G5/167dfMXmt91no+n73WZ61nrWc9S4wxKIqiKIqiKIqiKIpS9ClW0AIoiqIoiqIoiqIoipI7qJKvKIqiKIqiKIqiKNcIquQriqIoiqIoiqIoyjWCKvmKoiiKoiiKoiiKco2gSr6iKIqiKIqiKIqiXCOokq8oiqIoiqIoiqIo1wiq5CuKkiVEZJmIGBEJy0Ee/+Pk8VhuyqYoBcn1VK8L4l5FpJlT5iv5VWZ2yI13ZA7LryUin4rIYUeOnQUhR1YQkZ0i8ltBy+GisMlzLXCtPtOi8l5Srj9UyVeuK5wXcaCfpDyWZZ5TTrkA05fOovxb81L+awkRmRzA8+xQ0HIqOcdDOfX8nBeRHSLyioiUKmgZldxFRCqKyKsisk1EzorIOUfheENEqhS0fLmJiAgwD+gALAZGA28XoDyDnTaWcq09ayVvEZEbRWSSiPwoIhedtrvXmcB6QkSCPNKqoq0oXhQvaAEUJZ8Z7SPsReA0MNEr/FTei5MlLpJe/jBgBHAYmOwVl1cz5v2BksClHOSxFLiJvJMxu0wFfvUTtyc/BVHynP8D1jn/VwA6YdtSJxFpYoy5UGCSFQ0KaxtOgzM59zEQCWwApgCpQCNgCDBARB4yxswrOClzlcrALcB0Y0z/ghYG6AcY7KLSw8CYghUnYO4GgjJNpeQJIlIPWAtEA/8BPgeuANWBJkBn4F/A7wUlo6IUdlTJV64rjDGJ3mEi8iJwyldcYcIYcxFI9AwTkdJYxeS3/JLfGONPCc5KHmeBwmhC+p4xZmNBC6HkCyuNMe5VHxEJB9YDDbDKiPekmeJBIW7DbkTkVmCB87WbMWahV3xbYD4wS0QOGGM25LeMeUAl52+BT76ISH2gIfAh1rKgr4i8ZIwxBStZ5hhjfi5oGa5z/oFV8PsbY6Z6RjjWKneRs4UGRbnmUXN9RQkAEQkSkcdFZJNj6nlWRNaISCcfacuJyGsisltELojICRH5TkTeEpEQJ80x4F7nkqMeZsO5blYpIs+4zM1F5GER2eLINduJryAiL4rIRhE5KiKXROQnEXndmUTwzi/dflOvMnqKyDdOGQdEZLyIFPfKI91+Xsek1ojIbBGJE5FPROSUiPwuIp+JSC0/9zfQMbW+KCJJIjJaRCq78sq9J5mmTJd5f10Recox/b3kMhXMLN5Jc6OITHWe0SUR2e+YJlbwUd5F5/eJFZEZInJERFJFpE4GMu4QkTOO8uor/junLpf0CAsWkSedOnLeuf4LRxnyvt5VD0qJyEsi8rOIXHH9ps7v+YZYU8sLInJcRLY69Uo88vG7T9NXnIhEicjfReQHR/5TIvK988yzbWrvrNx/4Hxt5FVmJxFZ5TyP8yKy2al3kj6nNNfFOs9kmZ/4ymLNmJd7hLmea0kRGeU810vO/T7kJ5/s1KVKIvKR87ucFpEFIhLrpGkkIv/r3O9xEXlTnHeXRz650oZF5E8i8m+xZrgXHFm+EJG7M3q2AfJPrLXTk94KPoAxZiXwGHbB4w0vuQJpwzc793XWuc+FIlLdnzC52b785L8T+Mr5OkKu9iuev1FdEflY7DvkkojsEbtNJdIrL8/f8ibn3k5I1nwN/Nn5Ow2Yg12FvSPAazP0beArTtL2Qw+J3Z5xQew76M9OmuIikii2r7jotOWWPvL39e5x1Yk6IjLIaZOXnN9mmI883OkDifNsUyLSUUS+curJLyLyrEe6wY58Fx0ZumXhmdYQ2yd/4/yerjwSRSTU33MQkRIi8k8ROehc842/NioiLcSOj86LHVNMF5Hygcro0Aw4z9V3shtj+T9jzBWnvGewVjqQtt5714/yYvufvc7vdkREZolITT/3catT/38TkcvO7/wPEYnK4r0oSoGgK/mKkgli930tBO4BvgPex7adPwGLReRRY8x7TtriwJdAXWAZdhUpHKgJDABGAZeBV4G+WHPXf2A7M4D/5uGtDAVaAZ8CK4DjTvhtwHBgJXaAmAI0Bv4G3CkizRwrgkAYACRg73s19hkNB0Kd/AKhMrAR+AF4D/ss7wZuEZGbjDFu8zwReQG7heEg8P+wZqH9gT8GWFZOmYB9VkuARcCPgcSLVQTWAzHYfbM7gPrAIKCjiNxmjDnklVcprNniSeAjrPlxRr/LR8BLWLPGOZ4RInIz1qR3lut5ilXiPgPaAJuxppBhzvXLRaSPMWaWj3JmAzdjzSl/Bw46A6u1QDUnz0+AEkA88DgwDEjOQPaMWAq0wNbXxUAIEAc8CLyG3XqTXdIp7SLyOHZP83FgJnAB6Ipd6f8j8Ki/zIwxB0VkKfAnEalijNnvlaQvdrJ9arqLYTq27nzmfO8FTBeRM54KazbrUhSwBjiKVcBuce6pmog8in2H/S+2DrQHBgPngGcJjIDbMNZ8OwhbXw4BFYEuwFIR6e2nzmWK2P3fbYAjjgz+mIVtJ41F5GZjzHaveH9t+Cbsdo9IbP3ei62X65z78JYn19pXBvfyNtYS5RHsu2KlE77JkaGpExYGzAX2AS2x1mAJItLCGHPOK8+q2Pq1Hdv3VcJud8gQ5357A78AqxzZB2MV/1WZXZ9DBmEnExZi+6GewFQROQXcj53EW4L97R4APhORasaY437y82Ysti9djH2ePYBXReSKMcZ721926Ai0deRfj22bL4vIRezzf9ApexXQB5grIrcaY3YEkPefsP30F9h2HoytAy8CTUWkow9LiyBs3Y3B+nuIwr6PFjvjg02uhCLSGliO7YtnYy1K7nbKy4ojyhPYSaHKgPd705t12Heod70Hp58RkWrYd15l7NhsPnADdrElQURuN8b84HEfnbDtOhk7ZjqIfa8+DbRx0uuWLqVwY4zRj36u6w+2M0rKIP4pJ82rQDGP8FJYpf8cUNYJa+6k/buPfEoDQR7f5zlpy+VA9tJOHlszSPOMk+YccLOP+HJApI/wp53r+nuFL3PCw3yUcQao4xEehfUXcB6I8Aj/Hyf9Yx5hFZ0wA4z0KvNdJ7yfR1h17B69JKCMR3hZ7ODVALMDfI6TnfTvYbdEeH+e95P+V+DGDPLzF/+5Ez/AK3y4E/5vr/CLTvgHnnUwk3uKc65Z5CNunBPX0SPsRSfsRUA8wssAu7GTCyV91IOtQLRX/u2duOE+yi7r9X0ndruJr3tIEwfUcvKd5CNtSSA0gOfiqnvPeIWHO/digIFO2I1Yk9DDQGWPtBFYxckA7TOp152csBe8yhOsYnjMU26P5/o1UMojvJkTvjqX6tKbXuFznfCTwL1ez2U/dvIkLJN7zVIbdtVTH79ROWy73u9VF13P4JUAfuf7nbRzA0g71fsZknkbXuHEP+AVPsXjGXg+r1xrX5nci89n5NS3773rrBP3jhP+sp/fcnSg5Xtc38O5dpxXez4HRGXW1r2eQZiP9Bn1QyeBGh7hN2MnJk5iV3xLeMQ97lzzXADyuOpEEhDrEV4V2672+Ulfx4f86eK42qauAE09wmOc53YaO8lU3iPO9X6ZEuDvEouP9yTwlpNPWx/PwWAnFTzfU672Nd2rju10nnULj/Agrr6nfL7rfcgz3km/HzsJ1cRXPcis3nvEf+k813Ze4X/EvuNXeoSVxk4y/IJX28dOVBk8xgSZla0f/RTUR831FSVzHsfO4j5rjHGvYBhjTgMvYwf8f/K6Jt0MrzHmlDEmJS8FzYT3TfpVKowxx4zdX+uNaxCSzpQ0AyYZY9z7dI0xZ7Az5uFAvQDzOAB4e8id5vz1NKPuibWo+Kcx5oRHmcexq2/Z4RHsINz787yf9K8bY37JIL908WJNqBOwK67eK4yvYwcWPUQkwisuGauYZrqKBu49peuBDiJSxqN8wa7CHMUqKi4GYZ0L/t0YYzzyOYGd4CqN3VfrzRhjzEk/YvhqB4GulmWEr3x/N8ZkZY9mW8dENVFEJgG7sCs127B7iME+pxBggvHwRWGMOc/VOvFwJuUswyqK/Zxn76I1dqJqph+5RznvGFeZG7EDaHcbyEFdugiM9ApzWXvsMMZ84lHuBewKdhR24igQAm3DrnqKV9gxrLO8G4HaAZbpTUXnbyA+RFxttJKPOF9tuCL2vfidMebfXulfwFpreZMX7SsrNMZaVHxujFnhFfcCdiLWV10+hu3nsorLVH+mR9hMbH/ZMxv5ZYVJxpi9ri9Ov7cD+4xfMGmtFVz1vn4W8n/FGOO2qDDG7MMqkVWyYZbui4+NMa5tFxhjjjj5RwGvGmOOeqT9DGslEZD8xpiDft437zp//fX3w7yum4utM57tuTG2vS4xxricmuKMe7zfN5nxItaa6Qbsu+Qr4KyI/FdEhonHNrPMcKxuWmMnJP7XM84Ys9m5lzYev90DWH8Az/ro39/GvlP+J4v3oyj5jprrK0oGOC/9OOzs+ShJvwX3Bueva1/dZuxA7iURaYbtgNeawMzoXGWGAM95BV82xmRnoOXJJn8RItIV+AvWSVIZ0vrr8DXw9ccWH2EHnL/p9vf7YZuPyRBfebgGNet95JFdB1q3maw53vP7TDOIr49d8VjtOdgHMMZcEZH12FWSetjVXBe/GmMOZ0E2sIPq5sB92O0MYE2KqwJvG2NcpoxxWA/zx4AXfdRzl3LnyweAr3tcjx0I/dMx3/wc2w52ZVF+b/YA3wBPiPW+vARr5v2d97MMgDbOB6zS+zPWwuEVc9UMs4Hzd5WP61dhJ8Ea+IhzY4xJEZH3sYrUXViv/mAnlMC3qT74b0t1RCTY2P2o2a1LP/uY2HPtP/7WR7muuFisCX5mBNqGXe/YZ7EmylVJb9Jbibx38Oeq8L7qkK/6fYtzzTrvCGPMbyKyF7sVy2ae++0rO/ity8aY4yKyDWuuXd5LidyexckzxPp2aA9sMcZ87xE1E/g7dgIgoy0UOcVfHa7nHWeMOSYiydi6HSiZ9XNHfcRnhYzaoLf8RkQOE6D8zkRjX+ypB7dgLRI9K6Sv/v4CdhLUs9xUETmE7z55rXcGxphvROS8d7g/jN0i2FdERmHfDU2xK+aNnc8AEWkZYJ/YzPlbUUQSfcTf6Pytjf3tmrqu87NfP5XsTz4qSr6hSr6iZIxrBTQeO7PsjxIAxphLItIKu8+0K3a/JSLyM5BojPnQfxZuQnyUdY7sraZ4csRXoIgMBt7EDkBXYFe1XHu9n8fupw8UX/uhXXuvAz2OKNA8XI6ifA2ofN5rHpBZOb7iXU57/A1OfvNKF2hZvvgY61DsAa4q+b2dv54rbK56Xo+MLS5K+AhLJ5cx5ncRac5VnwDdAUTkR6yZ48eB3oBXvqki0g7rh+E+7Co2wAERGWeMeScL2T1rPLzr+8Hvb2WMuSgiZ0j/O/liKrYtPQL8n1gHgd2B/xpjtvm5JrN2cCUj+Rz81aUzGeSdUVywn3K8CagNO8/hK6yS+x/s++cUjrkvdhImK+8fT1z3XjmAtK7JWl8OIH21u1IZxIH9PW7y+J6r7SubZKWueL5Ts1P+Q9jf2fMdgzEmSUTWAS1FpI6n1Vcuk9X6nULgdRtyp5/LiOy0z0BXtl8DnsT28wux/iMuO9c/he/2dsbPJGoyae83s3ZxBGvVFzDOSvr/cz6uo/VmYietxpCBTxQPXO2vk/Pxh6v9udI/nlGmIhKa1QkwRclPVMlXlIxxdajLjTG+TCnTYayTq/6OA6tbsYrI37BOs37zYSrpff3v+HAAlguk66SdWf0XsJ1vfWPMbx5xpch4YqOgca1ElsfuwfckJp9kyGz12Fe8q06l83zuFe49mMvqSrVrhW459uz3G7ED+fuAPZ7moB5lfWKM6ZHVYvyU/QvwsOO4sgHW+dJQYLbY48r+4yRNxf/AOJ0C7Zg3DxaRIViFqZ2T79sicsJk01GbHzx/qzR1zHEuGMXVFTy/GGP2i8gKoJuIRGNNPcPxv4qfHfl84a8uFRYewir4fzfGpHnXiMjrXLW0yA4ua55WIlLcZbXijfMOvNPrGk981W+XkufvPeP9e+R6+8oG+fbewa4SA0wQEX9bp/ph91pnhGtrkq/3Q1HwcF6o5HfePUOxWxeaeG5bEHvc4VM5LCKzdhHD1X47WxhjvheRv2Ctxe7MLL2Dq04PNsYEcoKRK/0tvrY4KkpRQffkK0oGOAr7L0ADCfzYINe1qcaYrcaY8Vwd9Hju3XeZs+bGzH92KYV1cvW1p4LvcHsByJMVXGaLzX3E3ZafgmSRb7EDZ1/HNhXH3s8VrJOs3OAj7KRRL6yiXcYJ82Qv1nv8H8XruMOcYoxJMcZsNsa8hN2XLNiTKlycAsqK1/FNzr5nv1tFjGW7MeZ1rJMvcCxncpGtzt9WPuJaYe9lq484X7i8qT+AXdE/j/U+nRPyuy7lNjWcv4t9xPlq1wFj7EkGX2IVi0cySHo/1jfCpiwM6Ldhn3sL7win3tbwCs6z9pUF/NZlx2fHLcBBL1P9LCMit2MdZP6IncTy9bkEPOhMAGbEKefvDZ6BTl98U/rkhQ6f8jtkuM0nj6iKHW98adKfopAb/b2rT/b1PvoD1h9DbuA6ncNzMSSj8ZTr1KJmPuJ8kdX0ilIoUSVfUTLnbewqx0TxOisa7Ay4M0OOiMT72cPlWiXxdBjmchbnawCQLxhjTmFnretL2vPSY7DebQszH2M79ie9HMuVIecrEnmGs4dwBXCziHg7uhoKVMGu+AW8fzETPsWunvTmqql+GiXfWGd+k7BH3r3qSxERe3Z6pHe4L8Seq13NR5SvdrAZO1h70OP6IKxZqXe+VRxzzUDyzQ1mY5XkJx3lzSVHOHYrAlx10pcZi7CWFM9hPTrPNdYxZbYpgLqU27iOxkqjYIjIIKw37ZzyJFahfF1EvJ2jIiJ3Ys2Ak7HPKyCcCdGVwK0i8oBX9N+xW6480+dq+8omX2N9G3R0/GR4kog1VQ60LmeEy+HeGGNMf18fbFuohJ10zIjNzt+HvMJfJHAfLwWJT/lF5DEKZpLCZY3UzHOCRURq4N+5bFb4GntSxD0i4p4Ac8oam5WMROQ5x/rMOzwIe3IIpPWJ4Xc8ZYz5Fusn4AERSWdJIyLFRcRzYmIG1iphrOO0zzt9lIjk1zG9ipJt1FxfUTJnAnZGdyDQXkRWYc3bb8DOxrvOHD+JddjyoePwagd29aYG9tznM6R1NvQl8Bjwvoh8ilVQNnt7f80H3sE6vtoiIouxq/udsA6f4vNZloAxxvwkImOx2w2+E5G5WGXxPqxjpCoEcJ6zF/1FxN+2jCXG4zzgHPJXrLnhByLSBTv4ro91MPQruThJYYy5ICILsAPNuth94D/6SDoGq1g9gR2krcH6aagM/AE7KI0jMHPLO4B3nP23O7EDsFrYlfYTXPW0Dtar86PAu47ycQxrhpmMHZR6WtDUBT4Xka+xq6mHsatTXbF+JCYFIFvAOGb2T2P9GnwnIh875XTFtuv3jTHLA8wrWUSmYY/5gtxzPJZvdSkP+DdWuZjgrADvw9a1ltjV/XSKeVYwxmwVkXuxkzWLnPfyBux7oRHW4/Yl7DF4vhx4ZsRQJ68ZznPf68hdE+sc8g9e6XOzfWUZx0Hbn4H/BVY4dXm/I3ML7HGwWVLEvBGREtj371nsGeP++MBJ1w/rPNMfH2InxUY6k3s/YfviylgFurArWkuwzkJ7O5OEW7Bb+Jpgz42/Kz+FMcacFJFZWKuuTSKyEnsKRWdsvbg3h/kbERmInXhc6ZR1GDuZU4z07/OMGIJ1YPw19rc+id2a1x77zv8V2/e7+MnJv7uIvMPVEzP+4TgBfRDrdHKu8x74BuuLoCq2/l/ETsJhjDkhIv+DrcPficjn2MmLcGwbbY1dZOgb4L0oSoGgSr6iZILjHfternqkvRfrnOY3rCL/JrYjB+s8agK2E+iOdWZzADsz/IoxZo9H1nOxe4ofwg5kimMV7vxW8l/ADsr6YT3sH8IqIGPw7WCo0GCMeVFEfsMOCP6C/U2mYo/t60TWB8wZmfX+Ri55ujbG7BGRxtgVtA5Y8/Uj2FXFRB9bJ3LKR9h6VhwvZ1geMl0RkU5Af+xRWj2xzqh+A7YD/8AeJRkIX2AV49ZYU/oIbDt4DxjvmFK7yt3hTKy84qQ9AyzArtZ8RdpB4bdYD/h3YRXAKGx9XYBtX7m+f9IY86ZYx5lPY59Lcawi/ThXj50KlBlYJX+38ThiKofy5XddyjUcT/StsUfItcWa2v4XO0l0BzlU8p0ylopIbeyq/t1c3TLyC9ZKa4KxR6BlNd8fnNW/V7HvmhTsxO3D+JhsyuX2lS2MMRvEnvryIrauRGGVpX8ALzn+YHJCD6xD1KmZWI+swN7rnyS9N39PeY+KSBtsn5qAnZBZjn12OfVnkec4jnjbAROx76ym2BXl5thJonxV8h0GYJ99D+wEYRLW+mQWOVTyAYwxq5zf7GWs75Fz2FOGnsLee6BKfnfsu6w1dpEkBrsQsgfbh71uPI5jdSYY7sNagD3EVUeEE4EUY8w+Z8vAU0A3bDtMxvZLy7ATjp73scxJPxz7buqA7Zt+wY7Tpgd4H4pSYIhvh5mKoihFFxHpjR0IPGWM+WdBy6MoAI5p90fACGPMqwUtj6IoiqIo1yaq5CuKUmQRe8b2CeNxJrfjT2AtdqtBbT+m6YqSrzhe3DdiTemrGGPy65hHRVEURVGuM9RcX1GUosz9wLPO3sJD2L2aHYFo4DVV8JWCxnHc1BVrotsEeEMVfEVRFEVR8hJV8hVFKcpsxO6TbweUxXpC3w78yxhT6PdsKtcF9bH7U09h93E+V7DiKIqiKIpyraPm+oqiKIqiKIqiKIpyjVCsoAVQFEVRFEVRFEVRFCV3UCVfURRFURRFURRFUa4RVMlXFEVRFEVRFEVRlGsEVfIVRVEURVEURVEU5RpBlXxFURRFURRFURRFuUZQJV9RFEVRlGsKEQkTkYUi8oOIbBWR5SJSvaDlUhRFUZT8QJV8RVEURVGuRd41xtxkjGkALAbeK2iBFEVRFCU/UCVfURRFURQ3ItJDRD4RkX0ickFEdonIOBGJzMMyK4vIWyKyQUTOi4gRkWoZpL9RROaJyGkROSMi80WkiiveGHPRGLPc45KNgK7kK4qiKNcFYowpaBkKhHLlyplq1aoVtBiKoiiKEjCbN28+Zowpn5dliMhGYD/wKfAr0BBIBHYCzY0xqXlQZmtgDrAZCALaA3HGmCQfaSOAb4FLwPOAAV4CIoBbjTHnfFwzHThljBnqTwYdFyiKoihFDX/jguIFIUxhoFq1amzatKmgxVAURVGUgBGRfflQzJ+MMUc9vq8WkRPAdKA18IUf2SoC1Y0x633EhQOtjTGf+ylzjTGmgpO2P1bJ98cA7Kp8bWPMHuea74AfgYHAP73KfhaoBbTJIE8dFyiKoihFDn/jgkzN9UUkWEQSPM3gFEVRFEUpHOR2P+2l4Lv42vl7QwaXPgGsEJGWXvKFA0uAD0SkpJ8ys2Id0BnY6FLwnet/Bv4DdPEq+2ngXuBuY8z5LJShKIqiKEWWTJV8Y8wVrMOamnkvjqIoiqIoWSGf+uk7nL8/ZJBmJPAZ8JmI3A5uBX8xUB9ob4z5PRdkqQds9xH+PVDX9UVEngR6Ae2MMaf8ZSYifxKRKadPn84F0RRFURSl4AnU8d7PQNm8FERRFEVRlGyTZ/20iNwA/B1YaYzxa89ujEkGHgCWA5+LSBtgEdAAaGOM+S6XRCoDnPQRfgKIdmSuDEwASgNfOsfo+ZTdGLPYGPNoqVKlckk8RVEURSlYAt2T/0/gORFZaYzx1bEqiqIoilJw5Ek/7ZjXfwokA/0yS2+MSRaR/wE+BlZilfE2xphvc0smV1E+wsRDjl89vyuKoijK9USgSn4joDyQJCJrgUOk7WCNMWZgbgunKIqiKEpA5Ho/LSJh2JX46sAdjuIcCMWBkkAqEIz1ep+bnMSu5nsTje8VfkVRFEW5rghUyb/H+Xse+KOPeIP1aKsoiqIoSv6Tq/20iAQDnwBNgLbGmG0BXhcGLAT+ADQDnsOa7icYYzYEWn4mfI/dl+9NXWBHLpWhKIqiKEWWgJR8Y0ylvBakyHLxDBzaCsd2Q+P+BS2Nco1y+vRpjh07xuXLlwtaFEVR8oCQkBDKlStHdveF52Y/LSLFgI+wR851MsZsDPC6UGA+0Bhror9VRHpiTfeXOYp+QHllwiLgNRGpboz5ySm7GnA78Ewu5J99ki/D8R/h8A6oUBcq+JqLUJTrAx27KEr2CAoKIjIykjJlyhAaGpqtPAJdyVd8kXIFXouH5Iv2e73uEOHLglBRss/Fixc5fPgwlStXJjw8HBHdZqoo1xLGGC5cuMCvv/5KaGgoYWFhBS3SO8B9wFjgnIg084j7NQOz/bFAU+zK/1awnv89FP3FIhLnz8O+iPRw/nVZItwtIkeBo8aY1R5J/wX8FfhURJ7HWimMAX4B/l8W7zV3+eLvsP4t+/8dz6iSr1y36NhFUbKHMYYrV65w5swZ9u/fT5UqVbKl6AfqXR8RCRORR0Vkpoh8LiI1nfDuIhKf5ZKvBYKCIabu1e8Hvyk4WZRrlqNHj1K+fHkiIiK0k1SUaxARISIignLlynH0qK8j6gPOJ7f66budvyOBDV6fjEzWxgKtjTFbPAOdI/56Al0yOUJvrvN5zPk+yfk+2iu/c8BdwG5gBtbq4Gfgrlw6oi/7eI4JjnxfcHIoSgGjYxdFyR4i4rbui46O5sSJE9nKJ6CVfBGJBb4AagA/Yc/ijXKiOwIdgEezJUFR54Y/XFXuD2yBmm0LVh7lmuPixYtUrFixoMVQFCWPiYyM5Pjx49m6Njf7aWNMtezI4Hj19+n4zlH012dyfcCagDFmP3BvlhGCqjsAACAASURBVATMDzyV/MPqHkC5ftGxi6LknKioKJKSkqhUKes78gJdyZ/gpL0J6+zGsyP+ErgjyyVfK9zg4d/owOaCk0O5ZklOTqZ4cd1ZoyjXOsWLFyc5OTm7l2s/XRgoXxvEGVqd+Akuny9YeRSlgNCxi6LknODgYFJSUrJ1baBKfgIwyhizh/Rn0x4AbshW6dcC3kq+8XV0r6LkDDV1U5Rrnxy2c+2nCwPB4VCmhvPFwLFdBSqOohQkOnZRlJyRkzYUqJIfCpzyExcJZG+K4VqgbDyERNr/zx2B04EeI6woiqIouYb204WFmJuu/q8m+4qiKEoBEKiSvx3o4icuAbh+Pc4VKwaxDa5+V+d7ihIw/fv3R0R48sknfcYnJiYWyEpAUlISIsK0adPyveycsGrVKhITE0lNTc31vHPyW7Ru3ZrWrVvnrkCKN9pPFxY8PeofUSVfUa4VFi5cSKtWrYiJiSE8PJyqVavStWtXli1b5k6Tl/2wJ9OmTUNESEpKyjDdxIkTmT9/fp7IUK1aNfr27Zvl64rqGKuoEaiS/09goIi8BTRxwmqKyLPAACf+uiMl1fDP/93N5yc9rCB1X76iBMSFCxeYO3cuAB999FFO9iLnOpUqVWLDhg106tSpoEXJEqtWrWL06NF5Mrjo378/GzZsyNa1kyZNYtKkSbkskeKF9tOFhTTO99TDvqJcC7z55pt069aN+Ph4pk6dytKlS3n++ecB+OKLL9zp8rIfzg55qeQvWLCAUaNGZfm6ojrGKmoE5BHDGDNHRCoBLwF/cYJnAxeAp40xi/NIvkJNUDHh469/ocHvFbk7xAk8oIslihIICxYs4MyZM3Ts2JHPPvuMZcuWcc899xS0WACEhobSrFmzzBMWYa5cuULx4sUDXp2vXLkylStXzlZZdevWzTxRIePSpUs+z6VNSUnBGJMjh1L+8s4J2k8XInQlX1GuOV577TW6du3K1KlT3WF33XUXAwYMKDQKfU7Jat/UsGHDbJVTFMdYGY2ZctqnG2O4cuUKISEhmSfOAoGu5GOMmYh13NMFe05uN6CyMeatXJWoiFE3NopvU2tcDTi4FVJ166OiZMb06dOJjo5m2rRphIeH8+GHH2Z6jT8Tr1WrViEirFq1yh3WunVrWrRowbJly2jQoAHh4eE0bNiQr776iuTkZJ577jkqVapEmTJl6Nu3L+fOncuwnL59+1K5cmW2bNlCy5YtiYiIID4+nsmTJ6eRxZ9Ze9++falWrVq6MiZPnsyzzz5LxYoViYyMpE+fPpw/f549e/aQkJBAyZIlqVmzJtOnT8/w2SQmJjJ6tD1OPDg4GBFxy+Eqa9KkSQwfPpzY2FhCQ0M5deoUR48eZeDAgdSqVYuIiAhuvPFGHnjgAQ4cOJDpfYkIzz//PG+++SZxcXFERkZyxx138P33aVcvvc31Xb/XokWL+Otf/0q5cuUoX748ffr04dSptNvKjx49Sq9evYiKiiI6Opp+/fqxaNGidL+3P1avXk2bNm2IjIykRIkSJCQksH379nTytWjRgsWLF9OwYUNCQ0PdlgciwsiRI3nllVeIi4sjJCSEbdu2AbBr1y66detG6dKlCQ8Pp1mzZmnMNj2f2/bt292/Z8+ePTOVOztoP11IiK4GxcPt/78fhnPZOxZRUZTCw4kTJ/weCVismFWnMuqHAc6fP8+IESPcfUlcXBxjx45NN0lw7NgxBg0axA033EBoaCh16tRhypQpWZa5WrVq7Nu3j48++sgti8u8PqO+acWKFXTs2JFKlSoRERHBzTffzIQJE9J5efc213dtIdi4cSO9e/cmKiqK2NhYhgwZwsWLF93pcjLGAli5ciUNGzYkLCyMmjVr8t5776UbY/kjOTmZcePGUadOHUJDQ4mNjeWpp57yKZ+vMZPrHtesWcN9991H6dKladq0qfvamTNnUr9+fcLCwihXrhwPPvgghw4dSvfc+vTpw/vvv0+dOnUICQlh6dKlmcqeVbK0FGGMOQ0syXUpijB1K0Xxxc4yHDGliZFTcPksHPsRYuoUtGiKUmg5ePAgK1eu5NFHH6V8+fJ07dqV+fPnc/LkSaKjo3OtnD179jBs2DBGjhxJyZIlGT58OJ07d6Zz584kJyczbdo0fvjhB4YNG0ZMTAyvvvpqhvmdOXOGBx54gL/97W+88MILfPDBBwwaNIjatWtz5513ZkvGcePG0bp1a6ZPn86OHTsYPnw4xYoVY8uWLQwYMICnn36ad999l379+tGoUSPq1avnM5/+/fvz66+/MnXqVNatW0dQUFC6NGPHjqVx48ZMmTKFlJQUwsLC2L9/P2FhYYwbN47y5ctz8OBBJkyYwO23387OnTsJCwvLUP6ZM2dSu3Zt3njjDS5fvsywYcPo0qULO3fuzHS1e+jQodxzzz38+9//ZteuXQwfPpygoKA0Exrdu3dn27ZtjBs3jpo1a/LJJ58wePDgAJ4sLF26lC5dutCpUydmzpwJwPjx42nZsiXfffcdN954ozvt7t27GTJkCKNGjaJ69eqUKVPGHTdt2jSqV6/Oa6+9RokSJYiNjeXgwYO0aNGCyMhI3n77bUqVKsU777xDp06dWLJkCXfffXcaWbp06cIjjzzCiBEj3APCvED76UJAsSB7lN6hrfb7kR0Q17JgZVIUJUc0adKE6dOnU716dbp06UKtWrXSpcmoH05OTiYhIYEdO3YwatQobrnlFjZu3MiYMWM4ceIEEyZMAOw44/bbb+fChQskJiYSFxfH8uXLGTRoEJcuXQq4/wNrMdmxY0fq169PYmIiAOXLl0+Txlff9NNPP9GmTRsGDx5MWFgYmzZtIjExkaNHj/LKK69kWu6DDz5Ir169mD9/Phs2bCAxMZHo6Gj3BIg/Ahlj7dixg06dOtGkSRNmz57N5cuXGTNmDKdPnw6ob+3Tpw+LFy9mxIgRNG/enB9++IFRo0aRlJTEJ598kiatrzGTi969e9OrVy/mzZvn3m46ZcoUBg4cyP3338+4ceM4ePAgzz33HF999RXffPMNJUuWdF//5ZdfsnXrVl588UViYmICmqDIKn5HYCLSxF+cL4wx/825OEWPurFRgPBtag3aBTn78Q9sViVfyVOqPZP7M37ZJemVrO+pmjFjBqmpqTz00EMAPPzww8yaNYs5c+bw2GOP5Zpsx48fZ/369VSvXh2A1NRUunTpws8//8zKlSsBSEhIYM2aNcydOzdTJf/s2bNMmjTJ3dm0atWKFStWMGvWrGwr+TVq1HArtQkJCaxdu5YZM2YwY8YM+vTpA0CjRo1YtGgR8+bN86vke5rTN23a1KeCXaFCBRYsWJBmZcGloLtISUnh9ttvp0qVKnz++ed069YtQ/mDg4NZsmQJwcHB7rD77ruP//73vzRv3jzDa1u1asVbb9lF5vbt27Nr1y7ee+8990z5ihUrWLduHXPmzHGvMCQkJNC5c2f279+fYd5gJxHuuOMOPv30U3fYnXfeSfXq1ZkwYQITJ050hx87dowVK1bQoEGDdPkYY1ixYgXh4eHusKeffpqTJ0+yYcMGatasCUDHjh2pW7cuI0eOTKfkDxkyhKFDh2Yqc1bQfroQU6GeKvmK4kVRHrtMnjyZHj16MHz4cIYPH07ZsmVp164d/fr1o3379kDG/fCsWbNYt24dq1evplWrVgC0adMGgNGjRzNixAhiYmJ444032LdvH9u2bSM+Ph6Atm3bcurUKUaPHs2gQYMC3i7mskwrV66cX/N4X32T5zjMGEPLli25fPkyr732Gi+//HKmyvQDDzzgVujbtm3LV199xaxZszJV8gMZY7300ktERUWxfPlyIiIiAGjZsiVxcXF+LS1crF27ljlz5jB9+nT3+LNt27aUKVOGPn36sHXr1jRjAF9jJhc9evRIM2ZMSUlh1KhRtG7dmtmzZ7vD69SpQ8uWLXn//fcZMmSIO/zkyZNs3rw5U5lzQka/0kZgQxY+1yV1K0UB8G1q9auB6mFfUTLkww8/JD4+nttuuw2wL9nY2NiATPazQq1atdwKPtiXLVhF0ZM6derw66+/Yoz38eJpiYiISKPMh4aGEh8fH5DC6Q9vZdCXjNHR0cTExPDLL79kuxyArl27+uys3n33XerXr0/JkiUpXrw4VapUAaw5ema0a9cujYJ/yy23AAT0TLyd7txyyy1cunSJw4cPA7Bx40aCgoLSTTT06NEj07x//PFH9u7dS+/evUlOTnZ/IiIiuO2221izZk2a9NWqVfOp4AN06NAhjYIPsGbNGpo1a+ZW8AGCgoLo1asXW7du5cyZM2nSZzZZkk20ny6sqPM9RbmmqFWrFlu2bGH16tWMHDmSBg0asGDBAhISEnjppZcyvX7ZsmVUrVqV5s2bp+mT2rdvz5UrV9i4caM7XdOmTYmLi0uTLiEhgePHj7NjR+76+fDVNx06dIiBAwdStWpVQkJCCA4O5vnnn+fUqVMcOXIk0zx99e2BjAkCGWNt3LiRjh07uhV8sI78MltUAPtsQ0JCuPfee9P9BkC6cYG/MROkf267du3iyJEj9O7dO014ixYtqFq1KqtXr04T3qxZszxV8CFjc33PkWck1jPvHqwjn8NABaAXUAN4Iq8ELOxUKRNBiZAgvk322JevHvYVxS9ff/01O3bsYMSIEWn2X3fv3p23336b3bt3+zSDyw7epv8upya+wpOTk0lJSclwhtzXVoLQ0NA0e7nyUsaclAO2I/TmrbfeYsiQITz55JP84x//IDo6mtTUVJo1axZQeZ5m7YDb+UxuXHvo0CGio6PTTCKAnV3PDNdA5JFHHuGRRx5JF++ayHDh69lkFHfixAmfTocqVqyIMYaTJ08SFRUVUP45QPvpwkoFDyX/yA8FJ4eiKLlGUFAQrVq1cq/EHzx4kA4dOjB69Ggef/zxDLcbHjlyhH379qXrz1wcP37cnW7Pnj2ZpsstvPum1NRUOnfuzMGDB0lMTKROnTqEh4ezcOFCxo4dm+2+/dKlS5leF8gY69ChQ8TExKRLV6FCBX766acM8z9y5AiXL19OYzbvifezzcq44MSJE36vqVixojs+kLxzC7+jWWPMctf/IvIe8KUx5mGvZFNE5EPsQOMTrkOKFRNuqhTFd/s8VvJ/2w5XLkJwxntZFSW7ZMdEvrDgMk0fP34848ePTxf/4Ycf+p0Vd+2Hunz5cprw3O70coKnjJ6eUguDjL5mpGfPnk2bNm3c+wEBfv755/wUyy+VKlXi5MmTXLlyJc2Ax7XSnxFly5YFrM+Dtm3bpov39mKb0SkDvuLKlCnDb7/9li78t99+Q0TSDXICPcUgK2g/XYiJ8VLyjYE8qAOKUpQoymMXX8TGxtK/f3+GDh3Kjz/+SJMm/ndQlS1blri4OD7++GOf8a492WXLlnWb7fuidu3aOZbbE+++ae/evWzatCnNlkGAxYsLxwEtlSpV8mlNEOi4ICwsjLVr1/qMj42NTfM9K+MCV5/vb1zQqFGjgPPOLQJ1vNcNuxrgi4+Af2M9+V6X1I2NYtO+kvycWoG4Yoch9Qoc3g6VG2V+saJcR1y+fJnZs2fTtGlTn85bnnjiCWbMmMGYMWN8vgArVKhAaGhoOu/oeeGVNLtUrVoVgO3bt/OHP/wBgFOnTrF+/XoiIyPztGzXSviFCxcCLuv8+fNpVpwBPvjgg1yXLTs0a9aMlJQUFixYkMYj/dy5czO9tnbt2lSrVo3vv/+eZ555Jtdlu+OOO5g4cSJJSUnuwVlKSgpz5syhYcOGef5b+0D76ULAiu9/49NvD7L38FkWBpcm7IrjkPfUfoiuWtDiKYqSTX755Zc0zlpd7Ny5E8Bteu2vH+7QoQOffPIJJUuWdG/L80WHDh146623qFKlis8V66wSGhrKhQsXAk5//vx5gDQT61euXOGjjz7KsSy5QbNmzfjss884f/6822T/0KFD/Oc//8l0dbxDhw6MHz+e06dPu/0h5Ba1a9emQoUKzJ49O4314Pr169m3bx9PPfVUrpYXCIEq+cFANT9xcU78dYt7X76pQRzOTNKBb1TJVxQvlixZwvHjx5kwYUKaI9VcDBw4kEGDBrFq1SqfjuxEhPvvv5+pU6dSq1YtateuzdKlSwM6Si2/uPvuuylVqhQDBgxg9OjRXLp0iVdffdWveVhu4jqPfsKECdx9990EBQWlmz32xtXpvfzyyzRp0oQvvviCefPm5bmsgdC+fXtatGjBo48+yrFjx6hZsybz5s3j22+/BcjQ+Y+I8M4779ClSxcuX75Mz549KVeuHIcPH2b9+vVUqVKFJ598MtuyPfHEE0ybNo127doxevRooqKimDRpErt37y6oSSftpwsBPx87x9Lv7HFJB8vFUf3KFhtxZIcq+YpShLn55pu588476datG3FxcZw5c4bPPvuMyZMn07NnT/cWMH/9cO/evfnggw9o06YNTz31FPXr1+fy5cvs3buXRYsWsXDhQiIiInjiiSeYM2cOLVu25IknnqB27dqcO3eOnTt3snbt2jSOZAOhbt26rF27liVLllCxYkXKlSuXoSf3m266iapVqzJy5EiCgoIIDg7m9ddfz/Zzy22ef/555s2bR0JCAk8//TSXLl1izJgxVKhQIVOHgK1bt6ZXr1706NGDJ598kiZNmlCsWDGSkpL47LPPGD9+fLa3iwYFBfH3v/+dgQMH0qdPH/r06cOBAwcYOXIk8fHx9OvXL1v55oRAz/FZBowTkT95BopIZ2As8FluC1aUqBdbCoBvU3VfvqJkxPTp04mMjOS+++7zGd+rVy/Cw8MzPBP+jTfeoHv37iQmJnL//fdz8eJFt4f2wkDp0qVZsmQJxYoVo2fPnjz77LMMHjw42973s8I999zDX/7yFyZNmsRtt91G48aNM73mhRdeYODAgbz++ut069aN7777juXLl2d6XX4xf/58OnTowIgRI+jZsycXL15kzJgxAJQqVSrDazt27MiaNWs4d+4c/fv3JyEhgeHDh/Pbb7+5nT5ml9jYWNatW0e9evUYNGgQPXr04MSJEyxdupQOHTrkKO9sov10IaBmzNXJvF3GY9VPne8pSpFm/PjxpKam8sILL9C+fXvuv/9+NmzYwCuvvMKMGTPc6fz1w8HBwSxfvpwBAwYwZcoUOnbsSO/evZk+fTrNmzd3byErVaoU69evp2PHjowfP56EhAT+/Oc/8+mnn2ZrHDFu3Dhq165Nz549ady4sfsoPX+EhISwcOFCKlasyEMPPcTjjz9Oq1at8sQiLjvUrVuXpUuXcvbsWXr27MkzzzzDX//6V/74xz9mOiYAe+xvYmIi8+bNo0uXLvTo0YO3336b+Pj4gPz9ZMSjjz7KjBkz2LZtG126dGH48OG0a9eO1atX58tCjzeSmTdpABGpACwGGgEXgaNAeSAU2AT8yRiTubvFQkSjRo3Mpk2bciWvi1dSqPficuqbXcwPTbSBZeNhcO7kr1zf/PDDD9x0000FLYaiFBoef/xxpk2bxokTJ9ymkdcKmbV3EdlsjElnnnEt9tP5TW6MC/YdP8cd/1gFQP+INTyfOtlG3NwDekzNoYSKUnTQsYuSX/z+++/UrFmTTp06MXXqtfeeze64ICBzfWPMYaCJs0LQDKgEHAI2GGOWZE/ka4ew4CBqli/J94erccUEESwpcPxHuHgawjKfVVIURVF8M23aNE6fPk29evW4fPkyy5YtY/LkyQwbNuyaU/BzgvbThYPK0RGEFC/G5eRUvrlQ0U6xgDXXVxRFUXLM4MGDad68ObGxsRw8eJA33niDkydPMnTo0IIWrVCRqZIvIiFAP2CtMWYxdqVA8aJubBS7Dp9ll7mRmyXJBh7cAtVbF6BUiqIoRZsSJUowceJE9u7dy6VLl4iLi+Pll19m2LBhBS1aoUH76cJDUDGherkS7PztbFpz/WO7IfkyFA/xf7GiKIqSKRcvXmTEiBEcPnyYkJAQmjRpwsqVK7n11lsLWrRCRaZKvjHmsohMBApkk2FRoW6lKBZsOcC3qTW4uViSDTywWZV8RVGUHHDffff59eGgWLSfLlzUjCnJzt/Oco5wfg+/gZIXDkBqsrXwq1CvoMVTFEUp0vzrX/8qaBGKBIE63tsFVMlLQYo6dWNdHvarXw088E0BSaMoiqJcZ2g/XUjwdL53MDTuasRhNdlXFEVR8odAlfzRwAsikr1zBa4DbnIdo5fGw74q+YqiKEq+oP10IcFTyd+dWvlqhO7LVxRFUfKJgBzvAX8BSgLfi8gurDMfT7f8xhiTkNvCFSXKlAihUqkwfjxdmXMmlBJyCc4ehDMHISq2oMVTFEVRrm20ny4keCr5my7Gco/riyr5iqIoSj4R6Ep+JJCEPYbnLHYgEenxicoL4YoadStFkUoxthsP8zxdzVcURVHyHu2nCwlx5UpQTOz/G373OHdZzfUVRVGUfCLQI/Sa5bUg1wJ1Y6P4v51H+Da1Bk2L7bSBB7+Bm+7J+EJFURRFyQHaTxceQosHUaVMBEnHz7M3tRKpxYIplnoFTu+Hi2cgTOdbFEVRlLwl0JV8JQDq+tyXv7mApFEURVEUpSCoUd6a7CdTnLMlPaz7ju4sIIkURVGU64lMlXwRiRSRwSKyQEQ2OZ8FIvJXEYnMDyGLCvViSwHwrfFU8rdAamoBSaQoiqJc62g/Xfjw3Jd/KKTa1YjD3+e/MIqiKMp1R4ZKvoi0wB7L8wZwBxCENfG/A3gT2C0irfJayKJC5ehwIkOL86spx3HjjKsunYYTPxWsYIpSSOnfvz8iwpNPPukzPjExERHJZ6kgKSkJEWHatGn5XnZOWLVqFYmJiaTm0cTiqVOnSExM5Jtv0vsaad26Na1bt86TchX/aD9dOKnhoeTvMh4nG6rzPUUpsixcuJBWrVoRExNDeHg4VatWpWvXrixbtsydJq/7YRfTpk1DREhKSsow3cSJE5k/f36eyeHvfovqOOpawq+SLyI1gKXAAeAOY0wZY0xDY0wDY0wZoLUTt0REauaLtIWcYsXEOUpP1GRfUTLhwoULzJ07F4CPPvqI5OTkApboKpUqVWLDhg106tSpoEXJEqtWrWL06NF5quSPHj3ap5I/adIkJk2alCflKr7Rfrrw4rmSv/lCpasR6nxPUYokb775Jt26dSM+Pp6pU6eydOlSnn/+eQC++OILd7q87oezSn4o+b7ut6iOo64lMnK89zzwM9DSGHPRO9IYs8ZZHdgAPAf8OW9ELFrUjY3iv0kn+Da1BncFbbWBBzZD/fsLVjBFKWQsWLCAM2fO0LFjRz777DOWLVvGPfcUDieVoaGhNGumfsyyQt26dQtahCxz6dIlQkND04WnpKRgjKF48UBPmQ0871xG++lCiqeSv+Z0DAQ7X458D8ZAAVgoKYqSfV577TW6du3K1KlT3WF33XUXAwYMKDQKfWGiKI6jrly5QvHixX1akOa0TzfGcOXKFUJCQnIiYpbIyFy/LfC6r4GDC2PMeeCfQLvcFqyo4na+Z6pfDTyox+gpijfTp08nOjqaadOmER4ezocffpjpNf7Mv1atWoWIsGrVKndY69atadGiBcuWLaNBgwaEh4fTsGFDvvrqK5KTk3nuueeoVKkSZcqUoW/fvpw7dy7Dcvr27UvlypXZsmULLVu2JCIigvj4eCZPnpxGFn9bDPr27Uu1atXSlTF58mSeffZZKlasSGRkJH369OH8+fPs2bOHhIQESpYsSc2aNZk+fXqGzyYxMZHRo0cDEBwcjIikkeP8+fOMGDGCuLg4QkJCiIuLY+zYsWkGJ7///juDBw+mSpUqhIaGUqFCBdq2bcvOnTtJSkoiLs46EBswYIA7f9cz8jbXd/0mixYt4q9//SvlypWjfPny9OnTh1OnTqWR/ejRo/Tq1YuoqCiio6Pp168fixYtSveb+mP16tW0adOGyMhISpQoQUJCAtu3b0+TxlUfFi9eTMOGDQkNDXVbHogII0eO5JVXXnE/n23btgGwa9cuunXrRunSpQkPD6dZs2ZpTDNdz15E2L59u/s369mzZ6Zy5wLaTxdSosKCiYm0A8KklDKkBjtK/4WT8PvhApRMUZTscOLECSpWrOgzrlgxq07lRj8McOzYMQYNGsQNN9xAaGgoderUYcqUKVmWuVq1auzbt4+PPvrILUvfvn3d8d9++y2dO3cmOjqa8PBwbr/9dtauXZsmj6+//pp27dpRtmxZIiIiqF69On/5y18yvd+cjKMAVq5cScOGDQkLC6NmzZq899576cZR/khOTmbcuHHUqVOH0NBQYmNjeeqpp7h48WpX6ZJv0qRJDB8+nNjYWEJDQzl16pR7K8SaNWu47777KF26NE2bNnVfO3PmTOrXr09YWBjlypXjwQcf5NChQ+mefZ8+fXj//fepU6cOISEhLF26NFPZc5OMlinKA3sDyGOvk1bBruQDfOdprn/oO0i+DMXzb/ZGUQozBw8eZOXKlTz66KOUL1+erl27Mn/+fE6ePEl0dHSulbNnzx6GDRvGyJEjKVmyJMOHD6dz58507tyZ5ORkpk2bxg8//MCwYcOIiYnh1VdfzTC/M2fO8MADD/C3v/2NF154gQ8++IBBgwZRu3Zt7rzzzmzJOG7cOFq3bs306dPZsWMHw4cPp1ixYmzZsoUBAwbw9NNP8+6779KvXz8aNWpEvXr1fObTv39/fv31V6ZOncq6desICgpyxyUnJ5OQkMCOHTsYNWoUt9xyCxs3bmTMmDGcOHGCCRMmAPDEE0+waNEiXn75ZeLj4zl+/Dj/+c9/OHXqFA0bNmT+/Pl0796dZ599ls6dOwNQo0YNn/K4GDp0KPfccw///ve/2bVrF8OHDycoKCjNpEX37t3Ztm0b48aNo2bNmnzyyScMHjw4oOe3dOlSunTpQqdOnZg5cyYA48ePp2XLlnz33XfceOONVxznOQAAIABJREFU7rS7d+9myJAhjBo1iurVq1OmTBl33LRp06hevTqvvfYaJUqUIDY2loMHD9KiRQsiIyN5++23KVWqFO+88w6dOnViyZIl3H333Wlk6dKlC4888ggjRoxwD/ryGO2nCzE1Y0py5OwlQDgTFU/p41tsxOHvIdK3sqAoSuGkSZMmTJ8+nerVq9OlSxdq1aqVLk1u9MNnzpzh9ttv58KFCyQmJhIXF8fy5csZNGgQly5dCrhvBGsx2bFjR+rXr09iYiIA5cvbruCbb76hZcuWNGzYkH/9619EREQwefJk2rZty/r16/njH//I77//TkJCAk2aNGHatGlERkaSlJTE+vXrM71ffwQyjtqxYwedOnWiSZMmzJ49m8uXLzNmzBhOnz4dUN/ap08fFi9ezIgRI2jevDk//PADo0aNIikpiU8++SRN2rFjx9K4cWOmTJlCSkoKYWFh7rjevXvTq1cv5s2b595SOmXKFAYOHMj999/PuHHjOHjwIM899xxfffUV33zzDSVLXrXi+vLLL9m6dSsvvvgiMTExAU1Q5CYZKfnHgarAukzyqOqkVbCdevFiwonUKPanlqdKsaOQcsma6MU2LGjxlGuFxFIFLcFVEk9n+ZIZM2aQmprKQw89BMDDDz/MrFmzmDNnDo899liuiXb8+HHWr19P9erWsiY1NZUuXbrw888/s3LlSgASEhJYs2YNc+fOzVTJP3v2LJMmTXJ3RK1atWLFihXMmjUr20p+jRo13ApvQkICa9euZcaMGcyYMYM+ffoA0KhRIxYtWsS8efP8KvmVK1emcuXKADRt2jSNqfmsWbNYt24dq1evplUr64OtTZs2AIwePZoRI0YQExPDhg0b6N27N4888oj72m7durn/b9jQvsOqV68esBleq1ateOuttwBo3749u3bt4r333nPPlK9YsYJ169YxZ84c9+p3QkICnTt3Zv/+/ZnmP3ToUO644w4+/fRTd9idd95J9erVmTBhAhMnTnSHHzt2jBUrVtCgQYN0+RhjWLFiBeHh4e6wp59+mpMnT7JhwwZq1rRb2jt27EjdunUZOXJkOiV/yJAhDB06NKDnkktoP12IqRlTkvV77WM/EBJHaRwl/8gOqNmmACVTlAKiCI9dJk+eTI8ePRg+fDjDhw+nbNmytGvXjn79+tG+fXsgd/rhN954g3379rFt2zbi4+MBaNu2rdsnzqBBgwLeSuayWitXrly6PnvYsGFUqVKFL774wm1CnpCQwM0338yYMWNYuHAhO3fu5OTJk7z66qvceuut7mtd1gAZ3a8/AhlHvfTSS0RFRbF8+XIiIiIAaNmyJXFxcX6tKVysXbuWOXPmMH36dPcYs23btpQpU4Y+ffqwdevWNGOAChUqsGDBAp8WmD169EgzLkxJSWHUqFG0bt2a2bNnu8Pr1KlDy5Ytef/99xkyZIg7/OTJk2zevDlTmfOKjKZDvgSGiojfX0xEgoGhTloFCAsOcu/FS3uUnjrfUxQXH374IfHx8dx2222AfQHHxsYGZLKfFWrVquVW8MG+iMF2ZJ7UqVOHX3/9FWNMhvlFRESkUeZDQ0OJj48PSBn1h7ei6EvG6OhoYmJi+OWXX7JVxrJly6hatSrNmzcnOTnZ/Wnfvj1Xrlxh48aNADRu3Jhp06bx8ssvs2nTJlJSUrJ5V1fxdrpzyy23cOnSJQ4ftibLGzduJCgoKM1kAtjONTN+/PFH9u7dS+/evdPcV0REBLfddhtr1qxJk75atWo+FXyADh06pFHwAdasWUOzZs3cCj5AUFAQvXr1YuvWrZw5cyZNeu97yAe0ny7E1EzjYf+qRYk631OUoketWrXYsmULq1evZuTIkTRo0IAFCxaQkJDASy+9lOn1gfbDy5Yto2nTpsTFxaVJl5CQwPHjx9mxI+fvjwsXLrB69Wruu+8+ihUr5i7DGEPbtm3dfWd8fDylS5dm4MCBzJw5M9tjEE8CGUdt3LiRjh07uhV8sI78mjdvnmn+y5YtIyQkhHvvvTfdcwbSjQu6du3q9xQn7z59165dHDlyhN69e6cJb9GiBVWrVmX16tVpwps1a1ZgCj5krOSPBW4GlotIOo9KIlIPWO6keTlvxMscEQkRkYki8qOIfC8inxWULC7c+/LTeNjfUkDSKErh4uuvv2bHjh10796dU6dOcerUKc6ePUv37t3ZsGEDu3fvzrWyvE3/XbPVvsKTk5MzVWp9bSUIDQ1Ns88rL2XMbjlHjhxh3759BAcHp/k0adIEsBYPAG+99RYDBw7k/fffp3HjxsTExPDEE09w/vz5bJULpDGJB9yOa1z3cujQIaKjowkODk6TrkKFCgHdF8AjjzyS7t6WLFnivi8XlSpV8pWN37j/z959h0ddpQsc/77pPRBIAqEGgkix0BTBCipFxbII61XXtff12lZdvfusy7qKd4t9FXVX1927FqwIa8UFBSxIEamCIhAgCSSE9Dbn/nFmMpOQMiHT836e5/fM/MrMvIPCmfd3znlPcXFxi8d79eqFMYaSkhKv399PwqKd7qryMt1J/sqqHPcJXUZPqbAUHR3NySefzO9+9zs++ugjvv/+e4466ijuv//+Q9qD5rxthwsLC1m6dOkh11144YVNruuM4uJiGhoamDNnziGf88QTT1BSUoLD4SA9PZ1PPvmEnJwcbrjhBvr378/IkSMPGfLeEd78jtqzZw9ZWVmHXOft74La2lpSUlKafC/X+3Xmd0FxcXGrr+nVq1fjeW/eOxBavftvjNkoIjOBfwLrRGQ7sN15eqBzKwNmGWOC2WL9HogDhhpjHCIS3D9R7Lz8N1bn6zJ6yn8OY4h8qHANTZ87dy5z58495Pzf//73Vu+Ku+ZK1dbWNjnui0bPVzxj9KyiGswYe/ToQW5uLq+++mqL513zxFJSUnjwwQd58MEH+fHHH5k/fz533303cXFxLf638oXevXtTUlJCXV1dk0Tf1dPflh49egC2rsHpp59+yPnmVWxbu1vf2rmMjAz27t17yPG9e/ciIofcwGjr/f0hjNrpLsmzJ3/JgZ7g+t+jaBM4GiCq/fmrSkWUMP7t0pKcnByuuuoqbrnlFr777rvGhL0l3rbDPXr0aBy235KhQ4d2Ou5u3boRFRXFjTfe2DikvTnX3Pdjjz2W119/nfr6elauXMmDDz7IrFmzWLt2LSNHjux0LC3p3bt34018T97+LkhISDikgKBLTk5Ok/2O/C5wtfmt/S4YO3as1+8dCG1OnjDGLBKRI4HrgElALraZ2gn8HXjGGHPoN22DiPQF7gLGAscAiUCuMWZ7C9f2A/6MrQoswEfAfxtjdjjPJwHXAH2NMQ5nzHuav0+guXryvzUDaSCKaBy2Ua8pg/jUIEenVPDU1tby8ssvc/zxx/PQQw8dcv7WW2/lpZdeYs6cOS3+45idnU18fPwhldMDXbG0LQMGDADg22+/ZfTo0YBdX3758uWkpvr377+rl7yqqqrJZ02dOpXXX3+dlJSUxukA7RkwYAC33347//znPxv/vD3f31fGjx9PQ0MDb775ZpOK9K+99lq7rx06dCgDBw5k/fr13H333T6LyeWUU07hkUceYfv27Y0/wBoaGnjllVcYNWqU3/97esMf7bTyjczUeFITYiirrie/JpGGHtlEVxRAfTUU/wA989p/E6VUSNi5c2eTQq4umzZtAmgclt3Zdnjq1Kk8/vjj9O/fv8Xe7I6Kj48/pM1OTk7mpJNOYu3atYwePdqrYnYxMTGMHz+eOXPm8M4777Bx40ZGjhzZ6vftjPHjx7No0SIqKysbh+zv2bOHZcuWtds7PnXqVObOnUtpaWljzQNfGTp0KNnZ2bz88stNahctX76cH3/8kdtvv92nn9dZ7VZIMMYUAPc7N1/IA2YBXwOfAme2dJEzgV8M1ACXAQb4HfCJiBxtjKlwvlcJcLeInAHUAXONMW+39J6B4qqwX0UC35m+HCk7AAN71sLAE4MZmlJB5RpC/cc//rHJcmsu1157Lddffz3/+c9/WixkJyLMnj2b559/niOOOIKhQ4eycOFCr5ZZC5Rp06aRnp7O1Vdfzf33309NTQ0PP/xwk4qr/uJaq/6Pf/wj06ZNIzo6mrFjx3LxxRfzt7/9jcmTJ3P77bdzzDHHUFtby7Zt23jnnXd46623Guexz5gxg6OOOoqUlBSWLFnC2rVrueyyywB7k6VHjx68/PLLHH300SQnJ5Obm9vYo344zjzzTE488USuueYa9u3bR15eHvPnz2ft2rUAbf74EBGefPJJzj33XGpra5k1axY9e/akoKCA5cuX079/f2677bbDju3WW2/lhRde4IwzzuD+++8nLS2Np556ii1btoTUjSU/tNPKB0SEvKwUVu+wS0YeTDuC7hXOnqjC9ZrkKxVGRo4cyWmnncb5559Pbm4uBw8eZNGiRTz99NPMmjWL/v37A51vh2+99VZeeeUVTjrpJG699VaGDh1KRUUFmzZt4tNPP21SZNYbw4cP59NPP+Xdd9+lV69e9OzZk4EDB/KnP/2Jk08+mSlTpnDllVfSu3dv9u3bx6pVq2hoaOChhx7i3XffZd68eZx33nnk5uZSUVHBY489RmpqamNNpda+b2fcd999zJ8/nylTpnDHHXdQU1PDnDlzyM7ObveGxKmnnspFF13EzJkzue222zjuuOOIiopi+/btLFq0iLlz57a4MoI3oqOj+e1vf8u1117LJZdcwiWXXEJ+fj733nsvQ4YM4fLLLz+s9/WXgKzx08xSY0y2MWY60FZXzdXAIOA8Y8xbzsR9BrZK8LXOa2KB/sA2Y8w44ArgORFpe00nP+uWFEefbraA05oGd9EvHbKvuroXX3yR1NTUxrllzV100UUkJia2uSb8o48+ygUXXMBvfvMbZs+eTXV1dWP19lDQrVs33n33XaKiopg1axb33HMPN99882FX3++Is88+mxtuuIGnnnqKE044gXHjxgF2/dr333+fq6++mnnz5jF9+nQuvvhiXnzxRSZMmNA4rP3kk0/m1Vdf5eKLL+ass85i/vz5/PnPf26sGB8VFcVzzz1HSUkJp59+OuPGjWPBggWdjvuNN95g6tSp3HXXXcyaNYvq6mrmzJkDQHp629WYp0+fztKlS6moqOCqq65iypQp/PKXv2Tv3r2NP0IOV05ODp999hkjRozg+uuvZ+bMmRQXF7Nw4UKmTp3aqfdWXYPnvPz8uFz3CS2+p1RYmTt3Lg6Hg1//+teceeaZzJ49mxUrVvDQQw/x0ksvNV7X2XY4PT2d5cuXM336dObOncuUKVO44oorePvttw/rd8SDDz7I0KFDmTVrFuPGjWtcSm/06NF89dVX9OjRg1/84heceeaZ3HLLLaxbt66x+v+QIUNITExkzpw5TJs2jcsvv5yYmBg+/PDDxqr6rX3fzhg+fDgLFy6krKyMWbNmcffdd3PTTTcxZsyYdn8TgF3H/je/+Q3z58/n3HPPZebMmTzxxBMMGTLEq3n9bbnmmmt46aWXWLduHeeeey6//OUvOeOMM1iyZElAOnM6QtqrJu3XDxe5CniWFobri8jHQIIxZmKz40sAjDGniEhPoNB5Xa3z/IfY4Ynz2/rssWPHmpUrV/rsuzR31Ysr+WhjARdFf8yDsc/bg8PPhVm+rR6uIt/GjRsZNmxYsMNQKqBuvPFGXnjhBYqLixuHA3YF7f19F5GvjTGd6yZRLfLH74JnlmzjwX/b4bx/PGI9P9nxgD0xbAbMfqmNVyoV3vS3i/Kl8vJy8vLyOOuss3j++eeDHU5AHe7vAu8WWgyOEUBLY1LWAxcCGGP2icj7wFTgHWfRvZHAuoBF2YrhOWl8tLGgWfG9VcELSCmlQtQLL7xAaWkpI0aMoLa2lvfee4+nn36aO++8s0sl+CryeBbfW1nZi5+4drTCvlJKtermm29mwoQJ5OTksHv3bh599FFKSkoaRxaq9oVykp+BnW/fXDHguf7C9cDzIvIA4ADuMMZsbukNReQabKG+xrkz/uIqvrfF9KWWOOKohdKdUF4IKZ0vpKGUUpEiOTmZRx55hG3btlFTU0Nubi6///3vufPOO4MdmlKd4pnkLy3pARIFxgHF30NdFcQmBjE6pZQKTdXV1dx1110UFBQQFxfHcccdx0cffcTRRx8d7NDCRign+WCL7TXXpOS2c5i/V+UTjTHzgHlgh+V1Nri2jHAW36snhg3kcizO+w75q2CozuVUSimXCy+8sNU6DUqFs77dk4iLiaK23kF+BTT0ziW6ZJtN9Is2Qc6oYIeolFIh59lnnw12CGGvw4X3RCRPRI53Vr/3pxJsb35z3Wm5hz+k9O2eSGq8vYfydb0W31NKKRUYAWynVTuio4RBPZMb9w+meVR11uJ7Siml/MTrJF9ErhSRXcBmYDlwpPP4fBG5zg+xrcfOy29uOBDyLaOIMMzZm7/W4ZHk79Z5+UoppXwvCO208sJgjyH7u+MGuk/ovHyllFJ+4lWSLyI/xw5zX4xds95zyPwXwGyfRwbvAONFpDFDFpGBwETnuZDnmpe/1ngW3/sagriigQpPwVwFQykVGJ35ex6kdlp5wXMZvU2mn/uEJvkqwulvF6U6pzN/h7ztyb8TeNQY8zPgX83ObcTZW+AtEZkpIjOBMc5D05zHTvG47FlgO/C2iJwrIjOw1fZ3As905POCZbizJ/9Hk01FVKo9WFUCJT8EMSoVbmJjY6mqqgp2GEopP6uqqiI2NvZwX+7Tdlr5TpMK+1U57hM6XF9FMP3tolTnVVVVHfYqQ94m+YOBha2cK6NptXtvvObcXMMHn3Lu3++6wBhTAUwCtgAvAf8EfgAmGWPKO/h5QeEqvgfCetGl9NThycrKIj8/n8rKSr0rrlQEMsZQWVlJfn4+WVmHvfqKr9tp5SOeSf6K4lSIcVbUL98LlcVBikop/9LfLkodHmMMdXV1FBcXs2vXLnr06HFY7+Ntdf1ioF8r544A9nTkQ40x0v5VYIzZAe5lZcPNkKxUYqOFugbD5zUDOS5mjT2RvwqOmhnc4FTYSEuzN4t2795NXV1dkKNRSvlDbGws2dnZjX/fD4NP22nlO7k9k4kScBj48UANjgFDidrr/D1QuAEGnhjcAJXyA/3totThi4mJISEhgf79+5OQkHB47+HldQuB+0TkY2C385gRkW7Af2OH0YcFETkHOCcvL8/vnxUXE0VeViob9xxkraPZvHylOiAtLa0zP/6VUpEvYtrpSJMQG02/jCR+3F+JMXAwLY9uriS/QJN8Fbn0t4tSwePtcP17ndduAN7Frl//B+d+LB7D7EOdMWaBMeaa9PT0gHyeq/jeN55J/p610FAfkM9XSinVJURMOx2JPIvv5cd5rLhTuD4I0SillIp0XiX5xphCYDTwGJAJ5GPXsH8RON4YE/Lr1geLq/heEd0oiXXOtayvgqKNQYxKKaVUJNF2OrR5zsvf5PCYVaHF95RSSvlBu8P1RSQayAMKjTH3YnsLlJdcPfkAGySPiRTanfyvoddRQYpKKaVUpNB2OvQNblJhv7e72FDhRrusrnhVqkgppZTyijc9+Qb4FjjOz7FEJM8kf1nVQPcJnZevlFLKN7SdDnGePfmr9sdBonOxg9oyKN0ZpKiUUkpFqnaTfGOMAzvs7/BK+3Vx6Umx9Olml8tZ3ZDrPpG/OkgRKaWUiiTaToc+zyT/h/2VmKzh7pM6ZF8ppZSPeVt47zngZueQQNVBrnn56xy5GJxD8go3QG1FEKNSSikVQbSdDmFpCbFkpcYDUNvg4GDaEe6TWnxPKaWUj3m7hJ4ARwJbRWQhdr1d43HeGGMe9HVwkWJ47zQ+3FBAOUnsSxhIZvUPYBpgzzcw4IRgh6eUUir8aTsd4vKyUigsqwEgPy6XxjV+tCdfKaWUj3mb5HsuvXNDC+cNoD8eWuHqyQfYEJXHKfxgd3av0iRfKaWUL2g7HeLyslJYvm0/AJtNPxoH7BfqajtKKaV8y9vh+ontbEl+ic4PROQcEZlXWloasM8ckeNZfG+A+4QW31NKKeUbEdNOR6rBmR4V9it7uU/s2wINdUGISCmlVKTyKsk3xtS0t/k7UF8xxiwwxlyTnp7e/sU+0qdbImkJdtDEiuqB7hOa5CullPKBSGqnO0NEEkTkLRHZKCJrROR9ERkU7LigafG99fsNpPe3O4462PddkKJSSikVibztyVedICKNQ/Y3mf44omLtiZLtULE/eIEppZRSkecvxphhxphjgQXYooRB55nkbyssx2QPc58s1Hn5SimlfMfrJF9EfiYiK0SkWEQqm2/+DDISDO9tRw7UEUNhkkdV3d26lJ5SSqnOC9d2WkT6isjjztgrRcSIyMBWru0nIvNFpFREDorIGyLS33XeGFNtjHnf4yWfAyHRk5+VGk9qvB3VV1ZTT2W3oe6TBVphXymllO94leSLyEXA88B3QDfgdezd8XpgF/CovwKMFJ7F9zZGDXGf0CH7SimlOinM2+k8YBZQAnza2kUikgQsxq4icBlwKTAE+EREklt52c3A2z6N9jCJCIM9evN3xea6T2rxPaWUUj7kbU/+7cBc4HLn/p+NMbOxDXMdsN33oUWW4b09iu9Va/E9pZRSPhXO7fRSY0y2MWY68Fob112N7ZU/zxjzljHmbWAGMAC4tvnFInIPcARwjx9iPiyeQ/Y3Ofq5TxRqT75SSinf8TbJPwL4BHBgl+GJAzDGFAJzgNv8El0EyctKITZaAFhc5tGw714FxrTyKqWUUsorYdtOG2McXl46A/jcGLPV47U/AMuAcz0vFJE7gJ8A04wxITNVwTPJX13RE6KcKxkf2AE1ZUGKSimlVKTxNsmvBjDGGGAvMNDjXCnQ17dhRZ64mCiGZKUC8IPpRX2ss6GvKILSnUGMTCmlVAToCu30CODbFo6vB/ey8yJyG3ARcIYx5kCAYvNKnscyepv31UBPjxo9OmRfKaWUj3ib5G/ADvkDe8f8bhEZJSJHAb8GtvgjuEjjmpdviKIwdYT7hA7ZV0op1TldoZ3OwM7bb64Y6A62iB/wR2xdgk+cy+itbO0NReQaEVkpIiuLior8EXMTnj35W4vKIWu4+6RW2FdKKeUjMV5e9zzuXoFfAx8BrkazErjAt2FFJs95+RujhpDDF3YnfxWMOD9IUSmllIoAXaWdbml+mzSeNGaX5367b2bMPGAewNixY/0+d65fRhJxMVHU1jsoKquhOmMoCa6TBZrkK6WU8g2vknxjzEsezzeJyAjgJCAJ+NQYs8dP8UUUzwr7K6r7M9m1k78qKPEopZSKDF2knS7B9uY3152We/hDTnSUMKhnMpv22vn3u2JzG4dfaE++UkopX/F2uH4TxphSY8y7xphXw+2Hg4icIyLzSktLA/7Znkn+eyV93Cd2rwZHQ8DjUUopFZnCuZ1uw3rsvPzmhmOnK4SFwa1V2C9Yr4V4lVJK+YRXSb6IZLW3+TtQXzHGLDDGXJOenh7wz05LiKVfRiIAuxq6U5eUbU/UVUDR5oDHo5RSKjJEUjvdhneA8SIyyHVARAYCE53nwoJn8b1vytMgzhblpaoYyguCFJVSSqlI4u2c/L20PA/OU3QnY+kShvdOY2dxFQCFqSPoU+ls0HevguzhbbxSKaWUalVYt9MiMtP5dIzzcZqIFAFFxpglzmPPAjcBb4vIfdjvOwfYCTwTyHg7w7P43raiCsgaBru+tAcKN0BqryBFppRSKlJ4m+TfwKE/HnoAZwE5wMO+DCqSDe+dzvvrbWK/OXoIfVhsT+R/DaMuCWJkSimlwli4t9OvNdt/yvm4BDgVwBhTISKTgD8DL2EL7H0M/LcxpjxAcXbaIRX2h3ok+QUbYPCkIEWmlFIqUnhbeO/pVk79XkReBiJhGGBAeM7LX14zgMamXJfRU0opdZjCvZ02xnhVEd8YswP4iZ/D8avcnslECTgM7CyupK7nMGJdJ7X4nlJKKR84rMJ7zbwAXOOD9+kSPJP8f+/v7T5RsB7qqoMQkVJKqQj3AtpOh4yE2Gj6ZSQBNtHfHT/IfbJgfZCiUkopFUl8keRnYJfoUV7ISU8gPdHes8+vjqeu22B7wlEPe9cFMTKllFIRStvpEDPYo/jepoa+7hNFm3S1HaWUUp3m1XB9ETmuhcNxwEjg18AyXwYVyUSE4b3TWPH9fgCK0kaQc2CbPZn/NfQbF8TolFJKhSNtp8NLXlYKizcVArChNJYpKdm2sn59NZRshx6DgxugUkqpsOZt4b3PablqrwBfANf7LKIuYHiOO8nfHHMEOa4Tu1cFLSallFJhTdvpwyQi5wDn5OXlBewzPZfR21pUDlnD3cvnFazXJF8ppVSneJvkT2vhWDXwozFmu+/C6RqG93bPy/+8egCnuXa0+J5SSqnDo+30YTLGLAAWjB079upAfeZgz2X0Csth2Aj4/hN7oHADDJ8RqFCUUkpFIG+r67/v70C6khF93En+B/uzuCcqxs7J378VqkogsXsQo1NKKRVutJ0OL57L6H2/rwJH5jB3kSQtvqeUUqqTfFF4T3XQ4MwU4qLtH/0PpQ3UZ45wn9y9OkhRKaWUUioQ0hNjyUyNB6C23sHeBI/h+YUbgxSVUkqpSOFt4b2NtDzXryXGGDOi/cuCIxhz75qLjY7iiF4pfJt/EIB96SPpVbDWnsxfBYMnBS02pZRS4SeS2umuIi8zhaKyGgA21fcmBwEMFG+DuiqITQxugEoppcKWtz35a4FUYAhwANjsfBwCpDjPu7ZvfB+m7xhjFhhjrklPTw9qHJ7z8rfEDHGfyNfie0oppTosYtrprsJzyP6WkgbIGGR3jAOKNgcpKqWUUpHA28J77wOjgaHGmO9dB0VkMLAIeM8Y86If4otYTYvv5XKya0eL7ymllOo4bafDjGeSv7WwHLKH2158sMULO1SLAAAgAElEQVT3co4NUmRKKaXCnbc9+XcD/+P5wwHAGLMN+A1wr4/jinjDc9wjCZYUd4M4Z2NfvhcO7g5SVEoppcKUttNh5pAkP8tjBoUW31NKKdUJ3ib5/YGKVs6VA/18E07XcWTv1MbnW4oqcfQ6xn1Se/OVUkp1jLbTYSav2TJ6JmuY+6QW31NKKdUJ3ib5m4HbRCTW86CIxAG3O8+rDkhLiKV/RhIAdQ2G4m4j3Sc1yVdKKdUx2k6HmazUeFLj7azJspp6ipM9CgIXbghSVEoppSKBt3Py7wbeAbaLyAKgAMgGzgEynY+qg4b3TmNHcSUAW2KG0tN1QpN8pZRSHaPtdJgREQZnpbBm5wEANtdmMiEmAeqroWwPVBZDUkaQo1RKKRWOvOrJN8a8BxwHfI79oXCv83EFMM4Y877fIoxgw3Pcxfe+qB3oPrF7DTgcgQ9IKaVUWNJ2Ojw1mZe/vwoyh7pPam++Ukqpw+RtTz7GmDXAT/wYS5fjWWF/xb5Ebk3OhIoiqDkI+7dC5hFBjE4ppVQ40Xb68IjIOcA5eXl57V7ray0W39uz1h4o3AgDTwx4TEoppcKft3PymxCRRBEZKSKZvg6oKxnRx53kb9xThukz2n1Sh+wrpZQ6TNpOe88Ys8AYc016enr7F/tYXmbzJN+j+J5W2FdKKXWYWk3yRWSyiNzfwvHbgWJgLbBHRP4qItF+jDFi9UpLoHuSrZFUVlPPwYyj3Sd3rwpSVEoppcKBttPhb3Dznvzs4e6TOlxfKaXUYWqrJ/8G4FjPAyJyGvC/wA/YIj9/B34O3Oyn+CKaiDSZl/9djMfwfO3JV0op1TZtp8Ncv+6JxEXbn2KFZTWUpXv8DijcCMYEKTKllFLhrK0kfzSwoNmxK4Aa4AxjzP8aY64AngMu9lN8Ec9zXv6XnsX39q6D+trAB6SUUipcaDsd5mKio8jtmdy4/11lCiR2tzs1B6F0Z5AiU0opFc7aSvKzgG3Njp0JLDPG5Hscewc40teBdRWePfmriqKge67daaiFgm+DFJVSSqkwoO10BGhSfK+owhbfcyncGISIlFJKhbu2kvwKING1IyKDsWvtft7sulJA5/odpuG93YV+Nu45CFp8TymllHe0nY4AnvPyt2nxPaWUUj7QVpK/GTjbY38GYIAPm103ACj0cVx+IyLniMi80tLSYIcCwKDMZOJi7H+G/ANVVGV6TK/M1+J7SimlWhWR7XRXc8gyelp8TymlVCfFtHHuUeBVEUkDCoBrgA3Ap82uOxf4xj/h+Z4xZgGwYOzYsVcHOxaA2Ogohmansi7f3nTYGncER7lOak++Ukqp1kVkO93VNFlGr6i86XD9Ak3ylVJKdVyrPfnGmPnYyrxnADdhfyDMMsY4XNeISF9sL8L7fo4zonkW31tZ0w9cKx3t2wLVB4MUlVJKqVCm7XRkGJSZjIh9vrO4kuoMjwr7+7ZAQ11wAlNKKRW22hqujzHmYWNMNpBgjJlojNnY7PwuY0yiMeZJv0YZ4TyL760rqIMs11A9A3vWBCcopZRSIU/b6fCXEBtNv+5JADgM/FAWDen97ElHHezfGsTolFJKhaM2k3wXY3ShVn/yTPI3aPE9pZRSHaTtdHjznJe/rajc42Y/WnxPKaVUh7U1J18FyDCP4fpbC8upmzCKWF60B9a/6b7QGMA4H3E+p4VjzusOeY3zWFJPGH0pxKf66RsppZRSylt5WSks3mRrIzYW3/vOOcNCi+8ppZTqIE3yQ0BKfAwDeySxfX8l9Q7DjwlHkuc6uWet3Xwt/2uY+bzv31cppZRSHdKk+F5hOYzU4ntKKaUOn1fD9ZX/eQ7ZX13VC9L7+/cDv30d9m/z72copZRSIS4UltYdrMvoKaWU8qFWe/JF5AhguzGmNoDxdFnDe6exaN1eANYXVHLhJa/Dutegvgpwlt0Vsc9dj4cco53zApsXwu7VgIHlj8M5jwTmCyqllPIpbad9IxSW1vWck//9vgoaMo4nOioGHPVw4EeoKdMpdkoppbzW1nD9jcAJwJcisgGYbYxZF5iwup4mxfd2H4TME2DSvb7/oP7j4cWz7fM1/wen/QpSsnz/OUoppfxN2+kIkZ4YS2ZqPEVlNdTWO9h1sJ4BPYZAkXOxhMJN0G9ccINUSikVNtoarl8NJDifHwkk+j+crmt47/TG5xv2HMTh8FOh5IEnQo6zen9DDXzxjH8+RymllL9pOx1BDpmX32TIvlbYV0op5b22evI3AA+JyDvO/UtF5NRWrjXGmP/1aWRdTHZaPBnJcRRX1FJeU8+ukir690jy/QeJwMRfwGs/t/tfPQcn3grxKW2+TCmlVMjRdjqC5GWlsOL7/YBN8idnDQdetye1+J5SSqkOaCvJvx34G/B77NprN7ZxrQH0x0MniAjDe6fx2dZ9AKzfXeqfJB9g2AzoPhBKtkP1AVj9Eoy/3j+fpZRSyl+0nY4ggzOTG59vLSyHoz0q7GvxPaWUUh3Q6nB9Y8xSY8xgIAlbxe00ILWVLa2191HeazIvf89B/31QVDRMuNm9v+JJaKjz3+cppZTyOW2nI0telruw3taicsga5j5ZuAGMn6bxKaWUijjtLqFnjKkGrgfWG2MqWtv8H2rkG967WfE9fzr2YkjqaZ+X7oT1b/r385RSSvmFttORIa/ZMnomvR/EOY9V7ofywiBFppRSKty0m+QDGGOeMcbsE5FUEZksIheKyCQR0fVcfGhEoHryAWIT4fhr3fvLHtNeAqWUClPaToe/7LR4UuLtLMqy6nqKyuua9eZr8T2llFLe8SrJBxCR+4A9wAfAK8BHwB4R8cM6b11Tbs9k4mPsf5I9pdUUV/h56eNxV0Gsc95/wTrYtti/n6eUUspvtJ0ObyLC4Ga9+WR5VtjfGISolFJKhSOvknwRuRH4LfAmMB0YBUxz7v9WRLRqmw/EREdxZC93p8tGf/fmJ2XAqEvd+8se9e/nKaWU8gttpw8lIr8Skc0i4hCR84IdjzeaLKNX1CzJ1wr7SimlvORtT/5NwFPGmEuNMe8bY9Y6Hy8F/gLc3M7rQ4aInCMi80pLS4MdSouaFN/z97x8gBNuBIm2z39YArvX+P8zlVJK+VrEtNM+9DH2hsfSYAfiLc95+dsKyyHbsydfh+srpZTyjrdJ/iDg7VbOve08HxaMMQuMMdekp6cHO5QWNSm+5++efIDuA2DE+e795Y/5/zOVUkr5ms/baRGZLiJLRaRcRA6KyEoRmdSpKFv/rL4i8riIrBCRShExIjKwjev7ich8ESl1xvaGiPT3vMYY84UxZps/4vWXJsX3isohy3MZvU3gaAhCVEoppcKNt0l+MTC0lXNDneeVDwS8Jx9g4i/cz9e/CSXbA/O5SimlfMWn7bSIXIu9OfA1cD5wIfAadrk+f8gDZgElwKftxJYELAaOBC4DLgWGAJ+ISHJbrw11zSvsk9wDUrLtgfoqbZ+VUkp5xdsk/y3gAWe1XnEdFJHzgTnO88oHhvZKw/UnvLWonOq6ANy1730MDDrVPjcOWPGk/z9TKaWUL/msnXb2oD8C3GmMudUY86Fz6P9cY8y7bbyul4hMaOVcoohMa+Njlxpjso0x07E3E9pyNXZkwnnGmLeMMW8DM4ABwLVtvjLE9eueSFy0/WlWcLCGg9V1zYrv6bx8pZRS7fM2yb8b2ISt1lspIj+KSCUwH9jsPK98ICU+hoE9bEdEg8OwpaAsMB888Rb381UvQcX+wHyuUkopX/BlO30F4ACe7mAMtwIfiMhJngdFJBF4F/ibiKS09EJjjKMDnzMD+NwYs9Xj9T8Ay4BzOxhzSImJjiK3p3swwrbmFfa1+J5SSikveJXkG2NKgQnYoXTzsEVsnsUO35tojAnQuPKuocm8/EAN2R90GvQ6yj6vr4KvngvM5yqllOo0H7fTJ2JvGPxURLaJSL2IbHVW8G/LvcAiYJGITITGBH8BcAxwpjGmvCPfqxUjgG9bOL4eGN7C8bByyJB9Lb6nlFKqg7ztyccY02CMmW+MucVZvfcWY8wbxhitAuNjTeblB6L4HoAITPDozf/yGaitDMxnK6WU6jQfttM52Dnu/ws8BJwJfAg8ISK3tPYiY0w98F/A+8C/RWQy8A5wLDDZGPPNYXytlmRg5+43Vwx0d+2IyH0isgs4AXhORHaJSK/mLwq1VXcGH1J8T3vylVJKdUxMsANQh/LsyX9zdT6rdxxo3HfNtBTPFzgPyqGHmhx3TdPsmRLHXVOPZFBms1GTI86Dj38LpTugcj+s+Sccd3XnvoxSSqlwEwWkAj83xrzhPLbYOVf/HhF5zBhjWnqhMaZeRH4KvAp8hE3GJxtj1vo4xpY+v0nTaIz5HfC7dt/ImAXAgrFjx4ZEg3fIMnqZI7BfzUDxNqirhtiEoMWnlFIq9GmSH4JGePTkl1XXsy7f970LJRV1vHrdCU0PRsfCCTfCe3fZ/RVPwNgrICra55+vlFIqZO3H9uR/2Oz4B8BUoDewu43XxwAp2Hn9sfi+In8Jtje/ue603MMfVvIymw3Xj0uCjFwo/t4Wx33hLIhLhqgY5xbt3GKaHfPYlzauiY6FHkOg33GQ2C2I31wppZSvaJIfgrLSEpgyIpv31xf47TO+3F7M1sLyJj0GAIy+FJY8BFUldqmeje/AiPP9FodSSqmQsx4Y38JxV095q0XyRCQBW8l/tPM9foUduj/FGLPCh/GNaOH4cCDsx7MPykxGBIyBHcWVVNc1kJA13Cb5APkr/fTJAtkjoP946H+CfUzv66fPUkop5U+a5Ieopy8Zw7aicqpqHRiPUYmuAZKmcd802fe8xnXUc1DlY4u3snRLEQCvfLWDe89qVqMoLhnGXQVL/9fuf/YIDD+v6fh/pZRSkexN4EpgCrY6v8sUYJcxZm9LLxKReOANYBx2iP4aEZmFHbr/njPR/9wH8b0D/EFEBhljvnd+9kBgIhGw2k9CbDR9uyeys7gKh4Ht+ys4ctSlsHmR7cn3GwMF39rNVXw3vb8z6Xcm/plHQpTX5ZzCQ00ZbF9mpynGJkBsEsQmQkyifXTtu7aYBP1NpJQKeZrkhygRIS8r1efve/nEgY1J/uur8rlzypHExTRrsI+7FpY9Bg01sGcNbP8Uck/2eSxKKaVC0iLgE+AZEekJfA/MxBbgu7yN1z0AHA+cboxZA2CMqfNI9BeISG5rFfZFZKbz6Rjn4zQRKQKKjDFLPC59FrgJeFtE7sPe0Z4D7ASe6fC3DUF5mSnsLK4C7JD9I4+eCreutyPsHPXOrcG51Tc7Vg+moel+W6+prYDdq2DPN/Z1nkp3wLodsO5Vu5/QrWnSnzMKYuID+4fTWcZAwXrY+pHddqywfw4d0eQGQIL7eUxCs5sCSTD4NBg6XW8MKKUCSpP8LubkIZnkpCewu7Sa4opaPtpYwPSjeje9KCUTRl0MK/9q95c9qkm+Ukp1EcYYIyLnAQ8C92Pnum8CLjbG/F8bL30AeNEYs67Z+7kS/XHtLKH3WrP9p5yPS4BTPd6vQkQmAX8GXsJOI/gY+G8fLdEXdHlZKXyy2d6Q31ro/EppOXbzl5oy2LUSdnxuE99dX0Fds1V2qg/AlvfsBhAdD33GuJP+UJ3XX3UAvv+PM7H/GMraKinhhfoqu1UVt3/tV8/CMRfBWX+y9RWUUioAvErynUPw7sGut9sPaF7W1RhjwuxWbtcUHSVcOLYfj378HQAvf7Xz0CQf4ISbYOXfAGMbxb3fQq+RgQ1WKaWUV3zdThtjDgI3OjdvX1NCK4XvjDF1wPJ2Xu91V6cxZgfwE2+vDzee9XIak3x/i0+1vc6DT7P7DXWw9xt30r/jc6goavqahhrYsdxuQJN5/f3GQ9aR0D0X4pvV//E3h8PGvvVDm9Tv/PLQUQqeeh0FWSOgvhrqquzNDc/nddXOxyr7nTtq7b9g7zqY9XfoMfjwv5dSSnnJ2578x7FD9D4A3gNq/RaR8rsLx/blscXfYQx8+l0RO4sr6ZfR7O5yj8Ew7BxbeA9g+eNwQUSMglRKqUik7XQECUqS31x0rO2l7zPGrrxjDOzf5k74d6ywS/o10cK8foCUXpAxyG49nI8Zg+2qAfE+mppYWQzbFrt76ysKW782oRsMngR5p0PeZEjt5f3nOBy2F7/OY2vcb3ZD4Iel7qkOBd/CvNPg/KfhyOmd+65KKdUOb5P8C4C7jTF/9GcwKjD6dk/ipCGZLN1ShDHw2te7uO2MIw69cOIt7iT/2/kw+X+00q5SSoUmbacjSF6mO/H9YV8FDQ5DdFSQ53SLQM88u42+1B4rL2ya9Lc0rx+gfK/ddrQwmCM5y3YsuG4CZAyy+91zISHt0OtdHA2we7VN6r/7EPK/pmkZ4mZyRkHeGTax7zMGog9zxmpUlC1SHJfc/rWjLoGBE2HRndBQCzWl8PJFcOJtcNq9hx+DUkq1w9t/XeqBb/wZiAqsi8b1ayzA99rKndwyecihPyD6joUBJ8KPn9miNJ//BaY8EIRolVJKtUPb6QiSnhRLz5R49pXXUFPvIL+kiv49QnA+d0oWDD/XbgA15XaJvx9X2GJ+xd+7iwW2pqLQbjtaWGExOdPZ4+8xAqC+FrZ9bHvr25oTn5hhe+nzzrC99imZnfqqh0UExvwceh0Nr15mCxkCfPYn++f0k78GJy6lVMTzNsl/CTv37UM/xqICaPKwbHokx7G/opY9pdUs3VLEaUdmHXrhxFtskg/w9Qtw8h2Q2D2gsSqllGqXttMRJi8rmX3ldv731qKy0Ezym4tPgUGn2s2loR5Kd9qE37Xt3+ZxA6Cu9ferKLLbTm9WXhTbOeHqrc85FqKiO/NtfKfPaLh2Cbx+lb1BAXYo/zMn23n6/cYFNz6lVMTxNsm/B3hWRN4B3qeFwjrtVNxVISYuJoqfjOnLvKXfA/DyVztaTvKHnAGZw6BoI9SW24r7J90e4GiVUkq1Q9vpCJOXlcLn39ue6q2F5Uw6MjvIER2m6Bg79z4jF5jc9JyjwX0DYP82KP7BeSNgm70B0NBOaYnkTOe8+tNtb31Shr++ReclZcDFr8GSh2HJXMDYKv9/mwZTfg/HXa3L7CmlfMbbJP8o4HSgD3B2C+cNoD8ewszscf0ak/yPNxZSWFZNVmqzgswiMPEX8Nb1dv/zp2H8jXZdWKWUUqFC2+kIk5cZAsX3/C0qGroPtNvgSU3PORqgdJc76XfdAKivgQETbGLf62g7Rz5cREXDaffYEQevX2WXJHTUwb/vhF1fwjmPejfXXyml2uFtkj8PqARmY9fK1aq9EWBwZgrHDczgy+3F1DsMr3+dz/WntrC0y8iZ8PEce8e5ohC+eQXGXBb4gJVSSrVG2+kIk5flLr4XsUl+W6KiofsAu7mW9YsUQ86Aa5fCqz+DPWvssXWv2eWKZ//DFjdUSqlO8Pb25wjgdmPMa8aYdcaYzc03fwap/Gf2uH6Nz1/5agfGtFCZNiYOTrjBvb/8MbuEjFJKqVCh7XSEab6MXovtswpf3QfAFe/DaI9Ok6KNMO9U2PBO0MJSSkUGb5P874B4fwaigmP6Ub1JTbADOrbvr+SLH1qpVDv6Moh3LmWzfytsXhSgCJVSSnlB2+kIk50WT0q8bZ8PVtdT5CzCpyJIbALMeAzOfRJinNMga8vg1Uvhg/ts0UKlVGDV10L+Krs8Z334DorzNsm/F7hXRHL8GUwgiMg5IjKvtLQ02KGEhMS4aM47tk/j/itf7Wz5woQ0GHuFe3/Zo36OTCmlVAdETDutLBFhcFYXmJevYNQlcOUH0G2A+9jyx+HvM6CsIHhxKRXpHA1QsAFW/xMW3g7zToMH+8Czp8E/fgLzToHda4Id5WHxNsm/BcgGtorIVyLyQbPtfT/G6FPGmAXGmGvS09ODHUrI8Byyv2jdHkorW1nO5vjrIDrOPt/1JezwZkkbpZRSARAx7bRy8yy+t02T/MjW+xi7zN6QKe5jPy6zy+z9uCJ4cSkVKYyxxTvXzYf374W/ToMH+8FfToC3b4CvnoPdq5qu6lG4AZ6bDJ88CA1tLPcZgrxN8lOBHcBaoN6577ml+SU6FRAj+6Qzso/9T1hT7+CtNfktX5jWG46e7d7X3nyllAoV2k4fplAe4dd8Xr6KcInd4aKXYdJ9gHM5vfK98MJZsOJJm6QopbxzcDdsWmiLh790PjycC4+NgtevhBVPwI7lUFfR8mu750Jskn3uqIclD8Gzk6BgfeDi7ySvqusbY8b7OxAVXD8d15/78r8F4F9f7uBnJwxAWlqvdcLNsPol+3zzIijaDJlDAxipUkqp5rSdPnzGmAXAgrFjx14d7FiaG5zpXk5ta5Em+V1CVBScfCf0GQPzr4SqYjAN8P6vYNdXMONxiE9t/32U6koqi20vfP5q5+Mqe4PMG6m9IWc09BllH3NGQVIG7N8Gb90AO50jl/d+A8+cYpfBnHALRHu7SF1whHZ0KmBmHJvD7xZuoLrOwaa9ZXyzq5Rj+nU79MLMoTB0urvw3nJnwRillFJK+ZT25HdhgyfZZfZeuwzyv7bH1r9pexJn/0M7WFRkMwZqK6ByP1Tus0l85X6o2Oc85rEdzIcDO7x734Ru0Ge0M6l3Pqb1bvnaHoPh8kXw+VN2NEBDDTjq4OPf2hEC5z0NmUf47jv7mFdJvogc1941xpgvOx+OCpa0hFjOOiqH11ftAuDlr3a2nOQDTLzFneR/8yqcdl/rf0GUUkr5nbbTkal/RhJx0VHUNjgoOFjDweo60hJigx2WCpRu/eDyf8N798DK5+2xfVtscbDjr4W+Y22vY5rW21QhzBioq4Tqg3Zkiis5r/BI3is9kvcK52NDJ1cUiU22tS76OHvn+4y2w/BbGqncmqhoO4p5yJnw5nV2lADYG2/PnAST/gfGX2+vCzHe9uR/DrQ3ESj0vp3qkJ8e168xyX9nTT73nTWM5PgW/hfpPx76HQ87v7DFKb54Gs64P8DRKqWU8qDtdASKiY5iYM8kthTYXvzviyo4trUb8CoyxcTD2X+CfsfBgv+G+io7j/izP7mvSellkxhXIpMzCpJ7Bi/mUORwOP/sqmzCWVftfKzyOF4F9dUgUbbQdHSsfYyKdT9vPB7b9jVR3pY9C3GeCXrNQedjabP9lh5Lm+47/LwcZHQcZI9s2kvf8wjfJd+ZQ+HKD2HZI/Cfh2yPfn01fHAvbHoXznsKMgb55rN8xNskf1oLx3oAZwPjgVt9FpEKmrEDujM4M5ltRRVU1Daw8Js9zPKovN/EhF/AKxfb5yv/CifdbpfZU0opFQzaTkeovKyUxiR/a2G5Jvld1TE/tUnMq5faCuGeyvfCln/bzSW9nzvxd22JYfr/Tk05lBdA2V4o22OflxfYBLLeI1n33Jon9J3tFe4oiW56IyAq1qMHWdp4TvvXgHPf83mrgbRxqo1z9dWBS9BbE5MAST3t/PikHvbGVVIP55bhPOc8njHI3hDzp+gYOPkOOGIqvHUd7F1nj+9YAX+ZCGf8FsZeGTI3eLwtvNfa0jv/JyJPAJOBt30WlQoKEeGn4/rzwKKNALz81Y7Wk/yh06FHHuzfav8B+PoFmPiLwAWrlFKqkbbTkctzGT2dl9/F9RoJ1y2zUyZ3r7bFxfasbblCeOlOu218x30sY5C7sFjOKDuUOT7l0NcGgjG2t7e8wCbuZQX2ZoXnoyuhrw3D/+9NA9Q32GRZQXS87QxMdCXsPTwSdo/k3fN4bFLHhtYHSq+RcNVi+PQPsPQP9r91XSUsusP+fTv3SejWP9hR+qTw3tvA/wGa4UWAC0b34eH3N1HXYFi14wBbCso4IruFKq5RUbY3f4HzP/vnf4Hjr4OYuMAGrJRSqj3aToexwVp8T3mKS4KjZtoNwNEA+76zc4V3r7bbnm9a7rku/t5u3853HhA7DDnHWVU8axhExYBx2MTFOOz7G9P0WONxR9OtyTHXc2M7gxqTd+dWXhD4BDg2CWITISbRPnpurmMxCYCx01Ebau3a6I2PdU2POTyPeV4T4FED/uZK0BPSIT7NPm98TG+27/nocb2/e9kDLSYOTvsVDJ0Gb14PRbaDlB+WwlMTYMoDMPpnQb1J4YskP7QmIKhO6ZESz5nDe7Fw3R4AXvlqJ/9z9vCWLz56NnzygPMu7G7baBz7XwGMVimllBe0nQ5jnhX2t+kyeqq5qGjIOtJurt9gDXVQuNGZ9DuT/4L1LQy7NlC0yW5r/xXw0L0WHQ+p2bb2QKpzS8m20w8OSdyTIDbBPsYkuI/FxAcu4TLG3vBwJf+OevtoXGVTjPs6r57T7Lk59L1ai6P1k21/h+i4yE3QfSlnFFy7BD75vV1xzDigtsx2gm5cADMeC1phTG+r689q4XAcMBK4Hljoy6BUcM0e168xyX9j1S5+OXUo8TEtFK6ITbC99x87i+4tewyGnwtxyYdeq5RSym+0nY5cgzNTELG/13/cX0FNfUPLbbJSLtGx0Ptou425zB6rq7aJvmePf9Emm5QES2yyR/KebdcrT8l2J/Gpve3xhG6hOWy7NSJ2/nZ0DJAU7GiUv8XE2wLkR55t5+rv32qPb/0QnhoP0x62HaMB/n/Y2578l1s53gC8Dtzkm3BUKDgxryd9uiWSf6CKkso6PlhfwDnHtHIXauwV8Okf7Xypoo3w+xyIS7H/OKdkQ0qW8x/rLPuPuOexpB4hueSEUkqFIW2nI1RCbDR9uyeys7gKh4EnP9nGoJ7JdE+Oo3tSLN2T4uieHEdyXDQSTomQCqzYBOg7xm4utRV2aL8r6S/ZbhMRibKF40Ts7zSJ8jgW5TwmLRyLOnSLira96SkePfCu3vj4FqaDKhWu+o2Daz+FxXPsNGacdSfevBY2vAPnPGJzoADxNskf1sKxaiDfGBOkkovKX6KihFlj+/Hnj7YAdsh+q0l+YjcY83NY8amQIIYAACAASURBVIT7WG05FJdD8ba2P0iiITnTeQMg23k3t9mWmg3dBoZMpUqllApR2k5HsLzMFHYWVwHw2MfftXhNXHQU3ZOdSX9SXLPncWQkx9ItKY4Mj/Mp8TF6Y6Ari0uGASfYTSnVeXFJMPVBZ6/+9XDgR3t880Jbhf/sP8GI8wMSirfV9Tf7OxAVWi4c25dHP96Cw8BnW/exY38l/Xu0MuTolF9C6S5b5bW8wPuCI6bBFmEp39v2dd0Hwnl/gQETOvQdlFKqq9B2OrKdOjSLTzYXtXlNbYODgoM1FBz0vuhXbLTQPSmO4wf14OcTBjC6f3dN+pVSqrMGToTrl8OHv4aVz9tjVcXw2s9tr/70P9iVBPxITJtFGVp4gUgscCkwHNgD/N0Y03bLE4LGjh1rVq5cGewwQtrlf/uy8UfFTaflcceUoe2/yBioPgDlhc6CfAXu9Uxdm+tYVbH3wUgUnHQ7nHKXnWumlFJdkIh8bYwZ2841EdFOB1oo/y5ocBg+3LCXjXvKKKmspaSyjpKKWvu8opbiylqq6zo/t/qoPun8fMJAzj6mt877V0opX9j2Cbx9Exzc5T6W1hduXmmnsnRSa78LWk3yReR/gAuMMaM8jsUCy4AxgOtW715gvDFmR6ejDKBQbsxDxXvf7uW6f3wNQHZaPMvumkRMtA+HzdfXQoXzZkB5oXNJlUJn777zeOEmW6XSpe84uOBZyMj1XRxKKRUmPBvzSG+nAy3cfxdU1TY4bwDUUlJRR3FlLQcqaymuqOVAZR3FrpsCzvMllbVU1ja0+F49U+L4r+P6c8n4AWSlJQT4myilVISpLoX3fwWr/2H3T7sPTrnTJ2/dWpLf1nD9KcAnzY7dAIwFHgEexM4BfAW4D7jGJ5GqkDF5WBY9U+LZV26H/y3ZUsTkYdm++4CYOEjva7fWHNwNb1wD2z+1+7u+gqdPgrP+CMfM9l0sSikVfrSdVo0S46JJjEskp5v3PUPVdQ18V1DOPz7/kbfW5FNTb0cD7Cuv5bHFW3nqP9s46+je/HzCQEb17+6v0JVSKrIlpMO5T8KwGfD1C3DirX7/yLa6ZfOAz5sdOw8oAO4wxhQZY5YCDwNn+Ck+FUSx0VHMHONOwP/15c7AB5GWAz97G07/DUQ570nVlsGb18DrV0P1wcDHpJRSoUHbadUpCbHRHNU3nbkzj2bFPZP55dSh9E5399zXOwxvr9nN+U8t59wnl/H2mnxq64O45JpSSoWzI6bARf9yLq/oX20l+d2wQ/yAxiGAJwCLjWmyqOYaoLd/wlPBNntcv8bnn2wupOBgdeCDiIq2d7yu/AAyBrmPr3sVnj4Rdn4Z+JiUUir4tJ1ug4j8SkQ2i4hDRM4LdjyhLiM5jhtOzePTX57GUxeP5riBGU3Or915gFteXsPEuYt59KPvKCrzvsCfUkqpwGoryd8N9PfYPw6IA1a08B5VPo5LhYjcnskcn2sb+gaHYf7Xu9p5hR/1GWPXnzz2EvexAz/CX6fCkofB0fLcQqWUilDaTrftY2A6sDTYgYSTmOgoph/Vm1evO4F3bz6RmWP6EudRj6eorIY/f7SFiQ8t5rZX1vDNrgNBjFYppVRL2krylwG3iEiyc/9GwAALm103Cghi5qf87aLj3L8hX/lqJw5Hx1Zk8Kn4FDjvSZj5N4hPt8dMA3zyALxwNhwIwpQCpZQKjoC00yLynogYEfnd4b6HF5/RV0QeF5EVIlLp/LyBbVzfT0Tmi0ipiBwUkTdExPOGB8aYL4wx2/wVc1cwsk86f7jwGJbfM4k7zjyC7LT4xnO1DQ7eWJ3PjCeWccFTy1iwdjd1DTqUXymlQkFbSf79wBCgSESKgJ8CfzPG/NDsusuwPzRUhJo6shdpCXbuyI7iSj7/fn+QIwJGXgDXfwb9T3Af27Ec/jIRvn0jeHEppVTg+L2dFpGLgGM6FaV38oBZQAnwaTsxJQGLgSOx3+1S7J/DJx43PJQP9UyJ56ZJQ/jsrkk8ftEoxgxoWoRv1Y4D3Pyv1Zw4dzFPLP6O/eU6lF8ppYKp1STfGLMVuwTPE8BbwLU0q8wrIn2wRX9e9GOMKsgSYqM5f1Sfxv2XvwqR3vJu/eHnC+G0e0Gc6/nWlML8y+GtG6GmPLjxKaWUH/m7nRaRbsCfgdu8vL6XiExo5VyiiExr4+VLjTHZxpjpwGvtfNTVwCDgPGPMW8aYt4EZwADsn4Hyk9joKM45JofXr5/A2zdO5IJRfYiNlsbzBQdr+MMHWzjhocXc9uoaXly+nYXf7OHLH4r5vqicsuo6Wlu6WSmllO9IV/3HNtzXww20jXsOMu1R27kSFx3FF7+aTPfkuCBH5WHnl/D6lXDAYxnojMHwk+egz+jgxaWUUj7U2nq4fvqsecBgY8xkETHAA8aY+9q4fi52ysA0Y8ynHscTgXeBEUCeMabNO7AichXwLJBrjNnewvmPgQRjzMRmx5cAGGNOaXb8P8Ajxpi32vpc/V1weArLqvnXFzv5xxc/elWMLyE2ip4p8WSmxh/ymJkST2ZqHJkpCfRMjSMpzv8VqJVSKpy19rtA//VUXhnWO41j+qazdlcptQ0O3lydzxUn5gY7LLd+x8F1n8HCO2zVfYDibfD8GTDpPphwC0S1NTtFKaWUi4icCPyMjg3VvxfIBRaJyFRjzDJngr/A+T6T2kvwvTQCeLuF4+uBC33w/qoDslITuOX0IVx/6mD+/e0e/rpsO2t3tl6Mr7rOwa6SKnaVtF8LMjku+pCbAT1T4slIiSMjKY7uybFkJNvn3ZLiiIvRdl4ppUCTfNUBs8f1Z+2udYAtwHf5xIGISDuvCqCEdPjJs5B3Oiy8HWrLwFEPH/0Gti2G85+BtJxgR6mUUiHNuRTfM8AfjDGbvX2dMaZeRP4LeBn4t4icD9wNHAtMNsZ846MQM7Bz95srBhoni4vIfcB1QCYwUkSeAMYaY/Z6vkhEzgHOycvL81F4XVNcTBTnHtuHc4/tw+odJSzdso/CsmqKymrYV15DUXkNRWU1VNd5X5yvoraBiv2VbN9f6dX1KfExNvFPiqN7cpz7MTmO7klxZCTHOh/t8W6JscRE640BpVTk0SRfeW3GsTn8buEGKmsb2FxQxpqdBxjVv3v7Lwy0Y2bbnv3Xr4J859DLH5bCXybAjMdh2DnBjU8ppULbXUAi8EBHX+hM9H8KvAp8hE3GJxtj1vo2RFqaa9jkrrMx5ndAuysCGGMWAAvGjh17tY9i6/JG9e/e4u8DYwwVtQ3uxN/jsemxWorKaqjtYLX+8pp6ymvq2Vns/YqR6Yl2NEBqQgzxMVEkxEYTHxNNfGwUCTHRJMRGEe98tOfso+fxeI/j7vPRJMREkZEcF1odIkqpLkGTfOW1lPgYzj66N6+utCsxvfzlztBM8gEycuGK92DJXFj6B8BAVQm8cgmMuRym/B7ikoIdpVJKhRTnMnT3AlfB/7d33+FxVWfix7/vjEbNki03yVUYY2xjY2ywaYHQa7KEFAIkJCGFVMimkRCS7C4JJCxJCNlNz26yhFCSXxJCCy30jgHbGGyMbTAu2JaLZDWrTHl/f5w70mg0TdLMaDR6P89zn5k5t50zd6RT7jnnUiYiZTGry7zJ+FpVNZziMCVAFRABAkC2/9k24e7mxxtP4jv8pkCICFVlJVSVlXDgpNQPQlBVWjpDCRoAumjaH6SpvZvG/d00tXfTtL+bpv1BwoN4xG9zR5DmjuBgk5TWtHHlXHBkPecfOYOp4ypydh5jjIllE++ZAXlpcxMf+NUzAFSW+ln+7dOoKivwtqK3nobbPwMtMY+JnjQXTrwC6g6FiXPAX+BpMMYYcj/xnoicBDyaZrPDVXVVkv3LcTP9LwPOBr4FnAqcqarPZhiHdBPvPQKUqurxceGP4co1J8bvkwkrF4xskYjS2hmicX83je3dcY0AfRsFoq/7OoLkqxjsEzhlfh0XHV3PCXMn4/fZ3X1jzNDZxHsmK46or+Hg2io27Gpjf3eYe17ezoVH1Q93tFKbdRx8/im4+0uw1purac96Nxs/gL8UJs2DugVQuwDqFrrXsdPAutgZY0aXVcDJCcIfBW4GfgdsTLSjd9f/duBIXBf9VSJyPq7r/v0icqaqPpeFON4F/FhEZqvqm965ZwHH4eYAMKOQzyeMqwwwrjKQtpdAVDiiNHcEaWzvoq0rTGcwTFco0vc15n1nMEJXqO9r7LadoUif7Zs7guzvdp1eIgoPvdbAQ681ML2mgguOnMkFR86kbmx5Lr8WY8wolfROvojcO4DjqKq+OztRyg9rsR+83z21iavvWQvA4pk13HnpcWn2KBCqsPJmuO8bEMxgEp/ymt4Kf90CqF0ItYdA+djcx9UYYxKIbbHPZz6d4SP0fgx8AjhNVVfGhAdwFf3jcXfnE86wLyLneW9PxU2Y9wVgN7BbVR+P2W4M8DLQAXwHNz7/aqAaOGywM/hbucBkW3cowoNrd3Lr81t45o29/db7fcKp82v50NH1nHCw3d03xgxcsjv5qSr5z5F4YpuEVPXYwUcvf2Jm0f30hg0bhjs6I1JjezfH/ODhnglx7vvSOzlk6giq+DZugpV/hJ2vQMPavt34MzGuvv9d/0kHgz+Qm/gaY4wnrpKft3w6w0r+eGCGqr6SYF0AOFJVn0lzjkQeV9WT4ratB24ATsdNuPcw8OVE3fszZZV8k0ub9rTzp+Vb+MtL22hs7+63fnpNBR86aibnL5tJrd3dN8ZkaMCV/GJnmfnQXHbrCu5ZvQOAj79jFle9Z+Ewx2gIOppg12vQsAZ2rXUV/11roasl82P4Am6c/6Q5ID736L5IuP+rRt9Hw73PGu4fFrsP4iYKDFRC6RjvtRJKq3rfB8Yk3iYwxn3us4336i9zQxJsWIIxI0Kux+SPZlYuMPnQFQrzwJoGbnt+C8++mfju/mmH1PLhow/gnXMm4bO7+8aYFKySH8cy86F5euMeLvrf5wH3+Jnnv3Uq5QH/MMcqi1SheZtX6Y+p/O953VW+i464xono4vPHfI5d5++7XXR9n+39MHkezD7JLRMOHN6kGVNErJKfO1YuMPn25u42blu+hb++tI2m/f1n+J8xvoIPHVXPB5fNoLba7u4bY/rLSiXfGwd3ENDvP42qLh9SDPPMMvOhiUSUE3/8aM+zaP/rwiWcu2T6MMcqD0LdsHeDd7d/Te9d/+atwx2zwlVT31vhP/BEGDNpeOOTC93t8PYK2Po8bHsBtr0IKEw7AmYeBTOWwfSlUD5uuGNqRrh0lfxiyqfzzcoFZrh0BsM8sMaN3X9+U2O/9SU+4fQFdXz46HqOO8ju7htjeg2pki8ipcCvgY8ACW/XquqIuo1rmfnQ/fyRDfz4wfUAHDt7Ird95phhjtEw6mx2Xf73bQWfdzfbV+Itfm/xPvesS/DaZ78Sdyxfieu2H+xwlclgO3Tvj3nd74V7rz3vM9gmHGQAQ3qzY8oir8J/EhxwrBtKMJKoukadrctdpX7r87DzVW9YRSoCk+e7Cv/Mo2DGke6pDj5fXqJtikPSzLwI8+l8s3KBKQQbd7m7+39bsY19Ce7u10+o5MKjZnLCwZOZU1tVXL0ojTEDNtRK/lXA53HPu/0f4KtAF3AxMAH4uqremc0I55pl5kO3s7mTd/znw0S8n9Bjl5/ErAwfW2MKiKq3RLwlHPM+usSsjyRaH7NNdxtseQ7efAzeeso1NCTjC8DMo3vv9E87HPwF9mTPUBfsWN1bod+6HNp2ZufYZWPdHf5opX/6UqickJ1jm6KUopJ/FUWWT+eblQtMIekMhrn/VXd3f/lb/e/ugxu/P2tiJfOnjGXelGq31FVTP6HS7vYbM0oMtZL/GvBz3F2CILBMVVd46+4A3lDVr2U3yrllmXl2XPKHF3jotV0AfP6kg7jirPnDHCNTUMJBePslV+F/8zHXlT3VnAZlY2HW8b2V/klz8z8pYGsDbFveW6HfvgrCXWl28u7SzzzKNVrMPNrFe9sLbtm63M3tkPZuPzDx4N4u/jOOco9t9A3yTo2qm0CyYx907ot5beob1t3mJnGsGO8aGSrGQ8WEvu8rauwJEgUgRSW/6PLpfLNygSlUGxpauXX5Fm5f8TbNHf3v7serCPiZW1flVfzHMt9rAJhUVZaH2Bpj8mmolfz9wFmq+oSIdAGnqupT3rp3Ab9T1anZjnQuWWaeHf9c28Cnb3Lf46SqMv72+WOpCPgpC/gpD/go9fsQm7ndRHW1wuZneiv9u9am3r56qhvHP/skV/kvq/ZWxPzfSvQ/rE+YJg8DaN3hdb33Kvb7NqdPR2k1zFjqVeiPgunLXCU4le522L7Sq/S/4BoS2ndncK4qmH6Eu9M/40j3OVFFPWFYc2YNC5kqG+tV+lM1BsSsK/Merdmnx0d4AD1ENHnPEohpAJL0nzPdVhXQ9K8ptyXms/f+gHfE/H4HL0Ulv+jy6XyzcoEpdJ3BMPe+soMH1zSwbmcLmxv3J8wCk5k4prTnjv98rwFgbl0VlaUF1oPOGJOxZOWCTP+q9wJV3vttwGHAU97nGsD6aI9SJ8+bTG11Gbtau9jT1sWJP3qsz3oRKCvxUR7wU17iKv7l0UaAaHg0rOezW1cW8FMR8HN4fQ2H148fngSa7CqrhrlnugXcXfNNT/RW+lu29d2+dQes/pNbhtOE2e6uevRO/WDurpeOcQ0Vs453n1Vdg8K2F10Dw7YXYOfq/j0dutvcd7TpieykZSi6WtySSUOI6evzz0LdglyewfJpY4pcecDP+4+YwfuPmAHA/u4QGxraeH1nK+t2tvJ6Qwuv72xjT1vi3md727t55o29PPNG76P7RGDm+ErmTalm9uQxBGLmiYm2ffa5VRNz40b6ByExW0fDywM+poyrYNq4cqaMK6dubDkBv81HYwpXKByhMxShqmzkNoBlGvMXcAWGe4E7gO+JSBkQAr4JPJOb6JlCV+L3cf6ymfz80Y0J16tCZzBCZzCC60E6OCfOncwVZ81nwbSxgz6GKUDVdXDYB92iCnvfgDcfhU2Pu0ptZ3P+41RS7uYGiFboZxwFVZOzfx4RGD/LLYvOc2HBDtjxcm+lf9sLrqFjKAJjXC+D8pq+rxXje9+XVrnGhI4mt+xvhI7GmPdeeL4naSwqOf/uLJ82ZpSpLC1h8cwaFs/s25Nsb1tXb8V/ZyvrGlpZv7OVjmD/nl2qsKVxP1sa9+cr2ojA5KoyptZUMHVsOVNrypk6rtwaAsywae4IsnJLEys2N/HSliZWbdnH/mCYi4+dxbfedQilJSPvt5hpd/1jgFmq+icRqQFuAc7CNeKtAj6oqm/kNKZZZt3ysqetK8S3bn+FtTta6AyG6QxG6AqG6QyFCYazV7AVgXMXT+NrZ8xj5oTKrB3XFKhIGHas6r3Lv2N13y730u9N3Pj9ROEJwgKVXqXeG0s/ZRGUlGYrFUOjCi1ve5X+F113f0hfaY99zVZaIpGYIQFNcQ0AjX3fR9d1tYL4+i4+v/vu48PFH/NeEuwT8zn+O3JvUnxOtc77rJqge3+61+jmabYFePePXYPOEKXorl90+XS+WbnAFLNIRNnatJ/XYyr+r+9sZdOedsKRwmvAjW8ImDKunGk1fRsCqsu8eWLiRl319jCQuM/R9dLnM0nWx28Tf9zYsD77Z3GYarp62kCGawyESHbTUUhUlU172nlpcxMrtjTx0uYm1je0Jd3+qFkT+OVHjijYOS2GNCY/yQGrgEpV3TXUyA0Hy8zzIxxROoNhukIRrwHANQJ0htz7rqAXHvLCgzGvoTDbmjq475UdxOY/Ab9w0dEHcNkpcwr2D84YY3IhWWaeZNsRnU/nm5ULzGjUGQzzxm7X5X/7vo6eSmNPE2jsFDgxPZLit4vfODa8tTPEjuYOdjZ3sr25kz1tXTmrnJrsKfX7CPiFQImPgN/Ns1Va4oX5e8MCJeJt6yNQ4uvdz9u+Z53fx4QxAeq8RpspY8uZWFWGP8dPgujoDrN62z5eit6p39xEU4LHU6YydVw5v/3oMhbNGJejWA7eUCfe+wZwk6r2e26UiNQBF6vqD7MS0zyxzHzkWN/Qyg/vf52HXmvoEz6m1M+nT5jNJe+cPaLHzBhjTKZS3Mkvunw636xcYEx+dIci7GrtZEezt+zrYEdzJzubO9nR7N7vtoaAUcHvE2qry3oq/bENALGv5YHM50Ha0dzBS15lfsXmJtZsbyGUpreK3ycsnDaWI+rHs/SA8RxxwHjuWrWdHz6wrud3WFbi49r3L+qZE6NQDLWSHwaOVdXlCdYtBZar6iCf8TQ8LDMfeV54q5Hr7lvHi5ub+oRPHFPKF0+Zw4ePPmBEjpkxxphMpajkF10+nW9WLjCmcEQbAqJ3/3c2d7B9n9cQ0OIaBjqD4d4eA/16IGjc5+h6jfscv3//3gqJjttnX3LXbT4TuehVX2gNLOMqAn0q/nU9DQBlVJcHePXt5p5K/fbmzrTHq6kMsLTeVeaXHjCew2aMS/iUicde38W/3raSls7eSZE/dfyBXHn2fEoKZM6IoVbyI8AxSQoPpwD/UNWKrMQ0TywzH5lUlYde28WPHljXb/xM/YRKvnbGXM45bBq+HHf9McaY4ZCikl90+XS+WbnAGJNNfRoENHVlvNDGv0ciSjASIRhWgqEI3eEI3aEIwbAXFo4Pi9Ad8sJjw7xtg6EIXaEIe9q62NniGmsaWjoH3G1+sObUVrG0fjxLZ7lK/exJYzL+zjftaeczN73Ihl299Y53HDSRn3/4CCaMGf45nAZcyReR44ETvI/XAL/GPZYnVgVwLhBS1SOyF93cs8x8ZAtHlNtXbOOGf67v12K3YOpYvnHWPE6cO7ng/mkaY8xQxGbmxZ5P55uVC4wxJr86g2EavEr/zhZX8d/hNQC4hoAuGlo603a3j1UR8LNkZg1Lvbv0h9fXUFM5tMp4W1eIr/55FQ+u7R06PL2mgt9+bCkLpw3vOP3BVPL/A/gP76MS95jMmPDXgc+pagE8xDlzlpkXh85gmD8+u5lfPLaRfXGtgcfOnsgVZ89nSdyjZYwxZqSKq+QXdT6db1YuMMaYwhOJKHvau2ho9noBtLjhGzubu7zeAN0cNLmqp1I/f0p1TrrSRyLKzx/dyE/+ub4nrDzg44fnLeY9i6dl/XyZGkwl3w+U4AoN+3F3C16I26xbBzs9/zCzzLy4tHQG+c3jb/C7pzbRGYz0WXf2oVO4/Mx5HDS5aphiZ4wx2RFXyS/qfDrfrFxgjDEmnX+ubeArf15FW1fvOP3Pnjibb5w5P+dPCkgkWSU/aTOHqoZVtUtVO4EKVX3K+xy7WMHBFISx5QG+fuZ8Hv/6yXz46Po+f2T3vbqTM254gitvf4WGlvSTcRhjzEhg+XRqIvItEXldRCIi8t7hjo8xxpiR7/QFddxx6XHMnjSmJ+w3j7/JJ258geY8zTGQiYz6Mqhql4iUicglIvJHEfmHiNwkIp8UEXtQuSkYdWPL+cH7FvHPr5zAuxdN7QkPR5Tblm/hxB89ynX3r6O5o3D+CI0xZqgsn07oYeBdgA1TMMYYkzVzaqu447LjOGV+bU/YE+t3855fPMX6htZhjFmvTGfXnww8AiwEGoCdwBSgDngVOEVV9+Qwnlln3fJGh5e37uO6+9fxzBt7+4SPqwhweH0NFQE/FaV+Kkv9VJaWUB6IvvcneF9CZam/zz7lJX6byd8YkzcpZtfPWj4tImcCVwALgPHAbuAZ4CpVXZuNdCQ45wzvnMuAxbgJAw9U1beSbD8TuAE4HTdc4SHgy6q6JcG2jwE/VdU7UsXBygXGGGMGIhJRbnhoPT97ZGNPWGWpn5+cv5izDp2aYs/sSVYu6P9AwMSuA6YCp6vqwzEHPRW4zVv/qWxE1JhsWjyzhlsuOZonN+zhuvvXsWZ7CwDNHUEee313Vs5RHvBRWVpCRcBPecCXckb/VM0BqR4EUOLzUVVeQnVZCVXlJVRFX0t7P1eXl1BVFoj77Bom7CkD+bOzuZPV2/YBcNiMGqaMKx/mGJlRIpv59ATgJeCXuAp+PfBN4DkRWaSqm7MZcc8c4HzvvE8CZyTbUEQqcQ0aXcDFuMkFrwEeFZHDVLU9B/Ezxhhj+vD5hK+dMY8FU8fytb+8zP7uMPu7w3zu5hV88ZQ5fOW0ucN2MzDTSv6/AFfGFhwAVPVhEfkOcHXWY2ZMlogIJ8ydzPFzJnHPKzv48QOvs6Vxf9aO3xmM0Bnsztrxsk0E1yhQFtM44DUClJX48fsEvwh+v1DiE3ziXv3eUuITfPGv0W38PvzSd53fJ0yrKWdObTXjKgLDnfycausKsXrbPl7e2syqrU2s2rqPhpauPttMHVfOkpk1LJlZw+H141k0fRwVpf5hirEpYlnLp1X1NlzDQA8RWQ6sA84Drk+0n4hMAWar6jMJ1lUAJ6nqfUlO+4Sq1nnbXkKKSj7waWA2ME9VN3r7rAY2AJ8FfpJiX2OMMSarzl40ldmTq/j0TS/21DF+9shG1m5v4YYLlzC2PP/l4Uwr+WOBfl3gPJu99cYUNJ9PeM/iaZx96BRWb9tHc0ewp8WtMxjued/RHaIjGH0f7ve+ozvMfm+b+Jn8C5EqtHaGaO0Mpd84y2qryzi4roo5k6uYU1fNwbVVHFxbxcSqkTdEOBSOsL6hjVVb97FqaxMvb21m/a5W0o142tHcyY7mndz36k4A/D5h/pTqnkr/kpk1zJ40xoZ9mKHKdT4dHfOUakKTrwCXisjZqvpkNNCr4N8DLBSROaraFr+jqg7kn+l7gOeiFXxv/00i8jRwLlbJN8YYk2fzplRz12XH8cXbVvLkBjc67uF1u3jvL57mtx9dxpza/D7lK9NK/nrgQ8ADCdZd4K03ZkQI+H0sPWBCVo4Viair+HuV/85gOOm2qeqC6SqK3aEIbV0hbwnS1hmivwGtjQAAGOxJREFUtStEW2eI9q7e9z3bxKzvSBGnXNvV2sWu1i6e3th3ToTxlQEOrq1mTp2r9M+preLg2mrqxpYVxNACVWV7cyertuzj5W37WLVlH6+83ZzRd1kR8LNoxjgEWL2t/z7hiLJmewtrtrdwy/OuTja2vITFXqX/cO+u//gxpblImileWc+nvUf0+YEDgP/EjfP/U4pdvg0cCNwrImep6tNeBf9u3Dj7UxJV8AdhIXBngvA1wAcHejAROQc4Z86cOUONlzHGmFGsprKUGz9xFD98YB2/efxNAN7c3c57f/E0P71gCactqMtbXDKt5N8A/M6b2OcWYAduQp8LcV0EP5mb6BlT2Hw+YUxZCWPKMv1Tyr9QOEJ7d7in8t/WFaTVaxDoDkUIRZRIRAlFlHDMEoooEVVCYSWsSjiSZlvvtSsUZvPe/by5u53ucOKbc037gyx/q5HlbzX2Ca8uK2GOd+f/4DpX8Z9TW8X0moqc3ulu6QzyyrZmVm3dx0qvYr+7tSvtfj6BuXXurvxir3J+cG0VJX734JLo3f+VW5tYtWUfq7buY8Ou/nWcls4QT27Y09PyCzBrYmXPnf4lM2s4ZOpYSkuSPxClKxSmvSvsGn06Q7R39zb8tHf1NgD1vnfbRhuCKgL+vvM5lJcwtjzQM8yjX1h575APUxBykU8/Dyz13m/EVdJ3JdtYVUMi8mFcQ8B9IvI+3Fj+JcCpqrp6EHFIZALQlCC8ETdRIADeMIXPAZOBQ0Xk58AyVd0ZF++7gbuXLVv26SzFzxhjzCjl9wlXnn0IC6eN4xt/fZnOoLtRd8lNL/LV0+dy2clz8tJ7M6PZ9QFE5F+Bf8dlroqbQ6wR+K6q/ixnMcwRm0XXmNwKhSNsbepgQ0MrG3e3sbGhjQ272ti4q23AvQsqAn4OmFhJWcBVKKP/GqM3/Xs/S5L1fTeMXb+nrZs3drel7U0Bbnz94hk1LKl3Fe9F08cNuIGnpTPI6q3NrNzixvCv3LqPxvb0czqUlvg4dNpYqssD/Srt7V3hpA0quVbq9/U0AMROADm2vKRn7oGIAiiqENHoKygK0TBvO/Xeq7edxqzvCUsRn1R5WrreNBF1DVvhiBKJ4DVu9YaFI+78YXWNWj3re94Ts7/22f++L72TObXVA/5+4yWbRddbl9V8WkQOwXXznw1cjpup//hkM97H7FcC/D/gfbjK+KmqunIA570E+B+SzK4vIt3A9ap6ZVz494ErVHVQra5WLjDGGJNNa7Y385mbXuLtfR09YWcurOP685dQlaUbhEOdXR9V/W8R+RVwKK4A0Qi8qqr2wHFjTD8lfh8HThrDgZPG9JlBKxJRtjd3uAp/g6v0b9jVyoZdbUnnDegIhlm3M7/PHR1T6ucwr0K/eEYNh9fXUDd26DPljy0PcPzBkzj+4EmAq5Rubexg5dYmVm5xlf6125sJhvtWSbtDEVZs2Tfk82dbdzjC3vZu9mbQUDGa5aMNJtv5tKq+5r19XkTuA97C3Zn/XJpdS4AqIAIEgMrBnD+FJlz64o0n8R1+Y4wxJu8WThvH3V88nktvWcGzb7qhqw+saWDTL5/mjkuPo7I0dz2Bkx5ZRN4E3qeqL0fDvIJCxq3xxhgTz+cTZoyvZMb4Sk6eV9sTrqrsbu1iw642NjS09tz137irLecVSL9PmFdX7e7QexX7gyZX4c9HdyoR6idWUj+xknOXTAegMxhm7Y4WVnmV/lVbm9ja2JHyOCXe0JFo9/oxZX6qygNUlfkZE/OoxSpveEns+4pSP53BsDeMw8350OJ19W/tDPZ0+2/pjM734M0L0RkiFMmsN9hoF87B95TPfFpV94nIRtyj7lLFqRy4AzgCOAb4Fq7r/pmq+myWorMGNy4/3gJgbZbOYYwxxgzZhDGl/PFTR/GDe9fx+6c3AXDi3Mk5reBD6jv5s4CRNwW2MWZEEhFqx5ZTO7ac4+ZM6rOusb2brY37e7ptQ+xkhdrnc/z6aPftfuFeSHnAz/wp1Tn/ZzsQ5QE/R9SP54j6nuHF7G7t4tXtzagqY0pd5by6vLfCXlbiy/ukhapKVyjiPb0h2DPvQ7SBoKM7BOIGS/hEEKHnPTHvRXpf6bOt4BM3rEK84/S+Jo9XynUkXylCzyMlfd7jIH0iPWE96+PCfb64/WL2j64v9SefT2EIZpGnfFpE6oD5uPH+ybYpA24HjsR10V8lIufjuu7f71X0n8tCdO4Cfiwis1X1Te/cs4DjcD0NjDHGmIJR4vfx7+csYOG0sdz36g6uOGt+7s+Z8zMYY8wQTRhTyoRRPtv85OqyPj0fCoGIUB7wUx7wM7na2oSLhYj8HVgBrAZagLm4x+OFgOtT7Pp94GjgNFVdBa5nQUxF/24ROTDZDPsicp73NjrZ39kishvYraqPx2z6P8BlwJ3e5HoKXA1sBX4z0PQaY4wx+fCBpTN4/xHT83JTJl0l3/phGmOMMYUrF/n0c8D5wNeAUlzl+THg2jST7n0f+IOqvtIngr0V/SPTPELvL3Gff+m9Pg6cFHO8dhE5BfdEgT/iOoU8DHw5S4/oM8YYY3IiX70u01Xyvysie9JsA6CqenE2ImSMMcaYjGU9n1bV64DrBhoRVW0iycR33lwBz6TZP+OSj6puAT4woAgaY4wxo0S6Sv4SIP3Dou2OvzHGGDMcLJ82xhhjTB/pKvnvVdXleYmJMcYYYwbK8mljjDHG9JGT6X6NMcYYY4wxxhiTf1bJN8YYY4wxxhhjioRV8o0xxhhjjDHGmCIhqqNzLh7v2bubhzseWTQJyGSG5ZGoWNNWrOmC4k1bsaYLijdtxZauA1R18nBHohhZuWDEKNZ0QfGmrVjTBcWbNkvXyJGwXDBqK/nFRkReVNVlwx2PXCjWtBVruqB401as6YLiTVuxpsuYdIr1t1+s6YLiTVuxpguKN22WrpHPuusbY4wxxhhjjDFFwir5xhhjjDHGGGNMkbBKfvH47XBHIIeKNW3Fmi4o3rQVa7qgeNNWrOkyJp1i/e0Xa7qgeNNWrOmC4k2bpWuEszH5xhhjjDHGGGNMkbA7+cYYY4wxxhhjTJGwSn4BE5HzRORvIrJZRDpE5HURuVZEqjPYV5MsS/IR9zRxOylJ3PZlsG+5iPxIRHZ438mzInJCPuKdCRF5LMV3f3+afQvmmonIDBH5mff97vfiMSvBduNF5H9FZI+ItIvIQyKyKMNz+ETkShF5S0Q6ReRlEflAttMSd8606RKRU0XkZhF5w/uNvSEivxKR2gzP8VaS6/jeXKQp5ryZpG1Wit9ZTQbnKNRrdmOKdK3L4BzDcs2MGYhiLRNA8ZYLrExQ2GUC77xFWS6wMoGVCUqGOwImpcuBLcC3gG3A4cBVwMki8g5VjaTZ/0bgN3Fh67Mcx6H4V+CFmM+hDPb5HfBu4OvAm8ClwAMicqyqrsp+FAfsC8DYuLBjgZ8Ad2Ww/40UxjWbA5wPvAQ8CZwRv4GICC5NBwJfBJqAK4FHRWSJqm5Lc46rcb/xb3vnuRD4i4j8i6rem62ExEmbLuBzQBVwDe43djDwXeBMETlMVdsyOM8DuL/VWK8PMs6ZyiRtUdfS//fYmsE5CvWaXQ38Oi5sFnAbmf3dwfBcM2MGotjLBFB85QIrExR2mQCKt1xgZYK+ZjHaygSqakuBLsDkBGEfAxQ4Jc2+Clwz3GlIEreTvPidNsD9Fnv7fSImrAT3R3fXcKcrRbx/B3QBE0bKNQN8Me8v8eI2K26bc73wk2PCxgGNwH+nOX6t9518Ny78YWD1MKcr0d/dCd62n8zgHG8BNxfoNZvlhV8yiOMX7DVLst+/edsuLNRrZostA1mKtUzgxW/UlAusTJDw+MOSvwwgbSOuXGBlgn77jboygXXXL2CqujtBcLSFe3o+41Ig3gMEgT9HA1Q1BPwJ15paNlwRS0ZEKoAPAnerauNwxydTmv6OELjrsV1VH43Zrxm4G5fZp3ImUArcHBd+M7BIRA4cQHQzlkm6RurfXYbXbCgK9pol8THgJVVdk834GDNcRur/phwbUeUCKxMkNSz5CxRvucDKBP2MujKBVfJHnhO919cy2PbzItLljVl5RETemcuIDcItIhIWkb0icquI1KfZfiGwSVX3x4Wvwf2jmZOTWA7N+4Fq4A8Zbl/o1yzWQuDVBOFrgHoRqUqzbxewMcG+AAuGHr2sGsjfHcA53jXsEpHnCnAc17UiEhKRZhG5K8MxkyPmmonIcbj/B5n+3UHhXzNjEimmMgEUf7nAygTJ9x0R+UuMYioXWJmgv0K+XhmxSv4IIiLTge8BD6nqi2k2vxk3Fuw04DPAROARETkpp5HMTDNwPa6bzSm4sTOnAc9K6klMJuDGeMVrjFlfaD4G7ALuy2DbQr5miaS7HuPT7LtPvX5RCfYtmGspblKrn+Iy8jsy2OVu3HjEM4GLgE7g7yLykZxFMnNduPGdnwVOxo2lWwQ8IyKHpNl3xFwz3N9dEDf+LhOFfM2MSaiIygQwesoFViZIvu9IyV+KqVxgZYLECvV6DYhNvDdCeC2gd+ImoflEuu1V9aMxH58UkTtxLazXAMfnJJIZUtWVwMqYoMdF5AlgOW7Sne8k2VVw42kShRccEZmGy5z/y+s+mFIhX7MkhnI9RsS1FJESXKYwHTguw+v4xbhj/B14DjexTXy3trxS1R24CYSinhQ3w/Ma3MQ5qTKwkXLNynCT8tyjqnsy2aeQr5kxiRRTmQBGR7nAygQ52zeviqlcYGWCxAr1eg2U3ckfAUSkHDcb5GzgTE0/Q2k/qtoK/AM4MsvRywpVXYGbMTZV/BpJ3DI4PmZ9IfkI7m9sIN2DehT6NSP99UjUoh+773hvNt5E+w77tRSR6LU7DXivqq4ezHFUNQz8BZghIlOzGMWsUNWtwFOk/50V/DXznAvUMMi/Oyj8a2ZGt9FQJoCiLBdYmSD1vgWfv4yGcoGVCfor5OuVilXyC5yIBIC/AUcB71LVV4ZyOBK3uhWKdPFbAxwoIpVx4QuAbvqPCxpuHwNeVtWXh3CMQr5ma3BjsuItALZo6kfKrAHKgIMS7AuwdujRG7JfAxcAF6rqw0M8VjQTLNRrmcnvbCRcM4CLgT3AUB/fU+jXzIxCo6xMAMVVLrAyQep9R0L+MlrKBVYm6K+Qr1dCVskvYF6L4S3AqcC5qvrcEI41Fvcc2eezFL2sEpFlwFxSx+8uIICbmTa6XwnuH+6DqtqV00gOgJeehQyh5bDQrxnuekwXkejkM9E4n0P655DejyuAXRQX/hHgVVXdlM2IDpSIRMeGfkJVMxlvl+pYJbjf7BZV3ZmN+GWTN7HVcaT/nRX0NQMQkTrcM3NvVdXgEI5T0NfMjE6jqUwAxVUusDLByC4TwOgpF1iZIOFxCvZ6pWJj8gvbL3A/qu8D7SJyTMy6baq6TUQOAN4Avqeq3wMQkcuBecCjwHbgANxkGlPo/8eYdyJyC7AJWAHsAw4HrgTeBn7mbdMvXaq6SkT+DPzUu5uxCfg8cCAFkK44H8ONlbw1fsVIuWYicp73dqn3eraI7AZ2q+rjuEz7WeBmEfk6rivelbjWzh/GHSsE/EFVPwWgqrtE5AbgShFpxf0WLsBNuJTuUTs5TZeIXAF8Ffg9sCHu7263qr6RLF0i8iEv/vcCW4E64FLvXB/KYbKi8UmXtutxjbvPArtxv7krgQjwg7hjjZhrFrPpRbh8LWlButCumTEDUJRlAhgV5QIrE/Q9VsHkL158irJcYGWCUV4mUFVbCnQB3sJ1C0m0XOVtMyv2sxd2DvA0rntKENiL++d71HCnyYvflcBq3Gy6Qdwf0W+BqTHb9EuXF14B/ATYiZvt8nngpOFOU1wcA7h/lncnWT8irlmK395jMdtMwGV6jcB+4GFgcZJj3RgX5sdNprQZN8PrauC84U4X8FiKbeLT0CcMOAZ4BGjwrmMz8BBu3OywXzPgk7hn+zbhCpw7cYXOeSP5msVs9zLwSgbHKphrZostmS4UaZnAi2PRlguwMkFBlwkySRsjtFyQQbqsTFBA1yvbi3gJMsYYY4wxxhhjzAhnY/KNMcYYY4wxxpgiYZV8Y4wxxhhjjDGmSFgl3xhjjDHGGGOMKRJWyTfGGGOMMcYYY4qEVfKNMcYYY4wxxpgiYZV8Y4wxxhhjjDGmSFgl35ghEpGPi4jGLK0i8rKIXCYiJQM81izvGB/PUXTzQkSuEpEBP59zoOkXkTNE5D4R2SsinSKyXkSuE5HxA450/2MPKg3GGGNGNysX9GflAmPyyyr5xmTPB4FjgQ8Ay4GfAf8+rDEaPv+L+y5yRkS+BTwAdAKXAGcCvwY+DrwgIjNzeX5jjDEmDSsX9LJygTF5NKDWRGNMSqtUdaP3/kERmQN8mVGYoavqNmBbro4vIicD1wA/VdWvxKx6XET+DrwE3AScnOIYfkBUNZSreMacKwCEVNXuABhjzOhh5QKPlQv6ncvKBSan7E6+MbnzAlAtIrXg/qGLyDUi8paIdHuv13j/6BMSkctFpEtEJseFi4i8KSK3eZ+j3dk+KyLfE5EdIrJPRO4WkRlx+6aNR8zxPici14rITq+74c0iUikic0TkARFpE5GNInJx3Dn6dWnzuik+KyKNXtyeE5F3D/K7/QbQCFwZv0JVNwH/CZwkIkfHnF9F5Psi8k0R2QR0A4u8dYeLyJNe1763ReTfAIk/toiUiMiVIrLOuy7bReR6ESlP8N19QUR+KCLbgS6gZpBpNcYYUxysXNA3zMoFxuSIVfKNyZ0DgTDQ5n3+A/BNXEvyvwD/B1zhhSfzeyACfCIu/Azv+L+JC78SmAN8EvgSrmvcLXHbDCQeVwLTgItxdx4uwHV9+zvwD+B9wGrg/0RkYYp0AMzCddf7oHecF4F7ROTsNPv1IW4844nAP1W1M8lmd3mvp8SFfxx4N3C597pdRCYBjwCTcOm8FDgL9x3Guxn4DnCrt/+1wKfo/x0DfBuYC3wG9z0li6sxxpjRwcoFfc3CygXG5Iaq2mKLLUNYcBmEAvNwQ2DGA5/FZeR3eNsc6m1zVdy+3/HCD/M+z/I+fzxmmxuBjbguZNGw24F1MZ+j+z0ed/zLvfBpg4zHI3Hb3e6FfyQmbDwQAv4jJuwq9+8l6Xfm876rB4E7E6Tj4yn2rfO2uTbFNuXeNr+MCVNgO1ARt+33ca339TFhY4A9sWkA3ukd42Nx+1/khS+JS8OK2Gtmiy222GLL6FisXGDlAisX2DLci93JNyZ71gFBXHexX+JacaOtvid4rzfH7RP9fGKK4/4SOAg4FUBEpgLn0L+1HlwreqxXvNf6QcbjvrjP67zXB6IBqtoE7AJSTmgjIktF5B4RacBl/kHgdFwhaCD6dZcbgPtVtSMu7FjgOVXdEg1Q1Xbg7rjtzsJl+n/zuueVeHcPHvTWnxC3/R2qamPtjDFm9LJyQQpWLjAmd2ziPWOy5324SWVagc3at8vYBO91R9w+O+PW96Oqy0XkReBzwEO4GWNDJO5G1xj3uct7jY4NG2g8muI+d6cILycJcTPaPgysBb4IbMGl4WrgkGT7JbEH6MC1jCcTXbc1Ljw+3QBTgVcThDfEfa4FSuntZhlvYgbnMsYYM3pYuSAJKxcYk1tWyTcme17V3ll040Uz2SnAGzHhU7zXvWmO/SvgNyIyHZeZ/0VV4zPuTAw1HoN1FjAOOF/dDLsAiEjlQA+kqiEReQI4XUTKNfH4u/d4r4/E755g2x24rn7x4sP24sbPvTNJ1LZncC5jjDGjh5ULkrNygTE5ZN31jcmPx73XC+PCL/Jen0iz/224OwG34rrY/XqY4jFY0Uw7GA0QkbnAcYM83o9wLeQ/iF8hIgfiJgx6QlWfz+BYzwLHSMzzc0VkDK7rY6z7cXclxqnqiwmW+MzcGGOMScbKBY6VC4zJAbuTb0weqOoa77E2V3njtZ7Bjfn6N+A2VV2dZv8OEbkR+Arwiqo+MxzxGIKHcN3wbhKR63Fd4b6L65434MZGVX1YRP4d+J6IzMLNCNwEHIGbIbgZ+GiGh7sB+ALuGcZX4boyfh3X9S/2nI95391fReQnwHLcDMezgHcBV6jq+oGmxRhjzOhj5QIrFxiTS3Yn35j8uRi4Djfpzr24R6xc54Vn4i/ea6KJdfIZjwFT1TW4uwIH4B5j8w1cpjvoOwSqejVwNm7G2//DTXTzBVzGvix2wpw0x9mDm7xoD2484y9wrfO/T7D5R3AzBJ8H3An8FbgM2ED/sXrGGGNMKlYusHKBMTkhNsmjMSODiHwf94zbaaraMtzxMcYYY8zwsXKBMSYZ665vTIETkcNxj5P5EvBby8iNMcaY0cvKBcaYdOxOvjEFTkTews3o+gDwUVVtHd4YGWOMMWa4WLnAGJOOVfKNMcYYY4wxxpgiYRPvGWOMMcYYY4wxRcIq+cYYY4wxxhhjTJGwSr4xxhhjjDHGGFMkrJJvjDHGGGOMMcYUCavkG2OMMcYYY4wxRcIq+cYYY4wxxhhjTJH4/6WyAiMSaciuAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 1224x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"## part c\n", | |
"f, (ax1,ax2)=plt.subplots(1,2,figsize=(17,4))\n", | |
"ax1.semilogy(np.arange(1,max_N),SSE_train_al[1:],label='Aluminum training error')\n", | |
"ax1.semilogy(np.arange(1,max_N),SSE_test_al[1:],label='Aluminum testing error')\n", | |
"ax1.set_xlabel('Polynomial Order')\n", | |
"ax1.set_ylabel('Total Sum of Square Order');\n", | |
"#ax1.set_ylim(10**1,10**7)\n", | |
"f.suptitle(\"Test-Training Error versus Polynominal Order for Aluminum and Steel\")\n", | |
"ax1.legend(loc='best');\n", | |
"ax2.semilogy(np.arange(1,max_N),SSE_train_st[1:],label='Steel training error')\n", | |
"ax2.semilogy(np.arange(1,max_N),SSE_test_st[1:],label='Steel testing error')\n", | |
"ax2.set_xlabel('Polynomial Order')\n", | |
"ax2.set_ylabel('Total Sum of Square Order');\n", | |
"#ax2.set_ylim(10**1,10**7)\n", | |
"ax2.legend(loc='best');" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"As shown from the Testing-Training curves above, the error between testing / training price data and the actual price data decreases as the degree of polynomial order fit increases. It should be noted that the error for the aluminum price is far larger (on the ordedr of 10^5) than the error of steel's price (on the order of 10^1). This is due to the higher fluxuation (with further outliers) in alumninum prices than in steel prices." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 350, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABD0AAAGoCAYAAABFZ54vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXxU5b348c93JpNksickkAVCAFkUQai0iqIGF3ZxX6r+LLRWr1q33lrFutZ9a+u9XmvtdemtG+2V6y5KEVArVkUBRUHZyUZWsiezPb8/zkkyGSYr2Qjf9+t1XjN5zvc85zkzg875zrOIMQallFJKKaWUUkqpwcbR3w1QSimllFJKKaWU6g2a9FBKKaWUUkoppdSgpEkPpZRSSimllFJKDUqa9FBKKaWUUkoppdSgpEkPpZRSSimllFJKDUqa9FBKKaWUUkoppdSgpEkPpZRSA4aIrBYRXUt9EBCRnSKys7/bcbAQkaNEZLmIlIiIEZGPeuEcj9h1T+vpurtjoLVHKaXU4KRJD6WUUt0mIjn2TUvw1mjf8D4jImP6u43dEeaavCKSLyJ/E5Gp/dSm54La85N24tYFxU05gPMtsutY1N06elJTQqwLW05/t7mzRCQKeA04Afhf4C7gmS4cP1pEAvZ1/1svNVMppZQ6KEX0dwOUUkoNCluAl+3nCUAusBg4S0R+ZIz5vpP1XArE9HzzumUv8KT9PAY4BjgPOENETjHG9Pgv8Z3kw3pt/xK6Q0QmAT+wY/r7//Gn9HB9zwGrQ8oWASOBx4B9IftC/x7IjsC6jkeNMb/qxvGLAAEM1mfjyXajB44Hgf8GdvZzO5RSSg1i/f2FSCml1OCw2RhzZ9MfIiLAs8BPgN9g3ZR1yBizuzca101FwdcEICJ3AbcD92AldvrDcmC+iIw2xmwP2bcYK+HxD2BOn7csiDFmWw/X91xomYjkYiUL/mCM2dmT5+tjGfZjUVcPFBEH1r+zQmAVcJGITDTGbOrB9vUKY0wJUNLf7VBKKTW46fAWpZRSPc4YY4An7D+bx+sHDVFwi8gD9jAYX9MQirbm9BCRaBG5UUS+EJEaEakSkQ0ico+IuEJip4rI30Vkrz3UZpuI3C8icT1waf8Vek32ORPstmwWkQYRKRORV0XkqDDXstPeUkTkSREpEBG/fQPfGc/Zj62GuNivwyXAO1i9VMISkZki8rbdxgYR+UZEbhaRiKCY57CSVgDPBg0Z2dnZ62hrTg8RSRSRu0Vkk4jUi0iFiHwqIt3p4dAhsVxlf3bqRKRSRN4Xkf2SQhI0x4SI/FREvrZfo10icqudzOvseaNE5Bb79W0QkXIReVNEjgmJKwXesv98OOi1PreTpzoFyAZeoqX3z+IutPMXbZ0v3D4ROdIue9z+t7ZCRKrFmovkv+yhOojI2SLyuf2a7xaR68PUv9+cHiKywC77lYjMEJE1IlJrf16fFZHkkDqa48PUv98+EYmzy94UkVEissz+DFaIyIsikmLHnSQiH4j135u9InKfWAkmpZRSBxnt6aGUUqq3tHeDuAw4HHgXqKf9m/QYYCVwLPAN8GesbvwTgF8Dj2APZRCRs7CG2XiAV7F+Of8BcDMwU0RONMZ4Duiq9m9fKvCBfT2rsG5ghwDnAKeJyKnGmLUhh0UB7wORwCuAE6jq5Cm3AR8CPxGRO+0EE8B8IA0rWXFGG239BfAfQCnWHBIVwAzgfuBHwNl26KtAkl3Pa8B6uzx0yEiXrkNEhtltHwt8Cjxu13EksATrvexpT2MlAbZhJeJigfOBt0XkSmPMn8IcswQ4GXgd67N3NnC3ve+ejk4oIk7gTeBUYAPW8Js04AJgloicZYxpSnQ8BEwBfgysAD62y7/p5PX91H78K/AVVo+P/yciNxtjfJ2sozsOB9bY21NYr9dVQLSIfAD8J9bn6GPgXOD3IrLHGPNKJ+s/Ees1Xw78ETgJq8fYCKzX9UANBf4JbMb6jPwI6z0YJiL3Yb33b9rXtgDrM1EGPNoD51ZKKdWXjDG66aabbrrp1q0NyMFKQLwaUi5YPRIM8GxQ+Wq77DMgMUx9q7E7igSV/c4+5o+AhOwbBkTYz1Oxbri3A5khcTfadfyqk9dlgPVhyn9r71sVVPaSXfbjkNjDgErgq5DynXb8G0BkF17rptdzCtbNnwFODtr/GtZQAVdwbND+iYAX+CT4tbffq8ft+HODypvOsaiN9rR7Hfb+nSFly+xjloSJH96Nz1/T5ymnjf3z7f2fAO6g8mz7tWoAMoLKH7Hji4CRQeXpQLV9jHSiXVfb9fwf4AgqnwI0YiX5ooPKF3Tl8xl0XBJW0vCrMNdwRpj4pn3Tgsp+Efret7cPK0Fl7O3SoPJIrASCz379jgjaN8Yu/7gT7Wl6LQLAnKDyCGCtvW9SZ167cPuAuKD23x7y72ClXV4G5Ia8zhVAQVc/o7rppptuuvX/pt30lFJK9YQJInKnvf0O+Bxr+EUFcF+Y+DuNMZUdVWoPubgMq2fCr40xrYa+GGP2mpZfsy8F4u24gpCqHsW6Yb2wC9eUHnRND4nIGuA2rJvWW+32pWL1GnjLGPNSSNu2YvVKOVJEjgxT/82m+71O/g7UYA9jEJGhwDzgBWOMt41jrsC6cfxF8Gtvv6a3YN3sdeX1adKp6xCRdOBMrB4MD4buN8bkdePcHWkaAnSLMaY+6Fy7sXpfRBH+mh8xxuwKii/C6nGQipXo68x5A8CNxphAUD3rsXpkDAXmdulKwrsIiAaeDypret7pIS7dtNEY8z9Nf9ifgVexevssNcZ8E7RvG9Z/EyZ3of63jTHLg+rw0XJtPbHEbSnwQFD9BuvfFcBHxpjVQfv2YfVKyxCRtB44t1JKqT6kw1uUUkr1hPHAHfZzL1CAteTmPcaYHWHiP+9kvROwEhmrjTHVHcQ2zZUwo40kg9eur7OG0XJNPqAYWArcb4zZYJf/EGt+rDgRuTNMHYfbjxOAr4PK680BTDRpjKkVkb8DF4jI1cD/w/p/+nPtHHYMVmJjoYgsCLO/nq69PtC165iG/Wt6cCKgl03BSj58GGbf6qCYUF+GKcu3H5M6cd6jgHw78RXuvD+zz/t/nairPYuxru+FpgJjzHoR+Rprstthxpg2h44doA1hyoo62HeMiCR2JuHJgb8HHfk2TLKuo/YDZKKTryql1EFFkx5KKaV6wmvGmDO7EF/cybhE+zG050Y4KfbjdV1oR3s2GGPC3RCHO+dJ9taW2JC/e+Km6Vmsm97zsYairLd7ErQlBSvpcFs7MaHt7EhXrqMr72VPSQDK2+j9UhQUEyrcTXlTjyJneycUkWisoR5tJRvaO2+n2Ym9aVhDrUJ7yfwVqzfNJfTeHBTh5m7xdWKfK8y+cLr9HnRSb7dfKaXUAKFJD6WUUn0udJhKO5omzszsRGzTjcrYNn5h7w1N57zXGHNrF47r7PW3XYExH4rIVuBOIIuOkz1VgB+INcY0Huj5m5rRhdiuvJc9pQoYIyIRZv9JPYcFxfQYY0yDiHiC6g/VU+dtmsB0poRZ8ci2mI6THk29bsIlEg4oMdNHDvb2K6WU6mU6p4dSSqmBbAvWBJLTpeMlZz+1H4/t3Sa18hnWjX9fnjPYc1gJDy/wYgexn2LdGP6wk3X77cee+FUdYB3Wa3VKHy79uR7ru86MMPtOCorpaRuALBEZ3RvnlZbliRuxVh4Jt20FJorIjzqorikZlRVm39TutrEPHeztV0op1cs06aGUUmrAsn+d/zPWBJIPi0irZXBFZKg92SlYwz1qgAdFZGxoXSKSJCI9ehNkT3D5v1g38leGOadDRNob9nKg/gicBcwyxpR2EPsEViLjv0QkI3SniAwTkcODisrtx3A3k11mv1b/BxyBtdRw6Pl75DwhmibavEdEooLONRy4HitpsLSXzusA7g/+zIrIZKxJTkuwJkbtrgVYS+C+Zoy5LNxGyxK7P227GsBKRgH82E6mNLX1JFqWMB7IvsJaovrs4MSo/Vn+t35rlVJKqQFDh7copZQa6G4Djse6gTlBRN7D6tI+DpiNNVxgnzGmWEQuxrqJ3SQibwPfY81TMRrrF/a/0PM3QldiTQD6hIhchtWjogZrWdTpWCt1RPfwOQEwxpRjrZjRmdivROQarOVpv7Nfn51AMjAWqzfEbcC39iGfYC3pep2IJGCtdlFpjPnjATT5KqwVPO4XkbOANVjzX0wEfgAMOYC692OMeVNE/oo10etXIvIaEANcYJ/r6jAr/fSEJ7ESBucDY+3PbJp9XgdwWfBqMt3QtDLLs+3E/C/We32hiNzQ1vmMMVtEZDkwB/hERFYBI4HTgTeBhQfQzl5njKkWkWew/l2vE5G3sF7rs7BWXDkYEjdKKaV6kfb0UEopNaAZY+qAmbQsq3ol8HOspMKDQG1Q7OvA0VhDPY7GmufifKzEw2PAH3qhfWVYyY3fYP1/9VK7jT8A/om1rOiAYCcsZmD1MjgRuAHrptaN1TPgxaDYMqyb9J3A1cD9wE0HeP69wI+wlgpNxnp//h/WCj33HEjd7VgEXAPUAb+wz/c1sMAY80RvnNDuoTQPuB0ryXID1s33GuBE+3PaLSIyDGu52wJgRTttqAP+hjWBbEc3/hdirbY0Euu9zrTP0Wb9A8x1WHOXxGMl1iZhve/tJYWUUkodIqTzc8kppZRSSimllFJKHTy0p4dSSimllFJKKaUGJU16KKWUUkoppZRSalDSpIdSSimllFJKKaUGJU16KKWUUkoppZRSalDSpIdSSimllFJKKaUGJU16KKWUUkoppZRSalDSpIdSSimllFJKKaUGJU16KKWUUkoppZRSalDSpIdSSimllFJKKaUGJU16KKWUUkoppZRSalDSpIdSSimllFJKKaUGJU16KKWUUkoppZRSalDSpIdSSiml1EFERIaLyH+KyFoRqRMRIyI53axrtX18uG15z7ZcKaWU6nsR/d0ApZRSSinVJYcB5wPrgA+BWQdQ11VAQkjZdOB3wOsHUK9SSik1IGjSQymllFLq4PKBMWYYgIhcxgEkPYwx34SWicjPAQ/wcrdbqJRSSg0QOrxFKaWUUuogYowJdCZOREaJyAsiUiIijSKyXkTO6uAYN3Ae8IYxprwn2quUUkr1J016KKWUUkoNMiIyAvgXcBRwA7AQ+AJ4RUQWtnPo2UA88Jdeb6RSSinVB3R4i1JKKaXU4HMnIMBJxpgyu+xdOxnyW9qer+NSoBh4p9dbqJRSSvUB7emhlFJKKTX4zAHeBipFJKJpA94FjhKR0MlLEZFM4FTgBWOMr2+bq5RSSvUO7emhlFJKKTX4DMXqtXFpG/uHAFUhZZdg/SCmQ1uUUkoNGpr0UEoppZQafMqwlrN9sI39BWHKLgU2GGM29FqrlFJKqT7W58NbROR4EXlPRIpFpEpEvhCRn4bEJIvIf4tIqYjUisg/RGRSmLqiReRhESkUkXoRWSsiJ4aJc4jIEhHZKSINIrJBRM7pzetUSimllOpHy4HJwCZjzOdhtsbgYBGZBkxEe3kopZQaZPo06SEik4F/AC7g58A5wGfA0yJypR0jWJNrzQGusWNcwCoRGR5S5dN2PbcDC4BCrEm6poTE3Y01odfjwFzgE+DvIjKvhy9RKaWUUqrXici5InIucLRdNNcuO8n++3YgEfhARH4iIieJyJkicquIPBOmyksBH/Bi77deKaWU6jtijOm7k4ncB/wKSDHG1ASVfwIYY8x0ETkDeBU42Rizyt6fCOwAnjfGXGuXHQWsB35qjHnWLosANgFbjDEL7bKhwB7gAWPMHUHnXAmkGWMm9/Z1K6WUUmrwsFdA+T1wGtYKKf8ArjfG7O7guGnA5cCJQDZQijUE5VZjzI4utqGtL3BrjDG5dsxwrB995gJpWENevgb+Yox5PqguF9Zwl0+MMad3pR1KKaXUQNfXc3pEAl6gPqR8H5BsP18IFDQlPACMMZUi8gZwBnBtUJwXWBoU5xORl4GbRSTK7ro52z5v8//cbc8Dz4jIqK5+0VBKKaXUoUlEYoD3gUbgJ4AB7sHqkTrZGFPbzuEXYg0h+Q+sH2mygNuAz0VkijFmT2fbYYyRTsTkAZd1Is6LlRRRSimlBp2+ntPjOfvxP0QkU0SSROTnwClYv5iA9WXg6zDHbgKyRSQuKG6HMaYuTFwkcFhQXCOwNUwcwBHduRCllFJKHZJ+DowGzjTGvGqMeQ3rh5iRwBUdHPugMeZ4Y8wTxpg1xpgXsYbzJtv1KqWUUqqH9WnSwxjzNZCL1WMjH6gA/gv4N2PMy3ZYil0eqtx+TO5kXErQ4z6z/zie0DillFJKqY4sxBoG0vxjit1j9J9Y32/aZIwpCVO2CyjB6vWhlFJKqR7Wp8NbRGQs8ApWL4t/wxrmcgbwpIg0GGNewBobG26camg3zp6OC9fey7HG3hIbG3v0hAkTOjpEKaWU6jbPjp0Eaq3REZEjs3HEx7cbv7NqJ7VeK35kwkjiXHHtxveGdevWlRpjDqWhEROB18KUbwLO62plInI4MBT4tjPxqampJicnp6unUUoppQa19r6P9PWcHvdhzcOxwB4/CrBSRIYAj4nIS1g9MML1vmjq4dHUu6McaxKwtuLKgx6TRURCenuExu3HGPMU8BTAtGnTzOeff97mhSmllFIH6vvcmfiKigAYs/wdIju4uT35bydTUm91Hnj77LcZET+it5u4HxHZ1ecn7V/t9TRNDlPeJnsC9iexeno83U5c848w2dnZ6PcRpZRSqrX2vo/09Zwek4ANQQmPJp8CQ7B+6diE9StKqCOA3UGrvmwCRtkTioXGeWiZw2MTEAWMCRMH8E1XL0IppZTqaYH6+uaEB04nrqz2RzvUemubEx4RjggyYzN7u4mqRbd6kIbxOHAccIkxJlwixTqZMU8ZY6YZY6alpR1KnWqUUkqpA9fXSY8iYIqIRIaUHwM0YP1K8jqQFbTOPCKSAJxu72vyOuAiqCup/YvJBcB79sotAMuxkiAXh5zzEuBrXblFKaXUQODZ07JwhysrC3G52o3fVdXyg0Z2fDZOh7PX2qZaqaDtHqltJi5Cicj9WL03fmqMea+H2qaUUkqpEH09vOVx4O/AGyLyBNacHguBHwO/N8Z4ROR1YC3wvIjciPUFYgnWLygPNVVkjFkvIkuBP9jry+8ArgRGEZTgMMYUi8jvgSUiUg18gZUYOZkOJhxTSiml+op39+7m55HZ4UZvthac9BiZMLJX2qTCaq9Haqd6j4rIb4CbgWuNMX/twbYppZRSKkSfJj2MMf8rIvOAm4D/BqKBbcDVwJ/smICILAAeAZ6wY9YCM8OsX78YuBe4B0gCNgBzjDFfhMT9BqgBrgPSgS3A+caYN3r8IpVSSqlu8OxqSWJ0Jumxs2pn8/OchJxeaJFqw+vAIyIy2hizHUBEcoDjsRIZ7RKRa7G+t/zGGPOfvdhOpZRSStH3PT0wxrwDvNNBTDnwU3trL64e+KW9tRfnx/qCcU+XGquUUkr1Ec+uoJ4eOR333NCeHv3mz8AvgNdE5Fas+T3uBvZg/4ADICIjsX7Y+a0x5rd22YXAH7CG3r4vIscG1VtljNF5xpRSSqke1udJD6WUUkrtzxM0vMXVmeEtlZr06A/GmFoRORn4PfBXrOG3K4HrgyZbxy530nr+tDl2+Rx7C7YGyO2lZiullFKHLE169KCqqiqKi4vxekMXp1EHC5fLxdChQ0lISOjvpiilDjGth7e0n8QwxrTq6ZGTmNNbzVJhGGN2A+d0ELOTkBVdjDGLgEW91S6llFJK7U+THj2kqqqKvXv3kpWVhdvtRqQ7K9ep/mSMob6+nvz8fABNfCil+kygoQFfYaH1h8NB5PD2l6stbyin2lsNQKwrliHRQ3q7iUoppZRSB6W+XrJ20CouLiYrK4uYmBhNeBykRISYmBiysrIoLi7u7+YopQ4h3ry85ueuzEwkMnRl99ZC5/PQ/+8opZRSSoWnSY8e4vV6cbvd/d0M1QPcbrcOUVJK9amurtyik5gqpZRSSnWOJj16kP7SNjjo+6iU6mtdXblFl6tVSiml1MHIGEP9hg14gnq59jZNeiillFL9zLO7pedGp1Zu0Z4eSimllDqI+KurKX/xRXaceRY7L7iQ8mef67Nz60SmSimlVD/rysotoEkPpZRSSg18xhgaNm6k4m9/o+rtdzD19c37Kl9/naG/+nccfTBFhPb0UH1q9erViAirV6/u1fMUFhayZMkSpk2bRmJiImlpaZxyyil88MEHvXpepZTqDm8XhrcETIDdVS3x2Qkd9wxRSimllOorob06Kl9Z1irhIdHRxJ92GoHa2j5pj/b0UIPSunXrWLp0KYsXL+bYY4/F4/HwxBNPkJuby+uvv86CBQv6u4lKKQVAwOPB27RcrQiu4cPbjS+qLcIT8ACQEp1CQqQur62UUkqp/mUCAeo++5zK116j6u23MQ0N+8VEjRtH0gXnk3j66TgT+u77iyY9BqhXv8zn4Xe3ULCvnswkNzfOHs+ZU7P6u1md0tjYSFRUVK+fxxiD1+slMszSjjNmzOC7774jIqLlIz579mwmTpzIQw89pEkPpdSA4d2zB4wBwJWRgaOD5Wp1ElOllFJKDRSNW7dS+fobVL75Br6Cwv32S3Q0CfPmkXz+eUQfdVS/LBqhw1sGoFe/zGfJsq/I31ePAfL31bNk2Ve8+mV+n7Zj+fLlTJ8+HbfbTWJiImeeeSZbtmxpFZObm8uMGTN44403mDp1KlFRUTzxxBMAlJSUcNFFF5GQkEBSUhKXXnop+/btC3uuZcuWceyxxxITE0NSUhLnnXceu3fvbhWTk5PDJZdcwjPPPMOECROIjIzkrbfeCltfUlJSq4QHQEREBFOmTCE/v29fR6WUak9XV27R+TyUUkop1Z98JSWU/+Uv7Dj7HLYvOJ2yp57aL+ERNW4cw267lbEffkDmfffinjKl31bJ1J4evSjn5vA35N1R7/Vz/dL1XL90fbeO3/nA/C7FL1++nPnz53PyySezdOlSampquP3225kxYwbr168nK6ul18l3333Htddey2233cbo0aNJSUkB4Oyzz2bDhg3cd999jB07lqVLl3LNNdfsd64nn3ySK6+8ksWLF3P77bdTXV3NnXfeyUknncTGjRuJj49vjl21ahXr16/njjvuYOjQoeTk5HT6mjweD2vXrmXy5Mldei2UUqo36cotSimllBro/FVVVL//PlVvvU3txx+D379fjDMxkYT580g84wyiJ0/utyRHKE16qLBuvfVWRo8ezTvvvNPcY2L69OmMGzeORx99lN/97nfNsaWlpbz33ntMmTKluWzFihV89NFHvPTSS1x44YWANbxk7ty55AWtyVxTU8NNN93E4sWLeeaZZ5rLjznmGMaNG8fTTz/N9ddf31xeUVHBunXrSE9P7/I13XnnneTl5fHCCy90+VillOotXV25RYe3KKWUUqov+CoqqHn/farefZfatZ+A17tfjERGEjdzJolnLCRuxgykg2G6/UGTHmo/tbW1fPHFF9xyyy2thoiMGjWK448/njVr1rSKz8nJaZXwAFi7di1Op5NzzjmnVfmFF17I8uXLW8VVVVVx8cUX4/P5msuHDx/OhAkT+OCDD1olPY499thuJTxefPFFHnjgAW677TZOOOGELh+vlFK9pSsrtwDsqtSeHkoppZTqHb7SUqr/sZLq996l9l+fhu3RARAzbRoJZywkYfbsPp2UtDs06dGLujqkpEnTnB713pYPmNvl5P6zJ/XJZKYVFRUYY8jIyNhvX3p6OruCfpUEwsYVFhaSnJyMy+VqVT5s2LBWfxcXFwNw6qmnhm1LcnJyh+fqyBtvvMGiRYv42c9+xl133dXl45VSqjd5guYviuxgeIvH76GgtgAAQRiRMKJX26aUUkqpwc0Yg2fHDmpWraZm9Wrq1q2DQCBsbPSRRxI/axYJ8+YROfzgWGQDNOkxIDUlNvpr9Zbk5GREhKKiov32FRUVMWTIkFZl4cZqZWRkUFFRgdfrbZX42Lt3b6u4prqee+45Jk6cuF89wfN5tHWu9qxcuZLzzjuPs846iz/96U9dOlYppXqb8XjwFlhJDERwjWg/iZFXnUfAWF9EMuMyiXL2/kpZSimllBpcAh4PdZ9+Rs2aNdSsXm2tJNcG95QpxM+eTfxppx1UiY5gmvQYoM6cmtVvS9TGxsZy9NFH8/e//50777wTp9MJwK5du/j444/DTkYaavr06fj9fl555ZXmOT0AXn755VZxxx13HPHx8WzdupWf/OQnPXoda9eu5YwzzuCUU07h+eefx+HQxYqUUgOLJy+/+deUiIx0HB0s9x08n4cObVFKKaVUZ3mLiqj96CMr0fHPjzF1deEDRXAf/QMSZs0mftZpuLoxtcBAo0kPFdbdd9/N/PnzWbBgAVdddRU1NTXccccdJCYm8u///u8dHn/aaacxY8YMrrjiCkpLS5tXb/n6669bxSUkJPDwww9z9dVXU1JSwty5c0lMTCQ/P581a9aQm5vLRRdd1OX2b968mfnz55OamsqNN97IunXrWu0/9thju1ynUkr1tOCVWzoziamu3KKUUkqpzvBXVVH7r39Rt/YTateuxbNjR5uxjpgYYo8/jrjcXOJOPJGItLQ+bGnv06SHCmvOnDm89dZb3HXXXZx//vlERkaSm5vLQw89RGZmZqfqWLZsGddeey1LlizB6XSycOFCHn/8cc4888xWcVdccQUjRozg4Ycf5sUXX8Tr9ZKVlcWJJ5643wSpnfXJJ59QUVFBRUUFM2fO3G+/MaZb9SqlVE/ytlq5RZerVUoppVT3BBobqf9yPbVr11K7di0NX3/d5twcAK7sbOJyTyI+Nxf3tGk4+mDVFWMMhbWFbC7fTLQzmuOyjuv1c4ImPVQ75syZw5w5c9qNWb16dZv70tLSeOmll/YrD5dwmDdvHvPmzWv3XDt37mx3f7BFixaxaNGiTscrpVR/8ASv3DKyaz09dLlapZRS6tDlr66m/ssvqVv3BXXrPqdh41cYj6fNeImKwv2DqcSdeBJxJ51E5KicLs+X2BXegJcdlTvYUhf7eEYAACAASURBVL6Fb8u/ZUv5FjaXb6bKUwXAMRnHaNJDKaWUGuxardwysms9PbITOo5XSiml1ODgLS6mft066j5fR90XX9C4ZUu7PTkQIfrII4mdPp3Y46bjnjq1w7nDuqusvozv933P1oqtfL/vezaXb2ZrxVY8gbaTMFvKt2CM6dXESxNNeiillFL9xBM0vMXVwfCWWm8tJfUlAEQ4IsiM7dxQQ6WUUkodXAK1tTR88w31GzdSv/Er6r/aiK+gsMPjInNyiD1uOjHTpxP7ox/hTEzs0XbVeGrYVrmtObnR9FjeUN7pOuIj4zk85XDGp4zHG/AS6ez9YTWa9FBKKaX6gfF48ObnN//d0ZwerXp5xGfjdDh7rW1KKaWU6hsBjwfP1q3Uf/U19V9tpGHjVzRu3dp+Lw4Ah4OoCeOJOXoaMUcfTczRP+iRCUiNMZTWl7K9cjvbK7ezo3KH9bhvB8X1xV2qKyM2g/Ep45uTHIenHE5GbEaf9O4IpkkPpZRSqh94CwpalqtNT8cRHd1uvE5iqpRSSh3c/JWVNGzeQsO339D47WYaNm+mcds28Pk6PFaionBPmoR72tHEHD0N99QpOOPiut2WGk8Nu6p3sbtqN7uqdrGrynq+o3IH1d7qLtXljnBzWNJhHJZ0GGOTxzI2eSwTkieQFJ3U7fb1JE16KKWUUv3A08WVW3ZW7Wx+rpOYKqWUUgNXoLERz/btNG7dRuPWrTR+/z2NmzdbP3h0hghRhx1G9ORJuCdNxj15ElFjxyIuV6fbYIyhorGCvOo8a6vJY0/1nuYkR1lDWZevK8IRQU5CTnNyo+kxKy4Lhzi6XF9f0aSHUkop1Q8OZOUW7emhlFJK9T9/TS2eXTutBMf3W2ncto3Grd/j3ZPX8fCUIK7sbKInTMB91GSiJ00i+oiJOONiOzyuylNFYU0hBTUFFNYWkl+T35zgyKvOo85X163rinXFMjpxNKMSRzE6cbS1JY0mKy6LCMfBl0I4+FqslFJKDQJdXrmlUpMeSimlVF8LNDTg2b0bz86deHbtCnrchb+0tEt1ictF1NixRB0+gegJhxN9+ASixo/HGR+/X6zH76G4rpi9dXvZW7uXvXV7m5MbBbUFFNYUUuOt6fZ1uRwuRsSPIDshm5yEHLITshkZP5KcxBzS3Gl9Pu9Gb+rTpIeIrAZOamP3u8aYOXZcMvAwcCbgBtYCNxhjvgqpLxq4G7gESALWAzcZYz4IiXMANwFXAOnAFuC3xphXeubKlFJN1q5dy+rVq8nNzWX69On93RylBqyurNxijGnV0yMnMae3mqWUUkodUozPh7eoCG9eHt78fDx5eXjz8q2/8/LwlZR0vVIRXNkjiBpzGFGHHUbUYWOIGj+BqNGjMBFOKhoqKKkvpaS+hJKif1Cyo2S/BEdXVkRpS0xEDCPiRzA8fjjD44aTFZ/FyPiRZCdkkxGbcchMit7XPT2uAhJCyqYDvwNeBxArpfQ6MAq4BqgAlgCrRGSKMSYv6NingfnAjcB24GrgXRGZboxZHxR3N/Ar4DfAOuBC4O8issAY83bPXqJSh661a9dyyimn4PF4iIyMZOXKlZr4UKoNnt1Bc3qMzGk3tryhvHlSsVhXLEOih/Rm05RSSqlBwQQC+MvKrKRGURG+QvvR/ttbVIhvbzH4/d07gctFZHY2kTkjIWcEDSPSqMpKoHRoFKWBasrqyyhvKKesYQWl379E8cZiyuvL8ZmOJy7tjGhnNOmx6WTGZZIRm0FmXKaV5IgbzvD44SRFJQ2qHhvd1adJD2PMN6FlIvJzwAO8bBctBGYAJxtjVtkxa4EdwK+Ba+2yo4CLgJ8aY561y9YAm4Df2vUgIkOxEh4PGGMesc+xSkQOAx4ANOmhVA9ZvXo1Ho8Hv9+Px+Nh9erVmvRQKgzj9eLNb5nMLHLE8HbjQ+fz0C8wSimlDmWBhgb85eX4ysrwlZTgKy7BV1pqPQ/eysrA6z2gcxmH4BuWQn16EpXDYilLjaQoxcGeJD+7Y+oo9+yjouFjK5HRiPVT/PYDv0aHOEh1p5Iek86w2GEMjRnanNjIjM0kPTadlOgU/U7QCf06p4eIuIHzgDeMMU39dxYCBU0JDwBjTKWIvAGcgZ30sOO8wNKgOJ+IvAzcLCJRxphGYDYQCTwfcvrngWdEZJQxZkcvXJ4KY/Xq1cycOZNVq1aRm5vbq+davHgxn3zyCfn5+QQCAcaMGcNll13GVVddhdN5aHTl6mu5ublERkY29/To7fdYqYOVt6CgeXm6iKFDccTEtBuvk5gOLCIyAvg9cBogwD+A640xu9s9kM4PzVVKqUOF8XjwV1Xh37cPf2WltVXYzyvK8ZWX4y8rx1dhPfrLywnUdW+CzrbUxLsoS3ayN9GQH++jKMlQnAjFSUJ5PPidlUBl64O8+xd1VnxkPEPdQ0mNSSXNnWZtMWkMixnGsNhhDIsZRqo79aCcNHQg6u9X8WwgHvhLUNlE4OswsZuAS0UkzhhTY8ftMMaEfuI3YSU5DrOfT8TKuW0NEwdwBFYvEjXI1NfXc8011zBmzBhEhHfffZfrrruOrVu38thjj/V38wal6dOns3LlSp3TQ6kOtJ7EtOMkxvbKlp+MNOnRv0QkBngf67vFTwAD3IPVi3SyMaa2gyo6OzRXKaUGPOPx4K+tJVBbR6C2lkBtjf1YS6CmBn9VNYGaauuxuhp/ddCjnejo6QRGqOpoKEuAsnihPAFK48X+G8oShLJ48LoM0DTkROyta+JccaREpzDEPYQh0UOanzc9prnTSHWnkupOJToiuicvUXWgv5MelwLFwDtBZSnAzjCxTT1BkoEaO66inbiUoMd9xhjTQdx+RORy4HKA7A4mmVMtGhsbiYqK6vXzGGPwer1ERkaG3f/yyy+3+nvWrFkUFBTwzDPPaNKjF02fPl2THUp1IHi5WlcnVm7ZVLap+fmE5Am90ibVaT8HRgPjjTFbAURkI/A91oTpv2vrwM4Oze0Lr36Zz8PvbqFgXz2ZSW5unD2eM6dmdSlG6+haHQdLO7WOgVlHZ8/xyPJvKS6vITsugutOzGHO+BSMx0Og0cOqr/J4+Z/bqKyqJSNaOOfINI5Od+NrqMNXX4e/oZ4tu4vZsG0vvro6khw+xiVGkBoRgPoGTEMDdZW1NNbUE+X14vZ6cXVhWdae5HNAVYy1VcQJ++KgIg4qYq3n++KEiljYFwceV9cTGO4IN4lRiSRGJpIQlUBSVBIp0SkkRSWRHJ3c/Jgcldz8tyYyBi7ZPxfQRycWyQT2AI8ZY34ZVP498Lkx5sch8T8HngKyjTF7RGQFEGeMmR4SdxrwHnCiMeZDEfkzsMAYkxESNxb4DrjUGPPXjto7bdo08/nnn7e5/9tvv+Xwww/vqJqDyvLly7nrrrtYv349kZGRzJw5kwcffJDx48c3x+Tm5uLz+bjpppu4/fbb+eabb3jggQe44YYbKCkp4brrruPNN9/E4XCwcOFCzj77bM4666z9hrcsW7aMhx56iI0bNxIZGclpp53Go48+2irZlJOTw4wZMzj55JN56KGH2LZtG3/7298466yzOn1Nv/jFL3jhhReoqAiXL2sxGN9PpdTAUXTvfVT81fpfT9ovf0nq5T9vMzZgAhz30nHUeq0OBCvOXUF6bHqftLMzRGSdMWZaf7ejr4jISiDaGHN8SPkaAGNMW6vUISK3AbcBScE9VUXkLuBmIMEemtumjr6PdMarX+bzh6XLGbN5Jf9c/ylllRXERrsZOWwYY4dnsrOoiN1Fe6nzesnJGEGjxwMYoiKjyN+bR3RkJH5/gIraWgJ+P7WN9TgQ4mJimTp2HD6fl6raGnyBAI3elhuiuJhYMlOHUlFZSm1DHX6/oaK2jtqGetKSkklNTKawrITR6en4fF7yS0uorK0jOioad1QU8TGx/GDsESDCys8+omhfOQkxsSTGJmAAoek7rRDpFJLj48kZms6X27ZSVl3N6IzhlFSWU1VXy2EZIwgEfNTU1xHnjiEtKZVv9+yg1H4tYqKiGRIfz5j0DKob6olyRbF++1aq6mpJjU8mv2wvXr+XIfGJJLhjCBiDN+jmr66xAZ/fz4kTj2LU0GG8+dlaCirKmuuua2ygtqEel9OJCQRITx5CREQEW/J2E+F0EjABfH4/7qhopowai9fnoaKmpvkcTfWnxidTWLEXBw5yhg2joLyMRp8PfyDQfK54dywJMdFsLdhDfEwch2WOJK90L8X7yvD5A6QmJNHobWDU0GG4o93sLtnL5j17GJKQSPbQDArKSpg86jDGZGawvTCP3cXW/gink5hoN6kJSdQ21JMcF0teyV48Xh9RUZF4fH5io90YwO/3k5qYRFFZCT6fj6SEeFwR1nuamTqUgtJiqutq8XkbqW1sIN7tZljyEHBEUFBaQkZqGo0ejxXja8QfCJCamER5TS0ZQ4aye28BJfvKGZqUwrjhw/l6xzY8Xi9J8fGkJKQwdewRZA/NBMAhhpTYSGIjndQ2+iir9QD2e2cMDuz9UQ5AqG3wUl7bCCYAGDABBEiJcRIX6aC20UtFbSMEAoAfMQEcxs+QGCexLoGAn/rGRvbVNiABHxLw47TPkxQVgdspNHp81NZ7kYDBETA4jbXFOh1EAX6vH5/Hb+2zt4iAIdJARMDg9BscPuvYiP7JQRyQgEBNNNS4odoNNdFCjdsqq4qR5uRGVaxQ5YbKWKiLAtqZyyJCInA53DQ0uvD5ooiUWMalDWVcWhrxkfEkRCawsyTA+99UU1HtYIg7mZ8dN5Gzp4wjITKBSKf1o+pASHj1RB0HSzsPRHvfR/oz6fFr4EFgijFmQ1D5v7B6ZsxuIz7eGFMjIkvtY8eHxJ2PNc/HkcaYTSLyIHAd4A7u7SEiPwL+hZUQeauj9nYr6XFnYkfV9p07uzbgbPny5cyfP5+TTz6Za665hpqaGm6//XYqKytZv349WVnWhzM3N5dvvvmG2NhYbrvtNkaPHk1KSgqTJ0/mhBNOYMOGDdx3332MHTuWpUuXsmLFCvLy8lolPZ588kmuvPJKFi9ezLnnnkt1dTV33nknDQ0NbNy4kXh73eqcnBy8Xi/Jycn85je/YejQoeTk5DBmzJg2r8MYg9/vp6amhpUrV7Jo0SJ+/etfc9ttt7V7/Zr0UEr1pt1XXEHtGmsKh6zHHiNh9qw2Y7dXbueMV88AYEj0EFadv2pATVp2CCY9ioDXjDFXhJQ/AZxnjElr59iXgakdfXdp7/w9kfQ4/oH3Sf/8r7y67K8ETDdXLOgnTrESAob++f7aHYIDw0F4JxrC6YjAH+iZFSf6WoTDxbWnP8ro9In93RQAJODFEfC1bMaHo7nMi9PfaG+e1o8BqzzCV0+Etw6Xr8567qsjwleHw/T958wvUB8FDZFQ37wJDVFWYqIuCmqjxHqMtsuioS5KqI2ykhyNkYZoINoY3AGD2wRwBwzRxhAbCOA2hpiAIdYEiAkYYkyA2IDBHQgQYwzxgQCxgQBxASsuxk4INaVCjT1cpem5sYeuBP9t/RdFCCAgdpmBQNC+4LimGL+x6zAt9YtDELGSZn4DvgDNxzadz+kQHA4HfgNev8HY525qW4QzAqfTqsMTMDT6jNU2u44AQrQrApfTgcdvqPMG7PY6mtvojnIR5XLS4DVUNfr3a0OCO5LoyAhAqPMGqKjz4m9+rawtJTaK2GgXNY1+Smq8zdcbQBAR0hLcJLgjERH21fsoqGzEZ4Jeb3EwIjmGlLhoymo97Cqvxxew6i4nnlccc7j/7Ek9kvho7/tIfw5vuRTYEJzwsG0Cwn37OwLYbc/n0RR3lojEhMzrcQTWajBbg+KigDG0ntfjCPtxvxVlFNx6662MHj2ad955h4gI62Myffp0xo0bx6OPPsrvftfSe7e0tJT33nuPKVOmNJetWLGCjz76iJdeeokLL7wQgNmzZzN37lzy8lpWHa6pqeGmm25i8eLFPPPMM83lxxxzDOPGjePpp5/m+uuvby6vqKhg3bp1pKd37lfOt956i9NPPx0AEeHmm2/uMOGhlFK9zbsreE6P9oe3bCptuQc+MvXIAZXwOES1N7w2+QCObdq/n54ebluwrx5//q6DLuEB4D8I2zwYEh7AQZvwAPAFfHxfuGHAJD2Mw4Xf4aKnP81OX4OdAKnB5a3G6avC4avC4a+CQBViqgiYKgKmGp+zAa8LPBHgc4LPZfA7wRcB/ggIRBj8EYaAy3puIoAIg4kwSISBCIPDZYhwGCIxRBlDpLEeo4whxkCKMUTZSYumcrcxRAUM0R5DVKPBXWmV9/j/2Xqiws7UISGPTYLzso42jg20sz94ipG2Yvz21tZ+X1Ad4dZw8Ngb7cQ02Ftb+2vtrb06quytab8dsz2QzvOe03j43S091tujLf2S9BCRaVgTjP4yzO7XgcUicpIxZo0dnwCcDrwYEncX1uovf7HjIoALgPeCuocux3o7L7bjm1wCfK0rt+yvtraWL774gltuuaU54QEwatQojj/+eNasWdMqPicnp1XCA2Dt2rU4nU7OOeecVuUXXnghy5cvbxVXVVXFxRdfjM/X8i97+PDhTJgwgQ8++KBV0uPYY4/tdMID4IQTTuCzzz6jsrKSlStX8sgjjyAi3HvvvZ2uQymlepLx+fAEJX8jR4xoNz54Po+JQwbGF3YVtptBZ78ed/lYY8xTWEN8mTZt2gF3cchMchObPR7Hv9YQ6Idfhg/EwdnTI/ybfrBxOpz4Awdf0gkgwuFk4pAYouqDfmsVsUarSOhdq9hPHSDBvQTsyS3F/lscdi8eARx2PQ77uX1nJw7AicF6tMp67/bLHxGNPyKaxranLGwWIXW4naUkO8uIiygn1llKlKOEGEcJMc4ynOJv6dsgQoQDAoFA841001SfglivgDgQDMa09CcAEJzN9TgEMMH9JsCDwUvwK9y6X0VL3wYT9A61/O2QwfCv69DU9I4W7Kvv9XP1V0+PS7H+ybwYZt/rwFrgeRG5EesXkSVY/64eagoyxqy3h7j8QURcWCuwXAmMwkpwNMUVi8jvgSUiUg18gZUYORlrCdze08UhJQNFRUUFxhgyMjL225eens6uXbtalYWLKywsJDk5GZfL1ap82LBhrf4uLi4G4NRTTw3bluTk1j+ahTtXexITE5k2zerldMoppxAZGcndd9/NVVdd1TxERyml+pK3sLBludq0NByxse3GB/f0mJiqSY8BoILwPTKSCd+LI1g5EK6rRnLQ/l534+zxLKk9g6EXj6HyX6/gLc/HFZPIiT+aytmzZvDll1/ywb++ZPveClwjJmEarQ61ke44hlR9T8aQBEqrG9m6pwC/z0egvgpw4IpPZt78BaS7AxQVFVG4r4FNBZX47ZscZ2wycZljOcpdgdtfTeG+BjZuy8NbV4krJYuIlCwCJTs47YRjSXcH+Oabb9i+p5AyXxREx1nHH3kyURFOYjcspSRvO7HJaZSS2HwOAKcIEzMTmTohh6lTp/LMS//Hhu+24xoxCV95Pv6acuJyjuKHmdG4/dXUO+PZUJ9M5fef4i3Px+FOIDImgeMnHcbZs2ZQVlbG7lonz//9VTzVZUQkZ+Ip2gZ+D2NH5zB+ZMZ+1+qvr8YR8LJo8c+4dP4J3HDLb/ny600QnYDTHY+/vhoaqshIiSfGaRg/fjzljQ7++dEH4HRBwI/xeYmIiW9+Tb/cvLP5HP76avB7iRoynMTaPSS4XUydOpVP129iV0kVAb8Xh9s6V1R8CrmTcij49nOISWF3zDhqCr7HU7q7uY4xcX5mnXgMSUlJLP/wc/750Qc4E4cRlTUB797tJB1xAteddwqmcFPzfpwunO54IpIzkYYqjh6fQ8nOb6mvr8dExlBYXg3RCdabEtTWCOPFnTyMPbUOiEkicthoPHu3Q90+smMDmIYq0tLScKeN5LOCBuoKt+IaNtr6HNoxcS5D9JDhrNuyE0faKBrzN+MrzyMqdQSzZ57Ilk9XUV9fjzt5GIUyhOgjZvJSljVs2e1yNnenf/XLfJYs+4p6b0syJ3g/0GFM1+rwgvHiBOIinNw+73BmHT6M5RsKeey97/B5/UQguAzEOh38+AcjmDQsgQ07y/nHV3tx+A0uA1EGYnAwJtGNG6Gx3kdjna9L2TWfiaHal021L5viMDMJVUqAUqdhnwtOnT6cWceN4MOiCm55bVMfvl5dqcPB/WcdyRlHZWCM4aSH36eosiFkUIohMyGKt66dwYL/+JCiqoaQZIshIyGKv11+DMYYLvrzWoqrGvcbJDM0PpKnfzKNn//lU0qrGxFpHhiDYEiLc/HYBVMwxvDLv31JeU1jyKARGBLr4p4zJ3Lbq19RUeuxkkJB+5NjXCyZOw6M4cHlm6mus+uQlutJjnZy9cwxPLHqe6obvPbAlpZ2JkRH8LPjRvLcxzuoafAGnd+KiY9ycMEPh4Mx/O/nu6lr9FltCDpHfKSDeUem887XBTR4fK3qcGBwuxycMj4Vg+GDLcU0en3NqcCm183tEo4ZlcLnO0rx+FqSaRXGmsIgM8nd+Q9uN/V50sNOUPwYWG6M2Ru63xgTEJEFwCPAE0A0VhJkpjFmT0j4YuBerKXikoANwBxjzBchcb/BWvHlOiAd2AKcb4x5o8cubBBJTk5GRCgqKtpvX1FREUOGDGlVFq6rdUZGBhUVFXi93laJj717W7/lTXU999xzTJy4/5f5pvk82jtXV0ybNo1AIMCOHTs06aGU6hddWbnFF/CxuXxz899HDDminWjVRzZh9VYNdQQdD5nt7NDcXtV0Y/Hwu5EUZB0+4Ce1Cx9zQ6fruPzyy3ukHbPPubjbdXyy6p2DZiLBJUvai1nYwf6BdS0dxbT8W2i7jo5iulNHekjMeTNH4UqK5OF3t5Bv13Fd0P7JDCe+g2s1AcP/fbqHJ1dspbqygREx0ZwxYRjjEmOoq/JQV+Uhr6CasrIGon0GVwed0xKNg0S7V0fF+4Usfb8Qh0O4PjGObR4PuwNePIkuLpk/ttdfr67WIcC/zzkybOLk2rmTcMclcs3cqWH3Xzl3Eomp1o+sl889NmzMknmTGDo8i8XzosPuv2HeJLIOs9py0bzUsDH/Nn8So47M4lxvdvgEz4JJjLOv5/SII1piTFDM6ZOYODWL0+LaSBKdPolJU7M4YUgb+xdOYqp9jl2ZbcdMm5pF3ug29p9h7QfIbytZdcYkfjQ1i4I29t84u9U0V72i3yYyPdgcaqu3/PCHP6S6uppNmzbhdFoDr3bt2sXYsWO55pprePTRR4GW1Vs++uijVsevWLGCWbNmtZrTA2Du3LksX768eSLTqqoqhg8fznXXXcfdd9/dbpuaVm95/vnnu31dN954I48++ih5eXlkZma2GTfY3k+l1MBR/sIL7L37HgASzz6bzPvaHm63pXwL575xLgDpsemsOHdFn7SxKw7BiUyvx/phZpwxZrtdloO1ZO3NxphH2zl2CvAlsMgYEzw09ytgqzHm9I7O3xMTmSqlDm3GGOqqPFSVNlBVWk91Wb313H6sqWjEBDp3jygOIW1EHOljEskYk0TGYYnEJkb18hV0zsGQeOurOg6Wdh6IAbl6y8HmUEt6NK3eMmvWLK666ipqamq44447qKioYMOGDc0Jg7aSHmDNp7Fx40buvffedldv+dOf/sTVV1/NZZddxty5c0lMTCQ/P581a9aQm5vLRRddBHQt6fHWW2/x7LPPcvrpp5OdnU11dTXvvPMOTz31FJdffjl//OMf2z1+sL2fSqmBY+/991P+l/8BIO2GG0i94vI2Y5d9v4w7Pr4DgFOzT+X3M3/fJ23sikMw6RGL1bO0HrgV63e3u4F4YHLThOsiMhLYBvzWGPPboONfBmYDN9IyNHcBcFyYnqr70aSHUqq3+f0B9u2to7yglrL8GsryaykvqKGqtKHjg4GE1GgyxiSRNT6JkUemEpMQ2cstVmrgrt6iBrA5c+bw1ltvcdddd3H++ecTGRlJbm4uDz30ULs9JIItW7aMa6+9liVLluB0Olm4cCGPP/44Z555Zqu4K664ghEjRvDwww/z4osv4vV6ycrK4sQTT9xvgtTOGjNmDIFAgFtvvZXi4mKSkpIYO3Ys//M//8OPf/zjbtWplFI9wdPNlVt0Po+BwRhTKyInA78H/orVk3olcH3QCnPY5U72n1O/s0NzlVKqXzidDoZkxjEkM46x01rm4/M0+CgvrKU8v5biXVUUbqukvLB2v7lErB4kRWz5VxEIpI9KIGdyKjmTU0nJiNVVyFSf054enXSo9fQ41On7qZTqLdvmzsOzw1o4bNSyV4g+ou15Oi548wK+KbOmiXjqtKeYnjm9T9rYFYdaT4/+pj09lFIDSUOtl6LtlRRtq6RwWyV7d1bh97a9KlRCajQ5k1LJOSqVzLFJOJ1treeqVNdoTw+llFJqADB+f6vlal3ZI9uM9fg9fFfxXfPfOompUkqpgSY61mUlMSalAuD3BSjZU03Bd/vY9XUZhVv3Efwbe1VpAxtX5bFxVR6R7gjGThvK4cdnMnRkvPYAUb1Gkx5KKaVUH/EWFoLXC4AzNRVnXNvL1X5X8R2+gLW0bXZ8NolRiX3SRqWUUqq7nBEO0kclkj4qkR/MHklDjZddm8rYsaGU3d+U4W1oWbnDU+9j04cFbPqwgCFZcRx+fAbjj0kn+v+zd+9xUdb5Asc/PwaGm9zECygakiJo3lZLSFLykqCWppmlra7VHjc7mmfb3ZZdb63b5eTWtrttp92zmnXa1NrcTWO9ZaKZWF7yfksTUAQFBQXlMsP8zh8D4wwMMCAXwe/79ZoXM8/zfZ7nN0Ty8J3f7/v19ajhCkLUnSQ9hBBCiCZSmp5ue268o/pZHlCpnkew1PMQQgjR8ni18aDn4BB6Dg6hzGzh/Ml8zhzMJe1gLgWXbxRGvZRZyI6PQN6crAAAIABJREFUviN1zWki+rcjOq4TYZFBKDeZ/SFuniQ9hBBCiCZiyrArYtq15iKmhy8dtj2XIqZCCCFaOoO7G116taVLr7bcN6UHWaeucPSr85zeexFzeR2QMrOF7/Zc5Ls9F/Fv50Xv+zpz19DOGL3lz1ZRf/LTI4QQQjSR0jT7mR61dG65JDM9hBBCtE5KKTr1CKRTj0DumxLJd7svcOyr81xML7DFXM0tJvWfp9m3MZ1+I7rQ9/4wPH1k6YuoO0l6CCGEEE2k1H6mRw3LW66brnM6/zQACiVFTIUQQrRant7u3DXUOqMj91wBR7/K4uTX2ZRct9a1Krlu5pt1Z9j/+Vn6Dg+j3/AuUvdD1IkkPYQQQogmYp/08KhhecuJvBNYtHWqb0RABD4ePo0+NiGEEKK5tQvzY+gUP+6deCcnv7nA3g3pXM0pAqyFT/ckp3Fgy1n63h9G/xFd8WojyQ9RO0l6CCGEEE1Al5U51vSoYabH4Vyp5yGEEOL25e5hoNeQTkTFhHBy9wX2/DuNKxetyQ9TcRl716dz4Itz9BnWmR+MvkNmfogaSdJDCCGEaALm7Gx0Rbva4GAMbdpUGyv1PIQQQghwM7gRFRNK5D0hnNpjTX7kZV8HwFxSxrebMjiemsWQR3oQeU9HlJJuL6IqSXoIIYQQTaC0Dp1b7NvV3tXurkYbkxBCCNESuLkpIu8Jofugjpzed5E9/07j8vlrABQVmPj83aMc25nFsMcjCQrxbebRiluNW3MPQNxeUlJSUEqRkpLSpNfduXMnbm5uKKUwm81Nem0hhAAoTbfr3FJD0qOgtIC0q2kAuCt3erbt2dhDE0IIIVoENzdFj0EdeWz+PTzwdG98Az1t+zJP5LHqt9/w9brvMZvKmnGU4lYjSQ/R6plMJmbNmkXHjh2beyhCiNtYabrdTI/w6ut5HL101Pa8R1APPA2e1cYKIYQQtyNVnvyYungw/UZ2QblZl7VYzJo9yWms/M03ZBy91MyjFLcKSXqIBldSUtIk19FaU1paWmvc0qVL0Vrz5JNPNsGohBDCOVc7t9jX85BWtUIIIUT1jF7uxD3Sg8lJg+jYzd+2/WpOEev+eICNfzvMtStN87eJuHVJ0kNUa8OGDcTGxuLt7U1AQAATJkzgxIkTDjHx8fHExcWxbt06BgwYgKenJ2+//TYAOTk5TJ06FX9/fwIDA5k+fTr5+flOr7VmzRpiYmLw8fEhMDCQyZMnk2H3BwJAeHg4TzzxBMuXLycqKgqj0UhycnKN7+H06dO89NJLvP3223h4SFVnIUTzKU1Psz03dnWtc4vU8xBCCCFq176LH5N+PpBhU3vi6XOjbOWpPRdZ+eLXpB3KbcbRieYmhUwbUZ/3+jT3EGwOzThUp/gNGzYwduxYhg8fzurVqyksLGThwoXExcWxf/9+OnfubIs9efIkc+fOZcGCBURERNC2bVsAJk6cyIEDB3j55Zfp0aMHq1evZs6cOVWu9c477/DMM88wc+ZMFi5cSEFBAYsXL2bYsGEcPHgQPz8/W+zWrVvZv38/ixYtokOHDoSHh9f4Pp555hkeeeQRhg4dyhdffFGn74EQQjQUbbFgyjhre228o/qZHvbLW6RzixBCCOEa5aa4a2hnIvq356tPvuPk1xcAKLluJvnPBxmYcAf3PNgNN4N87n+7kaSHcGr+/PlERESwfv163N2tPyaxsbFERkby+uuv88Ybb9hic3Nz2bRpE/3797dt27x5Mzt27GDlypU89thjAIwePZrExETOnTtniyssLOSFF15g5syZLF++3LZ98ODBREZGsmzZMubNm2fbnpeXx969ewkJCan1PXzwwQfs2bOH48eP1/8bIYQQDcB84QK6fDmeISgIg7+/07jLxZfJLMwEwOhmpHtQ9yYboxBCCNEa+PgbGTWzN1GxoXzx3jEK86zLW/ZuSCf7+yuMeqo3vgFSL+t2ImkuUcW1a9fYt28fU6ZMsSU8ALp168aQIUPYtm2bQ3x4eLhDwgMgNTUVg8HApEmTHLZXJEDs465evcq0adMwm822R1hYGFFRUWzfvt0hPiYmxqWEx+XLl3n++ed5+eWX6dChg0vvWwghGournVvsZ3lEtY3Cw02W5QkhhBD10SWqLY/+6m669Gpr25Z5Mp+PXtpN5sm8ZhyZaGoy06MR1XVJya0iLy8PrTWhoaFV9oWEhJBud/MOOI3LysoiKCioSh2Nyh1ULl68CMDIkSOdjiUoKKjWazkzf/58OnbsyKOPPmqrI1JcXAzAlStX8PLywtdXengLIZqGq51b7Ot59G4nS1uEEEKIm+HtZ2Tcf/Zjz7/T2J18BjRcv1rKp7//lpgJdzJgVFdb5xfReknSQ1QRFBSEUors7Owq+7KzswkODnbYplTVfyhCQ0PJy8vDZDI5JD4uXLjgEFdxrhUrVtC7d9UbfPt6HtVdy5mjR49y6NChKmMFaNeuHePHj+df//qXS+cSQoibVZpxI1nsaucWqechhBBC3Dw3N8U947oRGhHApuVHKC40oTWk/vM0WafyGfGjXnj5yszK1kySHqIKX19fBg4cyMcff8zixYsxGAwApKens3PnTqfFSCuLjY2lrKyMTz75xGFJy6pVqxzi7r33Xvz8/Dh16hQzZsxosPfw5ptvVukUs2LFCt577z0+//zzKjNOhBCiMTkub6l+pseR3BtJD+ncIoQQQjScLr3aMuXXd7Pxf4+Q/f0VANIOXeKjl3czdnZfgju3aeYRisYiSQ/h1JIlSxg7dizjxo1j9uzZFBYWsmjRIgICAnj++edrPX7UqFHExcUxa9YscnNzbd1bDh8+7BDn7+/P0qVLefbZZ8nJySExMZGAgAAyMzPZtm0b8fHxTJ06tc7jr1xjBCAlJQWAYcOGOdQqEUKIxmZyYXnLxesXySnKAcDb3Ztw//CmGJoQQghx22gT5MWE5weQ+s/THPjc2lWt4FIx/3x9H+P+sx8hEQHNPELRGKSQqXAqISGB5ORk8vPzefTRR/nJT35CdHQ0O3bsoFOnTi6dY82aNYwZM4akpCSmTJmC2WzmrbfeqhI3a9Ys1q5dy4kTJ/jhD39IYmIiixYtwmw2O01eCCFES6ItFkrP2rWrrWZ5i309j17BvTC4GRp9bEIIIcTtxmBwI+6RHiTMugsPL+vv2pLrZj5981vOHrvczKMTjUFprZt7DC3CoEGD9J49e6rdf+zYMaKjo5twRKIxyX9PIURDMWVncyr+fgAMAQFEfr3Ladyfvv0Tfz34VwCm95rOz+/+eZON8WYopfZqrQc19zhuF7XdjwghhHBdTkYBa/+4n+JCEwBu7orRT91FxID2zTwyUVc13Y/ITA8hhBCiEZWm2RUxraFzi9TzEEIIIZpW+65+TPzZD2gT5AmAxazZ8L+HOb4rq5lHJhqSJD2EEI0uNTWVV155hdTU1OYeihBNrvjoUdtzz4g7ncZoraVzixBCCNEMgkJ8efhnPyCggzcA2qLZsuIYB7eereVI0VI0S9JDKTVGKbVdKVWolLqqlNqjlBputz9IKfU3pVSuUuqaUupzpVQfJ+fxUkotVUplKaWKlFKpSqmhTuLclFJJSqk0pVSxUuqAUmpSY79PIYQ14TFixAgWLFjAiBEjJPEhbjtFhw7annv3rfKrDIDMwkzyS6wdp/yMfnTx69IkYxNCCCEE+Ad7M/FnAx06uHy5+jt2J59BykG0fE2e9FBKzQI+BfYCDwOTgY8Bn/L9ClgLJABzgEmAB7BVKRVW6XTLgB8DC4FxQBawUSlVufrlEmAx8BaQCOwCPlZKjWngtyeEqCQlJYXS0lLKysooLS21ddER4nZRfPCQ7blX375OYyrP8rD+KhRCCCFEU/HxNzLhpwMIifC3bftm3Rm++uSUJD5auCbt26mUCgfeBH6utX7TbtdGu+cPAXHAcK311vLjUoEzwC+AueXb+gFTgSe11u+Wb9sGHAF+U34elFIdgJ8Br2qtf1d+ja1Kqe7Aq8C/G/yNCiFs4uPjMRqNlJaWYjQaiY+Pb+4hCdFkzJcuYcrMBEAZjXhFRjqNs6/nIUtbhBBCiObh5evBg3P7s/6dQ5w7ngfAgc/PYioyE/9ElHwo0UI19UyPJwEL8E4NMQ8B5ysSHgBa6yvAOmB8pTgTsNouzgysAkYrpTzLN48GjMAHla7zAdBHKdWtfm9FCOGK2NhYtmzZwpIlS9iyZQuxsbHNPSQhmkzRIbtZHr16oTw8nMbZz/SQIqZCCCFE8zF6uTPu2X4OHVyOfpXF12u/b8ZRiZvR1EmPOOA48JhS6rRSyqyUOqWUetYupjdw2MmxR4CuSqk2dnFntNbXncQZge52cSXAKSdxAL3q91aEEK6KjY0lKSlJEh7itlN88EY9D69q6nlYtIWjl24UO5WZHre++tYKU0r5K6UWKqV2KqUuKaXyy59PaIpxCyGEcI3Bw43RT/em5+AQ27a969M58mVmM45K1FdTJz06AT2ApViXljwAbAbeUko9Vx7TFshzcuzl8q9BLsa1tfuar6suxKocV4VS6j/Ki6zuycnJqS5MCFGurl1apKuLaO2K7Op5ePdxXs8j/Wo6haZCANp6tSXEN8RpnLil1LdWWFdgNrANeAKYApwE/lnpAyAhhBDNzM3gxvDpUdxxV7Bt27aVJ0k7lNuMoxL10aQ1PbAmWfyAH2mt15Rv+6K81keSUuqPgAKcVYqpvICqoeOq0Fr/FfgrwKBBg6R6jRA1qOjSUlG7o7alLHWNF6Kl0Vo7LG+prnPL4dwbkxuliOmt7yZrhZ0BIirNUt2olOoCvAD8uTHGLIQQon7cDG488HRv/vXGt+RkFKAtmo1/O8LDPx1Ahzv8az+BuCU09UyPS+VfN1favgnoCIRinYHhbPZFxQyPitkdtcVdtvsapKreRVaOE0LchLp2aZGuLqK1M2VkYLlyBQBDQAAeXbs6jbNf2iL1PFqEetcK01pfc7IsF2AP1tmwQgghbjFGL3fGPtsXv7ZeAJhLykj+80Gu5hY188iEq5o66XGkmu0VCQlLeYyzBc29gAytdaHduboppXycxJVyo4bHEcATuNNJHMBRRJNJSUlBKdUkf+DGx8ejlKryePPNN2s/WNRZRZcWg8HgUpeWusYL0dIUVWpVW90MjsozPcQtrzFqhQ3FWvNMCCHELcg3wJNxc/rh6WNdKHH9aimfvXWA4mumZh6ZcEVTJz3+Wf51dKXto4FzWutsYC3QWSk1rGKnUsofeLB8X4W1gAcw2S7OHev62E1a65LyzRuwJkGmVbrmE8BhrfWZm3pH4pbWt29fUlNTHR6PPfZYcw+rVaprlxbp6iJau6JDN4qYevdxvrTFbDFz/PKNv3V7t5OkRwtQ71phziil/gOIAV6pKUZqjAkhRPNqG+rLmGf64OZu/RAjL/s66985RJnJ0swjE7Vp6poe/wa2An9RSrUDvgcewVrQdGZ5zFogFfhAKfVzrMtZkrDOBnmt4kRa6/1KqdXAm0opD6zrZJ8BumGX4NBaX1RK/R5rzZACYB/WxMhwHFvgigZSUlKCp6dn7YE3SWuNyWTCaDRWG+Pn50dMTEyjj0VYxcbG1il5Udd4IVqS4gO1d245nX+a4rJiADr6dKSdd7smGZu4QSk1kqrLbp3ZprWO5yZqhTm5djzwR+D/tNZ/ry5OaowJIcStoVOPIEbO6MWmZdbJfee/y2fLe0cZ9WRvlJvU5LpVNelMj/JPRSYAq4AXgc+wfroxTWu9ojzGAozDegPyNtbZIWXA/Vrrs5VOORN4F/gtkAx0ARK01vsqxf26POY5YCMwBHhUa72ugd9iq7JhwwZiY2Px9vYmICCACRMmcOLECYeY+Ph44uLiWLduHQMGDMDT05O3334bgJycHKZOnYq/vz+BgYFMnz6d/Px8p9das2YNMTEx+Pj4EBgYyOTJk8nIyHCICQ8P54knnmD58uVERUVhNBpJTk5unDcvhBA3QZeWUnzsmO11dTM9pJ7HLWEnEO3CY3p5fIPUClNK3Y31g54vgKduYvxCCCGaUI+7OxL78I3KCd/tuciuT08344hEbZp6pgda66vAs+WP6mIuA0+WP2o6VxHw0/JHTXFlWJMev63reG/GsajoprxcjaKPH6s9yM6GDRsYO3Ysw4cPZ/Xq1RQWFrJw4ULi4uLYv38/nTt3tsWePHmSuXPnsmDBAiIiImjb1jqzd+LEiRw4cICXX36ZHj16sHr1aubMmVPlWu+88w7PPPMMM2fOZOHChRQUFLB48WKGDRvGwYMH8fPzs8Vu3bqV/fv3s2jRIjp06EB4eHiN7+Pbb78lICCA69evEx0dzXPPPcdTT8m9ZWNITU0lJSWF+Ph4mb0hbnvFJ79Dl5YC4NG5M+7BwU7jpJ5H8ysvLFqXehr2tcLs63q4XCtMKdUH64cw+4FJWmtZFC6EEC3IgAe6UnCpmMPbMwHYtzGDwI4+RN8rNalvRU2e9BAtw/z584mIiGD9+vW4u1t/TGJjY4mMjOT111/njTfesMXm5uayadMm+vfvb9u2efNmduzYwcqVK201NEaPHk1iYiLnzp2zxRUWFvLCCy8wc+ZMli9fbts+ePBgIiMjWbZsGfPmzbNtz8vLY+/evYSEhNT6HoYOHcq0adOIjIwkPz+f999/n6effpqsrCzmz59f/2+OqELazwrhqNi+nke/vtXGHbl0o7631PNoMexrhb1ot92lWmFKqR5YZ7N+D4wr/wBHCCFEC6KU4r4pPSjMLyHtYC4A21edpGO3ANqG+jbz6ERlTV3IVLQA165dY9++fUyZMsWW8ADo1q0bQ4YMYdu2bQ7x4eHhDgkPsP4RbDAYmDRpksP2ykVEU1NTuXr1KtOmTcNsNtseYWFhREVFsX37dof4mJgYlxIeAL/5zW/48Y9/zLBhwxg/fjyffPIJEyZM4KWXXqKwsLD2EwiXSftZIRw5dG7p4zzpUVpWyom8G0sGZaZHy6C1vghU1Ar7qVIqXin1P1hrhf3KPlYptUUpdcrudQesCQ8jsAjopZSKsXs0fkEsIYQQDcLN4MYDT/UmqDzJYS61sGnZEcymsmYemahMZno0orouKblV5OXlobUmNDS0yr6QkBDS09MdtjmLy8rKIigoCA8PD4ftHTt2dHh98eJFAEaOHOl0LEFBQQ6vnV2rLh5//HH+9a9/cejQIZmJ0IAq2s9WzPSQ9rPidufQuaWaIqbf5X2H2WIGoItfFwI8A5pkbKJB/BooxForLAQ4gfNaYQYc77V6AXeUP//MyXm7AWk3O7grV66Qm5tLafkSK9HyGI1G2rVrR0CA/LsgxK3Mw9PAA0/15h+v7qHMbOHSuUJS15zmvimRzT00YUeSHqKKoKAglFJkZ2dX2ZednU1wpbXpVWu5WZMTeXl5mEwmh8THhQsXHOIqzrVixQp69676Kad9PY/qrlUXFR0Gb/Y8wlFF+9n61vSQeiCiNSkrLKT09PfWFwYDXtHO6zs5LG2RWR4tiqu1wsq7vdi/TqEeXV7qori4mAsXLhAWFoa3t7f8vmuBtNYUFRVx7tw5PD098fLyau4hCSFq0C6sDUMe6c72VScBOLj1HGHRbenWVzqy3Sok6SGq8PX1ZeDAgXz88ccsXrwYg8EAQHp6Ojt37nRajLSy2NhYysrK+OSTTxyWtKxatcoh7t5778XPz49Tp04xY8aMhn0jTnz44Yd4e3vTp5pOCqL+7NvP1iWJIfVARGtTfPgwlCdYPXv0wM3Hx2mcfRFT6dwiGkpOTg7t27fHp5qfO3HrU0rh4+NDu3btyMnJoUuXLs09JCFELe4a1pmzxy5z5oC1vscX7x3jsQX34BsoqxZvBZL0EE4tWbKEsWPHMm7cOGbPnk1hYSGLFi0iICCA559/vtbjR40aRVxcHLNmzSI3N9fWveXw4cMOcf7+/ixdupRnn32WnJwcEhMTCQgIIDMzk23bthEfH8/UqVPrPP4vv/ySV199lYkTJxIeHs6VK1d47733WLt2La+++iq+vlJgqLHUNYnhrB6IJD1ES2Zfz6O6VrXgONOjV3CvauOEqIvi4mKXa1+JW5ufnx+XLl1q7mEIIVyglGL4D6NZlf4N1/JLKL5mYvO7R3jouQG4ucmMu+YmhUyFUwkJCSQnJ5Ofn8+jjz7KT37yE6Kjo9mxYwedOrnWimnNmjWMGTOGpKQkpkyZgtls5q233qoSN2vWLNauXcuJEyf44Q9/SGJiIosWLcJsNlcpkOqq0NBQLBYLCxcuZMyYMUyfPp2cnBw+/PBDXnjhhXqdU7imrkVNK+qBGAwGqQciWgVXOrcUmYs4nX8aAIWSpIdoMGaz2aEIuWi53N3dMZvNzT0MIYSLvNp4MOrJXrZFjJkn8tm3Mb3mg0STkN+KoloJCQkkJCTUGFPTH7Tt27dn5cqVVbZX1NWwN2bMGMaMGVPjtdLS0mrcb6979+6sX7/e5XjRcGoqaups2cvN1gMR4lbjSueWE5dPUKat1d27BXTD10Nmn4mGI3U8Wgf57yhEy9M5MohBieHs+XcaAN+sO0NYzyBCIqQocXOSpIcQokFVl8SoadmLfT0QIVoy04ULmMsLNisfHzy73+k0Tup5CCGEEK3T3WPDyTyRR9bpK2iLZtPfjjBl/t14+njUfrBoFLK8RYjbQGpqKq+88gqpqalNcr3Y2FiSkpIcEhn2y15KSkpYvHhxk41HiKZSfMiunkevXqjyQtCVST0PIZpXSkoKSqlal2DerKysLJKSkhg0aBABAQG0b9+eESNGsH379ka9rhCi+bgZ3Bj5ZC88fazzCwouF5Py4Qmns91F05CkhxCtXMUMiwULFjBixIhmSzRULHtxc3PDYrHw+eefN+t4hGgMRQdu1PPw6ut8aQvITA8hbhd79+5l9erVjB8/nn/84x+sWLECLy8v4uPj+eyzz5p7eEKIRuIf7E38tCjb61N7LnJsZ1Yzjuj25vLyFqWULzAK6ApUbhiutdZLG3JgQoiGcat0R6lY9rJ48WI+//xzLBaLdGsRrU6R/UyPvs47txSWFpJ2NQ0Ad+VOz6CeTTG0VkfuS0RtSkpK8PRs/HaRWmtMJhNGo7HKvri4OE6ePOlQXHb06NH07t2b1157jXHjxjX6+IQQzaP7wA6cPd6Jo1+eB+DLj76jS3Rb/NpW/pUlGptLMz2UUvcAZ4A1wJvAq04eQohb0K3UHSU2NpbFixfj6el5S4xHiIakLRbH5S3VzPQ4eumo7Xn3oO54ucvNT13JfUnT+de3mQx59Qu6/TKZIa9+wb++zWzyMWzYsIHY2Fi8vb0JCAhgwoQJnDhxwiEmPj6euLg41q1bx4ABA/D09OTtt98GICcnh6lTp+Lv709gYCDTp08nPz/f6bXWrFlDTEwMPj4+BAYGMnnyZDIyMhxiwsPDeeKJJ1i+fDlRUVEYjUaSk5Odni8wMLBKNx13d3f69+9PZmbTfy+FEE0rbnIPgkJ8ADCXlPHVx98184huT64ub/kjkA3cBwQC3pUePo0yOiHETauYYbFkyRKH4qHQ9LU+ahuPEC1Z6ZkzWK5dA8DQrh3uoaFO4+zrefQO7t0kY2uF5L6kCfzr20yS1hwiM78IDWTmF5G05lCTJj42bNjA2LFjadOmDatXr+Z//ud/OHz4MHFxcVWSBidPnmTu3LnMmTOHjRs3MmLECAAmTpzIZ599xssvv8zq1atxd3dnzpw5Va71zjvvMGnSJHr16sU//vEP/vKXv3D48GGGDRtGQUGBQ+zWrVt54403WLRoERs2bKBvDcvZKistLSU1NZXo6Oh6fEeEEC2Jh9FA/BM3lrmc/jaH9COXmnFEtydXl7fcBTymtf6qMQcjhGgczrqj1NRNpTnGI0RLZ9+q1rtPn2rbTdrX8+jdTpIe9ST3JXUQ/kvnsxDqo8hUxrzV+5m3en+9jk97dWyd4ufPn09ERATr16+3zZiIjY0lMjKS119/nTfeeMMWm5uby6ZNm+jfv79t2+bNm9mxYwcrV67kscceA6zLSxITEzl37pwtrrCwkBdeeIGZM2eyfPly2/bBgwcTGRnJsmXLmDdvnm17Xl4ee/fuJSQkpG7fAGDx4sWcO3eOv//973U+VgjR8nTqHkhUTAjHd2UDsH3VSR5feA/uHs6LnYuG5+pMj3NIe1shWhVntT6EEPVXfOhGEdPq6nmAzPRoIHJfchu4du0a+/btY8qUKQ5LRLp168aQIUPYtm2bQ3x4eLhDwgOsCX6DwcCkSZMctlckQOzjrl69yrRp0zCbzbZHWFgYUVFRVbqtxMTE1Cvh8eGHH/Lqq6+yYMEC7rvvvjofL4RomWIndrd1c7maU8S3mzJqOUI0JFeTHi8BPy8vGiaEaAVupVofQrQGDp1b+jif6p5XnEdmoXVKvtHNSI/AHk0ytlZI7ktuA3l5eWitCXWyVCwkJITLly87bHMWl5WVRVBQEB4eHg7bO3bs6PD64sWLAIwcORIPDw+Hx6FDh7h0yXE6urNr1WbdunX86Ec/4qmnnuLFF1+s8/FCiJbLx99IzPgI2+u969O5knO9GUd0e3H1U5L7gE7A90qpL4HLlfZrrfWsBh2ZEKJRVdTWSElJIT4+XpabCHETLCUlFNsVVvTu47wNrX0R055te+Jh8HAaJ2ol9yV1UNclJRUqanoUmcps27w9DLwysQ8TBnRuqOFVKygoCKUU2dnZVfZlZ2cTHBzssM3ZkrLQ0FDy8vIwmUwOiY8LFy44xFWca8WKFfTuXXUGlp+fX63XqsmWLVuYPHkyDz/8MH/5y1/qdKwQonXodV9nju3M4mJ6AWVmC1+u/o6xz/at878nou5cnenxINZ2cBZgSPnryg8hapWSkoJSqsmWUuTl5TFv3jy6du2Kp6cnYWFh/OhHP2qSa7cEsbGxJCUlScJDiJtUcuyCsv1yAAAgAElEQVQYmM0AGMPDMQQEOI2zr+fRK7hXk4ytlZL7kiYwYUBnXpnYh86B3iigc6B3kyU8AHx9fRk4cCAff/wxZWU3Ei/p6ens3LmTYcOG1XqO2NhYysrK+OSTTxy2r1q1yuH1vffei5+fH6dOnWLQoEFVHj171r+1dGpqKuPHj2fEiBF88MEHuLm5evsthGhN3NwUQx/vCeU5jvTDlzhzILd5B3WbcGmmh9a67nP4hGhmeXl5xMXFoZTit7/9LeHh4Zw/f56vvpK6d0KIhmVfxNTLxXoed7VzPhtE1E7uS5rOhAGdmyzJ4cySJUsYO3Ys48aNY/bs2RQWFrJo0SICAgJ4/vnnaz1+1KhRxMXFMWvWLHJzc+nRowerV6/m8OHDDnH+/v4sXbqUZ599lpycHBITEwkICCAzM5Nt27YRHx/P1KlT6zz+48ePM3bsWNq1a8fPf/5z9u7d67A/JiamzucUQrRcHcP96X1fZ45sty51/fKjk3SJbouHpxQ1bUxSBEw0uJKSEjw9PRv9OlprTCYTRqPR6f6kpCQKCws5dOgQ/v7+tu2Vi5cJIcTNKjpk37ml+taVR3KliKkQdZGQkEBycjIvvvgijz76qK0G1WuvvUanTp1cOseaNWuYO3cuSUlJGAwGHnroId566y0mTJjgEDdr1iy6dOnC0qVL+fDDDzGZTHTu3JmhQ4dWKZDqql27dpGXl0deXh73339/lf1a63qdVwjRcsWMj+D0vosUF5oovFzCnn+nEfvwnc09rFbN5fl1SilPpdTTSqn/U0olK6XeV0o9qZRq/L9uRbPYsGEDsbGxeHt7ExAQwIQJEzhht2YdrMUw4+LiWLduHQMGDMDT05O3334bgJycHKZOnYq/vz+BgYFMnz6d/Px8p9das2YNMTEx+Pj4EBgYyOTJk8nIcKxqHB4ezhNPPMHy5cuJiorCaDSSnOy8Dd+1a9d4//33efrppx0SHsIqNTWVV155hdTU1BZ9DSFuFcUHa+/ccvH6RS4WWYslert7ExEQ4TROuEbuS24fCQkJpKamUlRUxJUrV/j000+rLDdJSUlhx44dTo9v3749K1eupKCggPz8fN5//33Gjx+P1rpKEe8xY8awdetWrl69SlFREadOnWL58uX06nVjOVpaWhoffPCBS2P/0Y9+hNa62ocQ4vbj5evBvRO7217v/zyDy1nXmnFErZ9LMz2UUu2BL4DewAUgG/gB8AQwTyk1XGstC5Iq+fNPvmjuIdg8+87wOsVv2LCBsWPHMnz4cFavXk1hYSELFy4kLi6O/fv307nzjamuJ0+eZO7cuSxYsICIiAjatm0LwMSJEzlw4AAvv/yybTrpnDlzqlzrnXfe4ZlnnmHmzJksXLiQgoICFi9ezLBhwzh48KBD8bCtW7eyf/9+Fi1aRIcOHQgPD3c6/r1791JUVETHjh155JFHSE5OxmAwMHLkSH7/+9/TrVu3On0/WpPU1FRGjBhBaWkpRqORLVu2VKnpkZqaelMFTl25hhCtRVl+PqXp6dYXHh54RkU5jbOf5RHdNhqDm0xlrS+5LxFCCNGSRcWEcOyr82SdvoKlTLN91QnGzxsgRU0biavLW/4bCAVGaa23VGxUSo0AVpbvf6rhhyeay/z584mIiGD9+vW4u1t/TGJjY4mMjOT111/njTfesMXm5uayadMmh6mfmzdvZseOHaxcudK2nGT06NEkJiZy7tw5W1xhYSEvvPACM2fOZPny5bbtgwcPJjIykmXLljFv3jzb9ry8PPbu3UtISEiN4z9//jwAP/vZz0hMTGTt2rXk5OSQlJREfHw8hw8frlKJ/XaRkpJCaWkpZWVllJaW2orKViQ5gJtOWDi7hiQ9RGtVdOhGbQCvnj1xq2Z5n309j97tZGnLTZL7EiGEEC2WKi9q+tHLu9EWTeaJfL7bc4HIu2v+G0fUj6vLW8YBSfY3FgDlr+eX7xetxLVr19i3bx9TpkyxJTwAunXrxpAhQ9i2bZtDfHh4eJW1rqmpqRgMBiZNmuSwvXI9jdTUVK5evcq0adMwm822R1hYGFFRUWzfvt0hPiYmptaEB4DFYrGNedWqVYwaNYqpU6fy0UcfkZGR4fK01NYmNTWVjIwM3N3dMRgMGI1GgoODGTFiBAsWLGDEiBG8//77TpMidREfH4/RaLRdo/L04ZrGJ0tiREtTdMh+aUv19TwOX7qRHJF6HjdN7kuEEEK0aO3C2tD3/jDb668+PkVJkbkZR9R6uTrTwx/IqGZfevl+UUldl5TcKvLy8tBaExpatTh+SEgI6RXTuMs5i8vKyiIoKAgPDw+H7R07dnR4ffGidX37yJEjnY4lKCio1ms5ExwcbDuv/TSxwYMH4+/vz7fffuvSeVoT+yUnBoOBH//4x0yfPr3KrAwAo9Fom+nhasLCXmxsLFu2bKnTEhlZEiNaqmIXOrdorTmae9T2Wjq33DS5LxFCCNHi3TOuG9/tucD1K6Vcv1rKvg1pxD7cvfYDRZ24mvQ4CTwObHSyb0r5ftFKBAUFoZQiOzu7yr7s7GxbQqGCs7VnoaGh5OXlYTKZHBIfFy5ccIirONeKFSvo3bvqJ5+Vl6C4us6t4lzVxbu5uVzDt9WwT24AdO3a1ZZUsE9yTJ8+3ZYMqW9ND7AmPupybFMsibnZWiVCVKa1duzcUs1Mj/PXzpNXkgeAn4cfXfy6NMn4WjG5LxFCCNHiGb3dGfJIdzYvs34wcnDrOfqN6IqPv/PulKJ+XE16/B5YVl447O9AFhACPIZ1CumTjTM80Rx8fX0ZOHAgH3/8MYsXL8ZgsBbbS09PZ+fOnU6LkVYWGxtLWVkZn3zyicOSllWrVjnE3Xvvvfj5+XHq1ClmzJjRYO8hLCyMQYMGsWnTJrTWtuRHxXKau+++u8Gu1VJULDmpPIOjulkZTZ0UqG58DUVmkojGYD5/nrJLlwBwa9MGYzXFle2LmPZq1ws3dfslXhuY3JcIIYRoFXoM7Mi+DRlcyizEXGph36Z04h7p0dzDalVcSnpord9VSvkBC4FEQAMKuAzM01q/58p5lFLxwFYnu65orQPt4oKApcAEwBtIBf5La33I/iCllBewBGu19kBgP/CC1np7pTg34AVgFtabohPAb7TWn7gy7tvRkiVLGDt2LOPGjWP27NkUFhayaNEiAgICeP7552s9ftSoUcTFxTFr1ixyc3Nt3VsOHz7sEOfv78/SpUt59tlnycnJITExkYCAADIzM9m2bRvx8fFMnTq1Xu/h1VdfZfTo0TzyyCM8/fTT5OTk8Otf/5qoqKh6n7Mlq2nJSV1nZTSG+iyJqQsprioag/0sD68+d6GqmUUm9TwaVkPdlwghhBDNTbkp7nmwG+vfsd5THN6WyYBRXfENkA7sDcXVmR5orf+olPof4C6gLdYbi8Naa1M9rjsX2G332laxRVk/kl8LdAPmAHlAErBVKdVfa33O7rhlwFjg58D3wLPARqVUrNZ6v13cEuBnwK+BvVg/CfpYKTVOa/3veoy/1UtISCA5OZkXX3yRRx991PbJ+2uvvUanTp1cOseaNWuYO3cuSUlJGAwGHnroId566y0mTJjgEDdr1iy6dOnC0qVL+fDDDzGZTHTu3JmhQ4dWKZBaFyNGjGDdunUsXLiQhx9+GF9fX8aOHcvSpUvx9vau93lbslshuVGTxhxfY88kEbenogN2RUz7VF/EVOp5NLwGvi8RQgghmk23fu1o39WPnIwCykwW9m5IZ+iUyOYeVqtRbdJDKfU98LDW+kDFtvIbiYaoAHlMa72rmn0PAXHAcK311vKxpAJngF9gTZiglOoHTAWe1Fq/W75tG3AE+E35eVBKdcCa8HhVa/278mtsVUp1B14FJOlRjYSEBBISEmqMqamzR/v27Vm5cmWV7VrrKtvGjBnDmDFjarxWWlpajfudSUxMJDExsc7H3Yoaox5FUWEpx77K4nLWNTw8DRi9DHh4umP0vvHV6OmOh5cBo1fFVwMeXu64ubWsPuKNPZNE3J4cOrf0c570sGiLY7tamelRL418XyKEEEI0G6Wssz2S/2y9rzjyZSY/eKArbYK8mnlkrUNNMz3CgeaYU/MQcL4i4QGgtb6ilFoHjKc86VEeZwJW28WZlVKrgF8qpTy11iXAaMAIVO5R+gGwXCnVTWt9pvHejhA3r6HrUVzOusaBL85yYlc2ZSZLvc7hbnTDw8sdY3lCJLiTL/0f6Epwpzb1Hldju9VnuoiWRZvNFB+5MYPDq4/zzi0ZVzMoNBUC0NarLaG+rnWhElWE0zz3JUIIIUSju+OuYDp28+fCmatYzJo969OJn9qzuYfVKjRXJbW/K6XKlFKXlFIfKqW62u3rDRx2cswRoKtSqo1d3Bmt9XUncUagu11cCXDKSRxAr/q+CSGairN6FHWltebssct89tYBVr74NUe/PF9jwuP77CNs/PZDvs8+4nS/udRC0dVSrlwsIiejgOO7slm15Bs+f/coV3KK6jw+IVqaktOn0UXWn3X3kBA8OnRwGvdN9je2572De7vchUoI0XhSUlJQStXr92ldzZw5k+joaPz9/WnTpg39+vXjT3/6k62bmhBCgHW2x+AHI2yvj311nqu5ck/dEGqr6VF1HcLNuQK8DmwDrgIDgF8BqUqpAVrri1jX5aY5OfZy+dcgoLA8Lq+GuLZ2X/N11TUVleOqUEr9B/AfYG3vKURjqW3pys3UoygzWTi5+wIHtmRwKfNalf3tu/oRFRvCgSN72bVnJ/2i7sZcUsafl/8Ck7kUd3cPFj71Z8I79MZUbKa0pAxTcTU3ahpOfJ3Nd7svEB3XiUGJ4bQJaroPZqUlrWhKRQft63k4n+UBkHI2xfZ8SOchjTmk20FD35fUS0MVSFdKRWD9oMcb6KG1rvwBjWgFioqKmDNnDnfeeSdKKTZu3Mhzzz3HqVOn+MMf/tDcwxNC3ELCooMI7R5A1qkrWMo0e9anMfyH0c09rBavtqTHi0qpXBfOo7XWtfYb1Vp/i+Pa221Kqe3AN1iXrczHWn3d2U1N5Y/GGjrO2Xj/CvwVYNCgQbfEjZZofVxZulKfehRFBaUc3p7JoW2ZFF0tddypoFvfdvQf2ZXQ7gHs2rWLWb+YahvDjBkzMFtMWLSFMosZt64XmZb0lO1wbdGYSq3Jj9JiM9fyS9j/+VnSD1tbd1osmiPbMzmemkWf+DB+MLor3m0at9+4tKQVTa34oF3nlr7Okx7XTdf5Outr2+thYcMafVytXIPel9yEhiqQ/jbWD4Ruz+rajaykpARPz8ZPvGutMZlMGI3Of8+tWrXK4fUDDzzA+fPnWb58uSQ9hBAOKmZ7/Ov31j+Zj6dmMzDhDgLa+zTzyFq22pa39Afuc/FRL1rrfcBJ4O7yTZdxPvsiqPxrnotxl+2+Bqmq84krxwnRLFxduhIbG0tSUlKtf8hfzrrG1r8f571f7eSbdWccEh7uRjf6xIcx7cUYxjzTl049Am3Te+3HAGA0GjEYDE5nlig3hdHLHd9AT4JCfAmLasu4/+zHxJ/9gE49bN2nKTNZ2L85g/+bn8o3676ntMhMY2mIJUBC1IXjTA/nRUx3Ze2i1GL9f6p7YHfC/MKaZGytWKPfl9SmcoF0rfVWrfUsYCvWAumunmcq1hmv/904I209NmzYQGxsLN7e3gQEBDBhwgROnDjhEBMfH09cXBzr1q1jwIABeHp68vbbbwOQk5PD1KlT8ff3JzAwkOnTp5Ofn+/0WmvWrCEmJgYfHx8CAwOZPHkyGRkZDjHh4eE88cQTLF++nKioKIxGI8nJyXV6T8HBwbi7u9xEUQhxG+ncM4jOPa1/qmqLZndyWvMOqBWo7V/bCVrrb2qJaQj2szGOAA84iekFZGitC+3iHlZK+VSq69ELKOVGDY8jWAuf3YljXY+KWh5HEaIZNUQrVa01547ncWDLjdkW9nwDPel7fxi94jrh5etR6ximT5/O9OnTa51ZorVGFxdjKSzEzc+P0O6BTPjpAM4eu8yuf31PTkYBAKbiMnYnp3Ew5Rw/GH0HfeLD8DAanJ6zvktUpCWtaEqW69cp+e476wul8LrLeRta+6Ut8V3iG39grV9T3ZfU5KYLpCulgoA3sCZPnP9jKABrwmPs2LEMHz6c1atXU1hYyMKFC4mLi2P//v107tzZFnvy5Enmzp3LggULiIiIoG1b62djEydO5MCBA7z88sv06NGD1atXM2fOnCrXeuedd3jmmWeYOXMmCxcupKCggMWLFzNs2DAOHjyIn5+fLXbr1q3s37+fRYsW0aFDB8LDw2t8H1prysrKKCwsZMuWLbz33nv84he/aJhvkhCi1Rn8YDfWnLB+1n/ya+tsj6AQ32YeVcvV7ClmpdQgIBL4qHzTWmCmUmqY1npbeYw/8CDwod2ha4EXgcnAe+Vx7sAUYFN55xaADViTINPK4ys8ARyWzi2iudW2dKWmJIAr9Tr6j+zCnQM7YDC4OT3XpZyz+JsusOylJPbsPUjMnRF0PLQbdb2Yx3Up6rO1pH+0Cn3tOrrwGrrwGpbCQsquWb9SXohNeXjgPWggbYYOo+PQ+3jklwNJO3CJXWu/Jy/LOraSa2ZS15zmwJazDEoMp1dcJwzuNyac3cwSFWlJK5pS8dGjYLEWAvbsfieGNlVvRCzawrZz22yvJenRarhSIL22e4vXgONa6/9TSv2oYYfnxOKARr+EyxZfqVP4/PnziYiIYP369baZEbGxsURGRvL666/zxhtv2GJzc3PZtGkT/fv3t23bvHkzO3bsYOXKlTz22GMAjB49msTERM6dO2eLKyws5IUXXmDmzJksX77ctn3w4MFERkaybNky5s2bZ9uel5fH3r17CQkJcel9JCcn8+CDDwLW6eu//OUvWbBgQZ2+F0KI20do90C69mpLxtHLaA27k9N44ClpeV9fTZr0UEr9HeuNwD4gH+u0ziQgE/hTedhaIBX4QCn1c6zLWZKwzgZ5reJcWuv9SqnVwJtKKY/y8z4DdMOa4KiIu6iU+j2QpJQqKL/2FGA41ha4QjQ7Z61UU1NTef/993n33Xcxm81VkgCFecV89taBqskOW72OLoR2D7R1irBPKHgYPVj0yyfofuIYPfZfwlhmnTPeH2DPYUqoO20ycT11F9dTd3Hxv/8bj06d8B16H2PjhnLeeCd7NmVyNbcYgOtXStm+6iTfbs7gnge7EXlPCG5uVZfZpKSk1Cl5IS1pRVMpsq/nUc3SlkO5h7hcbF1B2darLX3aVV/sVLQo9S6QDqCUigOmY70HcsntWlj92rVr7Nu3j1/96lcOS0G6devGkCFD2LZtm0N8eHi4Q8IDrL/7DAYDkyZNctj+2GOPsWHDBoe4q1evMm3aNMzmG0sxw8LCiIqKYvv27Q5Jj5iYGJcTHgD33Xcfu3fv5sqVK2zZsoXf/e53KKV46aWXXD6HEOL2cs+DEWQctf5q+W7PBQYm3EFw5za1HCWcaeqZHoeBx4E5gA+QDawBFmmtcwG01hal1Djgd1gLfHlhTYLcr7U+W+l8M4GXgN8CgcABIKG8Toi9X2Pt+PIcN6qsP6q1Xtfg71CIBlCRoCguLqbivto+CXDpfCGf/ekAhXk30hPuRjei7+1E3+FhBHZwLHakteYf6/9BcUkx2qLRRWVc+NOnjA8OvumxlhqgxAP8ih23m86fJ3/VavJXrUZ5eHDf3fdwoWcCR3Pac73QOjuk4FIxW1YcY9+GdAY/FMGwYcNkiYpoEYoO2dXzqKaI6bazN/4gGxo2FDfVXF3iRU2UUiOBzS6EbtNax3MTBdKVUkbgL8DvtdYuL6+9XQur5+XlobUmNDS0yr6QkBDS09MdtjmLy8rKIigoCA8Px6WdHTt2dHh98eJFAEaOHOl0LEFBQQ6vnV2rJgEBAQwaNAiAESNGYDQaWbJkCbNnz3ZYoiOEEBU6dvMnvE8waYcugYbdyWdI+A/5AKU+qk16aK0b/O5Ma/0K8IoLcZeBJ8sfNcUVAT8tf9QUV4Y1MfJblwcrRDOoWH6SkZFBaWkp9h8kKqUIDg7m/Kl8/v32QUquWz+JcjMo7h7bjbuGdXao12HRFg7mHOSLM5vJ3JKM7xdpeGowAR5KcY/PjcTIxfZGCgLcKTYqijwV1z2hyAjXjJoTuQWcyiog+E4ffLp5ca18X1H5V7O79T6/7VVN/+81A77X9Dmj8bFrGKNNJop2foX/zq+4282D7OhxnOk4jFKLdbx52dfZ8NfDhHYPIHntBnbt/kqWqIhbmkPnlmra1aacS7E9l6UtN68x7kvK7QRc6QdYUT/MViC90mwPVwqkz8M6E+SPSqmKqs8V/xj7KaX8tNYFLo7bdXVcUnKrCAoKQilFdnZ2lX3Z2dkEV0rcV61Zb01O5OXlYTKZHBIfFy5ccIirONeKFSvo3bvqFHL7eh7VXasuBg0ahMVi4cyZM5L0EEJU654HI6xJD+D0vhxyzhbQvotfLUeJypq9podoeSo+fa9Ld4yUlBRSUlJYuHAhbm7yaacz9stPDAaDbSqvUgqtNRaLhefmPsepcSbuaGe9P/fwNJD4kz50ibbOpjaVmfgm+xu2ZGzhwMHNDPj6EvGHNMEFAN5Ed+nKN9evc4+PD9Ft23Dp/kHc+cP/IHrAvdWO6aWKGhu7rctrBscMxmwxY7aYMVlMmC1mSspK2JW1i/Vn1vP77G9Q5jJ6nrMmQPqf1tyRc+OcBouJzkf+Scfj6zkbdj8ZXUZS5u4FQNapK1y/4s3sufMIaC8dHMWtyXzpEqbMTACUpydekZFVYjILM/kuz1ro1OhmJDZUEni3qvJi6MfrcMjNFEjvhXXGaaaTffuwzljt72TfbcnX15eBAwfy8ccfs3jxYgwGa83X9PR0du7c6bQYaWWxsbGUlZXxySef2Gp6QNU2svfeey9+fn6cOnWKGTMas9ux1bZt21BKERER0ejXEkK0XO27+hHRvz3f77feTH+z7gxjZztfViuqJ0kP0SRSUlJ48cUXmT9/viQ9cF6c1L6eBcCPf/xjunbtSkZGBv/7v/+LxWKhtLSU42e/5Y520Xj7G3nwP/vhG2pgU9omtmRsITVtO1FHrzJ8v2ZSmq7Sk7q/tzdRd/em0+MzaD/mQdy8a04sVFdjw2gwYjQYHWIn9pjIxB4TyS3KZXP6Zjac2cDf79jH3++H4PJZIP1Pa/qkWWeBuJcV0y19PWGZ20nv+gAZXYaDcuNKThGf/PceHpzbn/ZdJZMtbj32rWq9evVCeVTtiGTftWVw6GB8PHyqxIgW62YKpL8KrKi0LQF4ofz4E5UPuN0tWbKEsWPHMm7cOGbPnk1hYSGLFi0iICCA559/vtbjR40aRVxcHLNmzSI3N9fWveXw4cMOcf7+/ixdupRnn32WnJwcEhMTCQgIIDMzk23bthEfH8/UqVPrPP7k5GTeffddHnzwQbp27UpBQQHr16/nr3/9K7NmzaJTp051PqcQ4vZyz4PdbEmPtIO55GVfk04udSRJDyGaWHUdSpy1jY2NjWXnzp28u3wF2qIxuHnQI7QfAe29if/JnfxPxu/5dNuntL9YwvADFpYe0vgXVb2mJdCPoIcnEjx5Cp4R3Vwea33awLbzbsfjUY/zeNTjZF/LZmPaRjambWSL/yG29AdDmSbqnDUBMuB7Tdeca3T//p8EXD3NkeiZWAxGigpNrHltN2Nm96dLrxprAgrR5IoP3VjaUl09D2lV23rVpUC6UmoLcIfWunv5scepNKtEKRVe/vRrrXXljjC3vYSEBJKTk3nxxRd59NFHbb+LXnvtNZcTBmvWrGHu3LkkJSVhMBh46KGHeOutt5gwYYJD3KxZs+jSpQtLly7lww8/xGQy0blzZ4YOHVqlQKqr7rzzTiwWC/Pnz+fixYsEBgbSo0cP3n//fR5//PF6nVMIcXsJ7tyGbv3aceZALgAHt55j2OM9m3lULYskPW5hNbUqbSqrVq1i8eLFnDlzhu7du/Pb3zqWRSkuLiYpKYnNmzeTlpZGmzZtuPvuu1m6dClRUVEALF68mBdftH4YZr+etmIp9KJFi1i3bh2nT5/Gw8ODvn378vLLLxMTE9NE77JpVTd7wlnLVUuZheLTQTyb+BrfZR2gR2g/YgbH0GZ8Pj/8agpdD15kfqqF4lNFfHP9Ot/7+NC/fPaGVgrfIUMImjwZv/vjUUZjLSOr+jN3s21gQ3xDmNF7BjN6z+BswVk2pm1k/Zn1HDGc5Mgd8Pfh5bNATmtG7T9I/4NvcfCun2D28MFshnV/3Ef8xC70ekD+YRe3jto6txSWFrLnwh7b66FhQ5tkXKJJuVog3YDca920hIQEEhISaoypaclt+/btWblyZZXtVRvwwJgxYxgzZkyN10pLS6txv72oqCjWrFnjcrwQQjjTd3gXW9Lj+K5sYsZH4OlTdaapcE5+Ed+iqpsN0JQ+//xzpk6dytixY3n99dfJycnhueeew2Qy0bOn9Y/QkpISCgoKmD9/PqGhoVy+fJm3336bmJgYjh8/TkhICE8//TTnzp1j2bJl7Nixw7Ymt0JmZib/9V//RVhYGNeuXeODDz5g6NCh7Nmzh759W9+atZpmT9i3XDWVlrHpfw+TdugSESG9iQjpTceoNuyIXslXOzYxY4uFEQc0+4uKePJsBqVaY1SK9/r35/6ZTxI4aSIedZg2W93PXEO1ge3i14Wn+zzN032e5vv879mQtoH1Z9aTRhpbBii+6KcY9e0Zxn/zBiejnqXEKwiNG1vXZJK3+xD3/mK802UEQjQlrTVFtcz0+Or8V5gt1kLD0W2jCfF1va2laBlcLZBe3u2ltnOtoOqSFyGEEMKmc2QgbTv5cvn8NcwlZRzbmUX/kbdPC/Ob5VLSo3waZzut9Q+d7Ps/4ILW+mcNPbjbWXWzAZrSokWLiIqK4tNPP7XV4Qg6C7oAACAASURBVIiOjiYmJsaW9AgICOBvf/ub7ZiysjJGjx5Nx44dWblypS2ZERYWBsDgwYNtBTorVD4+ISGB3r17s2zZMv7whz809ttscq7MniguNPHZnw9w4cxV2zbP6GLeCF5AyJ4rvLaujJB86/Zvrl+nVGssgEkpTk2axKNz/rPO47qZn7m6zkqKCIxgdv/ZPNPvGU7knWD9mfWs+W4Nmwbm83XURaalvE5W9igO5mXSI7Qf0Jv8mW8S/1w8vnffXef3JkRDMWVkYLli7YRhCAjAo0uXKjGytKXxyX2JEEKI24lSir73h5Hyd2vpp0Mp5+g7vAtubjfXSep24WpFyYeATdXs2whMqGafqKeK2QAGg8HlWgoNqaysjN27d/PII484FB4dPHgw4eHhDrEfffQRgwcPJjAwEHd3d3x9fSksLOTECdfqsX3++efcf//9BAcH4+7ujoeHBydPnnT5+JYoNjaWpKQkW4IgNTWVV155hdTUVK5eKuKTpXsdEh7nIw/xVptfkLg1jyUf3Eh4ANw/YgSeXl7WnxVPT+4fPrxeY6rvz1zFDJEFCxYwYsQIUlNTXb6mUoqotlH818D/Yu2EtTx050Nc8VX8rucFXt2yhM++Wc6fPvs532cfIa3NQNa//AVnf5GE+dKlKmOo+P4J0Zgclrb07VulbaXZYubLzC9tryXp0WjkvkQIIcRtJXJwCJ6+1g+Pr+YWk3Ywt5lH1HK4urylM3C2mn3nyveLBnSztRRuVm5uLiaTiY4dO1bZZ79t3bp1TJkyhRkzZrBo0SLatWuHm5sbY8aMobi4uNbr7Nu3jzFjxjB69GiWLVtGaGgoBoOBp59+2qXjW6LKsyLsl5V4eBj56aQ36NSmogWmJrXbp1zkC5Z8UEb3rBvncfPzI2ThQqIfHMeWBqj/Ut+fuYaalfT/7N13eFTF+sDx7+xmN70RSIEAIRAgID0IoTelqoiKiIggF7ChKHoRlaIooPxQrteOIqAXRCWiiIIIAaUI0nsoIZUEAul9szu/PzbZbAopkAJkPs+TJ7vnzJ4zJ6zr7Htm3tfdzp23e73NCP8RTNgyAaPRvNY6z5TL2bgj+Hu35ZJXV/6KPE2H4ffj89yTuD/8MH/v21frS8GUusO6cot9KcvvDl8+TEqOeSaIp4MngfUCa6xvdYwalyiKoih1ik6vpW2vhhzcHAWYE5r6d2xQy726NVQ06JEEtAC2l7KvBZBWVR1SClVVLoXrUb9+fXQ6HZcuXSqx79KlSzRt2hQwJzpt0aIFK1assOw3GAwkJiZW6Dzr1q3DxsaGkJCQIklOk5KScHNzu7GLuAmVljfDOmhgMmYTsuNLhnUZj1/D1vzRfCXNow7x0lYTtnmFx3G4804aLlpoydlRVe+Vso5zrSUs11Phpcw+NAzms6mfcfcPd2MwGMAG7K3ymCa5t2a/zSQ6LPoPKetC2OLb6JpBl5shGbBye8kuEvQomc9jR8wOy+O+vn1LzARRqowalyiKoih1zh19fTm0JRppksSGJXE1Nh2PRk613a2bXkWDHn8ArwkhNkgpLd+ChRBewKvAluronFJ7tFotXbt25YcffmDevHmWJS579+4lIiLCEvTIzMwskaPj66+/xmg0Ftlma2sLQFZWFs7OzpbtmZmZaLXaIl8Mtm3bRlRUFM2aVby06q2itFkR/fr1Q2ejw2Q0IZGExRzgfPxRgqd0Y/K2K3Q5b5VdXqfDc/p06k2cgNBUdHXajSsrsW51zErq17sfO0J38P2v33Pc9Tgn6+/FLtaFO6NHAJDu3JgDnWbQ8ehHBBzYj04IKLYs52ZIBqzcXmRuLtmnTlme27UrGfRQ+TxqjBqXKIqiKHWOcz07/DvW5/zBBMA826P/uNa13KubX0WDHrOBf4CzQohfKJw6OgLIAV6vnu4ptemNN97g7rvvZuTIkUydOpWEhATmzp2Lt3dhJYIhQ4awfv16XnjhBUaMGMGBAwf44IMPSszSaNOmDQBLlixh6NChaLVagoKCGDJkCEuXLmXChAlMnDiRM2fOMH/+fBo1uj1nJpc2K8Ix25enh77Lr/tXERZzAIkkz5hLmx9P08XFw/Ja24AWNFy8GLv8UsA1OYuhvCUs1TErqeCYRpORtWFr+eDQB2Tq0ugTPpqI+NOcjTvCmUbDuN9mO8sl7Ecy+MmnLKWOb4ZkwMrtJfvMWWRuLgA6X19s6tUrsj8iJYKI1AgA7G3s6ebTraa7WJeocYmiKIpSJ7Uf0NgS9DizN57gkc2xc1IVDstSoaCHlDJCCNEVeBO4C/AArgA/AnOllJHV10WltgwaNIj//e9/zJs3j1GjRtGiRQuWLl1apKLK5MmTiY6OZvny5Xz22Wd07dqVDRs2cP/99xc51ogRI3j66af5+OOPefPNN5FSIqVk8ODBfPDBB7z33nusW7eOO+64g1WrVvHWW2VWAbxlWc+K8PDwYNVH63BIb4q/d1uGdRnP+fijGI256BH00TlYXlfv8fE0ePFFNPkzZmp6FkNVL2GpDK1Gy9jAsQxoMoCFexey5uI77N+4kzyjgU0aHaZhC7hX50jHxBOwciXRF8Jp9N77tdpn5faUfaziS1uCfYKx1drWSL/qIjUuURRFUeoqn+au1G/sxJXodPIMJk7uukjnwU1ru1s3tYrO9EBKGQGMr76uKDejRx55hEceeaTINuuAhkaj4a233ioRpIiIiCjyXKvV8tFHH/HRRx+VOMe0adOYNm1akW2DBg26wZ7fvAqCE/37DSDXkIuNRse0EYvxaOLA4sBmRMQlcqeDAx3t7bHx9KThooU49uhR5Bg1PYuhthPrFsxqGdNvDOn6L9hj3AoSjCYDYZdOcrTjVALDVuMT/zcZf/5F5PjHCPr001rts3L7KVK5pV3JJKah0aGWx2ppS/VT4xJFURSlLjKXr23MtlXmJbfHtsfQcVBjNNqaW/p+q6lw0ENRlKqz5qv15BpykdKE0WTg9MXNLDgbhd4owMO8pMV56BB85s5FW0pC19qYxXCtJSzrD8WyeHMYF5OzaOhmz8uDWzGyU9UtTyo+q2Xp0qWssVtDdk42Wo0NAT4dQGg51foxcvQuNI36nZyTp4gc8widl31O8KxZVdYXpW4rUrmlQ9GgR0pOCocvHwZAIOjt27tG+6YoiqIoSt0R0NWTPT+eIyvNQHpSDuGHr9Cii2dtd+umdc2ghxBiOTBfSnkh/3FZpJRyUtV2TVFuT5FnEtBdaYSNRofRZDAv37h8Ar2dHQAaJye858zG5Z57rln5ofgyme3bt1u2V0ZlAhYyL5f05EukXolj15872LV7D75erjjqTTwjUxA2kJruQHiII7/sb0Tzxo3QO7lh51wPBxd3HF080Du6gd4ZiiVhLa0fXtlRbN++naioqCKzWq5evWq59gYtfLiyz95SpyHc/z5y9E60PBeC4eJFIh4ZS+OPP8IhKKhSfxdFKc6YlkZueLj5iVaLXWDRUrR/xf6FUZoTOLdr0I769vVruou3PTUuUarS9u3b6d+/P6GhoTW6/HH37t306tULKSUGg6FEMnhFUZSKsNFpadu7Eft/jQDgaGi0CnqUoaxP2v5AQfKGAYAso21Z+xRFyXc5IYkfP9qHv+cdTBuxmMiIPxmZfJDOdnoAHIKCaPjOInQVSORaEOC43twe6w/FMivkKC6GK3TXxOGRmsqRkJ+w2ZGHpzYNXU4i9rmJOOYl42JKwZV0nIHj0XlMWJVJrhH0Wtg63oHgxsU+SmLzf0phQpCBA1kaR7K1zqRhj2OOLS9KByK0XhxNbc7rH+zi7JoFGPMMaLVay6CwYFaL9ayTjKFZrHx/GzLW3nxq34Fo89JoEbEFU2oqUROfoOG77+AydGiF/i6KUprsEydAmv9XZ9uyJRp7+yL7i1Rt8e1Xgz2rU9S4RLmlGQwGpk6dipeXF/Hx8bXdHUVRbnF39GnEwU2RmEySuHMpJESl0aCJc/kvrIOuGfSQUjazeuxXI71RlNvY1bREli/5HecccxS2pUdTHo24iL2dHnQ6Gjw3DY8nnkBotRU+ZmVze+Tk5hB+Yh9Jp/7C5vRfbNGcwdfuStFGyeWcM8JIrhGMEnKN5uclgh5l0CBxJgNnUwaYLgPQtmDiR/6lL4zKYXZuDkYJSBPjHxxOwB1d6DdocInrc3SyZ+orQ/nx031cOpEJQJTfSIQpheZR+5AGA7EvvIghLt5c6vcas2cUpSzW+Tzsi5WqNRgN7IrdZXmu8nlUDzUuUSorJycHW9vqTyhcMGtDr9eX2W7x4sVIKXniiSdYsGBBtfdLUZTbm6ObLc27eHL2H3Pl9qOh0Qx8vE0t9+rmVG62EyGEXgjxfn6WdKUMUqobS7eD6vh3jE+PZ8nS/+GcbA54CGnkjhNfYp+diL5ZM5qt/Zb6kydXKuABhbk9tFptqbk9EhIus/+P79j5+QscXdAXw9tNCPxpBD3OvMMIzW58xZXSD1wKkxRclS60bNYQGxsNWmFOUBvnexevGybyqmESiwxj+CjvXtaY7mKXfX/+0QVxVBPIORoTJ+uRLu0qdl1+WvRa0ArQaySTnbYx07gUv21TOP3JWMJ/WULG+T1gyAJAq9Nw/5N34tnC0XKMC/7jONOksG755Xff5dKChUijscLXrCgFyqrcsv/SftIN6QA0cmpEC7cWNdq3ukaNS+qeTZs2ERwcjL29Pa6urowcOZKwsLAibfr160evXr3YsGEDnTp1wtbWlo8//hiAhIQExo4di4uLC25ubowfP57k5NIj/CEhIXTv3h0HBwfc3Nx46KGHiIqKKtLGz8+PcePGsXz5clq3bo1er2fjxo1lXsP58+d5++23+fjjj9HpVGlJRVGqRvv+vpbHZ/65RGZqbi325uZV7u1ZKWWuEGIq5jJwyjXodDqysrJwcHAov7FyU8vKyqrSAUl0ajRvL/+YdrF3Wba1OBdCveQz2LVpQ+Mvv8DG3b3Sx11/KJbFO7JwfeBN9AmneXL0cOq5OfLXD/9FE7MXr5Sj+JuiaCCsgjilTHLIlLackk24JN1JlM6kad3p1LoFWpcG2Lp6Ye/qhUt9H1zreeFhq+cBoOEkczUV4dOWlef1ZBkKAwn2Oi0L729Hz2K5QaSUpOfkEZuZTVpyIllp5p/lW4+gzUnFXaQRKCLpoAmns28kW8ebZ5H089PmzySR+Bii8LkUBZc2wn7IQ0u8bTOi7VuzLdWXvRl+dNMF4GbQoEHLhRaTybZ5n/bhMQAkff01efFxNFy8GI1dxQIwigJlV26xLlXb17evmk1UzdS4pG7ZtGkTw4cPZ8CAAaxdu5b09HTmzJlDr169OHz4MI2sloOeOXOG5557jtmzZ+Pv70+9evUAGDVqFEeOHGHBggUEBASwdu3aElXjAD799FOeeuopJk6cyJw5c0hLS2PevHn07duXo0eP4uxcOG08NDSUw4cPM3fuXDw9PfHz8yvzOp566ikefPBB+vTpw7Zt26rmj6MoSp3n7e+Kp58LlyNSMeVJTu6MJWhYs/JfWMdUdE76IaAd8Gc19uWW5unpSWxsLI0aNcLe3l4Nem9BUkqysrKIjY3Fy8urSo55JukMr333Nr3Dxlm2ecf/jW/sduw7dqTx55+hdXGp9HEL8nF458XyTJNwuvhFEBT5PA2iUmhl3bCUt+Fl4UGsU3siHdvxdYwXR/Iak5f/UWCv07JwZDu6l1N9xTqnRusKJkMVQuBsp8PZTgf1nAFzPfHLjq2ZFXKsSODEycbEM4Ny6JAdRublI5zOPEULYrARpiLHtMGIb845fHPOEQxgD+d1zdmUOA9MTuhMdkQ1f5o0+yX0PHEVgLQtfxA1YSK+n3x8XcEmpe4xXLpE3iXz1FHh4IBti+aWfVLKovk81NKWmqLGJZXQbmW78hvVkGOPHyu/kZXXX38df39/fvvtN0t+p+DgYFq2bMmSJUt47733LG2vXLnC77//TseOHS3btmzZws6dO1mzZg1jxowBYPDgwQwdOpSYmBhLu/T0dGbOnMnEiRNZvrwwT263bt1o2bIlX375JdOnT7dsT0pK4sCBA3h7e5d7Dd988w379+/n9OnTlbp2RVGUimjf35c/vjoJwLEdsXQa3BStKl9bREWDHjOANUKISGCjVOs4SnDJ/+J68eJFDAZDLfdGuV46nQ4vLy/Lv+eNOJJwhJd+mcXgY1PRSvOyFefUSFqd+RbHO++k8Scfo3F0LOcoJcXExXH0p/f5nwils+25MtsapSBS15wkj07o/ILx7dAPz4bN8QQ6ARyKJf4Gy82O7NTohkrUFry2rMBJntHEudgEYk7tJSvyH5yuHKVpThj+Iq7E8ZrbnGeM+2uEJC4gVzriYHAlvvEz/OLwHiP+MS9ByDp8mMgxj9D4i2XoGze+7r4rdUORUrVt2xZZhnYu+Ryx6easvU46J4K8VKWgGqLGJXVARkYGBw8e5NVXXy1S5aRZs2b07NmTHTt2FGnv5+dXJOAB5rLnWq2WBx54oMj2MWPGsGnTpiLtUlNTefTRR8nLy7Ns9/X1pXXr1vz5559Fgh7du3evUMAjMTGRGTNmsGDBAjw9VWUFRVGqXosunuxed47M1FwyU3IJP5hAQNequYF7u6ho0ON7wBX4CcgTQlymaGZ0KaVsWtWdu9W4uLhUyZdl5da35+IeXvxjBoOPT8E+zzwdVpebSrsTn+PSoxu+//2gRPWHsqRlZnMo9Ee0x9YQlLWbOcJQakaeVGlPjOMdZPt0xbVlTxq364O/w7Xfk9cbsNizx7y8paCSyo0qrx82Wg2tm3jRusm9wL0AZBuMHIqI4d2v1tJBnEd38SDJUWEM8zMS3DiKYe4L+TlxLiZ0uGd7Ee89lRUDP2T81hw0QG5kJBFjHqHxp5+USEypKNayrZe2FMvnYb20pWejnui0aq1+DVHjkjogKSkJKSU+Pj4l9nl7exMZGVlkW2nt4uLicHd3L7FstfiMzsuXzYm1Bw0aVGpf3IvNDCztXKV5/fXX8fLyYvTo0ZY8ItnZ2QCkpKRgZ2eH43XcAFEURSmgtdHQtk8j/vnlAgCn98SpoEcxFQ16bEWVf1OUCvkj8g/+vePf9A57mLTzaRyMW01L73aMiv+D+r260Oj999CUk+EdwGiSHDywh5Q9q2h/dRN9RJJ5h9WSFYPUss3UiR2mDhwwBZDhEsDOf5c+YKsqe/bsue4yuVXJTqelU0BTolyC2H5Cw6VvVyCNeSzUapl8tz/e2UcJ9JlLgpM5Q753mj/h9R7n/ZFfMm2DEb0RjFevEjn+cRq9twTn/v1r/BqUW0PWMevKLUXzeYRGh1oe9/XtW2N9UtS4pDIqu6TkZuHu7o4QotTyrvHx8Xh4eBTZVtrSYh8fH5KSkjAYDEUCH5fyl6wVKDjWihUraNu2bYnjWOfzuNa5SnPy5EmOHTtWoq8A9evX57777mP9+vUVOpaiKMq1BPbwsQQ9ok8lkpGcg6Nb9VevulVUKOghpZxQzf1QlNvC+nPrmbt7LnfE9MbmhAP//eVl8kwG9ELQ+8EHCF76PqKcJKnnIqM4v20lvlHr6Srzl68UG1ud1TZnTW4vfjQEk4R5Joe9TsvCIYHVcVlFVLZMbnV7eXArpvz+NdKYB9KEMU/y6aZTCCQ6m4PMe/ArXJwnAuCf2IHjXg8y/5Ef+PcPRpyzQWZlEfP0M1ya8AyvycAbWuqj3H6k0Ui2ddDDaqbHlawrHEsw79MIDb0b9a7x/tVValxSNzg6OtKlSxe+//575s2bhzZ/aVlkZCS7d+8uNRlpccHBwRiNRtatW2fJ6QHw7bffFmnXo0cPnJ2dOXfuHI8//niVXcPSpUtLVIpZsWIFK1eu5I8//qiyHGKKotRtzvXsaNTKjdiwZKSEM/su0enuJrXdrZtGhYIeQog5wBdSyoul7PMBJksp36zqzinKreTrk1/z7j/v0jgxgB6R97E5bi15JgNSmshDcKJ9e+6zCnist04A6mLDRM9zBF7+ha45e2khSpZVTRRuxPjeQ6N+TxDQvDPtD8WyeXMYyTX8Jb2gTG7BTI/iZXJr2shOjTg9/n5e27kGU57BfPdNSqQ0YTQKZNtAvD2ciT+UBsAdl/rwd5NkXh//B69+Z8QrGZASr68+ZEErdz5vcw+7k+9gVsgxy/GVuivzn38wZWQAYNOgATZWU9r/ivkLmT/ZoJNnJ9zs3Gqlj3WRGpfUHfPnz2f48OGMGDGCp59+mvT0dObOnYurqyszZswo9/V33XUXvXr1YurUqVy5csVSveX48eNF2rm4uLB48WKeeeYZEhISGDp0KK6ursTGxrJjxw769evH2LFjK93/4jlGwHzzAKBv375FcpUoiqLciFbdfIgNMwdZT/8dR8e7GqviGvkq+kk7F9gElBhcAA3z96vBhVInSSn5+MjHfHrkU9wz3BlxcgJSqyXApwM6jRajSaK3s6P/gAGW16w/FMsrIUfxy4vgVZs/GZmzkwYxqeadVp9Nudhwzr03jt3G07TrvdTTFv4ne6MJRK9XcHAwW7durdKcHjfqlQn30rdVKNu3b8fDw4Pp06dbgjL9+/ene7cgtiw/wdn95jXb3aPuZWuLFF4f/w+vfGekef7Mac+wJN7N/pSUIBf+YxzF/22yUUGPOi5140bLY+e77y4yeChStcW3Xw32SkGNS+qMIUOGsHHjRt544w1Gjx5tCba/++67NGzYsELHCAkJ4bnnnmPWrFlotVruvfdePvzwQ0aOHFmk3dSpU2ncuDGLFy9m9erVGAwGGjVqRJ8+fUoNXiiKotxMmnduwJ9rwsgzmEi8mMGVmHQaNHYu/4V1gKhIwnMhhAnoLqXcV8q+QcDPUkqHaujfTSMoKEju37+/truh3GRM0sQ7+95h9enVOGbpmLBvOka9LwD6nBQ8bLZyullD+vfvbwkOGE2SifM/YnLeGnprj5d63Ajb1mS3fZjmAx5H51RyHXBZqjrJ6K2otL+B0WBiw38PE3smf5qxRvJLq09IcDjNC+tNdD5f+Fno1CgL355JnKYJDUbMpn7Qg6BRpb/qGpmby5nefTClpADQdPVqHDp3AiDHmEPvb3uTlZcFwIaRG/Bz9autrtYqIcQBKWWNlq2py+OS8sYjp06dIjCw+pc6KjVD/XsqilIZv395grP/mHMWdRjYmF4PBdRyj2pOWeORa870EEL0AwZYbZoqhBhRrJk9MBw4cQOd2wQMBt6WUr5utd0dWAyMzD/PHuAFKeWxYq+3A+YD4wA34DAwU0r5Z7F2GmAmMBXwBsKAN6WU666370rdlmfKY86uOWwI34B9tmTyX2PIdjYHPIQpj14BCbSe9V/LnWGTSbJz5zZ0fy5klfwHtEWPFy/d+dHYi3FTZ+HXuGQStYq4WZKMVqeKBHWCg4NL7NPqNAx9sh0/LjnI1dgMMAnuOf8U69v8h3cfDGfSZhN3HTYHPtJj7YnbJ2ndLQrx62Tity7EZsAs6ndVwY+6JH3nLkvAQ9ewIfadCu/07o3bawl4+Ln41dmAR02qqXGJoiiKotyqWnf3tgQ9zuyLp8eo5mi0auxa1vKWvkBBEEICE0tpkwucBJ67npMLIR4BOpSyXQA/A82AaUASMAsIFUJ0lFLGWDX/EvMA52UgHHgG2CyECJZSHrZqNx94CXgNOACMAb4XQoyQUv56Pf1X6q4cYw4v73iZ0OhQHLMkz/7enxTPwsBil6ZXCXx1CmBe/rL7790Yt71NH8OuIscxSsFvpm58Z+zLTlM7fNwceeo6Ax5w8yUZrWo3GtSxddAx4tkOrHv3AOlJOchcwYPnXmBt6yUsGxJBpq2J+/aaAx8pEQ5o9Ca8OqXinRMOv00mbttCdANeoX7Xh1Twow6wXtriMnxYkaUtO6ILS9Wqqi01ptrHJYqiKIpyK/Nt7Y6Dq57MlFyy0gxEnUzEr1392u5WrbvmqF1K+YaUUiOl1GDOMtC94LnVj52UsrOUck9lTyyEcAPeB14sZfe9QC/gMSnlGinlpvxtGuDfVsfoAIzFPANkmZRyKzAaiMJqLa8QwhNzwGORlPL/pJShUsqpQCiwqLJ9V+o2kzQx669ZhEaH4pwpeennlqQ0uM+yv4VnGt1eewQpJX8f2E/oogfovml4kYCHSQp+NvZgUO7/8azhOf40dcBWp+Plwa1uqG8FSUa1Wu1NkWS0qhUP6qxatYqFCxeyZ0/FP4Kc3O3wCs5m6/FvCY8/gSFdMj5yJg21Lflffw1/dCz8Ypt0xom4E4XJKX1ywqn/2xTi3+nMlT1rwFQy4axyezBlZpK2bZvlucvw4ZbHUkq2x2y3PO/XuF8N9qzuqu5xiaIoiqLc6jRaDS3v9LY8D9tbsuR3XVTRkrXVcUvzXeCElHKNEGJ1sX33AhellKFWfUgRQmwA7qPwDs69gAFYa9UuTwjxLfCKEMJWSpmDefmMHvim2Hm+AZYLIZpJKS9U5cUpt6//HvovWyK34JYumbmuHrHNngBh/k+kgUsug+bcw/6jx7j62wIGZG5GJ4xFkpOece+L131vYkpqQO7mMEQVVl+5GZOMViXryjFarZavvvqKvLy8Cs36KFgWY0l0mpOLRmPDtOGL8actk5xmsrHtpywb/A+O2SaCT+fP+DjuwBmnOwhquh8nkQ2Ad84F2Pwk8dsXYdNvJvW7PQwa7TXPrdx60kJDkVnm5Sv65s2xbVUYkDyVeIrLmeakuC56Fzp6qgSHNa2axiWKoiiKcstr3d2bw1uiALhw5Ao5WXnY2tftSlEVvnohhCMwCegDeABTpJRnhRBjgMNSytOVOFYvYDylLG3J1xYoLcPjCWC8EMJJSpme3+6ClDKzlHZ6oEX+47ZADnCulHYAbQAV9FDK9ePZH/ni2Be4p0nmrLEhxn8KeTpzrjx7WxN+o5uw+f0nGJj+C7bCUCTYcc6l33LJjAAAIABJREFUOx73vEHLgO4AjPRT5VAryzqoExUVxbJlyyq0lMd6WYwQApPJhMlkAgFn447g792WhAsZPOj8HMam7/HBvYewzzHR8YI58OH1dzhn75xPZOZ+BqX9ZBX8iIDNT3Fp+yI0/f5Ng26PqODHbSL1198sj8ta2tLHtw82mro9kKgtVTkuURRFUZTbhUcjJ+o3duJKdDpGg4nzBy/TpmfFql3drip0p0QI0Rg4ijmxaADmAUZB/Zv+mJeOVIgQQgd8BvyflDLsGs3qYc7jUVxi/m/3CrarZ/U7WZYsVVO8naJc0764fby5503scySz1hpJ9H6MDEfzB4gQElevrdyxoR/DMn40BzzyXXDsyNWHfqLFi5txzw94VJeCL/ezZ89m4MCBlVr2cT3nquzSkqo4H8CsWbMYP358hZfyWC+LMZlMaLVay+seHFeYBzHqaBITkmfSxrM9S0ZpCLOKSdl99AEDOz/C6Yd38aPTI6RJe8s+r5xIGmx+hpi3OzB7/lyav7KBnou2sf5QbJX/HZTqZ0xNJePPwlzYrlZLWwBCoy2TEOnbWOXzqA1VOS5RFEVRlNtNq25WS1z+VktcKnp7agnmmRIBwEXMicIK7ADmVeKcMzFnV3+7jDYCc5Ky0rZXZ7uiO4WYAkwBaNKkSVlNldtceEo407dPx2Q0MH29CWE3iIQGnSz7g50/o1Pu5iLvqCj7QOyHzKNZ+8EgynyrVZmaSmRa01VirnW+ii7lsV4Wo9frWbp0KVevXrW8bte6c5ZpgGF/XWbavXNZ6jOHRQ+dYN7/jDRNAIxGYqdPJ3DZMoJe+pT9p14m+tf/Y1DqjzgL8zIIX2M081nK4/qGzE6dyKwQ80elmtFza0nbsgVpMAcu7e64A33TppZ98RnxnEo8BYCNsKFnw5610kelSscliqIoinJbCejqxe6Q80iT5OLZZFKvZOFS3778F96mKrom9i5grpQyipLBg1igQiN6IUQTzNVTZgO2Qgi3/ISmWD3XYp6BUdrsi4IZHgWzO8prl2j1212IEt88i7crQkr5uZQySEoZ1KBBg7IuTbmNJWYn8swfz5CWk8qk3020uNyI8Gb3WPa3d/iFTg6bLc9jbZtzafgKmvx7Dw06DKmxgAfUXCLT0oIr1ela5wsODmbWrFnlBlwKAiTz589n69atTJkypcjretzfnIAgT0v7gz/H8lqDd2jSqA1vj9ESn/8pJXNziXn6abKOnyAosDn3z/iEsDG7CHEeS6rVzI8Wmous0b/NHPkpn2w6ULV/DKXaFa3aUnSWx58xhTNAgryDcNY7o9SKKhmXXC8hhEYIMUsIESGEyBZCHBFCPFCJ19sLIeYJIc4KIXKEEJeEEL8IIfTV2W9FURSlbnB0taVJm8KvyXU9oWlFgx56IO0a+1wxJxOtCH/ADnMC0SSrHzBPRU0C2lGYh6O4NkBUfj4P8ts1E0I4lNIul8IcHicAW6B5Ke3AXN5OUUrIMeYwPXQ6Mekx3LNXMuCIlpOBjyPz1/B76s7Sw3kFAOGyIXF3fUKjmfvx6np/jQY7ChT/cl9dsy9qukpMVZyvrACJ0AgGPt6GRi0LK7Xs/iaCBQHv49m4FfMf0ZLoZN5uysggevJkcsLDAQgKbM6oGZ/QO+c//CdvVJHgxyM2oazKnkbCvh8q3V+lduQlJJDx917zEyFwGTqkyP7t0dstj1XVllpVVeOS6zUf82ySD4GhwN/A90KIYeW9MH+Z72+YS+4uwRzAeRqIAVRSIEVRFKVKtOpedIlLyUwPdUdFgx5HgWvdwRgKVPRW5mHMa22L/4A5ENIfc6DiZ6CREMKyWFoI4QLck7+vwM+ADnjIqp0N8DDwe37lFoBNmIMgjxbrzzjguKrcopRGSsmcXXM4dPkQ3U6beCzURHiz+yx5PGzI5i7XpVyU9ZiR+yR357yDT8+xoKndogIVnf1wo+eoieBKTZ5Pq9MwZGo7EnLPs/nQas5GH+PPL8N5v8uHuPoF8NYYLWl25rbGpCSinpiE4eJFy+ud3Brwft6DDMz5P34zdrVs9xLJNPh1EuEfjSIvJa7K+61UrdRNm8FkAsChSxd03oUDhkxDJnvj9lqe9/VV+TxqUVWNSypNCOGJ+UbNIinl/0kpQ6WUU4FQYFEFDjED6Az0klJ+KqX8U0q5Tkr5pJQyq7r6rSiKotQtzdrXR29njqWnJGRx6UJqLfeo9lQ0p8di4If81SEF5WXbCCHuw5w5/d6KHERKmQxsL749/7iRUsrt+c9/BvYA3wghXsY8A2QW5owJ71od77AQYi2wNP/OyQXgKaAZVgEOKeVlIcT7wCwhRBpwEHNgZADmEriKUsInRz7h1wu/EhArmbbBRKJ7K6IbD7Ds7+r8DR/IgXydexcGbGjkVrfWyQUHB9doSdzqPJ91Odt310wnOycHG42OaSMWY/eFno+nfcZTcgoLR59jzhojdgbIi48n6olJNP3fN9h4ePDy4FbMCjlGgsGdpwwvMMS4jzd1K/AUyQD4J2wlfWkXUvvMo2G/ybUyE0gpX5GlLSOKLm3ZE7eHXJM5dUQLtxb4OvvWaN+UIqpkXHKdBmOeafJNse3fAMuFEM3KuZnyNPC9lDK6ujqolG/79u3079+f0NDQGpmtuGPHjhLb33//faZPn16t51YUpe6y0Wtp0cWTk7vMN91O/x2Pt79rLfeqdlQo6CGlDBFCPI35DsYT+ZtXYZ5a+qyUclNVdkpKaRJCjAD+D/gY85KYPUD/UgYJEzEnRX0LcAOOAEOklAeLtXsNSAeeB7yBMGC0lHJDVfZduT1sOL+BT458gmeS5N8/GBE4cKr1Y5b9LvowntcOItroBYC9TsvLg1vVVneVG1BaOVspTRhNBks523++juXzScuYJJ9g8QPhvPK9CZ0RciMiiPrXZJquWmlJVrp4cxgXk7M45tKXHzveQ9ODixiSuwUAJ5mB046XiTy0Fu9xn2Hr2aI2L10pJjcmlqzDh81PbGxwHjy4yH7rUrVqaUvtqulxSTFtMSdRPVds+4n8320w34QpIT+3WWMgXAixDPMNGD2wC5ghpTxcLT1Wal379u357LPPimzz8/Ornc4oilJntOruYwl6nNt/id4PBaDV1e6s9NpQ0ZkeSCk/FUJ8DQQDnsBVYLeU8lpraitMSlnilqeUMhHzQOaJkq8o0i4LeDH/p6x2RsyBkbeuv6dKXXDg0gHm7p6LY5bkle+NuGbC8cCHybE1573V6/NwGD0E084LiOQsGrrZ8/LgVnW2QkfBLInyKqjcrKyTpGo0GrRaLUIIdDY6Anw6ABB9Kgnnn+z5YuQXTGIS/8m9wIs/mtBIyDl1iuinnqLJsmWM7NSoxPvAcNd3rP/pWzofmUsTcRmApqn7yf44mMguM2g67CXQVvijWKlGqb/+anns2CMYG3d3y3OTNLEjRgU9bibVOS4pRz0gWZZcHJ1otf9aGub/ngn8A4zBnHPsDWC7EKJ9fnJWpQrk5ORga2tb7eeRUmIwGNDrr52H1tnZme7dq7dsvaIoSnE+zV1xqW9H6pVscjLziDh2headPct/4W2mUmEeKWWGlPIPKeVqKeXmGhhYKEqNikqNYtrW5zAZcpkRYsL3KsR7BnHZK8jSZuATnXigVzN2vTKAC4uGs+uVAXU64DFw4EBmz57NwIED2bNnT213qdKsk6Ta2try4YcfMn/+fLaFbuPhf42wtDv510Uu7s7hi7u/4GKXJnw6rPDjM2v/AWKmT7eUObWm02oYOWoseVN387PDAxjzY7x25NL0wEJi/q8n6ZGHqv9ClXJZL21xLVa15diVYyRmm7/T1rOrR7v67Wq0b0rpqmJcIoQYJISQFfjZXvASSlaMKdhenoIPjkzgHinlr1LKH4HhgD3wzDX6OEUIsV8IsT8hIaFyF3gb2LRpE8HBwdjb2+Pq6srIkSMJCwsr0qZfv3706tWLDRs20KlTJ2xtbfn4448BSEhIYOzYsbi4uODm5sb48eNJTk4u9VwhISF0794dBwcH3NzceOihh4iKKhqH8vPzY9y4cSxfvpzWrVuj1+vZaPX5oSiKcrMQGkHLboX5yU7/XTeruFzz9qIQwr8yB5JSht94dxSl9lzNTGL8+sdIM6XwzK8m7oiSZNu6c6blw5Y2gT188O+oyhcXKK2U7K0226MgSWpps1WklKQkZHJm7yUAdoecY2iDdiwfvJyJTGRldjSPbzUnvczY8ScXX5lFw8XvIkpJZuvfsAF+L33Jpi0P0nz3K7QSkQD4Zp0m76uBhAdOxn/UG6Czq4GrVorLOXeOnPwvUcLWFqeBg4rst17a0te3LxpR96aG1rZqHJfsBgIr0C4z/3ci4C6EEMVme7hb7b+Wq/m/d0kpC46HlDJaCHEa6FTai6SUnwOfAwQFBdWp9PubNm1i+PDhDBgwgLVr15Kens6cOXPo1asXhw8fplGjwpsOZ86c4bnnnmP27Nn4+/tTr5550s2oUaM4cuQICxYsICAggLVr1zJt2rQS5/r000956qmnmDhxInPmzCEtLY158+bRt29fjh49irNzYYnq0NBQDh8+zNy5c/H09Cx3qcqhQ4dwdXUlMzOTwMBAnn/+eSZNmlQ1fyRFUZQytOrmzf6NEQBEHb9KVlou9s51q0J6WXOqz1H6nYxrUWXWlFvW8QuRvLZlNFdtM3lwp6TvcYlEcLL1Y+TZmCsiu9S3o9fogFru6c2lYJZEbm5ujZSurS7XSpIqhGDAuEDSrmYTdy4FJGz58gT3v9SZLwd/yUQ5EaesGB7Ybf6oTN24Ea2rC16zZxckaC5CoxEMGzyMuK69CPl6LsMTv8ZWGLDBiP+pT4l/dyN2oz7CLVBVBalpKVZ3aZ369UPr5Fhkf2h0qOVx38bq36eWVMu4JD/4cLoSxz2BeUlKc4rm9WiT//tkGa8NB7K49kwRUyX6UWGnWlckplMzAk+fqlT7119/HX9/f3777TdsbMzD1uDgYFq2bMmSJUt47733LG2vXLnC77//TseOHS3btmzZws6dO1mzZg1jxowBYPDgwQwdOpSYmBhLu/T0dGbOnMnEiRNZvny5ZXu3bt1o2bIlX375ZZGko0lJSRw4cABvqwpP19KnTx8effRRWrZsSXJyMqtWreJf//oXcXFxvP7665X6eyiKolSWm6cD3v6uxIenYDJJzu6/TPv+dSsZe3kLydOAdcBfVG6goSg3tYI8FD179SEh7jw7Ly8k3NmG3sdNtNySweeZmTTx64Pe3ZycVAgYNLEtejuVe8FaWbMkbhdanYZ6nTL59tfvaezSBn/vtmz86CgPvhJkDnyYJuCUHcfgg+aPyKTVa9C4uuL5/PPXPKZPPRfuf+49tu9+ELctL9Ip//uWtyEa1t7Ld9zF/OyHcXHzqNP5YmqKlJLUjYX5PFyGDyuyPyYthnPJ5u+2eo2eYJ/b731+C7kZxiWbgFzMVeLesNo+DjheVuUWKaVBCLER6COEcJRSZoAlwWkr4Kfq6/atJyMjg4MHD/Lqq69aAh4AzZo1o2fPniUqovj5+RUJeID5//darZYHHiha4XjMmDFs2rSpSLvU1FQeffRR8vLyLNt9fX1p3bo1f/75Z5GgR/fu3SsU8AB48803izy/7777uP/++3n77beZPn06Tk5OFTqOoijK9WrV3Zv48BQAwv6OU0EPK08AjwGPA/0wl2JbJaU8XwP9UpRqs2jFz7w2ZTSmPAN6LbzwtAd/dPYiMErS4/sMnoiOIldKtEm/MK1RX/y929J5SFN8mtfNEk/lqenStTVtz549DLtnMLm5uWiEDdOGL8aftmz86AijXurC8iFf8YRpAg7Z8fQ+af4OdvWTT7HxqE+9cY9e87hCCPr37ElShx2s+9873H3xE5xFFgCj2UIP20M8nfI8s0LMJVJV4KP6ZB8/jiF/zb7GyQmnvkVnclgnMO3m0w0HnUON9k+xuCnGJVLKy0KI94FZQog04CDmKiwDgPus2wohtgJNpZTWpZrmAvuAjUKIJZgr1M0FkoEPa+ASbhlJSUlIKfHx8Smxz9vbm8jIyCLbSmsXFxeHu7s7Op2uyHYvL68izy9fNieaHjSo6NK2Au5WiY2vda7KeOSRR1i/fj3Hjh27rf8fqijKzaFFF0/++u4MpjzJ5cg0Uq9m4eJhX9vdqjHXDHpIKVcAK4QQvsB4zHcwXhdC/A2sBL6TUpaeBUpRbjIFMzuET1uWrArBlJcLUpJnhBUXNbRvKnl5nZHVGZnkSmmeX5xfsrTbnd3pOqJZbV+CUkus85aghXPxR/H3bsvV2Aw2f3Gc4U+354uhy5kkJ+DwzWW6nDcHPuIXvI2uUUOc+/cv8/juTnY8MHUuew+PJD1kOgM15mrbvuIK3+vfYHbeRBZv1qugRzVK/aVwaYvzoEFoilV72B693fJYVW2pPTfZuOQ1IB14HvAGwoDRUsoNxdppKTbWklKeFEIMAN4B1gIGIBQYKaW8VB2dreySkpuFu7s7Qgji40sm3ouPj8fDw6PIttKWFfr4+JCUlITBYCgS+Lh0qeifuuBYK1asoG3btiWOY53P41rnqoyCdDA3ehxFUZSKsHPU4duqHlEnzKmlLhy+QoeBjWu5VzWn3ExsUsoYKeUCKWUbzGXhDgJvA3FCiDnV3UFFKc+ePXtYuHDhNSuHWFcYeW3KaAbZncZeK9EKkDaCBn4OzPrOiFM23OnggI3WBo3QoNXoCGzcibueaINWq5IW1gWlvZesq7vo9XrGTLrXsi/qRCJ/fXeWpi5NWTZsOSvHNOBMfkFKYZLEvPACWSdOVOjc3Tp24F+5M5iW+ywp0jyTwFbk8a5uGU+nfwh5OVV3oYqFNBpJ/e03y3OXYlVbLmVcYv+l/ZbnfXz71FjflNLdDOMSKaVRSvmWlLKplNJWStleSvlDKe36SSn9Stm+T0rZX0rpIKV0lVKOlFKeK96urnN0dKRLly58//335sBzvsjISHbv3k3fvuXn1wkODsZoNLJu3boi27/99tsiz3v06IGzszPnzp0jKCioxE+rVq2q5qLyrV69Gnt7e9q1U5WgFEWpGf4d61seXzhStyqBVSpBgZRynxDCmP+6yUCHaumVolRQQUCjIJHm1q1bS0wTtb5TrzEZaZ9zmDETnZl+1Q59Syfe2muLd/69waZ+XXm20wzOxh0hwKcD4569D3dvx1LOXDh75HbNZVHXXOu9VFrekr1e4ez/NQKA4zticfN0oMNAfz4Z8SXP50zg5S+u4pUMZOcQOXUKzb//AV0FpkI7p1zgm5Mx7Gw6kdV+PxOoiQbgUZutRL3XH69/rcW2Xt2JyteEzP0HyMuf1q51d8cxuHuR/cuPLyfPZF7f38mzE96OFVvDr9QMNS65/c2fP5/hw4czYsQInn76adLT05k7dy6urq7MmDGj3Nffdddd9OrVi6lTp3LlyhVL9Zbjx48Xaefi4sLixYt55plnSEhIYOjQobi6uhIbG8uOHTvo168fY8eOrXT///rrLxYtWsSoUaPw8/MjJSWFlStX8vPPP7No0SIcHUsfYyiKolQ1v/b1YXUYSLh4NpnsdAN2TrryX3gbqNDtayFEYyHEK0KIE5jXobbDXEte1dpSalVpJVOL69evHzY2NmgF2GqhazMblndtiPM9nsw8ZUfLi+Z2BhsHwjo/ib93WwZ3Gku/Ab25o2/pSwqsZ48MHDjwmrNMlFtHWe+l4OBgZs2aZQlu3XlPMwKCPC37d/5wlgtHEmjh3oJ37/+M/zziRHp+5Vl5JZELkydhTEsr8/x79uwh7Kt/k/zXNxxZs4ShF8bys7EwmNYk8wRZ/+3FlePbqu6iFVKtqrY4DxmMsEqWeDnzMj+cKbx5P7nd5Brtm3JtalxSdwwZMoSNGzeSnJzM6NGjefLJJwkMDGTnzp00bNiwQscICQlh2LBhzJo1i4cffpi8vDw+/LBk+pSpU6fy888/ExYWxmOPPcbQoUOZO3cueXl5JRKkVpSPjw8mk4k5c+YwbNgwxo8fT0JCAqtXr2bmzJnXdUxFUZTr4ehqi3czc45CKeHC0Su13KOac82ZHkIIZ+BBzEnD+gIRqGSmyk2mvJKpeUYTsecPsXGsA/sioa+flh86exGu1zE21Ejw6cLk/1Ej55F5xby21tbRhgHjA6+51ra0L8hqtsetrTLld//++2/+id+G0DbE1dgUJPz+5QlGvdSFtk3a8trDn7A0bTIzV2djYwLjuQtETHsW/2VfIHSlR9S3b9+OMc8A0oQ05pESFcaiwJe4qt/EY2lfYiNMuMlk8n54kPCIV/EfPsNcVki5bjI3l7TNmy3PXYstbfnq+FfkmsyJZO/wuINejXrVaP+UotS4pO4aMmQIQ4YMKbNNaTc9CjRo0IA1a9aU2F6QV8PasGHDGDZsWInt1iIiIsrcb61Fixb8ZrWETlEUpTY161jfUsXlwpEEAnvcWFLmW0VZy1viMSfXCgHexKo8nBCixAwRKWW11JZXlLKUVTI1KT2b0M9e5MG0/0ETGNjEllXObmxxdGDgYRMj/y4c7KSPep7IK4VTTPs/2hpHt6LJDK1V5guycmuwfi95eHhYBtDFg1nFl8G8NHopXnYtyMs1sfGjIzz4ShBB3kFMmfAflqU8y1MbDADk/r2P6Lmzafz2wlKDacXfU78uepLg4GCkHMjmX+6k6/4ZeIhUbDDiv38+Z6MP0mLSMoReTY2+Xum7d2NMMf+P38bbG/vOnS37EjIT+P7M95bnT3V8SiUcrH1qXKIoiqIoN8C/QwP2hJjvE0SfTMSQa0Sn19Zyr6pfWUEP+/yfx/N/yiLLOZaiVJvSSqaejojhyqoJjDL9Y9m2y96HpQ3saRuRy782FY6Ftf2GcSSrDWBet9+6uzfNO3uWmbOjrGCLcusq+He0DmosXbqUq1evWv6di8/yoWEcttmtycnMIyMll18+OsqolzrTx7cPGU+/w/dJL/HQTvP7LSPkJy41aYL3k0+Xeu7S3lNCCIbcM5oj/m2I/+Fx2ubnOgy4tJGYJb2pN/E7HLxblDieUr7Ujb9aHrsMG4bQFH5vXnFiBTlGc/LYth5t6d2od433TylBjUsURVEU5Qa4eTlQr6EjiRczyDOYiD6RiH+nBrXdrWpX1oDgjRrrhaJUoW07d+G35V/0Ehct2066deUtXy0ucbFMX29Cmz/JQ98mkGMBj5BzNhUAZw87ej/cskIJUotTiU1vD9ZBjZycHJ599llMJpPlfVB8RsbQe+6msXsrNnxwBJNJcjUmnd+/PMGwJ9sxtNlQ0l9OY0fyPPoeN7/pkpb+F33jxtQbfk+Jc5cWwCvQoe0dXPLZypZlU7kraxMAvjnnSf2sL3EjPsOny4jq+6PchkxZWaRv3Wp57jK8cDr7lawrfBf2neX5kx2eVLM8bg5qXKIoiqIoN6hZh/okXswAIPxIQt0Oekgp1eBCuaUYTZKQb5cxOGwOLiLLsv1Cyyf4wkcSH/4Hb4QYcc00b9d6eJAy/i1iN8WbNwgYNKENenubcnN2FA+KLF26lOnTp1cqSKLcnKyDGkIIjEYjJpPJ8j6YNWtWqTMy+o1rxbZVpwGIPHaV0G9OM+CxQB5qNZoVr6VyfOZ73BFlDnzEznwFvZc3TkFdK9U3r3pu9J2xhp9WLmRo1BL0woiLTMfp53GcvTCdgAfmqjwfFZS+YwemTPOHgd7PD7s2bSz7Vp5YSbYxG4DAeoH09S2/LKZS/dS4RFEURVFunH/HBhz4LRKAiKNXMBlNaLQVqm9yy7rm1QkhNgshnhRCVCw1tqLUouSMbNb/53keOvOyJeCRjZ74uz5kT6eubInayoQ/TATE5b9Aq8VhzmL2/XHZcozOdzelYYAbUPjFV6vVlpqzo3hQZN26deVWkVFuDQXLTObPn89HH32Era1tifdB8WouAIE9GtJ5SFPL89N74tmxJgwpJRM6/YuE1ycS42HeZ5Nn4tyTk8mpRDK8AnobDfdNeo1dvb8mXtYDQCMkAcff5+x/R2LMSrnua69LrKu2uAwfbpnJcTXrKmvD1lr2Te0wVc3yuEmocYmiKIqi3LgGTZxxcjfnLszJzOPi2eRa7lH1KyukEwHMBqKFEHuFELOEEIE10y1FubY9e/awcOFCS5nYM1EXOfrefTyQstK8PzqP13fp2NV+MVdbdWbx/sX0PWri7kOSw1lZfH71KuH3jWTnP1rOxhxj86HVJMoL3HlPM8s5rL/4ljZro3hQ5IEHHigzSKLcWgqCGlOmTCnzfVBc93v9adPTnAU7PP4E733wf3zy1ndIKXmq90scn3kvKQ5wOCuLlZEXeePu/rw9Z06JksfF3+Ol6T9oOEnjtnBIUzhDISBxO5eW9CQ1+sQNXP3tz5iWRvqOPy3PXayqtqw8uZKsPHPgtJV7KwY0HlDj/VOuKQI1LlEURVGUGyKEoFmHwiUt4Udu/9K1orRyXUUaCBEM3Jf/0xI4B6wHfpRS/l3tPbxJBAUFyf3799d2N+q84stKFi/9D4Njl9JCxJj3R+cx4OtsDCaBXq+n/evt8dSmM3+VkZPpWTwRHYUBsNHZcn+3p1i3+2PyTAbsbG3Zuq1yS1KK5/DYs2cPq1atAmD8+PFqeUsdZTJJPpy9hpfeeYI8kwEbjY7/vvk1U2Y9iETy3Oz7+WLBBnKlRAICsLO3twRVKptPJik1g72fP8OQ9B8t29Kx5w3tNH7I6EhDN3teHtyKkZ0aVf/F3yKSQ34k7tVXAbBtE4h/SAgASdlJDF432BL0eL/f+wxqOqjW+nmrEEIckFIG1eD56vS4pLzxyKlTpwgMVLGg24X691QUpTpEn07k56WHAXByt2X8gh63/MzWssYj5S7ekVLukVK+IqUMBNoCK4C+wC4hRJwQ4jMhxBAhhK5Ke60opfh49c9kZedgNBrJzs7m8tpo5xV7AAAgAElEQVQXLQEPgB/TOmAwmfMwZOdkc3HvBWaEGNEbYV9mJrlSYpQSgyGXwxf+Is9kQEoTuYbKL0kpbYnDypUrWbZsGQMHDizzLr1y+9JoBOkOERjz31tGk4GNP21m78/haIQGb4eu5GIOeIC5xEROdhahoaFAyaVT5b0v3V0cuevFr/ilxRtkST0ATmSx2Pgu022+JzY5k1khx1h/KLb6LvoWY720xdVqlseqk6ssAY8A9wAGNFGzPG5GalyiKIqiKDemYYAbtg7m9J7pSTkkRKXVco+qV6UylkgpT0spF0opuwONgDeBppjvsNz+82KUWrX+UCx/pXsitDYIIbDTSob4mUuB5qIjbsBS7n9hCXq93pyMRwuTLtnjmZ/ioFu9etja2aERGrQaHR2b9UZnoyt3SUpFlhpA5b+sKrev/gP6Y2tni0ajRavREeDTgQO/RfLPxgsM7D8QOzt7CmLpGkCPoP75g0D5+WRKo9UIRoybzqG7vyfKVDhd8XmbH3nLZjnZBgOLN4dV/YXegvKuXiXj78LJAC5DhwKQnJ3M6lOrLdufbP8kGnF7J/W6HahxiaIoiqJUnlarwa9dfcvzC7f5EpfrrmEvpYwHPgE+EUI4A8PKeYmi3JDFm8PQezVj0bhOGKMO089PS3BjG+JkPZzHr8Wn+Z34AJ+v+5x/f/VvhmfpGX3W3vL64R99yDvbL7NlyzYCfDoQ6N+Bf712H/sO7r5mmdnKLDUoXspU5fWouwpywmzbFoptoi/2Gb4A7NtwgeD7m7N161Y2b91M1K9f43o2jTsdHOi46wR7ly0gePKrpVaHqYgePfvRccPb/Ef3IX21RwEYZ7MVJ5HFy8lPVsu13mpSN20CoxEA+y5d0DU058RcdXIVmXnmai4t3FqoZS23IDUuURRFUZSKa9axPmF7zVUsww8n0O1e/1ruUfWpcNBDmBf53AP0ATyAeVLKSCFEX+CslHJtmQdQlBuUmJzMMt379G16CpqaMw7vNbXm2dzn+af5nQCk5KTwTeY33NXSnRd/MFle6zFlCpfrtUdz5TiDO40FoO/YVgQEeTFw8LXLUZZXuhaK5va43i+ryu0nODiY4OBg8gxGfv3kGNEnEwHY8+N5ej0UwLzX55E0/Vl2PDqEVmHmWukO73/NQR8fgkdMvO73j6NbAyYlv8RiPuN+7S4ARmp346rJwZR7Nxq9fTlHuL2lbvzV8thluPk7cUpOCqtPF87ymNp+qprlcQtQ4xLlRmzfvp3+/fsTGhpaIzcpkpKSeOONNwgJCeHSpUs0aNCAQYMGsWLFimo/t6IoSmmatPFAq9NgNJhIvJhB8uVM3Dwdartb1aJCozohhDuwG/N00X8B4zEPMAAmA69US+8UJd/ZqIus1L9juXsN8HXeIB7NfRW9mzcAUkrm7JpDXlQM0zYUBjwcewTjMGEqof87bdnW8k4vAoK8yj1veUsNCmaCzJ49m4EDB8L/s3fncVFV7wPHP2c2BNlRAQEX3CVcSk1NE3PBLXNr/ZZbLm1WWlb+WrS0tMyyzbJSM6201EwtNTcsFZfcNbfcUERFWZR1tvP748IICDIgiOh5v16+hrlz7r3njsxw73Of8xy4qs6HcnszGPV0fSqcoHrejmUbfjnCvvWn8XGvRKtvFxAboJUeMNhBvv4B+7euKPb+RkfWw2h0YZTlaeZYr2QrtBfbOTq1K5a023dKW8uZM6Tv0IYRodfjGRkJwJx/55Bq0QJPoV6hdKreqay6qDhJnZco5UliYiJt2rRh9erVTJgwgVWrVvHhhx/i4eFR1l1TFOU2ZnTRE9LA1/H8+K5bd4iLs7eyJgMhwD1AJSBnadfVQIcS7peiOOz/7zjmmT1oobsStPjY0pc3rYMwGl0YHVkPgB8O/MCGY2t4eZGNiplaO0PVQAI//JB1PxwmM9UKaBWK732krlP7LmzqWlXHQ4HC674YTXq6Pd2IwFpejmXrfzrMvxvP4F+5BnW+/Y4kD+3r2C0T/h74NC+//GyxiuH2ahrExD7hVPWuyFvWQUy3P+B4rU7aTk5P7URGcnyRt3sruPTHlSyPii1bYvDzIzkzmR8O/OBYPrzRcPQ6fVl0TykadV6iFCozM/OG7EdKidlsLvD1MWPGkJKSwqZNm+jfvz/33nsvjzzyCJ999tkN6Z+iKEpBQpvkrOtx654fOhv0eAB4XUoZDeSd4zYG7cRDUUrczv0HMc25nzCOOpZ9rBvAp7a+BHm7MbFPOL2aBrE3fi9T/vmQ4cvtVM/6vAqjkeBPPuHgnjRi9idkLYQOAxvi4uZ8Uf/8ZmnJVpyik8qtJW+2T0GBClMFAz2ea4x/TU/HsnVzD3Joy1mq176TSp9/TIYJdqWnM/LgST6eMo377ruv2IGPja/dx/FJPRgybjYrAq/U86hpPkT8Zx1IvXCq6AdbziXnGtqizdry44EfSbGkAFDTqyaRNSLLpG9KkanzktvIihUraNWqFa6urnh5edGrVy8OHcpdnDkiIoI2bdqwdOlSmjZtiouLC9OmTQMgPj6exx57DE9PT7y9venfvz9JSUn57mvRokW0bNkSNzc3vL29efDBB4mJicnVpkaNGjz++OPMnDmT+vXrYzKZ+D3HrFA5paam8v333zNkyBA8PT3zbaMoilJWaoRXInum2rhjyaRdKjiAW545G/RwBwqa77ACue+wKEqJ2LxjJ74/96SO0C7O7AhOt5nIyLc+5fik7mx87T56NQ0iOTOZl9e/TMdtFtruv3Lu6//Wm2RUDmXTwv8cy5p0CCG4nk+J9bGwTBDl1leUbB+Tq4H7RzSmcjUtpflY3H5eef4Nfp75O3Xu7ozx3f9jS7o2tbIdMGdk8OsfC6+rf3qdIHLYJFbUfBW71L6qQ6wnuTStI0mxR65r2+VJ5rFjZB44AIAwmfDo1JHL5svMOTDH0WZYo2Eqy6P8UOclt4kVK1bQvXt33N3dmT9/Pl9++SX79u2jTZs2xMbm/hU4fPgwzz//PCNGjGDlypWOYad9+vRh2bJlvPfee8yfPx+DwcCIESOu2tdXX31F3759adiwIQsWLGD69Ons27ePdu3acfly7ukc161bx0cffcTYsWNZsWIFjRo1yrf/27dvJz09HX9/f/r164erqyvu7u706tWL48ePl9C7pCiKUjyuHiYCa2cNwZa3braHs4VMDwGd0VJG82oH7C2xHikK8Hf0RmqveJxAoWVoWNFxvsOnBLd9Ilc7KSVvbnwTj0Ox9F9zpY6HV7++ePbpy6IPtmO1aMv9gipy9wNXVyXOWYi0OEGL7IKVyu2pqLP2uLgZ6fl8Ez4YOZvPlo3GarewfMdcdPpF9BvwBE0GRWOa/BUWKTEKwYU/5jNaCPp07VPs3zMhBF0G/B+r5nvR/t83MAg7gfazXPi2M/FP/Erl0CbF2m55cmnZlbuw7u3uRe/hwQ+7v+KyWbuQqe5ZnS41upRV95SiU+clRfDFU2vLugsOz351X5Hav/HGG4SGhrJ8+XIMBu20tVWrVtStW5cpU6bw0UcfOdpeuHCBP//8kyZNrnynrVq1ig0bNvDTTz/xyCOPABAZGUnXrl05ffq0o11KSgqvvvoqgwYNYubMmY7ld999N3Xr1mXGjBm8+OKLjuWJiYls376dgICAa/b/zJkzALz88st07dqVJUuWEB8fz5gxY4iIiGDfvn2qtoeiKGUqtEllzhzRst+O775AWNugMu5RyXM26PEF8IUQIhnILnHvLYQYBDwHDCuNzim3pzXrVtMkahB+4hIAmRhJ6v41VZv3cbTJDlSkV0tnR9Ja3v/VhiEr5lHhjjsIePNNtv1xgvMntQsanUHQcVAY2/7ZmivAUZQpafPuW83QosCVbJ+i/E5UcDciq57FZrcgpR2bzcKcL3+l2Z0tGPj+NMSlFHYtWIG3Xs+knbFk7viQzz/8nLVrtAuX4v7+dXr4WdYv8aDl9lG4CAuVZAJJ3/fgzIM/UzWsdbGOvzyQUnIpR+q5Z/fupJhTmPNv7iwPg67Ys7grN546L7kNpKamsmPHDv7v//7PEfAAqFmzJvfccw/r16/P1b5GjRq5Ah6g/c3W6/X07ds31/JHHnmEFStW5Gp36dIl/ve//2G1Wh3Lg4ODqV+/Pn/99VeuoEfLli0LDXgA2O12R5/nzZuHyMojr1WrFi1btmTu3Lk8/fTThW5HURSltNRsXIkNv2jZv6cOJmBOt2JyvbXOiZw6GinlN0KIWsDbwDtZi1cBduADKeUPBa6sKEWwfPkSWm8ejpdIAyAdF1L7zMW/UWdHm+xARaY5E6mTTGhcDd8UbRpOvbc3wZ9M5XxsBtuXn3Ssc3fPUI6c2ntVgMOZKWlzKk6QRLn1FSfbp3OXDrw/+T0yMzLR64zUDmjEiun76PZMOP2nzaaJ1wi+m/EzZimRQGZGBp9/8zm/zvv1un7/2vXszyY3Txr9PRx3kYE3lzH80ocT6bOp0ezWrGeRsf9fzCe17wOdmxvuERF8e/B7Lpm1wGo1j2p0q9mtLLuoFJE6L7k9JCYmIqUkMDDwqtcCAgI4efJkrmX5tYuLi8PHxwejMXctL3//3DO4nT9/HoCOHTuSHx+f3ENj89tXfvz8/BzbzQ54gJZB4unpyc6dO53ajqIoSmnxrOSKX7A7F0+nYLdKTu6/6NQsl+WJ0yEcKeVrQogvgU5AFeAisEpKeczZbQghIoFXgYaADxCPNuXcOCnlvzna+aBVZu8FuALRwEgp5d4826sAjAceB7yBXcCrUsq/8rTTZe13OBCAlhb7jpTy+gbLKyVqyeKf6LDzBSoKrdr6mlNG1nv1pmuqB5VytMsOVNhtdoQd4k+kgZ8r6HScGjSQn2d+h+VYZaq41Aagah1vmnSsxvvv/3hVgKOoQxOKGiRRlIJkZ4isXL4ae4w//hVqY7Pa+ePLvdz/XGMavfsJdx06hum3FdpQFwQHt68i05yJ3WbP9ftX1Oyj1h17sd3NnVorB+AtUnAnHcOy/3Ek4yvqtOl3A47+xsqZ5eHesQPpehvf//u9Y9nQRkNVlkc5VBLnJbeLog4puVn4+PgghODs2bNXvXb27FlHQCFbzqBCtsDAQBITE7FYLLkCH+fOncvVLntb3333HWFhYVdtJ+8QlPz2lZ/sbRXUXqdztryeoihK6QltUpmLp7XC7sd3X7h9gx4AUsqTwLfXsT9fYDswDS3gUQ14DdgshAiXUp4U2l+FJUBNYASQCIwB1gkhmkgpT+fY3gygOzAaOAY8C6wUQrSSUu7K0W488DLwetb+HwF+EUL0kFL+gVKmpJT8On8G3Q+8houwALDqtAsP/HgJs2UGH341J9cd7Xbt2iEMAmEHFwQt3NwAOHF/D/qOHElmZiZ6YWREj8nUq9GIDgMboNOJfAMcRR2aUNQgiaJcS3aGyKUL6fz60Q5SEjKxWewsm7aHniMa89j8xdCjC9t37qOFmxv2JBgoLiJyzBZU3Oyju1p3ZK/rQsy/PcLRU/FEncikTcxgLGmXaNh58A04+htD2u1cWr7c8dyre3d+OvgTyZnJAAS7B9M9tHtZdU+5TiVwXqLcxCpWrMhdd93FL7/8wrhx49DrtULDJ0+eZNOmTfkWI82rVatW2Gw2Fi5c6KjpATBv3rxc7Vq3bo2Hhwf//fcfAwYMKLFjCA4OplmzZvz5559IKR3Bj+zhNM2bNy+xfSmKohRXaJNKbFumFVc+ufcCNqsdveHWCco6FfTIGiNbXUo5Lp/XxgHHpZSzC9uOlPIn4Kc8628FDgL9gClAT6ANcJ+Ucl1Wm2jgOPAK8HzWssbAY8BgKeWsrGXrgf1oqa49s5ZVQQt4TJJSfpi123VCiNrAJEAFPcqQ3S5Z+P2n9Dr+NkZhA+CirhKbKvfEbPks34yKI15HaDYkhGYLUmjt4kYTV1fcO3Rgp5cXmZlmbfyssHAkbjdDX+uHp5829KWgAEdRhiYUp36DcnsqSvaFZyVXeo1syq8f7iA12Yw108bSz3YT8b96PLpoKU0ffwjdQe3m9czgED6ra2f0qCm0atWKiRMnFjv7KLxpS+YfHM/AdwdgsUlM+kxW8Tx705IJ7zXyut+Dm0H69u1Ys+4S6729Ec2bMHvJG47XhzYailHn/BTWys2hpM5LlJvf+PHj6d69Oz169OCZZ54hJSWFsWPH4uXlxUsvvVTo+p06daJNmzYMHz6cCxcuUKdOHebPn8++fftytfP09GTy5Mk8++yzxMfH07VrV7y8vIiNjWX9+vVERETw2GOPFesYJk2aRGRkJP369WPIkCHEx8fz+uuvU79+/WJvU1EUpST5Bbnj4VeByxczMGfYOH0okephfoWvWE44G755AS1tND/ngRcLeM0Z2du1ZD32BM5kBzwApJTJwFLggRzr9cxaZ36OdlZgHhAphHDJWhwJmIC5efY7FwgXQtS8jr4r18Fmlyz89j36Hh/rCHicNwTi/vQqOvd8CJPJhD7HHW2AfRf2MX3jx0zY7sIz3n40cXXFVL06VSdNpFWLNuh1BnRCh15npH1EBPXuzl1krFWrVowZM+a6ghUlsQ3l1padffHmm2/SoUMHoqOjC20/7dtPCGxrxtXTBIAl08aqmf+yflEM8UOeZbrNzK70dAx2aLE7gxl/vMORxCOO7KO8nxVn+znzu7mY7QKbBLMN/jppJXzXOKaOe5aar/3OPZPWsnhnQTOD3vySc8za4hEZyfxjC0nK1CqUB7kHcX+t+8uqa8r1Kc3zEuUm0qVLF37//XeSkpJ46KGHeOqpp2jQoAEbNmygatWqTm1j0aJFdOvWjTFjxvDwww9jtVr5/PPPr2o3fPhwlixZwqFDh3jiiSfo2rUrY8eOxWq1XlUgtSg6dOjA0qVLiYmJoXfv3owcOZL27dsTFRWFq6trsberKIpSUoQQhDau7Hges7+gP7Hlk7PDW2qjZVDk5wBQqyg7FULoAT1QHS3b4ixasAIgDNiXz2r7gf5CCHcpZUpWu+NSyrR82ply9DkMyAT+y6cdaPVF1ETpN5jZamfJ9Dd4MP4LyBrmGmeqjt/TyzH5BNGqcuhVGRWpllRei3qFp5aaqZqorSNcKxD02afo3N1JP+LNiO6TORK3m/A6zXj6zYedHnOrKCWpKLVf8g5P+XXeMuK3uZIcnw7A74tW8/nvo7HZLXwpJQBWKTF+doHhhr5Mf2NhsbKPHAWBMzOx2+3odDqMOklEDS19/EXmYjRcYnLSw4xZpJVT6tW0fE1hlr5vP0kLr5RuconswOz9V7I8hoQPUVke5VeJnpcoN7cuXbrQpcu1p5SOiooq8LXKlSvz008/XbVcZn2n5tStWze6dbt2YeMTJ05c8/X8dO3ala5duxZ5PUVRlBslJMyX3WtPAXDqQGIZ96ZkOZvpYYVctSRzqlzA8mvZghaIOAw0QhvKcj7rNV+0Oh55JWQ9+jjZzjfHY5K8+i9b3nZXEUIME0L8I4T4Jz4+vqBmShEs3hlL6/dW89nYofSL/8Kx/HSFulR5fi0mnysXVXkzKiZumUjjNSdpfuTKf2XghAlUqFuXA5viOL77AqEBYUQ2fYzhYx6kgru6mFFKX3R0NBMnTsyVzVGU7Iu8AZId+7fw0OvNqdNcKyB1JG43FpsFm92OBbBIiR0t8FH757OM+mUgfvX9ipx95CgInBXw6NixI4uX/o4uKNzR5lnDEt40zCXdYmXyykNFfWvKlD0jgzOvvgpZU0+6Nm3KEvf/SMjQvvoDKwbyQK0HrrUJ5eZW0ucliqIoinJbq1rHG51Bu2GcGJdKSmJmGfeo5Dgb9NgKPFXAa08B24q43yeAlmg1OS4Bq4QQNbJeE8DVoXdHPkCu5yXZ7ipSyq+llM2klM0qV1bnUNdr8c5YXlu0mwFpM3nJuMCx/JApjKrPr0LvXtD5Kyw/vpzo2T+SujCeXenaHXCf/k/g1b07yfFp/P3zEUfb8HZBVLuFxqApN6+ChrFk134ZP358oYVF8wuQmCoY6DS4Iff1r0+Dak0x6IzohA6dMGAwGNEDRiFor3PjuTkJjFg8iEMJRQtK5Nyvi4sL48aNI7JLVwaYX2W1ramj3ZOG5TynX8yZpPRivUclIb/AUmHiP/4Y89GjAAg3N3zfHcusA985Xh8SPgSjXgVGy7GSPi9RFEVRlNua0aQnsJaX4/npgwnXaF2+ODu85V1gtRBiC1qV9FggCBgC3Ik2XZzTpJQHsn7cIoRYDpxAm8XlKbQMjPyyL7IzPLKzOxLQZn8pqF1CjkcfIYTIk+2Rt51Syj5YfoAxciYDDKscy/6yhfO2GMMaN+8C14tNieXtr15m14wTREnJdCH4oUNHeo8ejd1mZ/WsA1gztZog3v5utOpbu9SPRVHg2sNYnC2QW1BxXCEEDVpX5dWaA3HzdmH7ns3UCWwMQMzF3XS+uJ8m9iSIh6d+SOAZ/ZNM6zGDer71nOp7Qfv18/biqaSRfMrndNNvBeBl4y9kmrzQJsu6sYozO03q5s0kzL4yJa3/K6+wOH2LI8sjoGIAvWr3KtV+K6WuRM9LFEVRFEWBkAa+xB7Sap+dOpBA/VaBZdyjkuFUpoeUcj3a7CpVgOnAsqzHykBfKWVUcTsgpUxCq7eRfaWaXYcjr4ZATFY9j+x2NYUQbvm0M3Olhsd+wIWrx/c2zHr8t7h9V5xnsdl5OG1uroDHSlszhlhe5lhywetZ7Vb+L+o1ai2Md6T1W6Tk3xbNEUYjO/6M4WzWBnQ6QafBDTGa9KV8NIqiuZ4iojldqziub2BFXv9iEKOef5nQgDBCA8KICHsMa7sJxATfhwTqn4ZB8xMYtnwwBxMOXtd+R0fWw2h04UXLs/xtu8OxfIx9BrtXzCzW8V2P/AJL12K7fJkzY/7P8bzivW2p0Lcns/bPcix78o4nMelNpdVl5QYozfMSZwghdEKIMUKIE0KIDCHEbiFEXyfX1QshRgoh9gkhUoUQcUKIX4UQjUqzz4qiKIpSmJAGV3IPTh1MzLf2UXnk9OS7UsrfpJQ1gQZoU8rWl1KGSimXXE8HhBD+QH3gaNaiJUCQEKJdjjaewP1Zr5GjnRF4MEc7A/Aw8KeUMnsQ0gq0IMj/8uz6cWCflFIVMS1ldrtk2ddv8YLhV8eyJbZWPGN5ATNGqnoXXLn8mz3f0GDBdnpY3DAJgR4wubjQoUcPzp+8xLalV/77mnWvQZXqnqV5KIqSS95hLECRh2E4w2DSE/G/+kQOvQNTBS2oZ5eCP93r846xFtsskruOSh79NZGhK57kwMUD+W4n7zCR/IaN9GoaxMQ+4VT29uQpyyh22bV4sU5IGkS/zA9fTiqVYyyovzExMRgMBkdgyc/P75r7PzfhXaxxcQDovbwInDCBhUcWciH9AgBV3KrQp06fUu+7UvpK67zESeOBccDnQFdgM/CLEOLaFTCvrPshsBjt3OYFtBsz64QQwaXSW0VRFEVxQqUQD1wqaoNB0i+ZuRibWsY9KhnODm9xkFIWu5qdEOJXYAewB62WR11gJFpBsilZzZYA0cBcIcRotOEsY9BqcHyQox+7hBDzgalCCCPaDCxPAzXJEeCQUp4XQnwMjBFCXM7a/8PAfeSeAlcpBVJKlsyZSu9znzmWrbM1ZpTlaWzocTXqGR2Zfzr+zvM72bZgGqM3S3B1ZWZINfY3aUz3116j+V0t+Pm9bdjtWvTRv6Ynd3WpfkOOSVFyyh7GUpxhGEVV+64qVK7mwZ/f7mPzls18tmw0VruFRToDn9dtTrt9F7nklsgQnuSbyG9p6NfQsW7e/k2dOpUXX3wx3/72ahrkmKnlwrlWnPiqEzXkabafzmToe2PItOtwcXEplWPMr796vZ6hQ4fStGnTAvsMcOnPP0n+7TfH84C3x2H382Jm1JUMFZXlceu5nvOS4hBCVAFeBiZJKT/MWrxOCFEbbUa6PwrZxEBgvpTSMZWQEGIP2qwz3dEyVhRFURTlhtPpBMH1fDm6Q5tj5NSBBCoFu5dxr65fgUEPIUR/4Hcp5cWsn69JSvl9YW3Q7oQ8BLyENq3sKSAKmCilPJG1HbsQogfaXZBpQAW0IEh7KeWpPNsbhDaudwLgDewGukgpd+Rp9zqQgnY3JQA4BDwkpVzqRJ+V6/DHr3Pofmy8o2zsYWMDJri8ii0ZgrxdGR1ZL99pMC+ZLzH515cYtdTqWNa6c2cemf4VQqfjr/mHSTyrzVZscNHTcVBDdHqnE5cUpcQVZZra6+FV2ZU+o+9izYB5WO0WpLRjs1tZ5l6PYB8vemxdQXLFZIaKoXzd+WvC/MLy7d/ChQud6m8l/6qYB/5G3KxIok7EYraBXdpL9Rjz9hegWrVqXLx4scA+W+PjOfvWWMf6nvffj2eXLsz9dy7x6drsW1Vcq9C3rlMjEJSbUCmdlxRHJNo5zNw8y+cCM4UQNQvJIjWh3fjJKSnrUf0hUxRFUcpUSAMfR9Dj9IEEmnbKr4xm+XKtTI/v0GZYuZj187VIoNCTCynl+8D7TrRLAAZn/btWu3RgVNa/a7WzoQVGJhS2b6XkrFm5hPt2v4RRaBctscYahL7wO2vcrz2zipSS99aP4/Ef46iYNUhJF+BP0AfvI3Q6Yv69yN51px3t2/SrjXeVvKVdFOXGyq7vkZ2FUNz6Hs7QG3QMeK4fsxdNw5xpRq8zUqdqE44HhJHoXZcHN37HZdckBtkH8U7rd+hSs8tV/evbty9///23U/2tWr02xx9ZyJ2nOmHSZ2K2gVHYuaNeTaf6Gx0dfVXB1MIU9H7mt0xKSdwbb2JL0q4bDQEBBLz5Bmtj1jJl+xTHNgeHD8ZF7+LU/pWb0neU8HlJMYUBmVypHZZtf9ZjQ7Ts04JMA0ZlFXJfhzb17ofAaWB+yXZVURRFUYomZ12PM0eSsFpsGIzlu2bitYIeNYG4HD8ritM2bvqLZpuG4+T+pEMAACAASURBVCrMAMTrq+D31DIMhQQ8AJYcXULwtyuoeU57vtOcyX+NG9Pp4EEah93F2tlX6hXUCPejYZuqpXIMilIUBc2GUpr7W7t2LSuXr6ZCYggelmocO7ufI3G7aVCtN/22bCXF9SCjraPZHb+bUS1GXdW/8PBwp/tbs34TzM8tYpl8gC0n04iooSd479tcvKcNfv4FlyEo7rCfgt7P/JYlLVhAyvr1jnWrvvcuUYnbeHn9y1illi1Ww7MGfeuoLI9y7mY5L/EFkvLMCAdXZoPLbwY6BynlW0KITGARVzI7DgMRWTd9FEVRFKXMeFZyxauyK8nx6Vgtds4eTSa4/jX/tN30Cgx6SClPAmTVy2gC7FFFPxVn7Nyzm9or++MltOEnScIL1yeXUsEvpNB1Yy7FsP7rcQzdrZ1L7kpPZ8jZOMxffMGkb77hrSen4WHRUqxcPYy0f6IBQojSOxhFKQJnp6kt6f3Z7ZJZUxby2bdajY8VOiPWHpPptv8u/C9vYq6cy74L+/iw3Ye5+lfU/tZr2hbL4O94adUgTMIK8gz/fd0T4/Or8fTK/4/h9Qz7ya9/eZeZT53i/MRJjuc+jz/OpqBUXln/iiPgEeIRwjedv6GCoYLTx6rcfErrvEQI0RFYVWhDWC+ljEAbsJlfOXun/hgJIZ4G3kDLPs3O9HgN+FMI0VZKeSafdYYBw0Ab6qUoiqIopSmkgS/J8bEAnDqQWO6DHoWOHZVSWoCfgRql3hul3Dt49Ci+Cx/CXyQCkIor8n8Lca9av9B1LTYLU+aNYMAfGY5lO0OCMNts2Gw2MjPNbNq6QXtBQIeBDXHzVAUJldtbdHQ0778/iX+OrcEurVk1PiwcidvNuYCWBJtHMWzT/8FOP/ovHMyWuC0FbseZWVnuaNOT/a0/wia167vatqOc+rwn6Wn5V/cuqWl98yNtNs68+hr2NC3AaqpZk939whm9frQj4FHdszqzImcRUDGgxParlK1SOC/ZhDYDTGH/suuIJAA+4uqIu0+O1/MlhPAFPgY+lFKOlVJGSSkXAJ3Rptsdnd96UsqvpZTNpJTNKleuXIxDvDVFREQU+TslKiqKcePGYbfbS6dTiqIot4CQhjmmrj1Q/pMQnZ295RhQpTQ7opR/MXFnYU5fqouzAJgxkNp7DlVqN3dq/embPuKBWYcxWbUMj60uRuo//AimHTsxm83oMFAnsDEAd98fSvWwwofKKMqtKjo6mu+//55Zs2ZhtVrR6/UYjAawgl535bMCoNP50/JUT+ynbCw8sJVddx9lcPeHMBoNjm0VNAQlv3ocGZ51ef6/NjxeYR2tQgyEWfay4/MHCR+5GKMxdyCyJIb9ZB8rQP/+/R3buDhzJuk7supW6/WceOEBXt36Fjap1RGq4VmDGZEzqOKm/nzdgkrsvERKmQYcLMIq+wEXtGlmc9b1yJ4u6d9rrFs3a91tefqQIIQ4ihZcUUpRVFQUb7/9Nm+88QY6naobqyiKkp+gej4InUDaJfGnLpORYqGCu7Gsu1VszgY9PgBeF0KslVLGl2aHlPLpfEISF77py51ZtdtsCM53nkZw405Orb/lzGbcP5xNYKIW8Bh8KgaLEJhefZXxb01iw297CfVvRGhAGDUbV1LT0yo3jeIU6SyJfXbo0IGMjAxylhUYOnQo1apVo127dtTwrsWOz37ntMUfm8EVAB16qieGYV0B09atIrxVNRq3rV7gEJT8giEAHTp0IDMzk+kCpnU1MuwuF+5M28jmz/vT4vkfr5pJ6VrDaAp7/6Kjo4mIiMBs1uoDzZo1i3Xr1tHU15f4T69MhZ3wyH2MOj8Nu9Tu3oZ6hfJt52+p7Kbuit+iyvK8ZAVgBv4HvJ1j+ePAvkKG3JzNemwBLMlemJUBUhvIO/ucoiiKotxwLq4G/Gt4cPbYJZBw6mACdZr5l3W3is3ZoMd9aIW5jgshNqMVEss5nlVKKQeUdOeU8iE5NZ0jXz7CPfZ9jmUxrd+jZuuHnVo/MSOR1e+/QJ9D2q/U1rQ0LEJgs2vTYm5e+S8dGz8KgE+AGx0HNkToVB0PpewVt0jn9coOUmQHPIQQmEymXFkQAIFfDCTuo884uHQHcYGtSPKu63jNkOnCgahzHIg6h11UwWjQovc5h6DkFwwByMzMdKSGP/uHhfAqelqFGGiZvJwN05/lnqenOVVrx5n3LyoqCovF4nhuNptZt2YN/lu3QdbyjLohjAiOwp71ftT2rs03nb+hkmulorytSvlSZuclUsrzQoiPgTFCiMtogYqHs/r0QM62Qog1QHUpZe2sdU8IIZYBo4UQdmA94Ae8gpYB8mVp9PlWMG/ePMaNG8fx48epXbs2EybknpAvIyODMWPGsGrVKk6cOIG7uzvNmzdn8uTJ1K+vDbEdN24cb7+txamMxit3LLO/S8eOHcvSpUs5evQoRqORRo0a8d5779GyZcsbdJSKoig3j+AGvlrQA23q2tsh6NEGsADxaOmctfK8nl9BL+U2kGG28s/nA+hguVIH4Ej4S9Tp/IxT60sp+fL753ngz0uOZW3u78r0eb9gNpvR6wxU8woDwFhBT9enwjG5Ovtrqyil63qKdF6PnNO56vV6Bg8efFXAA0DodJy8pwVRu/+hwabJtPSoytmAlpwJbInZxcfRzlvW5JkuH3D03B4i2kcQ7FMPaZcFThur0+kcQQ878MO52rQKOQFAm/M/8td3vtw76N1Cj8OZ9y8iIgKj0ejI9DCZTDQ+e5bMw4e1/ZsMvBYRhyUruaSOTx2+6fQNfq5q+NstrqzPS14HUoAXgADgEPCQlHJpnnZ6rj7Xehh4CXg06/ESWuCkjZTyn9LsdHGVRUZbTqtXr+axxx6je/fuTJkyhfj4eF544QUsFgv16tUDtGDs5cuXeeONNwgMDCQhIYFp06bRsmVLDh48SEBAAEOGDOH06dPMmDGDDRs2oNfnnoIxNjaWkSNHEhwcTGpqKnPnzuXee+/ln3/+oVGjRjf8uBVFUcpSSANf/vn9BKAVM5VSltsJJMTVM64p+WnWrJn855+b8lykzFhtdv789Bm6Jf/kWHY4dAB1n/gEnPxALNoyE/9nJ+Oboj231K9J+M+L2bx9O99/sRC3lOqEBmhBj65PhRPaRKWqKzePssr0yN53zouQ/C5KcvXPYGBWrdrYU1LYmpZGPf8GpLXugUHfGL28OpDo4VuBunf7E3PhIDv/3UL7+9rTvtO9GE16vv76a5577jlsNhsuLi78uXIlHpsn0jh1o2P9vxuMpe3Dowo9Bmfev5w1PR5q3pyAyR9C1t+uWZ10LG+mRTzq+tTl287f4lPB56ptKKVHCLFdStmsrPtxuyjsfOTAgQM0aFBypUHK8nsu2z333ENiYiL79u1z1OHYsmULLVu2pF27do4stJy0AuiZ+Pv788477zBy5EjgSraHxWLBYCj4JorNZkNKSVhYGF26dOGTTz4plWMrTEn/fyqKojjLZrMz46W/sWRotdL+93ZLvP3dyrhXBbvW+YhTt8yFEJWAFCllRqGNlduClJLlX7/B/TkDHgE9qPv41HwDHvldkP138TD2sVMcAY9MdxfCpn2LMJmo4lKLO9y7gbv2WrNuNVTAQ7nplESRzuvZd77BjRwXJbkyKYA1TZsw56efMNvtmC5eYOblk6TcVYmoZs2pc7EllVOvTCt9OSGD7ctPAq4EE8GRpZIjS9djcjXg7tWI8c98zeHTu7m7WWs8LDVwaTudzctfpaFtKxX1ibT+9x02LfOldY+B1zyGvO9fft8V2cdqS0nleK9eWLICHntqCFbcpX3f1PetzzedvsG7gnepvN/KzUWdl9w4ZZXRls1ms7Ft2zZee+21XIVH7777bmrUqJGr7c8//8yUKVM4dOgQycnJjuWHDh1yal+rV6/m3XffZc+ePSQkXJmtoGbNmtd3EIqiKOWQXq8jqK4PJ/ZcALRZXG7moMe1FBj0EELogTeBFwEPwCaEWAo8KaVMukH9U25Sv8/5mPvPfeF4fsT7HuoO/Q6yTkhyXrgAV12Q3dniTla9+SQRJ7JS5AVUn/IxxqpVSTiTyprZBxzbrhbmR/Me6oRDuTldq0jnjVLQRUne4Sl6Dw8sQmAHLFKyNS2NYf+m4p8YxQf9/sYggml0sS0NE1phS89/X+Z0K+Z0K+5U485K1bCcgA0njmS9OoTtDAGggriE64ok1q74lYQKXjSp48ud9Svh5uWCu48LFb1ccPU0ORW8yXb+/UlYTp8GIKUCTOuuQwpBA98GfNP5G7xcvErpHVZuBuq8pGwUNMztRrlw4QIWiwV//6vHkudctnTpUh5++GEGDBjA2LFjqVSpEjqdjm7dupGRUXhsbMeOHXTr1o3IyEhmzJhBYGAger2eIUOGOLW+oijKrSikQe6gR3hEcBn3qHiulenxFPAWEIU2tVoo0Btt7OmgUu+ZctNauWgWXY6Oh6yEjuNujaj9zALQa0XB8l64DBgw4KoLsoN7fyBi7QXHNg2DH8WnXXsy06388dUeLJlaGpVnZVc6DW6IThUuVZQCFXRRkjeTAmD27NmYzWaMQtDCTYvW14mDibNtvN/vNOuqzeOv4AUM8xzFHZYWpCWbSU3OJDVJe7TbnBsSmSE9ybB64gP4pMDlnQnMWv43R+J2UyewMaEBYQidwM3TREUvExW9XVi8/hdHkVSz2cwfS1ZyZ+NmmFwNpKyLIumXBY7tz+isI8FTEOYXxvRO01XA4/agzkvKQFlmtAFUqlQJo9HIuXPnrnrt3LlzVK+uzeY2b948ateuzXfffed43WKx5MrYuJaFCxdiMBhYtGhRriKniYmJeHurDDJFUW5PIQ18HT/HHkrEbrNfNUtfeXCtoMdQ4Bsp5fDsBUKI4cDnQojhUkpzqfdOuaks3hnLb0sW8KV9PAahZWicMoUS8uwShOlKqlPeu85ArgsyH3+449M1jvaXm9Si+ajXkXbJ6ln/knxeu8VsMOno9lQ4FSqW3zmhFeVGuNZFSd5MlJzt6h09xrn33gO7nUqXYMJcO1N7CrbXsfJlygfcE3QPY3uMJdA9EABpl2SkWRwBkNSkTNJyBERSkzJJTTZzOSkDHbkDlcfO7uezZaOx2i0YdEZG9JhMaECYtk5SJpy8jEdGTfTCCMKCDgNpB/z4dtTf+FSpQOjmGWSHNTY1EGxsKAivFM5Xnb7C0+RZ6u+xclNQ5yVlpCwz2vR6Pc2bN2fBggWMGzcuV02PEydOOIIeaWlpV9XomDNnDjabLdcyFxcXANLT0/Hw8HAsT0tLQ6/X5yrSt3btWmJiYtTwFkVRblve/m64+7iQkpiJOcPGuROXCaxV/m40XSvoEQq8nGfZfLTp1KoDR65aQ7llLd4Zy4wFS/nBMIkKQpsm8qSswu57ZxJSMXfRwLx3nfv370///v2JioqicbMwxMTXcc/KFE3xdqHptO8Rej3bfj/OiT0XOHZ2P0fidvP4sN74Bbnf6ENVlHIp7zCRqKgo/Pz8uHjxYr71MbKeYKpejdiRo7CnpOBilryyUDKnPSxrIdgYu5HIhZG0qtqK3nV6c1/Ifbi6m3B1N1EpuODPZuirv9OQOD7Tz0DY3Ui1+xC97wJWuwUp7djsVk5c3OcoUuxYLyCMvq2fYdfxv2lSs63j9cTzGWwPHUywKRSf87/xbWcbjao05quOX+Fh8sivC8qtSZ2X3KbefvttOnfuTK9evRg+fDjx8fGMHTuWgIAAR5suXbqwePFiRo4cSY8ePdi+fTuffvrpVVkaDRs2BGDKlCl07doVvV5Ps2bN6NKlC1OnTmXgwIEMGjSIw4cPM378eIKCgm7osSqKotxMhBAEN/Dl4KY4QBvicqsFPdzRUkZzupz1qM4ybzPTft/MTMNkPEUaAPHSiyfMY7BtSKRnm9xtC7rrfHfLu1kwpCPhZ6wA2HRQ7dPPMPr6cmLPBbYuPe64G2yTFlbv/ZGQhje+SryilGfZw8uyh4nodDpcXFwKnHHBvW1bavz0I6eeehpLbCxCQv+1doIuCr6N1GHTw6Yzm9h0ZhNeLl70CO1B79q9qedbr8A+BPq4si8pkLfpwUyXyeiE5Nl6Vn7ZIrBJPSaTiZc/GEiLZnfnyhDZtGkTv876EovFzLFze6lbuz4BLrWwS+3O6+ngCP6rHkZT92180HEc7iYVFL3NqPOS21THjh354YcfGDduHH369KF27dpMnTo114wqQ4cO5dSpU8ycOZPp06fTvHlzli5dSu/evXNtq0ePHjzzzDNMmzaNd955ByklUkoiIyP59NNP+eijj1i4cCF33HEH33//PRMmTLjRh6soinJTCWng4wh6nD6QQItyWGuxsNlbgoQQoTme63Msz1U0TEp5rER7ptw0klPSGG/+gGCdVoPjsnSlv/k1YqQ/Iin/aof5pcL+/tELhG+MY1d6OlvT0mjc/wEGtmhL0rk0Vs36F4Ajcbux2S3Ypb1MqsQrSnmXPbzMbs8qEmwv/LPkUqcONX75mdPPjSB640a2pqXRYrMbH6QFMLFTKheyAvrJmcn8cOAHfjjwA2F+YfSp0wffc75s27gtV4Dz/oAUPvrzV1YGhfFBtYd5zTiPViEGovrDt5fbMmTkWEdbz0queFZyBeCXPw9gtWmff5vdiiSa5tvn8F/1flz0Cweggq0yYZu6scslDhlwjg0b/3bUKymrmgPKDaXOS25Tjz76KI8++miuZTkDGjqdjgkTJlwVpDhx4kSu53q9ni+++IIvvviCvEaMGMGIESNyLevYseN19lxRFKV8C653pa7H2eOXMKdbMbk6NQnsTaOw3i4oYPnifJbp81mmlHM2u+Sfr4bRQXcQALsUvGB5lgNSG0Nb1dvVqe1s/3MuNWasZld6OoNPxWCWEpcvfyD0/v6cXm/CnK5lfzSu15zVe38ssyrxilLeZQ8vy5np4cxnyeDrS+xTwxn8y8+YrVZMQjATmPafG4kNg1heN42VNZNJd9GyLvZf3M+2Lds4/sFxsGp1e9auWYsQgneeeYTMTDPoDXzy8AQahbamm9hEqxADzeRWtmdcKWKcPRSnVZtWBDUOQm/QIe02DHY7Ddaso6KrK432fsXB0JacDn0IvdUFJPz64wo+/300NrsVvUEbh2+1WvOd9UW5pajzEkVRFEW5gdw8TVQKcefCqRSkXRJ7OJGajSuXdbeK5FpBD1UJXWH1nElEpix1PP/Q+hBr7XcC4GrUMzqy4BT3bOeP7sc2ZiIGO2xNS8MsJXbAbDYz65MFNPN/AAC9QceI8Y/S7elG6o6tohRTzuFl+dX0uJa/Nm7EkvX5zJ7StomrKz77T/PYfnjUxcSxRpVZGHqBHTWspB5MRVokSMg0ZzJo2iAa+jXMyjSxoRfwfEMLnUf+wokp7ahh+Q+jsBGw/ll+dTez88huJg6eiNVixaATTGhUje/8q2qZJm5uNHHVgqqZRtj+QAov9m7J5vknidmfwJG43VhsWo0Qu0XLapFSqgyxW5s6L1EURVGUMhBS35cLp1IAOHXgFgp6SCln38iOKDefjeuW0f7YZMfUtFsrRvCb9WFEcgZVvV0ZHVmPXk2vXeDLknKZA8MGUCVVuygJ83XDlOKCxWLFYDDiK2s72rZ7rB5VqntSpXrZVYlXlFtBcWdayFWE2GDg3pZ3w9FjYLdrw9IuXqRFUjKvbHPF4l2ReVWq8L7hPHabRBgE1ppW9rAHu96OkAKD0UDjlo3ZmrCHne0f4dDObznqIogxGmH/WPghHlumluUl7ZKzMWn09PNzBDsS3GH7XZ6Inp14I/J1XA2u9HjOmwOb4ohJvJMV2+dis1sQQo8QILGrDLFbmDovURRFUZSyEdLAl52rYgCtmGl5U74G4yg3zOHDB6kb9QwmoU31dtJYi7tG/MDGCs4VDoyOjmbdunV4b/yD9rGpAFh1EP7RONZ61WPxz39gO1GFmv7a7Azh7YJo0DqwdA5GURSn5FeE2HLuPGs+mcrg99/HbLdrw15CqtEEeCIJwgOr8ZfRhrWxG4f8jSR6CGq+UpPUg6lUrF+RV2NehZisHbib8L0k6b3NTvvdds7GuTJYCCxSYhSCFm5u2PSC5OZ1qPBAd8I69+Wein65+iiEoOE9VXmjwWD8At3YEL2BOoGNAfgvbjfde0XSvFmLG/vGKYqiKIqi3MICa3uhN+iwWe0knUvjckIGHr4VyrpbTlNBD+UqCUnJ2H96jMoiGYAkPPF5cgH6IgQ8OnToQGZGBibQLpBcXTk8uB19uwzk0oV09ussZPprd3gDa3lxz4N1cq2vhrcoStnImyVi9K/CTg8PLEJow16AfwQ0yXq9iaur9vN+kP/aianjyZK6drZ2diXTpKWJGaySu/6TtN8taXJcopPaugGurswMqcbWtDRa161Dh2HD8Lz/fgy+vhTGw7cCoz8eQPcNndi44D8smTZCA8KwnISf391Gh4EN8a/hWZJvjaIoiqIoym3JYNITWNuL0wcTAS3bo+E9Vcu4V85TQQ8lF4vVxr/TB9JGHtWeSz0pvWYQHBBayJpXREVFYc7MxC4lFrQ6HvZONXh41OdYzTaWT99LZqoW8HDzMhE57A70Bh1wJWCSXchUFSRUlLKXa9iLyUTfOXMIQZC8ZAmXV61CZmQAIKSk+uFkRhwG2yoDOxu4cNFopu1+iVua/art6ox22tWyU7X7K9z79EsIIYrULyEEYW2DCGngy9o5B4k9pP0hTjybxsIPtnNn52o0714TvVF3/W+CopQjUsoif56Um4+Usqy7oCiK4hDSwNcR9DhdzoIe6kxQyWXdrLdok77W8fzoXW8Q3LSzU+tGR0czceJEPKxWDFKiB4xC4F/Lg05TfkIndayZfcBRBEenF3QdHk5FLxfHNrKn27TZbI6ChIqilK3sYS/jx49nzZo1tG7bFve2bQia/AF1NmwgcOJE3Fq2hKyLrF3p6cw4cw5D9AUit1lwS7Pl2p5by7vR31uRC3edZnbGecz/TGLXru3F7p9nJVceeKEJXo0us3rPPI6d3Y+0S7avOMnPE7dx/uSl6zp+RSlPjEYj6en5TyevlC/p6ekYjcay7oaiKAqgBT2ynT6UWK4CsyrTQ3H464+f6HD6C0fh0n0Bvbnj/pFOrZszQ8MgJWOq+JNks1Gnsht3zvoSPzd/Vn6zn2O74h3rtH24LgGhXrm2k/eOsipIqCg3h4KKo+rdK+LduxfevXthiYtj9dRPGPzh5Nz1P1xdMVQNxLt3H7x698IUHEzUyqV07fEAFpvEpM/ke9GPyhO2EBzoX6z+bd6ymWEvP4rZbEavM/Bct8mEBoSRcCaVBe9vp1XvWjTtVO163wZFuelVqVKF2NhYgoKCcHV1VRkf5ZCUkvT0dGJjY/H3L953oqIoSkmrFOyOi5uBzDQr6ZctJJ9Px9vfray75RQV9FAA+HfvdppsGYVeaBG7/yrcQdiQ6Y47t4XJmaEBkGSz0T/Ajz0THqFZrQ788dUeYvZfqfQbHhFMWNurU6LyK6SoKEr5YAwMZJe3V676H3vr1uH+ceOo2KoVQncluTB6xz4sdoFNSsw2OHLiLEEznsDn5WVUrGAq8r7zfgdZK8diMIVjNduRdsmmhf9RtbY3/jVVnQ/l1ubpqf2OnzlzBovFUsa9UYrLaDTi7+/v+P9UFEUpa0InCKjlxcm9FwGIO5qkgh5K+REfH4/rwifwFGnac1GJwGG/IAwuhax5RUREBMasAEn2LAwrH6/HC51eY9nnu4k9nORo27hjCPf0rV3g3afiTrepKErZy5utdf877+Cez+c5IiICk4sL5sxMTDo7ETX0tLJuYdn0kXQb8Tk6XdHuTufd7yODH6BBrcasmrGf8ycvA7Bz1Um6DAsvkeNUlJuZp6enulhWFEVRSlxgrqBHMg1al4+6HirocZvLtFg48c1jNCcWgAyM2B6cQ0Xfov0C1zsbx8yqQWxNS6OFmxuxXSrRf8hX/P7ZXs4dvzKe3qVWAn8d3ox+c3sV2FCUW0TeGZecydbK2a5G+k5a6VYC0CNxLkvnh3P/o08Vef9Tp07l4sWLufbb/on6zJ+wDYCjO+NJOp+Gd5XycVdCURRFURTlZhJYy9vxc9x/yWXYk6JRQY/bmJSSDV+PooN5q2PZydbvU69h6yJtJ333bs689ZY2daWrK1vrClq+9Cl/fxXjKFoKULFeEs+83l/NzKIot5CCZlxy5rPtaGe3cXRqV2pd2gLAfQff4u8N9WnbJqLY+89WKdiDag19ifk3ASTsWn2KiMfqFft4FUVRFEVRbldVanigMwjsVknSuTTSL5tx9Sj6sOQbTc3echv7a/HXdIj/3vF8T7UB1Ov8ZJG2YTl3nmPPDEdv0cbRx1SCjBefJeYnfa6Ax72P1CUu45CamUVRbjElMuOSTk/1YfM4a9AyzCqKTGqsGsrBYyeKtf/smaSio6MBaNr5SgHTg9FxpF0yF72PiqIoiqIotzmDUU+Vah6O53FHy0e2xw0Neggh+gkhFgohTgoh0oUQh4QQE4UQHnna+QghvhVCXBBCpAohVgshrhqILYSoIISYLISIy9petBDi3nza6YQQY4QQJ4QQGUKI3UKIvqV5rDe73dv+pvmuNx3PD1RsQfiAj4q0DXtmJieefQrdRe2X/XIFWDfoXtzWNSUxLhXQ6qDe178+4RHBjjH3er1ezcyiKLeIkvpcG9x9qdj/F9KoAECIOE/K3Me5cCm1SPv38/OjQ4cOvPnmm3To0IHo6GiC6vlQOesPtM1iZ2/U6WL1UVEURVEU5XaXa4iLCnrk62XABvwf0AX4EngaWCWE0AEIrbrlkqzXRwB9ASOwTggRnGd7M4ChwFtADyAOWCmEaJKn3XhgHPA50BXYDPwihOhWwsdXLpyJjaHy74NwE5kALIn1YUFKSzZv3eb0NjZt2sT/de7MTKrkBwAAIABJREFUP9t2AGATMLdPbeodeZxL8RkA6HSCSs3TWbx+NtHR0Y4x/OPHj1dDWxTlFlGSn2uPaneQ3PULx/Nm9r0sm/wkNV/7nXsmrWXxzthC93/x4sWrMj+EELmyPfZGncacYS12PxVFURRFUW5XAbW8HD+fPZp0jZY3jxtd0+N+KWV8jufrhRAJwGwgAlgL9ATaAPdJKdcBCCGigePAK8DzWcsaA48Bg6WUs7KWrQf2A+9kbQchRBW0YMskKeWHWftdJ4SoDUwC/ii1o70JpadnED/rMRqj/TesOaXn4R/PYrFMZOLkKU5dtERHR9OhfXttDL0QzAypxv7763BH8ijSUrXp8XQGQZUW6Tzx1IPFGuuvKEr5UZKf68C7+3Hs1B5C930CwED9cvbZq7EgqR1jFu0FoFfToGvuP+csLtmZJ7WaVsazUgUuXcggM83KgU1xNL4vpET6rCiKoiiKcrsIzBH0OH/yMlazDYNJX4Y9KtwNzfTIE/DIlp1ekH0W2xM4kx3wyFovGVgKPJBjvZ6ABZifo50VmAdECiGy51uNBEzA3Dz7nQuECyFqFu9oypfFO2O5Z9Ia5r/7BI2t2oWDXQr+MERisViLNB5/5XezMZvN2AGLlPzkbSTQ8AqWVAmAwaijxzONORy7u0hj/fOOw1cU5fYU2mccq7jb8fxdwwzuEMdIt9iYvPKQY3l+3xkFZZ7o9DqadLyS7bFrdQw2m/0GHI2iKIqiKMqtw9XDhLe/NhOe3SY5f/JSIWuUvZth9pZ2WY8Hsh7DgH35tNsP9BdCuEspU7LaHZdSpuXTzgTUzvo5DMgE/sunHUBDtCySW9ak75bw0fe/0jkkk4E1/3QsX+n/JP269OPLOb9ddVe0IOYTJ6j313pMQmCREr1OR606z0CGFt0zVtDT49nGVK3jTURyRL53XPNT2AwMiqLcRnQ6XswYzgLTGRroTuEirHxq/Jwe5vc4k5VFea3vjIIyT+q3DmTrsuNkpFhIScjk6Pbz1G0RcCOPTFEURVEUpdwLrO1F0jntMjzuaDJV6/iUcY+urUxnbxFCBKENRVktpfwna7EvkJhP84SsRx8n2/nmeEySUspC2uXXv2FCiH+EEP/Ex+eXpHLzi46O5vVhDxEfNZtFP/5E9CltHPsy291MSO5WpPH4tpQUTj3zLE0kzAypxuOhDXj6gQ+pXakxAC5uBh54oSlV62jFbYqy7RKZAUJRlFuGt7cPwy2juCxdAQjVneVtw3cEemmFTovznWE06WnU/kppqB1/xnD1nwZFURRFURTlWnIVM/3v5i9mWmaZHkIId+A3wAoMyvkSkN9ZqMjneUm2u4qU8mvga4BmzZrd8DPj6OhooqKiiIiIKHbWQ1RUFHarBaTEbIOoEza8g0IZbRlORrJWcNSZ8fj2jAxOjxiB+dgxAAJCmnHnHUPRYwTA1cNIzxeaUinYPdd6zo71z56BwdmME0VRbm2jI+sxZpGZNy2DmGqaBsCDhr84X/EeoEOxvzPC2wWzY+VJrGY7F0+ncOpAAtUa+pXegSiKoiiKotxictb1OHssGWmXCF2hl9dlpkyCHkKICmgztIQC7aSUOecPTCD/7IvsDI/EHO2qXaNdQo5HHyGEyJPtkbfdTaWkhnu0u/deTHqw2cCkh+bVKzLUMop0KhDk7erUNqTZzOkXXiAtejMA5ys3ZV/YQPRZvz4VvV144MUm+ARULHL/smVnhVxvkEdRlFtDdrHSyStNLErdQx/9Bv6fvfsOj6pKHzj+fWfSCSEBEkoghCZNFATRWCCKigUV6+ra3dXV/S26q6JiX3VF1+66rquua+9tsaBiECsWFJAiSu+QAAES0jPv7497EybDpCczKe/nee4zmTvn3nnvyc3MyXvPORfgvG0P8cV34zm8gZ8ZMfGRDDm0Jws/db525n281pIexhhjjDH10CklltiOkRTmlVJcUMb2Tbvpkhpf+4ZhEvKkh4hEAm8CY4CjVHVhQJHFwDFBNh0KrHXn86god4qIxAXM6zEUKGHPHB6LgWigP1Xn9RjqPi5p6LE0p2Bdt+uTCKjoJZJYtpnZ58cwe3U5melenu/2R9b7UoiN9DJlwqBa96NlZWy4Zgq7P/scgE3dxrBk8Hl43JFRCV1jOPnPI0noWrcESk3szi7GGH+TRqYyaWQqWjSK7PsOJqVsIwlSSMIHl7Ox/6wGf2aMGN+bRZ9tQH3K+qW5ZK/ZRUqfhGY4AmOMMcaYtkdE6NE/kZXznSkgNq3Y2aKTHiGd00NEPMCLwHjgZFX9Jkix6UCqiIzz2y4BONF9zb9cJHCGX7kI4DfAx6pa7K7+ECcJck7A+5wLLFLVFjmJaUXXba/XW+/hHhW9RG666Sauvv0RAKYeHs36XhOY4TuY1MRYpp06fK/bPgZSn4+NN9xA3scfU+6JZEXfk1gy+DycXyMkdovjlKsPaJKEhzHGVEdiOhF79jOU4UyYvD/LmPP0FMoaePeVhK6xDBiVUvl83sy1TRKnMcYYY0x70WPAniEum1bsCGMktQt1T49/4iQp/gbsFpGD/V5b7w5zmQ7MAV4QkSk4w1mm4szB8feKwqo6X0ReBR5ye4+sAi4H+uKX4FDVbBF5EJgqInnAjziJkSOpegvcFqUxwz0qeon4fD5K1JnHIzW9Lydf8xxnxNYtA6eqbL7tr+ya/i7bOg/ll4FnsmRnNsvmv8LAHvtz4KgxnHTlSOISohp6iMYYU2cd+x/E+lHX0OuHewA4Jf9V3nw7kzNOP7tB+xt5dBrLvt8CwIofstl5ciGdki2Ba+pGRK4CjgBGA92Bv6rqbfXYfhJwKzAE2AI8CUxT1fKmj9YYY4xpeq1pMtNQJz2Ocx9vdBd/fwVuU1WfiEwE7gMeA2JwkiBHqOq6gG0uwkmg3AkkAguAY1X1x4ByNwL5wJU4jZNfgDNV9d0mOapm0tCu25mZmUR4AJ8zj8chfaLxnP40UfVIeGyZNo0t73zIsqEXk50yipWbF/OP96ZQ5islMiKSj66YaQkPY0xI9Trhetau+JS0Hd/hEeWwhTcwd+iBjB46oN77Sk7rSO8hSaz7ORdVWPDJWsaeXfuQP2NclwC7gHeAy+qzoYhMwBnm+x/gKmAkcBfQEbiuacM0xhhjmkfXtHgiIj2UlfrI21ZEfm4x8UnR4Q4rqJAOb1HVdFWVapbb/MptV9WLVbWzqsap6nhVXRBkf4WqepWqdlfVGFU9SFVnBylXrqp3qmofVY1W1f1U9Y3mPdqGmzNnDtOmTWPOnDkN2j5i10o+PS+aO46I5qFjo3m9+BDW7ah68ai695gzZw43TTyRV9/8jm/G3EJ2yigAlm1aQJmvFFUf5b4y5nz7ZcMOzhhjGsrjIfWi59jlcbpT9pDt7H79crbnF9eyYXAjj+lT+fPPX2+iMK+kScI07cIwVT0ImNyAbe8GvlTVS1X1U1V9ACfp8RcR6d6kURpjjDHNxOv10K3vnjnRWvIQl5AmPUztKubjuPnmmxk/fny9Ex8b161gwJzryOgdQWa6lys+KuXxV2dW2Vd17zFnzhyOHDeOuz/4gCkLPmTZ1pWV+x2WMYSYmOgGzTFijDFNxdupB+UnPVr5fJx+xwf/vZOqN+eqm16Dk+ja2+kBV1bqY+Hs9bVsYYxDVRs0oYyI9AZGAC8EvPQ8zjxlx+21kTHGGNNCde/vP69Hyx3iYkmPFibYXVvqqqy0lO3PXUgSeQC8tzqaMp/sta9g71FSVMZTNz9GcVk5PpRyXynLNi1gR8wWdOJqpj10NVlZWdxxxx0Nvn2uMcY0haQRJ7Fu4HmVz0/f+i/e+fiTeu9HRDjAr7fHwtkbKC22KRVMsxrmPi7yX+lOql7AnjvLGWOMMS1ejwF75vXYbEkPU1eNuWvLt8/fzL6lPwFQrsLws28Kuq/A9xjYc39evO5TEuPHEOGJxCMevJ5IdL8Cik9dygGdBzNt2jQApk6dagkPY0zY9T7zPrbEOnN5xEgpw77+M4vXbKn3fvofkEzHLjEAFO0u5eevNzVpnMYE6Ow+5gZ5Ldfv9SpE5FIRmSsic3NycpotOGOMMaY+uvfr5NxuBNi6Lo+SorLwBlSNUE9kamrR0Lu2vPTUw6x6+WE86R4yekfwQ5/fc9bFV9FnWMZe+6p4jw8/mEnHwr5smeM0+Pt1H8bkifeyas0nrDliHb2PT+Ro71EcddRRlJSUEBUVZb08jDEtQ2QMSRc8T9HjmcRQzD6ynndeuJL0a16gQ3Tdv9o8Xg8jjkrji1d/BWD+J2vZd2xPPF67JtBeiMhRwMw6FP1MVTMb+3buY7DxWBJknVNY9QngCYDRo0fXfyyXMcYY0wyiYyPo0jOebRvyUYUtq3bRe0jQ/H1YWauuBcrIyKhXj4qZH83gd5f/hVs/LWL8cwW8vDmNUedPq3Zf5eU+YvJS6blzLLH5qZXrI0t2caDve9ZftoJ9jhzEfePu48vPv2zwcBtjjGlOUd2Hkp95R+XzSaUzePWFx+u9nyGH9CCmQyQAeduKWPGjXUlvZ77GuXVsbcv5TfBe293HYC3CRL/XjTHGmFahxwC/eT2Wt8zJTC3p0cqpz8f/HrqK0nKlXKGkHBZ1OgZvRGTQ8ptX7uT1u+by9VvLKSvZMw9bz41fkrridh46/keSk/vw6PhHiYuMq3W4TWPvNGOMMY3RddylbOhxdOXzU9ZOY8bXc+u1j8hoL8Mz9ySAf/x4TYMmRjWtk6oWqOrSOixrm+DtFruPw/xXikg6EAcsaYL3MMYYY0KmRyuYzNSGt7Ry37/1EOf0XMvTXifhEREVxcRJp+9VbseWAubNXMuSrzZW6VTbIX8Dg399mfyIVdx2rpfopC48ftTjdIntAtQ83KbiLjA29MUYEzYipJ7/JLn3jyGpLJskyafLR5NZNeAj+qYk1L69a3hmL+Z9vJayUh9b1+Wzfmlui+yeaVo3VV0rIguAc4Cn/F46FygFZoQlMGOMMaaBqkxmumoXvnJfixsmbEmPVmzNzz8wfOE0YntHkHV+HM9nD+K8G/5ZmXjwlftY9dNWFn22gfVLq86Z5ikvoe/q9+m9fhY5nXzc/lsvJZ3i+O/4x+id0LtK2YyMjKDJjGB3gbGkhzEm5GKTiDnracpfOAkvPsbIEp797430vPohoiO8ddtFxyiGHNKDhZ9tAGDex2ss6WGqJSKjgXT29JgdKiIVVxw+UNUCt1wW0EdVB/htfgPwnoj8G3gZGAncBDysqptDEb8xxhjTVDp2jiE+KZr83GLKisvZuj6flD51v/AUCpb0aKWKCvLxvX4xsVICQI8+/XjgH58TExdPfm4xS77cwJIvN7J7Z8le23bdsYSBS18mtmg7WzvC7Wd72ZUQwT/G3c+wrsP2Kl+diqEvFT096nOnGWOMaUqxAw4n+4DJpPz4MADnFLzAc28cxsVn/abO+9j/qDQWfb4BVVj3cy45a/NITuvYXCGb1u1PwAV+z89wF4C+wGr3Zy8BbS1V/cBNkNwKXAhsAe4C/tZ84RpjjDHNp0f/Tiybmw04Q1ws6WFqNWfOnFrv3vLTf69gjG81AEUaie+0/5CzpoRFny9k1YKtqK/qeHQR6N03hi4fP0bi+h8QYEcHuONsLzmJwh2H3MbhvQ6vV5wNvdOMMcY0h5QTbmHLis/otnM+EeLj6CU38tlPoxi334DaNwY6JcfSf1QKy90v7Xkz13LM7+qeCDbth6peiJOwqK1cZjXr3wLeatKgjDHGmDDpMSBxT9Jj+U72P7J3LVuEliU9Wpi6zJOxYOYLjMl5E4AiXwc+SphG3qvl7Myez8rNi1m2aQEDe+xPv+7DiE2IYthhPembmMuOqVfyw/r1vF5QwL6Jcbx5djybugiTR05m0oBJDYq3uqEvxhgTct4IUi58joJHMojT3fT25LD47SvY0udNunWKrdMuRh6dVpn0WP5DNgef3I+ErnXb1hhjjDGmPepeZTLTHagqItXeiT3kLOnRwgSbJ6NifWZmJgPTUkj/6jq2lA5gUcGx/FI0Fs2OBApZuXkx/3hvCmW+UiIjInn+8Tc59dyx7Hz+ObJveJD5eXlcvG4tJaqwU0jf2ZcLD72QS4ZfEtZjNsaYpiJJfSg/8WGY/nsAjtWvuO6+23itdCw9E2OZMmEQk0amVrt9Sp8Eeg1OYv3SXNSnzM9ax9jf7BOq8I0xxhhjWp0uqfFExngpLSqnYGcJeduKWtRFI0t6hEhdhqzA3vNkdOnSpUrPj3tOP4FuCbeSU7Z3d+1VOQsp11JUfZT7yli2+ls2TX6X/M8+A+C7ggJKVPEBlCvdNnXjhoNu2CsLV9dYjTGmJep4wBlsWfIx3Za/BsAtnv/ynQxk1Y4eTH1rIUCNiY+Rx6RVTv7885cbOfCEdGLjo5o/cGOMMcaYVsjjEbr368S6JdsB2LR8hyU92pv63No1cJ6M2bNnU1xcgs9XTnFRMTN/6cSEkVUTHl17x7Pv2FT2853Ph8e94LxPRAQD332P/MLCynI90+Jgp0C54o3wctcFd+H1VL2zQbBYAUuCGGNalW5nPsSqu76kLxvpIMU8EvkPTim5ncJSuPejX2pMevQe0pkuveLZtj6fslIfiz7bwIEn9A1h9MYYY4wxrUuP/n5JjxU7GXRwjzBHtIclPUKgvrd2rZgno7zUx4cfrMArESCK1xPJwB77O4WknEEHpbLvuFS6pSe4vTVS+WTmTD64/36GzZvPcL+Ex7tjhJcy40lf1Zeo1VE8/LuHyTw8s9ZYn3vuOZ599tk6JWyMMabFiOrA/xX/ibejbiFayhjuWc1l3nd5tPwUNu4orHFTEeGAY9KY+fQSAH76dD0jjk4jMqput781xhhjjGlvegxIrPx504qdYYxkb57ai5jGqhiy4vV663RrV1Vl+Q/ZvPTXb0jJ6cnkifdywoEXMXnivYxI7Uyv+Pd5M1U56sKhdO/bqXJ4SlluLr2efZZzlvzMiOhoAApiPdxzuofnx3sp9wrDRg0j619ZHJN5TJ1iBYLOMWKMMS3dzk5DuK/szMrnkyPeZoCsp2di7d0t+49KIb6z8zlalF/K0q83NVucxhhjjDGtXbf0BMTj/F+6feNuinaXhjmiPaynRwjU59aum1fu5Ks3lrF55a7Kdf26D2NEahcyOj5P56iFHF9yF1vyq55EBT/8wIarrqZsy5bKdctTPdx/srCtk3PyndT/JG486EbiIuPqHCtQpadHbQkbY4xpKaZMGMSNb53ICb5vGeFZQbSUcW/kE3x14Iu1buv1ehgxPo0vX18GwPxP1jLs8J54vHatwBhjjDEmUGS0l+Te8WSvyQOc/2vTh3cNc1QOS3o0o8AJQWtKduzMKWDO2ytZ8WN2lfXlUsa4+GfZN+5DvFLG5SVXspkupLpXKtXnY9uTT5HzyCNQXl653f8OEl4ZJ5R7hRhvDDcefGOdb0sbGGtdEzbGGNOSVMzbce+Myfy3+GqipJyRnuV8P/cJSsbdR1REzQmMIYf24Pv3V1FcUMaurUWsmJfDwNHdQhG6McYYY0yr071/p8qkR/bqXZb0aG3yS/LrVb6uk5cW7S5l7gerWTh7Pb5yrVzv8QpDD+1K36Vnk+ZZB8B75Qcxw3cQsZFepkwYxBcffcR7N93EiOwcRsQ6SZDdsR4emQjzBjiN+f6d+nN/5v30T+xf72P2T9pMnTq13tsbY0y4TRqZyqSRF5E7YwNR394LwHkFz/PSjIlceOKRNW4bFRPB8MxezP1gNQALstZZ0sMYY4wxphopfRIqf85emxfGSKqypEcdrclbw+RZk7n2wGvp3bF3reVrm7y0vNTHws/WM/eD1RQXlFXZdsCoFA6e1J+Vr11WmfDYph25rfRCUhNjmTJhEJ1+/JBjLr2UEp+PKBGe7p1G3MAOPHiysC3BGc5yyoBTmHrQVGIj6n+7oPrcccYYY1q6pGOuY9vid+iSv4xYKWHw9zfy86gZDOmZWON2wzN78cOM1ajCltW7KCkqIyrGvjqNMcYYYwKl9OlY+XP2mjxUtXL+yXCywcn1MHvdbCa9M4l/zv8nhWU1z/5f3eSlqsqyuVt46a/f8NUby6skPHZ617Ch42ck7JtHzsosRua8U/naLyNvZu7dv+XLazM57Nt3mT71Bkp8PnxAqSrPdC3g1t86CY/YiFjuOuwubj/09gYlPCB40sYYY1otbySJZz1Jufu1d7BnCbNevIfScl+Nm8UlRJHUo4PzRGHr+vr1+jPGGGOMaS8SU+KIjHbudle4q4TdO0rCHJHDLlfVU4mvhMcXPM705dO59sBrOTLtyKDZq2CTl25a4UxSumXVriplE5Jjiem/nSl//D9KSkp46J/38tpvOzOgl/P69zGHQPK+/O2mm/B+Opstv/5KotdLlAilqhAhLD++I3FeYWDSQO4bdx/9OvVr1HFWJG1sAlNjTFvh7TWS3JF/JGneowCcn/9fXvr4BC447rAat0tO68j2jbsByFmTR88BNfcOMcYYY4xpj8QjJKd1ZOOyHQBkr9lFfFJymKOypEed9evUj2FdhrF422IANu7eyJ9n/5lDeh7C9WOup2+nvnttUzEhaN72Ij7890JWzMup8np0hwgOPL4v+45L5e/33rOnZ0VxEQtXbWVir2h2aAc27nMxZ48fT1FxMYrTPSdKhAsHdePDAT48I+KJGxDHaQNP4/ox1xMTEdPo463PHWeMMaa1SDr+ZnJ/eY+kgtV0lELS59zIryPfZZ/uCdVuk9y7I798sxmAnHUtZ3yqMcYYY0xLk9xnT9IjZ20e/UZY0qPViI2I5aUTXuLtZW/z0I8PsaPY+UV+vfFrTp1+KucNPY/L9rtsr9vBFuaV8Obff2D3juLKdZ4IYb8jejPq2D7EdIgE/HtWFBMlPsb18VKQHcXK3Yfy+bNTKHYTHgA+oBjlnWE+up6YQlxEHLdm3Mrx/Y5v0mOu7Y4zxhjT6kTGkHDm4/ieOQ4PyjjPfB564UH6/eVmIqq5HW2y3/jUnBY0KZcxxhhjTEtTdV6PXTWUDB2b06MePOLhtH1O471T3uOsQWfhEaf6ynxl/HfRfznx7ROZsWoGqsqcOXO46667ePTWV6okPAaOTuGc2w7m0NMGVCY8wEkwfPj+dK4+sDOvHZRM8rxU1szqSuy3ixitEBE4hMYreDpGoFnKdSnXNXnCwxhj2ipvegY7h19U+fzCvH/zwiffV1u+a694cD+CczftprSkvNqyxhhjjDHtWUrant6zOWudyUzDzZIedVSyZg3Z9z/AzvffJ2b9Vm448HpenfgqI1NGVpbJLszm2s+vZeJDEzly/JHcfPMt3PjIpazc7AyJOe6y4Rzz+31J6LpnclFVpfCnn9hyz9/peu01XJjblf5bu1BW6K3y/krVk0VV2fLiFpa+tJRzTz6XOXPmNOPRG2NM25I08Q52xfQEIFF20/2rm1ieHbwXR1RMBEndnF58qrDNJjM1xhhjjAmqU3IsUTHuZKZ5peTnFteyRfOz4S11tGXHDrIeeYQRsU7CQqKjiR44kLsHDWJ51548X/oFP3XaSUGM8MPXP1BUVAQKiLJs0wJOO++4yvFMqkrRkiXkzZjBrhkfUrphg7PPgPfcFSd8OwieyimkdF3V18Qn+Hw+VDXoLXGNMcbUIDqeDqf9E148BYBjPd/x9xce4+o/X4vXs/fk1MlpHcndXAA4t2Dr3q9TSMM1xhhjjGkNxCMk9+nIhl/2TGbasXPj55xsDEt61FF2WRkXr1vL073TGBEbixYXU7RoEUWLFpEMXOWWy+kEMyM7cY8nl3JfGV5PJEP23ZfRJ/WhaOlSds6YQe4H76HrNgZ9n7wY+G6Q8PUQYXEfwecRCpbHI1/koKUKCh6Ph4iICESEsrIyu7uKMcY0gHfgkewYfDaJS18G4KKdj/Lip0dz/vgD9iqbnNaRX7/bAthkpsYYY4wxNUlOS6hMeuSsyaP/yJSwxhPypIeI9AKuA0YD+wOxQF9VXR1QLgm4F5jklpkD/EVVFwaUiwHuAM4FEoH5wHWq+nlAOY/7vn8AugO/ALer6pt1jb0UmN8thdExsZRlZ1eun19YyHcFBYyJi2N/Ytlv6CVMnhjNsk0LGJIymJN/eoO5Y58mKbe0StkRsbHMLyzky5ICYofEsfmwDixKF8q9e64yJkUncdDhB3Fc+nHsXrqbMf3HsCN3R2WSw+6uYowxDZc46R7yH/iE+JIckmUXCZ/dwsr9XqFfcnyVcslpfpOZrrGkhzHGGGNMdapMZtoCJoEPR0+PAcCZwA/AF8AxgQVERIDpQF9gMpALTAU+FZERqrrer/h/gBOAKcBK4P+Aj0QkQ1Xn+5W7A7gGuNF977OA10Vkoqp+UJfAo2JimPTwwwzMyKAsN5fipUv54r33ufjv91BSVkaUCPeMmIg35QD6Af26D2PfxU+RlLcNcJIjF69bS4kqkSKcvn83XlmxhfJyRbYLh4/pxf4R+zPugFMYlDSIfZL2oWtsVyRwElM/luwwxphGiOlEzCkPw6u/BWCS5wv+9uJTXH/FlVWGuXTtvefLe/um3ZSVlhMR6d1rd8YYY4wx7V3gHVxUtcb/aZtbOCYy/VxVu6nq8cDr1ZQ5CTgMOE9VX1bVD911HuDaikIisj/wW5weIE+qahZOQmUtcLtfuRSchMfdqnqfqn6qqn8APgXurkvQqampZGVlVSYZIpKS6JCRwbz4DpSq4gNKPR5mRe3pupNW9guJRT9XPv+6uIBit2yJwHdR8fjK3SErpcp+P3h58ux3uHjfizk09VCS45LDenIYY0x7EDHkBHb2P7ny+UW5D/PS54uqlImOjaBTijOnk/qUbet3hzRGY4wxxpjWIqFrLNFxTv+K4t1l5G0rCms8IU96qKqvDsVOAjaq6qd+2+0E3gVODihXCrzqV64MeAWYICK04yoyAAAgAElEQVTR7uoJQBTwQsD7vAAMF5G+tQXUvXv3oL0qMjMziYqKwuv14pUI+nffH4AuqfEc99il7Pfdj8TPeIW1D01m2D9uJjo2Bq/XS0x0DGcPSyfGC16BKC8ccvEdRNmVQ2OMCblOpz5IQWQSAD1lO5GzbmP11qqJjRT/IS5rW8Z9540xxhhjWhoRqTI0ODvMQ4Nb6kSmw4BFQdYvBs4XkXhVzXfLrVLVgiDlonCG0ix2yxUDy4OUAxgKrGpIoBkZGWRlZfHUA6+RWNqPft2HERHlYcIlw4iIchIYvfvuT+++TjJk/16jmT17Nvv17cqEn6/l2PPjmL26nNiM8zj77HMbEoIxxpjG6tCFqIn3wdu/A+Aszyf89aXnuflPf8DjDnPpmtaRZXOd+ZxyWsD4VGOMMcaYliqlT0fWL80FnItFA0aFbzLTlpr06AysDrJ+u/uYBOS75XJrKNfZ73GHqmot5aoQkUuBSwHS0tKqD9bTlwO6nFj5fOxZg0jq3iFo2YyMDA4+8ADW33MQEeIjo3cEsekjGHzdY9Xu3xhjTPOL2O80dv34KglrPgbgwq338/KXYzln7FCgak+PljAplzHGGGNMS5WcllD5c7h7eoRjTo+6ECAwQVGxvjnLVaGqT6jqaFUdnZycHLTMji0FfPbSL5XP9zmoG4Mzute0W35+7TZ6lzodSwo1ikXpl/Dg/fcxZ86cGrczxhjTjERIOO0RirxOcqOPJ5vSrDtZu83pTFhlMtONuykvrctoTWOMMcaY9sd/MtOctXns3f8gdFpq0mM7wXtfJLmPuXUst93vMUn2nhU0sFy1Nm/evFdSorzUx8f/WUxpcTkAnVJiGXf2oBonH92+4gcG/vrvyuePl5zIpX/4IzfffDPjx4+3xIcxxoRTQg+8x91V+fR8PuCpl1/B51NiOkSS0DUGAF+5sm1jfriiNMYYY4xp0Tp2iSG6gzuZaUEZu7YWhi2Wlpr0qJiHI9BQYK07n0dFub4iEhekXAl75vBYDEQD/YOUA1hSW0AbNmzYKynx9VvLK8d1eyKECb/fl6iY6kcMaVkJ+a9eSiROkmShZzC74vpSUlJCeXk5JSUlzJ49u7ZQjDHGNKPIUeeRlzoWAI8o52Xfx+Ab/sehd8+iNCGyspzN62GMMcYYE5yIkNKnZQxxaalJj+lAqoiMq1ghIgnAie5r/uUigTP8ykUAvwE+VtVid/WHOEmQcwLe51xgkarWaRJT/6TEyvk5/PTp+srXDj1tAMlpHZkzZw7Tpk0L2mPjl7fuJK3EycMUaSSlJ/yDY446qvLuL1FRUWRmZtYlFGOMMc1FhI5n/JMicW5RO9CzgckRb7NhRyFZW/ZMI2VJD2OMMcaY6vnfwSUnjEmPsExkKiKnuz+Och+PE5EcIEdVP8NJZswBXhCRKTjDWabizMHx94r9qOp8EXkVeEhEInHuwHI50Be/BIeqZovIg8BUEckDfsRJjBxJ1Vvg1qgiKZG3vYhZz/1cub7v/l0ZntmLOXPmMH78eEpKSoiKiiIrK6vyNrc71/xEvyX/rNxmVo9LOH7UGACysrKYPXs2mZmZQW+La4wxJsQS03jUey7XlD0JwOXe6XxYPob19KPiq9OSHsYYY4wx1fOf1yN77a6wxRGunh6vu8tl7vPH3Od/BVBVHzARmOm+9jZQDhyhqusC9nUR8F/gTuB9oDdwrKr+GFDuRrfMlcBHwKHAmar6bl0CTk1NJSsri4PGHMTM/yymuKCMlZsXM3vpa8QN2omIMHv27L2GqrwzbwNjp81k1X8uIIoyABbLQA47/9bKXiEAU6dOtYSHMca0II/lj+Nb32AAIsTH3ZFPkOMtq3x964Z8ysttMtP2SESuEpF3RWSTiKiI3FbH7RJE5BYR+VpEtonIDvfnSc0csjHGGBNy/sNbctbmo77wTGYalp4eqlrjXVPcMtuBi92lpnKFwFXuUlO5cpykx511j3SP7t27k5GRwTf/W8GmFTtZuXkx/3h/Cj5fGe9PfI6srCwyMzOJioqq7OkhPYYx9a2FnO97hxGRKwEo1gi+2vevDF8wr9peIcYYY8KvR2IHrt95CTOiridGShnuWc2pkVnke08kvlzwlSnbN+4m2e+uLqbduATYBbzDngs4dZEG/BHnYs0dgA84G3hbRP6kqv+saWNjjDGmNYlPiia2YySFeaWUFJaxM6eQxG6B03E2v5Y6p0eL9M7LH3HXXdNYuXkxyzYtoNxXSrlvT6+OjIwMsrKyuOOOO8jKyuLdzfF0LdvIXyLeqNzHw2Wn8uzy2KC9QowxxrQcUyYMYnNELx4r2zMK8pqI11C/HIcNcWm3hqnqQcDkem63CuinqlNVdYaqfqSqFwKzgOuaOkhjjDEmnESkyrwe4RriEpaeHq1R3q58zjz/ZMrKS4nwRPL7064hemF0ZU+NiglIMzIyKntsbPzf+zwZ+RwxUgrAIl86T5RPpHxHIZknV+0VYhOYGmNMyzJpZCoAD38IpxV+Th9PNomym5SSbyjE+ZzPWZvnDJY07Yo7DLch2+2u5qW5wLhqXjPGGGNarZQ+CaxdvB1w7uCyz4HdQx6DJT3qaGv2dsrKS1H1Ue4rpdvgaLL+XPMEpKd2+ImjyucB4FPhxtKLKSOC1MTYyl4hNoGpMca0XJNGpjJpZCq69GF45WwAjoz6hPcL/JIexjTeWGBpuIMwxhhjmlpLuIOLJT3qKJIYIjyRlPtKiYqO5phjj6rSqyOQluxmiu/pyuevlGeyQAcQG+llyoRBADVub4wxpuWQwceTnzae+LVZpESuqFy/dX0+vnIfHq+NFjUNIyKXAgcD59ZS5lKAtLS0EEVmjDHGNJ7/HVxy1uahPkU8tU7x2aSslVZHUZGxTJ54L5ee8xdmzap90tFlb95Od80GYLvGc2/ZWaQmxjLt1OGVXaaNMca0HvEn30uZRBLn3Um8ZysA5aU+cjcXhDky0xgicpR7B5baltnN8N6ZwCPA86r6YnXlVPUJVR2tqqOTk5ObOgxjjDGm2XRIjCY2IQqA0uJydmSHvt1kPT3q4ZBDMph09f/x3XffMm3atGqHpRRs+oX0X56qfP5l+p+Yd9FZoQzVGGNMU+vSH1/GFfD1/SRHriC/uCvgXLXokhof5uBMI3wNDKlDuSZtpYnIgcB0nElMf9eU+zbGGGNaChEhpU9H1izcBjjzeiR17xDSGCzpUUcej3D074bx3Xff1nyrWVU2v3IF/SgDYCEDyTyrxrvpGmOMaSWiMq+hYN5LJOevZFXxQQAs/XkbgzN6hDky01CqWkCI59MQkeHAR8B84DRVLQ3l+xtjjDGhlJK2J+mRsyaPQQeFdjJTG95SRx27xJDQpfZbzW765lX67fwGcCYvzRl7Fwmx0WGI2BhjTJOLiiP2xHtIjtgzr8eKhevw+TSMQZnWREQGAjOBlcBEVS0Mc0jGGGNMs0ruk1D5czhuW2tJjzqKjnM6xWRmOrea9Xq9e91qVovzifrkxsrnH3c4gSOOODrUoRpjjGlGMuQk4tNSKp/HFQpvfL82jBGZUBOR0SJyOnCqu2qoiJzuLnF+5bJEZLnf8xSchEcUcKu73cF+i10lMcYY0+ak+N/BZV1+yC8W2fCWeqrpVrMr3ryNAeXO5HZbNYH0M6YhEtqZaY0xxjQzEbqeeQdxixZQ4OuMjyiWvPsiO4dPoVNcZLijM6HxJ+ACv+dnuAtAX2C1+7OXqm2toUAf9+f3guzXf1tjjDGmTeiQGE2HTlHs3llCWXE5OzYX0Lln6Ob1sJ4eDZCRkcHUqVOrJDwKNiwm/dc9t6j9Iv0KBve128oZY0yb1HUgXZN9lU8nlizgHzN+CGNAJpRU9UJVlWqW1X7lMlU13e/57Bq2q7KtMcYY05aEc4iLJT2agirZr15BBOUAzGcwR/7mijAHZYwxpjmljNiv8ueish50n/cQC9fvDGNExhhjjDEtU0ofvyEua/JC+t6W9GgCW+a8RPquuQCUqYeccXfRKc6G5RpjTFuW0q9L5c/Zpf250PsRT775nk1qaowxxhgTINlvXo9sS3q0Llq0i6hPbqp8PqPDSYwfd2QYIzLGGBMK/l/eW8v64UU5e+ujvGqTmhpjjDHGVJHiN7xl67o8fOW+Gko3LUt6NNLqN28mybcdgGxNZMCZd+Lx2OSlxhjT1nVIjCa2ozNxaanGsqO8BxneJcz/8Glyd5eEOTpjjDHGmJYjLiGK+CRnNERZqY/czQUhe29LejRC4fqf6L3sucrnn6dfyZD03mGMyBhjTKiICMlpe65a5JT2A+Avvmd56IMfwxWWMcYYY0yLFK4hLpb0aChVtr46mQicbjlzGcbRv/lTmIMyxhgTSslp8ZU/b9Z9AeguufRY8Cjz1uaGKyxjjDHGmBbHf4hLzprQ3cHFkh4NlP3Vs/TOmw9AqXrZOu4uOsVFhTkqY4wxoZTi19Nje/wRlT9f7P2Af781g3Kb1NQYY4wxBoBkvzu4ZK+1nh4tmhbmEj3r1srn73WYxDHjxoUxImOMMeHQ1a+nR872WIq6HwhAlJTz222P8dI3q8MUmTHGGGNMy5LiPwn8+nzKQzSZqSU9GmDtmzfTybcDgE3amUE2eakxxrRLHTvHENPBmcy0pKicosPvxed+tY71LuTHj59na35xOEM0xhhjjGkRYjtGMfSwnhw8qR8nXL4fofoP2pIe9VS0dh69lr9Y+fyzvn9haHrPMEZkjDEmXESkSlfNnMKe+EZdXPn8an2W+9+fH47QjDHGGGNanCPOHcyoY9PpPbQzHm9o0hGW9KgPn49tr03G605eOof9OO6My8IclDHGmHBK7u2X9FibR8RRN1ESnQRAL9lKj4WPMXf19nCFZ4wxxhjTrlnSox5yvnya1PyFAJSol9xxd9Kpg01eaowx7Zn/7ddy1uZBbBJRE26vXPcH73v8882PKQvRuFVjjDHGGLOHJT3qyldG9Ow9jdj/dTidY8eNDWNAxhhjWoLApIeqwohzKek2EoBoKePcHY8z4MYZHHr3LN6ZtyFcoRpjjDHGtDuW9KijktwNJPh2ArBBuzLkzNtt8lJjjDEkdI0hOi4CgOKCMvK2FYHHQ9RJD+Bzp+ga753HeM8PbNhRyNS3FlriwxhjjDEmRCzpUUdRxbmVP3/a9yr2Te8exmiMMca0FCKy9xAXgNQDmO45qnL9rRHPEU0JhaXl3PvRL6EO0xhjjDGmXbKkR50pAJ/pSCae8fswx2KMMaYl8Z/MNLsi6QHcXnAauRoPQJonh0u97wGwcUdhaAM0xhhjjGmnLOlRD8Uaye1lFzD7163hDsUYY0wLUuW2tX5Jj9jEbtxXdmbl88si3qUrO+mZGBPS+Iwxxhhj2qt2lfQQkd4i8oaI7BSRXSLyloik1XX7f5WfyIryFOuWbIwxporA29aqOr0Dp0wYxDueo1nq6w1ABynmyog3OW54j7DEaYwxxhjT3rSbpIeIxAGzgMHABcB5wEDgUxHpUNv2JUTyr7KTAOuWbIwxpqpOybFExXgBKMovJT+3GIBJI1P526n781T0BZVlz/bOYtmSH+0WtsYYY4wxIdBukh7AJUA/YJKqvqOq/wNOAvoAf6ht4/WaTDFRAPRMjG3OOI0xxrQy4qlmMlOcxMd9N1xDae/DAIgQH2fveoZXvl8X8jiNMcYYY9qb9pT0OAn4RlWXV6xQ1VXAV8DJtW28G2f8dWyklykTBjVXjMYYY1qprtUkPQAQIfLYOyqfHuv9nk9nTievqDRU4RljjDHGtEvtKekxDFgUZP1iYGhddpCaGMu0U4czaWRqkwZmjDGm9UvxS3pkr8nbu0DqAZQPO63y6R9Ln+Xx2cv3LmeMMcYYY5qMVEy21taJSAnwgKpeH7D+TuB6VY0Iss2lwKXu030JnjQxe3QF7NY2NbM6qp3VUe2sjmpndVS7pqqjPqqa3AT7MXUgIjnAmibcpf2thJ7VeWhZfYeW1XdoWX3vUW17ZK9/9Nu4YBkeqbaw6hPAEwAiMldVRzdXYG2B1VHtrI5qZ3VUO6uj2lkd1c7qqHVq6gSTnQehZ3UeWlbfoWX1HVpW33XTnoa35AKdg6xPcl8zxhhjjDHGGGNMG9Kekh6Lceb1CDQUWBLiWIwxxhhjjDHGGNPM2lPSYzpwsIj0q1ghIunAoe5rtXmiecJqU6yOamd1VDuro9pZHdXO6qh2VkcG7DwIB6vz0LL6Di2r79Cy+q6D9jSRaQdgAVAI3IQzv8cdQEdgP1XND2N4xhhjjDHGGGOMaWLtpqeHqu4GjgR+BZ4HXgRWAUdawsMYY4wxxhhjjGl72k1PD2OMMcYYY4wxxrQv7aanRzAi0ltE3hCRnSKyS0TeEpG0Om4bIyL3isgmESkUkTkiMra5Yw61htaRiIwWkSdEZKmIFIjIWhF5UUT6hiLuUGrMeRSwn6kioiLyZXPEGU6NrSMRGSIir4vIVvfv7RcRubI5Yw61Rn4epYnIs+7fWYGI/Coid7rD+toMEeklIv9wP28L3L+X9Dpu214+sxtUR+3pM7u9sDZOaDWyvrWaZURzx91a2fdBaDWyvu38ricROV1E3hSRNX7t3mki0rEO29r5HUS7TXqISBwwCxgMXACcBwwEPq3jPwr/AS4BbgEmApuAj9rSH3Aj6+gsnLvlPAIcB1wPHADMFZHezRZ0iDXBeVSxn37AjUB2c8QZTo2tIxEZDXwLRAO/B44H7ge8zRVzqDWmjtzXPwHGAjcDJwBPAVcDTzdj2OEwADgT5zbjX9Rz2zb/me1qaB21i8/s9sLaOKHVRG2BZ4CMgOXXJg+27bDvg9BqTH2Dnd/1dQ1QDtwAHAv8C7gcmCkitf3/bud3MKraLhfgSpyTaYDfur5AGXBVLdvujzMR6kV+6yKAX4Dp4T62FlJHyUHW9QF8wO3hPraWUEcB+/kI+DcwG/gy3MfVUuoIJzG7GHg73MfRguvoGPfz6JiA9Xe728eF+/iasJ48fj//3j3u9Dps1y4+sxtZR+3iM7u9LNbGaT317ZZV4M5wH0drWuz7oHXUt1vezu/613ew7+Tz3bo8sobt7PyuZmm3PT2Ak4BvVHV5xQpVXQV8BZxch21LgVf9ti0DXgEmiEh004cbFg2uI1XNCbJuDZADpDZxnOHUmPMIABH5Lc4V1anNEmH4NaaOMoGhwAPNFl3L0Jg6inIfdwWs34GTNJKmCjLcVNXXwE3by2d2g+uoHX1mtxfWxgmtRrcFTP3Y90FoNaK+TQME+04Gvncfa/pOtvO7Gu056TEMWBRk/WKcf7Jq23aVqhYE2TYKpwtYW9CYOtqLiAwBUoCfGxlXS9KoOhKRJOBB4FpV3d7EsbUUjamjw9zHGBH5RkRKRSRbRB4RkdgmjTK8GlNHnwDLgHtEZKiIxIvIkThXHh9X585V7V17+cxuUm30M7u9sDZOaDVFe+lyESl250uYJSKHN114xo+d3+Fh53fjjXMfa/pOtvO7Gu056dEZZ1xaoO1AUiO2rXi9LWhMHVUhIhHA4zhXDf/T+NBajMbW0b04YxqfacKYWprG1FFP9/FV4GPgaODvOF0rX2qqAFuABteRqhbhJIcqhgLlAVnAe8CfmjbMVqu9fGY3mTb8md1eWBsntBrbFngB+CNwFHAp0AWYJSKZTRWgqWTnd+jZ+d1IIpIK3A58oqpzayhq53c1IsIdQJgFu19vXbqCSyO2bW2a6jgfBQ4BTlDVYH+MrVmD6sjNcp8PHKDuoLs2rKHnUUVi9gVVvcX9ebaIeIG7RWSoqi5pkgjDr6HnUQxOUigFZ/K8tcAYnAmsynAmvmrv2tNndlNpy5/Z7YW1cUKrwXWmquf5Pf1CRP6H03PkTvb0eDRNw87vELPzu3FEJB74H06b7qLaimPnd1DtuadHLsGzXUkEz5D5217DthWvtwWNqaNKIjINJ7N7sap+3ESxtRSNqaN/41xBXS8iiSKSiJOI9LrP28q4u8bU0Tb3cWbA+orzqK3MRN2YOvodztwnx6vqC6r6uareh3P3lstEZP8mjbR1ai+f2U2ijX9mtxfWxgmtJmkvVVDVPOB94MBGxmX2Zud3mNn5XXfuha3pQD9ggqqur2UTO7+r0Z6THotxxj0FGgrUduV4MdDXvUVZ4LYlwPK9N2mVGlNHAIjIjTi3PrxSVZ9vwthaisbU0RDgMpwGUcVyKHCw+3NbuULf2L812DtrXZGxbisTazWmjoYDuaq6ImD9d+7jkEbG1ha0l8/sRmsHn9nthbVxQqvR7aUgqrtiaxrHzu+Wwc7vWohIJPAmTu/d41V1YR02s/O7Gu056TEdOFhE+lWsEJF0nH86p9dh20jgDL9tI4DfAB+ranFTBxsmjakjROQKnK5rN6rqP5opxnBrTB0dEWRZgNPl7wjgjaYPNywaU0czgGKce5T7m+A+1jSusTVpTB1tBpJEJHByqoPcxw1NFGNr1l4+sxulnXxmtxfWxgmtRrWXAolIAnAC8G0TxWf2sPM7zOz8rp2IeIAXgfHAyar6TR03tfO7OuG+Z264FqADTrZrIc7txE7C+YdzJRDvV64PzhiqWwK2fwXnavzvcU7IN4AinPkZwn584a4j4Cycq/AzcHou+C9Dw31sLaGOqtnfbODLcB9XS6oj4FZ3/V04k2BdDxQCz4T72FpCHQHpOLer/RW4ACdhNsVdNxfwhPv4mriuTneXf+FcJbrcfT6ulvOozX9mN6aO2stndntZmuBzt938vYS7voFrgCeB3+IMVbzA3U8JcHi4j60lL/Z90PLr287vBtd1RR3fGeQ7uVd19e2ut/M7WJ2GO4CwHjyk4XQb2oVzx4N3gPSAMunuSXdbwPpY4AGcq6xFONnKzHAfU0upI5y7kWg1y+xwH1dLqKNq9jWbNpb0aGwd4XSBvAqnQVkCrMGZwToy3MfVgupoKPAasA4nIfQrcB+QFO7jaoZ6qvFzpb1/Zje0jtrTZ3Z7WRr5mdJu/l7CXd/AicBXwFagFGcuq+nAmHAfU0tf7Pug5de3nd8NruvVNdT3bdXVt7vezu8gi7iVY4wxxhhjjDHGGNOmtOc5PYwxxhhjjDHGGNOGWdLDGGOMMcYYY4wxbZIlPYwxxhhjjDHGGNMmWdLDGGOMMcYYY4wxbZIlPYwxxhhjjDHGGNMmWdLDGGOMMcYYY4wxbZIlPUybIiIXioiKyA4RSQp4LcJ97bYwhddgfseV7rdutYg8E84Y2joRuVpEfhIRcZ/vIyIPu+vyRWSTiEwXkf2r2f4SEVkqIsUi8ouIXBakzIki8pKI/CoiPhGZXUM8XhH5s4gsEpEiEdkmIp+ISI9ajiNBRG4Rka/dbXa4P0+qpvxh7uuFIrJZRB4Qkdggx/aBiGwQkd1uTFNEJCrI/nqLyBsislNEdonIWyKSFlDmFPe94ms6FmOMaQ2sPRLaGNo6a480vj0iIpnueRO47AgoZ+2RNsiSHqat6gRcF+4gmtkpwB3hDqKtEpFE4AbgdlVVd/UxwBHAs8CJwB+BZOBbERkVsP0lwL+BN4FjgdeBx0Tk8oC3mgSMAL4B1tcS1vPAzcB/gQnARcACIKaW7dLcWD8DzgV+A/wKvC0i/xcQ937ATCAbmAjc5L7PMwH7vAXYDFzplnsV53x8MWB/ccAsYDBwAXAeMBD4VEQ6+BV9x93flFqOxRhjWhNrj5hGsfZI07RH/FwBZPgtRwW8bu2RtkhVbbGlzSzAhYACHwG7ge5+r0W4r93WRO8VHYbjSm8BdRu2GEL5+wGuxvnS8/qt6wpIQLlOQC7wnN+6CJwv6WcDyj4NbAUi/dZ5/H7+EphdTTxnAWXAqAYcSwcgLsj6LGBtwLq3gWUBMZ7v/u4P8FuXHGR/t7jl+vmtuxIoBwb4revrHstVAdv/EdgGxIT7/LHFFltsacxi7ZG2HUMofz/WHmmy9kimu+6oOsRp7ZE2tlhPD9NW3ek+3lhbQREZ43bJy3e7xWWJyJiAMs+IyHoRyajoZgf83X1ttYi8ICLnuV0GC0XkCxEZKCIdROTfbhe+LSJyv4hE+O03RkQedLvi5bvd6d4VkcF1iLuyO6mIpFfTZU/9uye6XWqn+nVx3OjGFBOw734i8r6IFIhIjog8DETXIaZH3eOMDFgfLyJ5IjLNb11XEfmX2x2x2I3p0oDtkt36+9WNZZ3b9TI1oNxt7rHuKyIfiUg+8Jr72gT3d7bTreNfROSW2o4F+D3wqqqWV6xQ1a3qfhv6rduJc5XCP6YMnCsuLwTs83mgC3CY3/a+OsQC7pURVf2hjuX9Y9ytqgVBXpoL9Kx44v7ejgVeU9VSv3KvASXAyX77zAmyv+/dR/+6OAn4RlWX+227CvjKf39+75MInFrbMRljTCth7RFrj1h7ZM97hLM9Uh/WHmljLOlh2qpNwKPApSLSp7pC4nSd+wxIwrlycD6QAHwme4+L7AS8ArwMHAe85PfaWJwvgetwuvD3x+lG+CKQh5MVfwK4CvD/Io0GOuI0ik4ALsfpGviNiHSv5/FmBCy/B3zAz37lXsDpHviS+37TgN/h1wVQnDGQM4GRwP/h1Etfd7vaPAak4HR19XcOTnb/Sfc9EnD+6T0BuM19fBf4l4hM9tuuM1AETMX58puCMzTiq8CGket/OL/Pk4AHRaQfMB1YhdOF8iTgATeWaokz38Rg4IvaDlhEOgP7UrWeh7mPiwKKL3Yfh9a234D3iAQOAhaLyN9FZKuIlIrItyJyZH32FWAssNTveX+c869K3KpaBKyoQ9zjcM65X/3WDQvcn2tx4P5UdStOPR5bh9iNMaY1sPaItUesPVK7ULRHKrwoIuVuAvAlCZhjzH0fa4+0NeHuamKLLU25sKfL4wCcL6gdwNPua3t1JwXecMsk+q1LALYDb/mte8bd9uQg77naLd/Jb90VbvmnAsr+CHxaQ79RuKIAAAkgSURBVPxeIA6nYfKXIMeVHvC+z1Szn2RgJfA1btc84HB3H+cHlD3HXT/CfX6J+/xgvzIenC/IWruTArOBrCDH/aHf85txGg8DA8o9idPdMqKG+untxnGK3/rb3HVXBpQ/3V2fUM/z6DfudgPrUPZFoICqwzducLePCShbcQ7eXM2+gnYnBbq72+0C5uM04o4HPsW54jG6AX8rl7r7PMdv3SHuumOriS2rhv3tBxQCTwasLwHuDlL+TqAsyPrngV/rezy22GKLLS1pwdojFa9Ze0StPVJL3KFqj4wE7sOZA2Uc8GecoT8bgJQg+7H2SBtarKeHabNUdTtwP3C+iAyqpthY4D1V3eG33S6cbPy4gLJlwHvV7GeOOt0KK1Rkqz8KKLcU50uykoic6WbId7jvsRuIB6qLuUbulZG33acnq5MVBydbXQK86XYrjXC7tn7svj7WfcwA1qnqNxX7VKfL42t1DOEx4AgRGejGcyDOF82//cocC3wLrAqI5SOc7paVGXwRuVxEFrhdRMuAte5Lwern7YDn84FS4BUROV1EUup4DBVdLIN1mawkIlOB3wJ/Ur/hG4C4j7r3Vg1S8VkdCRyvqm+r6gc4X9w7cCfbEkeE3+KtJu5M4BHgeVX1n+irprglyLqK/fXAuaq1AufqYaD67C8Hvy6uxhjT2ll7BLD2iLVHgsedSYjaI6o6T1WvUdV3VfUzVX0I5/ffDSc5GMjaI22IJT1MW/cgzlWP26t5vTNOV8xAm3G6mPrLVr/xlAFyA56X1LC+shukiJyIM8v0zzhfVgcBB+J80NY2A3Z1nsTp3jhRq45zTAGigHycL96KJdt9vYv72APYEmS/wdYF8zZO/f3BfX4ZsBGnu6h/LGMD4ijFmVG8Mha3a+ljwCc44yrHAAe7ZYLVT5XfpfvFPwHns+55YLPboAtsQAaq2HdxdQXEud3bXcBNqvp0wMvb3cfOAes7B7xeV7k4X/xLVHVjxUpVzQfm4DTiwOnK7F+fK4LEfSBOI3oWTlfiusQNzt/DXnGLSBec7scCTFDVvCCxV7e/wL8PcK7ONPTcN8aYlsraI3tYe8TaI+Foj+xFVX/EGQJzYJCXrT3ShkTUXsSY1ktV88WZrOp+4N4gRbbjdNUL1J29P1CbKkvu7yxguapeWLHCHS8Z7EO+ViJyA05j5XhVXRLw8jacLpyHV7N5xZfXJvaMAfXXrS4xqGqpiDwF/FFE/o5zjPerallALNk4d/YI5hf38SycLoxXV7wgIn1revsg8XyKc3vUaOBQnAbn+yKSrs6YzWC2uY9JOF96VYjIeTiNn/tV9W9Btq8YKzuMqg2fiitGgb+bGqlqoYispPorHhWTj71L1S/uKo0kERmOc/VqPnCaVp0cDJxGSTEBv393vHI/9jQCK9YnsOdq2OGquiFIfIsD9+caSvB66Mye+jfGmDbB2iNVWHvE2iPhaI9UR6o5HmuPtCHW08O0B4/hjNe7M8hrnwEniEjHihXuzye6rzW3OJwukv7OwxkrWi8icirOMf5JVWcGKfIhTsa6k6rODbJUNDLmAL1FpOIKBiLiAc6sRzj/xplo7XWcydGeDBLLYJzbkwWLpSI7H4dzhcDfRfWIo5KqFqvqLJxZ7jvgTIZWnYruwP0CXxCRU3DuS/+Uql5TzfZzcMYCnxOw/lycxutX9Qi9wtvAviLSyy+Wjjjdf78HUNVtAfW40K/sQJwrICtxrrrt1XhS1RKc382Z4jerP85Y5GicKzIV+4sD3sepx2MCutP6mw4c7E7iVrFtOk6Db3qQ8n3Z08g0xpi2xNojDmuPWHskHO2RvYjIaGAfnCFOgaw90oZYTw/T5qlqsYjcjjNbeaA7gIlAlojcg5PpvQ7ny626LqhN6UNgkog8iDM+dxTOuMIdNW4VwP2H8nmc8bAL/BsIwC5VXaKqs0XkZeANEXkA+A4nI5+OMwnVdar6K/AscD3wlnulJhunS2hCXeNR1Q0i8i7OBFfvquq6gCIP4kzO9YV77L/gfPEPxsnQV9yK7EPgOjeO74Ajcb7w6sTt8jkW+ABYh3Nf+6k4V5GC3VGkwnc4VxjG4EyYVbG/sTiz5f8EPBNQz8WqOs89/lIRuRl4TEQ24HSHPRK4GJjsfplX7LMPe66GdAF8IlJxjN+r6hr35/twGqAfuOdzCXANzrl6dy31kILTwIgCbgWGilQZEjtPVSuuwtyG00h6TUT+iXN+/H979w4aVRAFYPgfSKNWdtpYpFALC1OoiI2FhWBja2cXkEDE2kLQRm18QUAbCy0UBQUr0SA2doK2IgYfiFr5ICAWY3GmuDvuI9lsWPfyfzAQdoc7k9zJzmF25tyLwL3c+Xi6+8TCxTywqfpbvG1sZb4BzAEPU0qnif+xs8T9aJ6rJkWn9gAL/X4fSZpExiPGIxiPjC0eSSndJp6e85IY1zPEPfgEXK36aTzSNvk/yKZqsYyq0MiWXr0+RZzZ68iWXt7bR0wCv4ikXU+BvVWdm8DHHm0uAbeq1w6Wtg71uw6x2+ocMektE9/mzFBlQmdAtvRGe93Ks6q9eeAVsbX0e/n5Ap3Z3qeJiXmZOM97mTgTOzBbeuMax0r9Iz3e30wEG++ICfMr8Ui2k406G4gJ5xuRQf4RsfJeZ70/U16bqtrYTyS0+kAEDZ+Jb3t2rKD/d6gy2zfa6VaWulxjtoy738Ab4ESfMdutHK/qbie2jP4kxuoTVpApfcD4+OeeEoHZizJGvgCXgI1VnX7Xq/u9jQhKfpS+P+g2joigJQO7xv1ZYrFYLGspGI8Yj3S2YTwyeHysazxCLHC8LmPtT7kX14GtXfppPNKyksqNlaSRKivqB4DpHNnWJ0rJKL5ITMDvB1TXCKSUFogAo9c5b0mSVsV4RKtlPNI+LnpIGqmyrXA3cA04lXO+MuYuDS2l9Jh4RvvcuPvSdimlLcT53sM55+fj7o8kabIZj2gYxiPt5KKHpJFKKWVia+5dYDZ3ZkmfKCmlncBR4Hz2w3JdleB0Jufs+VlJ0poZj2gYxiPt5KKHJEmSJElqJR9ZK0mSJEmSWslFD0mSJEmS1EouekiSJEmSpFZy0UOSJEmSJLWSix6SJEmSJKmV/gKqJ69mK5WEIgAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 1296x432 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"## Part d\n", | |
"\n", | |
"yr_al_ext=np.linspace(0,9/4)\n", | |
"Z_ext=np.block([[yr_al_ext**0],[yr_al_ext**1]]).T\n", | |
"Z=np.block([[yr_al**0],[yr_al**1]]).T\n", | |
"max_N=6\n", | |
"for i in range(2,max_N+1):\n", | |
" Z=np.hstack((Z,yr_al.reshape(-1,1)**i))\n", | |
" Z_ext=np.hstack((Z_ext,yr_al_ext.reshape(-1,1)**i))\n", | |
" A = np.linalg.solve(Z.T@Z,Z.T@price_al)\n", | |
" if i==2:\n", | |
" order_2_price_al_ext=Z_ext@A \n", | |
" if i==3:\n", | |
" order_3_price_al_ext=Z_ext@A\n", | |
" if i==4:\n", | |
" order_4_price_al_ext=Z_ext@A\n", | |
" if i==5:\n", | |
" order_5_price_al_ext=Z_ext@A\n", | |
" if i==6: \n", | |
" order_6_price_al_ext=Z_ext@A\n", | |
" #plt.plot(yr_al_ext,Z_ext@A,label='order {:d}'.format(6))\n", | |
"\n", | |
"f, (ax1,ax2)=plt.subplots(1,2,figsize=(18,6))\n", | |
"ax1.plot(yr_al_ext,order_2_price_al_ext,'-o',label='order 2')\n", | |
"ax1.plot(yr_al_ext,order_3_price_al_ext,label='order 3')\n", | |
"ax1.plot(yr_al_ext,order_4_price_al_ext,label='order 4')\n", | |
"ax1.plot(yr_al_ext,order_5_price_al_ext,label='order 5')\n", | |
"ax1.plot(yr_al_ext,order_6_price_al_ext,label='order 6')\n", | |
"ax1.plot(yr_al,price_al,'k.',label='data')\n", | |
"ax1.set_xlabel('Normalized years (2016-2020)')\n", | |
"ax1.set_ylabel('Price/Metric Ton');\n", | |
"ax1.set_xlim(0,1.25);\n", | |
"ax1.set_ylim(0,8000);\n", | |
"f.suptitle(\"Price Per Metric Ton of Aluminum\")\n", | |
"ax1.legend(loc='best');\n", | |
"ax2.plot(yr_al_ext,order_2_price_al_ext,'-o',label='order 2')\n", | |
"ax2.plot(yr_al_ext,order_3_price_al_ext,label='order 3')\n", | |
"ax2.plot(yr_al_ext,order_4_price_al_ext,label='order 4')\n", | |
"ax2.plot(yr_al_ext,order_5_price_al_ext,label='order 5')\n", | |
"ax2.plot(yr_al_ext,order_6_price_al_ext,label='order 6')\n", | |
"ax2.plot(yr_al,price_al,'k.',label='data')\n", | |
"ax2.set_xlabel('Normalized years (2016-2025)')\n", | |
"ax2.set_ylabel('Price/Metric Ton');\n", | |
"ax2.legend(loc='center left');\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The plot on the left shows the polynomial fits of the alumnium unit price data, and the plot on the right shows the extrapolated fit results. Notice that fits 6, 5, and 4 change pretty drastically in the extrapolated area (years 2020-2025, or normalized yr. 1.0 to 2.25). Thus, I would choose order 2 or 3 (preferably 3) to predict the 2025 price." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 356, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABDMAAAGoCAYAAABbrq6cAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3gc5bn38e+9q96s5t5lXHAB25hiqikBAya00DkQIMmBlJMGCSSHk+RAAjlAQs5Jz0sLnYReQwnGEGyDsTFg3JtsuUiyet32vH/MSl7JsizbslYr/z7XNdfuzDzzzD2rNczc+xRzziEiIiIiIiIikih88Q5ARERERERERGRvKJkhIiIiIiIiIglFyQwRERERERERSShKZoiIiIiIiIhIQlEyQ0REREREREQSipIZIiIiIiIiIpJQlMwQEZGEZ2ZzzUxzjfcBZrbBzDbEO45EYWaHm9lrZlZmZs7M3ot3TN3FzL4ZvaYvxTsWERHpfZTMEBGRHmdmo6IPKbFLc/RB9n4zGxPvGPdFB9cUNLMSM3vKzKbFKaYHY+K5upNyH8WUm7of5/tytI4v72sd3akl0bUXy6h4x9xVZpYKPA+cAPwd+BlwfxeOm2FmT5jZZjMLmFmlma0ws0fM7LJ2ZZVQEBGRXikp3gGIiMhBbSXwRPR9DjALuAY438yOcs6t7mI9VwEZ3R/ePtkO/DH6PgM4GrgIONfMTnXOxeuX8xDeZ/tQ+x1mNgWYHi0T73uDU7u5vgeBue22fRkYCfwGqGq3r/16bzYR7zrucc7d2JUDzOx84G/R1deAFUAqMAY4B5gBPN79oYqIiHSveN+wiIjIwW2Fc+6nLStmZsADwNXAj/EeOvfIOVd8IILbR9tirwnAzH4G/BdwO17CJh5eA842syLn3Lp2+67BS2S8Cczu8chiOOfWdnN9D7bfZmaz8JIA9zrnNnTn+XrY4Ojrtq4UNjM/8Hu8v/VJzrmF7fan4LXyEBER6fXUzURERHoN55zDe9gC7xdioE1XgXQzuzPaHSXU0pVhd2NmmFmamd1kZovNrM7MasxsqZndbmbJ7cpOM7O/mdn2aJeXtWZ2h5lldcOl/a79NUXPmRONZYWZNZnZDjN7zswO7+BaNkSXfDP7o5ltMbNw9MG8Kx6MvrbpahL9HK4EXsVrVdIhMzvZzF6JxthkZp+b2c1mlhRT5kG8ZBTAAzFdNzZ09TpsN2NmmFk/M7vNzJaZWWO0a8QHZtalFgl7yzxfj353Gsys2sz+aWa7JHvM7O7odc4ws2vN7LPoZ7TRzP4zmqTr6nlTzexH0c+3ycwqzOwlMzu6Xbly4OXo6l0xn3Vn3UFGAoOARe0TGQDOuYBz7q2Yc/wd+L/o6t9izvFZu1gmRLuobIl2W9loZr8xs7zdXONsM3s9em1N0c/ru2am+1IREekytcwQEZHeprMHv2eAQ4F/AI10/vCdAbwFHAN8DvwFcMAE4AfA3US7FESb3j8BBIDn8H7png7cDJxsZic65wL7dVW7xlcIzItez9t4D6YFwIXAF8zsNOfc/HaHpQL/BFKApwE/UNPFU64F3gWuNrOfRhNHAGcD/fGSEOfuJtZvAv8LlOON0VAJHA/cARwFXBAt+hyQG63neeDj6Pb2XTf26jrMbGA09rHAB8Bvo3VMBm7B+1t2t/vwWqysxUuwZQIXA6+Y2Q3OuT91cMwtwCnAC3jfvQuA26L7bt/TCc1rOfEScBqwFK8bTH/gEuB0MzvfOdeSwPgfYCpwGfAG8H50++ednKIi+jrczFKdc817COkpvK5SZ+J1TWmpuzQm5lOAF/F+IHseKMb7u/wH3vf4aOdcbUz5HwJ3AluBZ4FqvNZKv8L7N/dve4hJRETE45zTokWLFi1aenQBRuElFp5rt93wWhA44IGY7XOj2z4E+nVQ31yiDTtitv0qeswfAGu3byCQFH1fiPcgvQ4Y0q7cTdE6buzidTng4w62/3d039sx2x6PbrusXdlD8B7wPm23fUO0/ItAyl581i2f51S8bjsOOCVm//NAGZAcWzZm/yQgCCyI/eyjf6vfRst/KWZ7yzm+vJt4Or2O6P4N7bY9Ez3mlg7KD9uH71/L92nUbvafHd2/AEiP2T4i+lk1AYNjtt8dLb8NGBmzfRBQGz3GuhDXN6L1PAv4YrZPBZrxkndpMdvn7M33M3rMW9FjPgKuj/59/Z2U/2b7v3HMvozoNW8HxrTbd030uDtjth0JhPGSd1kx2314yTQHzO7KubVo0aJFixY15xMRkXiaYGY/jS6/AhbhdYOoBH7RQfmfOueq91RptOvDV/BaEvzAOdemC4pzbrtzLhRdvQrIjpbb0q6qe/AeRC/di2saFHNN/2Nm7wC34j2M/mc0vkK8X/lfds61GWzRObcGrxXJZDOb3EH9N7t9byXyN6AO70ETMxsAnAU86pwL7uaYf8dryfnN2M8++pn+CO9hc28+nxZdug4zGwSch9cq4Jft9zvnNu/DufekpSvOj5xzjTHnKsZrLZFKx9d8t3NuY0z5bXhjlRTiJfC6ct4IcJNzLhJTz8fAw8AAvFYS++MqvGTOdLxE32dAjZm9aWZXRVuHdNWX8BKDP3Htxjpxzj2AN8Bv7Od0A17i4gbnXF1M2QheqxbYt++SiIgchNTNRERE4mk88JPo+yCwBW9qydudc+s7KL+oi/VOwEtQzHUxTdx3o2UsguN3kzwIRuvrqoHsvKYQXpP8J4E7nHNLo9uPxHuoyzKzn3ZQx6HR1wl4D5stGp1zy/Yiljacc/Vm9jfgEjP7Bl6T/iR2jqfRkaPxEhZfNLM5HexvZO8+H9i765iB1wrkrdgH/ANsKl5S4d0O9s2NKdPekg62lURfc7tw3sOBkmhCq6PzXhc977NdqKtDzrkSvK5TU4DT8b6Lx+PNInMqcLmZndNJcitWy7+d6bv5HvuBkWaW5pxripYPApfuZhiREHv/XRIRkYOUkhkiIhJPzzvnztuL8qV7LgJAv+hr+5YWHcmPvn57L+LozFLnXEcPuh2d86TosjuZ7dbL9jmqnR7Aa5lxMV6XkI+jv/zvTj5eMuHWTsq0j3NP9uY69uZv2V1ygIrdPNBviynTXkethlpaAHXa4sHM0vDGENndODCdnXevOec+BT6NOf9pwKPAGXjfjz93oZqW7/FX91AuE69rTj5ed6af7KGsiIjIHqmbiYiIJIz23UU60TLg5JAulG0ZeHKsc852t+x9tF065887O6dz7qF2x3X1+nfLOfcusAb4Kd5AjQ90eoAXaxhvrIbdxTl6b8PYi7J787fsLjVAfuxMLTEGxpTpNtGWC4GY+nvkvDHnf5Odg5Se3MXDWmKZuYfv8Y6Y8o14Y3TsruyUbrwsERHpw5TMEBGRvmgl3sCLM23PU6t+EH095sCG1MaHeA/0PXnOWA8CQ/Ga/D+2h7If4LUqOLKLdYejr3sz9kJnPsL7rE7twak7P8a7Rzq+g30nxZTpbkuBoWZW1MPnbdEyjkVs8q6zv+fe/tv5AEgHDtv70ERERNpSMkNERPqc6OCef8EbePEua9dB38wGxPzq/gDeQ9wvzWxs+7rMLNfMpnVzfNuAv+M9oN/QwTl9ZtZZ95P99QfgfOB051z5Hsr+Hu+B9ndmNrj9TjMbaGaHxmxqmf5zaHcEGv2sngUm4k2p2/783XKedv4afb3dzFJjzjUM+A7eYK5PHqDz+oA7Yr+zZnYY3uCgZXgDiu4TMys0sxvNbJfxO8wsG282FYD3YnZ19vd8Eq/r10/M7PAO6swys9gkWMvsN380s/4dlB9iZuO6djUiInKw05gZIiLSV90KHIc3/eQJZvY63qCO4/DGBRgIVDnnSs3sCrwHs2Vm9gqwGq/vfhHeL+IPRevpTjfgDXb4ezP7Ct6v1nV403/OxJu5Iq2bzwmAc64CeK6LZT81s2/hPYiuin4+G4A8YCxe64VbgeXRQxbgjY/wbTPLwZtRpto594f9CPnreL/m32Fm5wPv4I0vMQlvVo6C/ah7F865l8zsYbwBUj81s+fxpiG9JHqub3Qw8013+CNwAd54JmOj39n+0fP6gK/Ezq6yD9KAu/CSNO/hjZnRCAzDm+Y1D5iPlwhs8R7euB83m9lAvJmGypxz9znn6szsYrxpdj8ys3/gfQ9SgdHALLzky5cAnHMLzeymaAxrot+ljXif6Ti879K3gVX7cY0iInKQUDJDRET6JOdcg5mdjPdL+uV4yYMAsB5vis/6mLIvmNkReL/8n4o3XWkN0DIV54MHIL4dZjYT7+HtIrwpMx2wFfgX3jSqvYJz7g9m9jHwPeBEvFYdFXhJjduI6aoSva5L8AZ5/AbeA/RGvNYg+3r+7WZ2FN7f50K8z6wOL+l0e2fH7ocv4yWYvgJ8E69LzmLgLufcywfihM65kJmdBdwEXAF8F2jAS97c7pybv5+n2Aqcgze967HAlXgJjBpgGd537o+xU+Y650rM7HLgx3ife2q07H3R/e+Y2VTgh3izo5yG929rE15SpM24L865e8xsEd6/y1Oi598BrMNLij2zn9coIiIHCev6WGoiIiIiIiIiIvGnMTNEREREREREJKEomSEiIiIiIiIiCUXJDBERERERERFJKEpmiIiIiIiIiEhCUTJDRERERERERBKKkhkiIiIiIiIiklCUzBARERERERGRhKJkhoiIiIiIiIgkFCUzRERERERERCShKJkhIiIiIiIiIglFyQwRERERERERSShKZoiIiIiIiIhIQlEyQ0REREREREQSipIZIiIiIiIiIpJQlMwQERERERERkYSiZIaIiIiIiIiIJBQlM0REREREREQkoSiZISIiIiIiIiIJRckMEREREREREUkoSmaIiIiIiIiISEJRMkNEREREREREEoqSGSIiIiIiIiKSUJTMEBEREREREZGEomSGiIiIiIiIiCQUJTNEREREREREJKEomSEiIiIiIiIiCUXJDBERERERERFJKEnxDiDeCgsL3ahRo+IdhoiISFxtqd9CZVMlAPlp+WxZsaXcOdc/zmEdFHQvIiIi0rGPPvpot/cjB30yY9SoUSxatCjeYYiIiMRNIBxg1lOzKAgUAPDXM//K9IHTN8Y5rIOG7kVEREQ6Zma7vR9RNxMREZGD3LzN86gN1AIwNGsoU/tPjXNEIiIiIp1TMkNEROQg99K6l1rfzymag5nFMRoRERGRPVMyQ0RE5CBW3VzNvM3zWtfPLjo7jtGIiIiIdI2SGSIiIgexf2z4B8FIEIDJBZMZ3W90nCMSERER2TMlM0RERA5iL697ufX9nDFz4hiJiIiISNf1aDLDzM4ws3+a2TYzazazzWb2lJlNjClzqpk9YmZrzawx+voHMxvQQX1pZnaXmW2Nlp1vZif25DWJiIgkqs21m1lcuhgAv/mZPWp2nCMSERER6ZqebpmRD3wEfBM4HbgFmAQsMLOR0TLXAwXA7cBs4A7gi9EyWe3quw/4KvBfwBxgK/APM9Mw7CIiInsQ2yrj2CHHUpBeEMdoRERERLouqSdP5px7HHg8dpuZfQCsAL4E3AN83TlXFlPkHTNbBbwDXAzcHz3ucOBy4Frn3APRbe8Ay4D/xkuAiIiISAecc21mMTlnzDlxjEZERERk7/SGMTN2RF+DAO0SGS0+jL4Ojdn2xegxT7ZscM6FgCeAM8wstftDFRER6Rs+3/E5G2o2AJCRlMGs4bPiGo+IiIjI3ohLMsPM/GaWYmZjgT8B2/CSELtzUvR1ecy2ScB651xDu7LLgBTgkO6KV0REpK95cd2Lre9PG3ka6UnpcYxGREREZO/Eq2XGQqAZWAUcBpzinCvtqKCZZQP34iUynovZlQ9UdnBIRcx+ERERaScYCfLq+ldb19XFRERERPZHMBzkuTXPEXGRHjtnj46ZEePfgBygCLgReMPMjnfObYgtZGZJeGNsDAWOi3Yjad0NuA7qtj2d3My+BnwNYMSIEfsSv4iISMKav2U+FU1e7n9A+gCOHHhknCMSERGRRLVw60J+sfAXrKteRzgS5sJxF/bIeePSMsM5t9w5tzA6IOipQBZwc2wZM/MBDwGnAec55z5pV00FHbe+yIvZv7vz/9k5N8M5N6N///77ehkiIiIJKXbgz7OKzsLv88cxGhEREUlE2+u384N3fsBXXv8K66rXAXDv4nupaqrqkfPHq2VGK+dclZmtYdcxLv4IXAJ8yTn3VgeHLgPON7OMduNmTAQCwJoDErCIiEgCqw/W83bx263rc4rmxDEaERERSTTBSJDHlj/G7z/+PQ2hnY/iGUkZfGXKV8hMyeyROOKezDCzgcAE4NGYbfcAXwGuds49t5tDXwB+BlyE14KjpVvKJcDrzrnmAxm3iIhIInpz45s0hZsAGJs3lvH54+MckYiIiCSKD7Z+wC8W/oK11WvbbD9z9JncOONGBmQM6LFYejSZYWbPAouBT4AaYBzwXSAE3BMt80Pge8D9wGozOyamijLn3FoA59zHZvYkcK+ZJQPrgRuA0cAVPXNFIiIiiSW2i8k5RRr4U0RERPastKGUuxfd3WYAcYCifkX8+Ogfc9Tgo3o8pp5umbEAuBj4Pt70qZuAucAdMYN/nhl9vTa6xHoI+HLM+jXAz4HbgVxgKTDbObe4+0MXERFJbKUNpSzcuhAAwzhz9Jl7OEJEREQOZk2hJh5Z/gh/+eQvu3QpueHwG7hi4hUk+5LjEluPJjOcc78EfrmHMrP2or5GvFYc39u/yERERPq+V9a9gotOBHbUoKMYlDkozhGJiIhIbxRxEV5e9zL/u+R/2Va/rc2+M0edyfdnfJ+BmQPjFJ0n7mNmiIiISM+I7WIyZ4wG/hQREZFdfbD1A+5edDfLK5a32V7Ur4gfHf0jjh58dJwia0vJDBERkYPAqspVrKxcCUCqP5XTRpwW54hERESkN1lXtY5ff/Rr5m6e22Z7flo+Xz/861ww7oK4dSnpiJIZIiIiB4HYVhknDz+ZrJSsOEYjIiIivUV5Yzl/+PgPPL36acIu3Lo91Z/KVROv4trJ1/bK+wYlM0RERPq4ln6vLc4Zo1lMREREDnZVTVU8uOxBHlvxGI2hxtbthnHOmHP41rRv9erxtXzxDkBEREQOrEXbFlHaUApAXmoeM4fMjHNEB4aZzTIz18FS1a5cnpn9PzMrN7N6M3vTzKZ0UF+amd1lZlvNrNHM5pvZiR2U85nZLWa2wcyazGypmV14IK9VRERkX9UEavjtkt8y+5nZ3PfZfW0SGUcPOpon5zzJz4//ea9OZIBaZoiIiPR5L657sfX97NGze1V/1wPkP4APY9ZDLW/MzIAXgNHAt4BK4BbgbTOb6pzbHHPcfcDZwE3AOuAbwD/MbKZz7uOYcrcBNwI/Bj4CLgX+ZmZznHOvdPfFiYiI7Iu6QB2PLH+Evy77K7XB2jb7xuaN5TvTv8MJQ0/A+19l76dkhoiISB/WFGrijY1vtK6fU3RQdDFZ7pxbsJt9XwSOB05xzr0NYGbzgfXAD/ASIZjZ4cDlwLXOuQei294BlgH/Ha0HMxuAl8i40zl3d/Qcb5vZIcCdgJIZIiISVw3BBh5b8RgPLnuQ6ubqNvuK+hXx9alf5wsjv4DPEqvjhpIZIiIifdjcTXOpD9YDMDJnJJMLJ8c5orj7IrClJZEB4JyrNrMXgXOJJjOi5YLAkzHlQmb2BHCzmaU655qBM4AU4JF253kEuN/MRjvn1h+4yxEREelYTaCGp1Y+xcOfP0xFU0WbfSNzRnLD4Tcwe9Rs/D5/nCLcP0pmiIiI9GGxs5icXXR2wjQd3U+PmlkhUAX8A7jZOVcc3TcJ+KyDY5YBV5lZlnOuLlpuvXOuoYNyKcAh0feTgGZgTQflACbitfoQERHpEWUNZTy8/GGeWvlU6w8aLYZlDeP6w6/n7KKzSfIldjogsaMXERGR3apoquBfJf9qXZ9TNCeO0fSIauAe4B2gBpgG/AiYb2bTnHOlQD6woYNjW36yygPqouUqOymXH/Na5ZxzeyjXhpl9DfgawIgRIzq9KBERka4orinmgWUP8Pya5wlGgm32Dc4czNcO+xrnHnJunxk7S8kMERGRPuq19a8Rct7Yl1P7T2V49vA4R3RgOeeWAEtiNr1jZvOAD/C6j/wnYED7xAPR7e3Xu7Nc+1j/DPwZYMaMGR0dLyIi0iXLdizj/k/v583iN4m4SJt9Rf2KuHbytZw1+iyS/X0jidFCyQwREZE+6uV1L7e+P2fMQTHw5y6cc4vNbBVwZHRTBR23lsiLvlbGlOuoyURezP6W1zwzs3atM9qXExER6TbhSJh5m+fx6IpHWbh14S77Dys8jOumXMes4bMSbmDPrlIyQ0REpA/aWLORT8o/ASDJl8TpI0+Pc0RxFdt6YhnQ0YcxESiOjpfRUu58M8toN27GRCDAzjEylgGpwBjajpsxMfr6+f6HLyIi4qkJ1PDs6md5fMXjlNSV7LL/uKHHcd3k65gxcEafHydLyQwREZE+KHbgzxOGnkBuWm4co4kfM5sBjAOeim56AbjGzE5yzr0TLZMDnAM8FnPoC8DPgIuAh6LlkoBLgNejM5kAvIaX3LgiWr7FlcBnmslERES6w9qqtTy+4nFeWPsCjaHGNvt85uOMkWdwzeRrOLTg0DhF2POUzBAREeljnHO8tHZnMuNg6WJiZo/izRyyGG8mk2nALUAJ8H/RYi8A84FHzOwmvG4lt+C13viflrqccx+b2ZPAvWaWHK33BmA0XuKipVypmf0auMXMaqPnvgQ4BW+qVxERkX0SjoR5t+RdHlv+GPO3zt9lf7/Uflw49kIuGX8JQ7KGxCHC+FIyQ0REpI9ZWraUzXWbAchOzubEYSfGOaIe8xlwGfAtIAPYBjwD/MQ5Vw7gnIuY2RzgbuD3QBpecuNk59ymdvVdA/wcuB3IBZYCs51zi9uV+zHeDCjfBgYBK4GLnXMvdvsViohIn1dSV8Kzq5/l2TXPUtpQusv+sXljuWLCFZxVdBbpSelxiLB3UDJDRESkj4ntYnL6qNNJ9afGMZqe45y7A7ijC+UqgGujS2flGoHvRZfOyoXxEh63dzlYERGRGIFwgLc3vc3Tq55mwdYFuHYTZfnMxynDT+HyQy8/KMbD6AolM0RERPqQYDjIaxtea12fUzQnjtGIiIhIZ9ZVrePp1U/z4toXqWyu3GV/flo+5x5yLpeOv/Sg7ErSGSUzRERE+pD3St6jurkagMGZg5k+cHqcIxIREZFYFU0VvLb+NV5e93LrzGOxDOO4ocdx4dgLOWnYSST7k+MQZe+nZIaIiEgf8uK6ncM0nF10dp+dW15ERCSRNAQbeHvT27y87mXe3/I+YRfepcygzEFccMgFnHfIeQzOGhyHKBOLkhkiIiJ9RE2ghnc2vdO6ri4mIiIi8ROKhFiwdQEvr3uZt4rf2mVKVYAkS+LkESdzwdgLmDl4Jn6fPw6RJiYlM0RERPqINza8QSASAODQ/EMZkzsmzhGJiIgcXIKRIB9u/ZA3it/gn8X/pKKposNy0wdM5+yiszl95OnkpuX2cJR9g5IZIiIifUA4Euahzx9qXVerDBERkZ7RHG7m/ZL3ebP4Td7e9Da1gdoOyxX1K2JO0RzOKjqLoVlDezjKvkfJDBERkT7gtQ2vsb56PQBZyVmce8i5cY5IRESk76oP1vNeyXu8ufFN5m2eR0OoocNy/dP7c+boM5lTNIcJ+RM0pWo3UjJDREQkwYUjYf649I+t61dOvJJ+qf3iGJGIiEjfs7FmI/M2z2Pe5nks2r6IUCTUYbnBmYM5dcSpfGHkF5g6YKoG4z5AlMwQERFJcK9ueJUNNRsAyE7O5spDr4xvQCIiIn1AMBxk0fZFzNs8j3dL3mVjzcbdlh2ZM5LTRpzGF0Z+gYkFE9UCowcomSEiIpLAQpEQf1r6p9Z1tcoQERHZN8451tesZ+HWhSzYsoAFWxfstvsIwPi88Zwy4hROG3kaY3PHKoHRw5TMEBERSWCvrm/XKmOiWmWIiIh0VWlDqZe82OolL0obSndbNj0pnaMHH82Jw07khKEnMChzUA9GKu0pmSEiIpKgQpFQm7Ey/m3iv5GTkhPHiERERHq38sZylpQuYdG2RSzYuoB11es6LT8saxgnDjuRE4edyIxBM0j1p/ZQpLInSmaIiIgkqFfWv0JxbTEA2SlqlSEiIhLLOcem2k0sLl3M4u2LWVy6uNNxL8Br5Thj0AyOGXwMxww5htE5o9V9pJdSMkNERCQBtR8r46qJV5Gdkh3HiEREROKrOdzMiooVfFr2KUtKl7CkdAlljWWdHpPsS2bagGkcM/gYjh58NBMLJpLk02NyItBfSUREJAG9tO6l1lYZOSk5XHHoFXGOSEREpOdEXIT11ev5tPxTPiv/jE/LP2VVxSpCruPpUlsk+5KZUjiFaQOmcdTgo5g2YBrpSek9FLV0JyUzREREEkwoEuLPn/y5dV2tMkREpC8LRUJsqN7A8orlrKxYyfKK5SzbsYz6YP0ej81OzmbqgKlMHzid6QOmM6lwksa96COUzBAREUkwL659kU21mwDol9pPrTJERKTPqA/Ws7pyNSsqVrQuqytXE4gEunT8qJxRTCmcwpT+U5g+YDqH5B6C3+c/wFFLPCiZISIikkCCkSB/+mTnWBlXT7yarJSsOEYkIiKy9+qD9aytWtu6rKlew7qqdWyt39rlOgrSCpjSfwpTCqcwuXAykwom0S+13wGMWnoTJTNEREQSyItrX6SkrgTwWmVcNuGyOEckIiLSsXAkzLaGbWys3sjG2o1srNnIhpoNe520ABiUOYgJeRMYnz+eCfkTmFQwiUGZgzTTyEFMyQwREZEEEYwE24yV8eVJX1arDBERiatAOMDW+q2U1JawuW4zm2s3s7HGS1wU1xYTjAT3qr4kS2JUv1FMyJ/AhPxo8iJvArlpuQfoCiRRKZkhIiKSIF5Y80Jrq4zc1Fy1yhARkQOuIdjA9obtbKvfxrb6bWyp30JJbQkldV7yoqyhDIfb63pbkhZF/Yo4JPcQxuSOYUzuGEbkjCDZl3wArkT6GiUzREREEkAw3LZVxtWTriYzOWmyHS8AACAASURBVDOOEYmISCILR8JUNldS1lBGeWM55Y3llDaU7kxcNGxje/12agI1+3We/LR8RuWMYkTOCEbmjGRkzkiK+hUpaSH7TckMERGRBPDc2ufYUr8FgLzUPC6fcHmcIxIRkd6mIdhAZXMllU2VVDRVUNkUfd/svW9JWpQ3llPRVEHERfb7nIYxMHMgQ7OGMjRrKMOyhrUmLUbkjNDU4XLA9Ggyw8zOAH4ITATygDLgfeCnzrnPY8rlAXcB5wHpwHzgu865T9vVlwbcBlwJ5AIfAz90zs078FcjIiLSM4LhIH/55C+t61+e/GUykjPiGJGIiBwIzjkaQg3UBeqoC9ZRG6ilLlhHXaCOmkANNYEaqpurW1/bv28KN3V7TEm+JAZmDPSWzIEMyRzC0OydiYvBmYNJ9quFhfS8nm6ZkQ98BPweL5ExArgZWGBmU5xzG80bjvYFYDTwLaASuAV428ymOuc2x9R3H3A2cBOwDvgG8A8zm+mc+7inLkpERORAenbNs62jvuel5nHp+EvjHJG0Z2bDgV8DXwAMeBP4jnOuOK6BdeC5JSXc9Y+VbKlqZEhuOjedMZ7zpg3t8v7eUkeixKk6em8d+yoUCREIBwiEAzSHmwmEAzSGG2kKNXlLuInGkLfeHG6mMdRIQ6iBxqD3Wh+spyHYQEMougS9pTZYS32wvltaS3RVbmouhemFFKYX0j+9P4XphQzMHMigzEEMyhjEwMyB5Kfl4zNfj8Uk0lXm3N4P1tKtAZiNB1YANzrn7jGzc4HngFOcc29Hy/QD1gOPOOf+I7rtcLyWGNc65x6IbksClgErnXNf7Mr5Z8yY4RYtWtTdlyUie2n+/PnMnTuXWbNmMXPmzHiHI9JrBMIBzn72bLbVbwPge0d8j2smX3PAz2tmHznnZhzwE/UBZpYBLAWagf8EHHA7kAEc5pyr7+z47rwX6egB7ouHD2b+/Pk8/PDDLFmxnlU1PoJNDTSsXYQLh/AlpTB4UH++c/1XGTLtJP4wdzUVxSvY8dn7NO7YSqixlsLsNHIy0zn/7NkUl9fxwquv4fMnkZKaTnpmNv0HDGZoljF6UD5vvb+IDZtLSEv3xnSpq60iOSmZow6bwsC8LLIzMnj9XwvZWr6DgrwCautqaQo0Eg6HSU5KYlBeHjX1DfQvHEhNbQ1VtdWMHDKc1OQUwsEmkvxGKOxISkpj6rhJbK8oY/HyT8nJymJ4/0I+W7eGQDBIbnYOwXCEhqZGMtLSyUhNo6G5iebmJvplZBBxjsZgiMKcPErKtxMKB0lLScU5R7+MDDLT04lEHIHwzgfL7IxMhhYMoLyqnLrGBmobGyivqaY5ECCCY3B+f6YfcijhcIDJo0YB8M6nn7B6y2YampsYmFsAwJCC/kRciPrGesIRR1pqOkMKBvDO0kVU19dRNHgY5x13Auu3baaxqYn127eRkpxGfWMjgwv7k5aSSkZaOhVV5dQ1NRAJO5rDEbIzMhlcOIBVxesor64iJclPWnIyh44cRU1jA6s2baayrob0lDSGDxpCRXUVhf1ymDF+HKtLSti4rZRQOMyoIcMpr6pgR00lqUlJ4CLkZGYSCju2VJTjIo6BhQPYUVVBc6CZ7MwsUpP8FOYXMHjQCBqaGklLTaOxuYnhw0ZwwpSxFOSkAUZZfROry+oIO0fEIGKAGYcOyWZgXhpbapv4rKSaoHOEDcI+wO+YOjqXYYWZOIP11fXM37iDJhchnBQhYA5SjGPHFlI0KIvVpbW8t7aUUMThiIBF8PvhiFH9GJqXSshF2FhRy/Lt1TQFg6SkwMiCVPKy/AQjIYLhIEEXoqKhkR31DYRdEL8/THJSmLALEnbhbvn3ekC4JHJSchma3Z+8tDxvSc1jW2US761opLI2lcL0Qm44fhqXz5jU2qKiOxJIIgdCZ/cjvSGZUYjXSuPbzrn/NbP7gNnOuaHtyj0EzHLOjYyu3wrcCuQ65xpiyv0Mr7VHjnOueU/nVzJDepuD8aF+/vz5nHrqqQQCAVJSUrj33nvZsWPHLp/BwfjZiDy18iluW3Ab4A2i9uoFr/ZIFxMlM7rOzL4N/AoY75xbE902GlgN/MA596vOju+ue5HnlpSw7E/3UrFtBAtXvY4BaSmZfLZxAduqNnapjsLsIST5kymt3kykNz+wRfnwEaHnfsXuKsPw+bwkwL4++JoZ8b5P31+GkeRP4Vtz7qJo0KQDezIXwefCWCSMOW/BhTHCWCQEhDAXAhcCgjjnbXMWwhEgQoCwL0DYAoR80cUfIOgP0uxvpjG5kcaUJhpSG6lLaaYhNUBjKjSleEvEZ912KakRyHSQ6Yz0CKSEHOkRIzMCmWEjI2IU+pMo8CeTHHSE68OkhX2kh32kOMPMz4CcdHLSU8Dno7oxxOaqJsLOiGA4DMzH6MJMCrPTKasPsrq0npADhw/nwHw+Jg3NZWheJubzsbmqicXF1QQj4KJ1+Hw+Zh7Sn0MGZuMzP6vL6lmwrpKa5jCZqcnMPKSQCYNzwXxg3jmXball7uodVDeGyE5PYdaEgUwZlgfRmJaW1PD656VUNobol57C6ZMHM21EXrQOH2AsKq7i5U+3saM+RG5mCnMOH8pRowtbz7FgfSXPLtlCeX2QvMxULjhiOMce0r/1HJjx3poKnvhwM2V1AQqy07j0qJGcOG5A6/65q8r564JNlNY2U5idzlXHjuKUQwe1qaMlHu99+3Vf27K7bLfdb9/luPZ1dN93LRH0umSGmfkBPzASuBM4FjjcOVdqZguAaufcGe2O+QHwSyDbOVdnZk8A05xz49uVuxh4EpjsnFu2p1iUzJDepP1D/VtvvXVQPLTfcccd3HrrrYTDYXw+H36/n0gk0uYzOFg/Gzm4BcIBznrmLLY3bAfgxhk3cvWkq3vk3EpmdJ2ZvQWkOeeOa7f9HQDn3EmdHd9d9yLH3flPJi/4f9z34t8JR4L7XZ/sH8P2abrKvsZnPs4+8hrOmNa3Bi02F8YfaiIp3ERSqBF/qA5fpB5z9Ri1YPXgq8X8tZBUiz+5Bn9aJf60EMlpEVJSw6QnR8hwEdIjjgwXITviyIxE0OgTsmdeUiOCEXEQcYAZfp8Pv69tIiUYcTSHXGuZtGQ/KUn+NvXs1SstL+33RbeNnAnn/q77rrST+5F4zWayEDgi+n4NXpeS0uh6PrChg2Mqoq95QF20XGUn5fJ3d3Iz+xrwNYARI0bsTdwiB9TcuXMJBAKEw2ECgQBz5849KB7YZ82aRUpKCoFAADMjHA4TiUTafAYH62cjB7dnVj/TmsjIT8vnonEXxTki2Y1JwPMdbF8G9NgfbUtVIxlbNhGOhHrqlHHXu1tm+MCx7y0z+kAyxDD8Pj+T8wtJa1yL9wQU80DUZt1wZoAvZt0XffXHrPtitvtw5sf5ev6RxpmfUHImob2ZIjsYIaW+ltRAFanN1aQEqkkPV5LuKsm0HTT4ttMvpZS0jABJGWGSM8IkZYTxJyf290AOBAfO4f2LYOc/qUh0iZEcXVrLBKPLAbKwKputI0p6pAtSvJIZ/wbkAEXAjcAbZna8c24D3sfc0b/Y9u1pulpuF865PwN/Bu/XkK6HLXJgxT7Up6SkMGvWrDb7+2o3i5kzZ/LWW28xd+5cCgoK+M53vrPLZ7Cnz0akr2kON/OXT3fOYHLt5Gs1g0nv1dkPLHkdHXAgflgZkpvOirFnwuIFEN5NQsOMrLFHE0lKo3HNB7hwCPMn4QINuxRNGRbtFtBUw+D8bAbmZnHdddexpLiKBx+4j4gvGX96Nv7MPLKGjOW0ogxOmDKa+x9/liWfLYO0HADCNWX4U9I46+w5HDV+GAUFBfzmj/ezas1a/AXDCdeUE2mqg0iIrPQUJowdw6atZdT1G01z1XbC1dtJHT6ZlLQMxudEGJybxtaqJlbW+EibeDKBsg3ULX2DlJwCTps5jZUfvE1jYyPpeQPZUF5PsKEaX3oO/vRsaKqjIKmZouGDKa9tZt32Sny5QwhsW4sLNeNPy2JApp+i4YPJz89na1UTy7ZUE462ZG651sPTK0kP17Jq41ZWrVtPuKkRiJDcfxT5h53KaUUZfP1yb/i2n93zB95+91+EG2tIKhiOARmDD+HIIWmkh2tbr8XXfzTVC58hXFtOxsjDuPXW/8JtXUZVVRWvz1vI2jo/wbpKkgcW4U/NJC0rtzWOljjJyCVlYBGN6z4iXFnS+nebNWsWS9du5e13/0Wweju+1ExSh00kUrWFw8YVcd1l5/PM6+8x74MlhEMBUkdMIVRR0lpHht/Rv39/ymubWblqFc5FSB5QRGhHCS5Qz4AB/cnLSid74EiKM8bRVFeFLz2bSGMt/YqmctR/XNz6YPPckhJueeZTGoM7kzzpyX7uuGAK500busf9u9YRARckI9nPz784kbMmDuCVxZu566VlhAMhkl2Y1Igjy+e46oihHD4om1+9/DmNDQGSnSPZOVIijhTnyE7yc9TwPELBMCtLaomEwY8Pv/nwWRJmyZg/BXwpRHz70H7CfARS+xFI7Uft7mYrdRFSm6tIryojfVs56Y3l+ANVhGigwddMZXoaO7L60ZCby5Qjinh5cyPNIe/fu7+1E4kjPck4cmQeERfm442VhMKhlg4m+IhgQIofigrS2VBeTyQSxnD4zXsSNhzJ5ijITCYSiVDTEAAi+KL1+3BEO6WQZA7nXMw+r36f7YzHF7NYy/42r23LtZQxYuo116ac7VJf222+dmXbHuvFxy5x0Frfzs+TDmPu8Nh2Mbacm9Z6do2n4+0dnNMS47G1KRjhlme8SUgPdEKjN4yZkYvXEuMJ59z1ZrYQqOpCN5MnganqZiJ9ze4SFgdTN4vOPoO+mMwR6cjjKx7nFwt/AUBBWgGvXvgq6UnpPXZ+dTPpOjMLAPc4525pt/3neFPGd/rjUXeOmXHLM59SteEz6j77JwAp6VkU1KxmcEEOEydO5KqrrmJ72ohdBvEb2FTMX//6Vz7//HO27qghPPZkIuNP7dWzUSTSrBmqo3fVsfcJk13LPLtoM//97GdEAhHSnCM3GKS/izCnKI9hqX6aagNsLWugtKIZP36SfKmYf///G57WtIPMui1k1W8hs34LGc2lVLkgJRn5lGQVsiFnMFsKhvHvV53KeUeO6tK1dMfncdydb1FSteu0sIP6pfH8N44jFHFc8Pt/sb1m1yENC7NS+O3l0/nmY4sprwvssj8vI5kfnXUooYjjzldXUN24a7OC7NQkrjhmJI8s2EBd866todKTfcwaP4Bg2PHu6jKaQ7u26EryGSMLMtiwo4FwpDcnDtonaWhNghDzvm2Cpm1CZWe5tq+0q6/Ne/POveuxLdu89UaXylYKGJqbzr9uPmW/r7bXjZmxSxBmi/ASGKeZ2f3A6c65Ye3KPAicHDMA6H/hjRjefgDQn+JN5aoBQKVPiR1Xwu/3c9ttt3HLLbfs+UARSTjN4WbOevosShu9Hpg3zbiJqyZd1aMxKJnRdWa2HXjOOffv7bb/HrjIOde/s+MP9Gwmmm1AZFfxSLoM65fOt48r4vhhedRXNVNXXs8nn21hzbodpDQ7snzJJFkqXWho3oZFwmQ0lpJZV0JO7Qb61awnu3Er6aNHkjp+PGkTxvORv4Bfr3OsaE5mSF5GtyeQuiMhkgh1nDt1CMf98p9s6SBxMzAnlce+egyhsOPK+xZSVrvro2h+Zgr/fe4kbn3uMyobOkjKpCVxzbGjCEYcD8/vODGTluzj2DGF/GtNeYdJGb/PGJidSiDs2FHfTLwe9w1Yf+fZ+19Pb05mmNlAYC3wqHPu383sPOBZvJlL3omWycGbmvUx59y3otumAkuALzvnHopuSwI+BdY4587pyvmVzJBEcTC1zBA52D26/FHu/OBOAArTC3n1gldJS0rr0RiUzOg6M/snkOKcO77d9rl491o9MgCoiCS+cDBCzY5GasqbqC5rpLqsgeqtNVRvr6e6MoRzXUt0WCRIdu0m+tVsIKdmPf1q1pPaXEnygAGkT5tG+rSpZEydSurEifhSUrol9kRoldMddSRC0qWzOtKSffzXnImcNnEg5/zfe7ttLXPXRYcTCEW4+elPOk283P+vDdQ179q1sc+1zDCzZ4HFwCdADTAO+C4wCDjKObfKzHzAe8Bw4Ca8Pqi3AIfhzXiyKaa+J4AzouXWAzcAc4BjnXOLuxKTbiAkkaibhUjf1xxu5synz6SssQyAHx75Q66ceGWPx6FkRteZ2XeAu4Fxzrl10W2j8KZmvdk5d09nx+teRES6IhyKULW9gR1b6qgoqWfHlnp2bK6ltmKPjdEBSGmuIrd6DfkVyymoWE5qoBpLSSFt8mTSp00lfepUMqZNI6mw8ABfSeJLhKRLV8r0VFJlf/SmZMYPgYuBMUAKsAmYC9wRHfyzpVw+3k3BeUAaMB/4nnNuabv60oGfA5cDucBSvL6pc7sak24gRESkN4ltldE/vT+vXPBKj7fKACUz9oaZZeLdgzTidYF1wG1ANnCYc66us+N1LyIi+yPQFKJiSz1lxbVsX1/DtnXVVJc17vG4zPot5FcsJ79iObnVa/BHp3ROHTeOzOOPJ+v440g/4gh8qakH+hIkjnoqqbKvek0yozfSDYRI/KnFiYinKdTEmc+cSXljOQA3H3UzVxx6RVxiUTJj75jZCODXwBfwugq/BXwn9sea3dG9iIh0t8a6ANvX1bBtfTXb1tVQuqGGYAfjL7TwhQOtrTb6l39MelMFAJaWRsZRR5J1/PFkHn88KaNHY7Z3Y3qI7I/O7kfiNTWriAigsUBEYv1t1d9aExkD0gfwpXFfinNE0lXOuWLgwnjHISICkJ6VwqjDChl1mNdlJBJx7Nhcx6blFWxaXsGWNVVEQjt/1I74U6jIn0hF/kTWHHIhOdXrGFi2mAGli3Hz3qV+3rsAJA0ZTPask8k5czbp06djfn9crk8ElMwQkTibO3cugUCAcDhMIBBg7ty5SmbIQakp1MT9n93fun7dlOtI9atpr4iI7D+fz+g/Ipv+I7KZfsZIgs1htqyuovjzHWz6vILKbQ1tytf0K6KmXxGrx1xAbvVaBpR+xICyJbBlK5WPPUblY4+R1L8/2bNne4mNqVMxny9OVycHKyUzRCSuZs2aRUpKSmvLjFmzZu1SZk/dUNRNRfqCp1Y+tbNVRsYALhynH/lFROTASE71M3JyASMnFwBQW9HEps8rWLukjM3LK4hEoq02zEdV7liqcseyauzF5FWtYtC2hQwoWwxlZVQ+/DCVDz9M0qBB5JxxBjlnnUnaYYepK4r0CI2ZoX6q0ksczA/knV37nrqhqJuK9AWNoUbOfPpMdjTtAOBHR/+IyyZcFteYNGZGz9G9iIj0Jk11QdYuKWXNR6WUrKyko8fF5FA9g7f8i6Fb3iM9+v+u1n1Dh5L7pQvpd+GFJA8Y0ENRS1+lMTNEermD/YF85syZu73ePXVDUTcV6QueWvlUayJjQMYALhyrVhkiIhIfaVnJTDphKJNOGEpDTYC1i0tZvWg7W9dUt5YJJmVSPOJ0ikd8gcLqlQzd+Bb5FcsxHMGSEsp+87+U/fZ3ZJ96KnmXXkLGMceoG4p0OyUzRHqBRH0g74nWJJ11Q5k/fz7FxcUkJXn/KdtdNxWR3qwh2NBmrIyvTvkqKf6UOEYkIiLiychJYcqsYUyZNYy6yiZWLtzGsnlbqK1oipYwyvtNoPywCWT6GhiyaS6D1r9NcqgBwmFqX3+d2tdfJ3nkCPIuvoR+F5xPUl5eXK9J+g4lM0R6ga6MG9Hb9FRrkpkzZ/LWW2/tkjSJPb/f7+erX/0qV111VUIkgURiPbbiMSqiU+ANyhzEBWMviHNEIiIiu8rKS+OI2aOYdvpINn62g8/mbqb484rW/fWRDFYPPYt1w89kZNMyhnz4CCnBWgCCG4spvesuyu69l+zZs8m/8grSDz88XpcifYSSGSK9wO4e2Huz7m5N0lkrj466ocSeH2DEiBEJ8bmJxFpWvozfffy71nW1yhARkd7O5zNGH1bI6MMKqdrewGfzSlgxfyvNDSEAwhFjXcpkik/6JUXpJQx67z6SKrcB4IJBal58kZoXXyTz2JkUXH89mUcdFc/LkQSmZIZIL9HZuBG9UXe2JtmXVh6J2JpFJFZNoIbvv/N9QhHv5u/Q/EM5/5Dz4xyViIhI1+UOzOD4i8Zy9LlFrP5gO5/M3cyOzXUAhEKOVbVDWHfkTxg3pIEhS54gsvTD1mPr359P/fvzSZ9xBIXX30DmccdqFhTZK5rNRCOISwLpbTOe7G88LccXFxfzl7/8hXA43NplZMSIEXust7d9HiJd5Zzj++98nzc2vgFAVnIWT815iuE5w+Mc2U6azaTn6F5ERPoK5xzrl5bzwUvrW5MaLZJT/UycksbQlS/Q9MrzEG1d2yJtyhQKb7ierJNPVlJDWnV2P6Jkhm4gJEH0tRlP2o95YWaEQqE27/vCdYp05PEVj/OLhb9oXb/npHs4fdTpcYxoV0pm9Bzdi4hIX+MijnVLy/jwpfXsKKlvsy8lzc+Uo/ox7PNnqX3+WQgG2+xPHT+ewhuuJ/v00zUDinR6P6Jvh8g+mD9/PnfccQfz58/vsXN2NEZFIou9nnA4zDXXXMNtt93GtddeSygU6jPXuSfx+C5JfH2+43Pu+vCu1vVLx1/a6xIZIiIi+8N8xphpA7jkx0dxxlcnkzc4s3VfoCnMR/MqmGuzSf3d38m74gosZed4Uc0rV1Lyne+y4bLLaFy6NB7hS4LQmBkieyleLST62hgR7a+nZSaS+fPn89BDD/WZ6+xMX2ttI3tWG6jlxnduJBjxfoU6NP9QbjzyxjhHJSIicmCYzzjkiAEUTevP2o9K+fDl9VRuawCguqyRVx/bzJjp53L009cQeOZRKp94AtfYCEDT0k/YcMml5HzxHAZ8//skDxwYz0uRXkgtM0T2UrxaSLTMeHLbbbf1iYfe3V1PX7vOzvS11jbSOeccP33/p2yq3QRAZnImd590N6n+1DhHJiIicmD5fMbYIwdy6X8dzUmXjSMlfedv6msXl/HUb9ewZdqljH7jTQq+ch2WnNy6v+aFF1k7+0zK//AHIk1N8QhfeimNmaF+qrKX9Gu6dBd9lw4uT654ktsX3t66fteJdzF79Ow4RtQ5jZnRc3QvIiIHm4aaAO8/s4aVC7a12Z4/JJOTLhtHYVodpf/zP9S+8Wab/clDhjDgBzeRfcYZGiT0IKEBQDuhGwjZGy2zZxQUFLBjxw7NotELJdoMJ4kWr+yb5TuWc+UrVxKIBAC4eNzF3Drz1jhH1TklM3qO7kVE5GC1ZXUl7zy+iootbQcJHX/MII6/aCzhTxez/Y47aF65ss3+9BlHMOjHPybt0EN7MlyJAyUzOqEbCOkq/Yre++lvJL1RXaCOS166hOLaYgDG543n0bMf7fXdS5TM6Dm6FxGRg1k4HOGTtzbzwcvrCTXvnK41Ky+V066ZyJAxOVT97e+U/eY3hCsrdx6YlETh9ddT+O9fa9MtRfoWzWYi0g16anwDzW6x7zQGhfQ2zjl+Nv9nrYmMjKQM7pl1T69PZIiIiPQUv9/HtNNHcMVPj2bM9P6t2+sqm3n+10v44OWN9LvoIsb84zXyr74akqLjbYRClP/2t2y45FKaV6+OU/QST5rNRKSLemI2kd21LOhtXRF6Wzwt+tqML5L4/rbqb7y24bXW9Z/M/Akjc0bGMSJJVM3NzVRUVFBbW0s4HN7zAdLr+P1+srOzyc/PJzVVCU2R9rLy0pj9tSms+7iMfz68nOb6EM7Bolc2sHlFJV+4diIDb7mZ3EsuZuuP/5PGJUsAaPr8c9ZfcCGF//EtCq69FvP743wl0lOUzBDpopZZNg7kQ/zuWhb0pq4TvbkrR0/8jUS6amXFSn75wS9b17807kucVXRWHCOSRNXc3ExxcTF5eXmMGjWK5ORkDXyXYJxzBINBampqKC4uZsSIEUpoiOxG0dT+DBiZw5sPLKNkVRUA29ZV8+TPP2TWFeMZO6OIkY88TMWDD1H2m9/gAgFcMEjZPb+i7q1/MviOX5A6enScr0J6grqZiOyFmTNncssttxywh+T/z955h1dVZX343belN0JCQhISQkILKkhvEqoiiBQdC34wqKMzOCCOBbEgDIoCFkYdxzKKOjZ0YBRpikgApSkQaoCEhISE9F5vO/v746bdFJJAGnDe5+EJd9919tmn3Hv3WXut36qILNBqtZWRBe0tdaK9jacmLX2NVFQaQ7G5mCd2PlEp+NndqzsLBy5s41GpXKnk5OTg5eVFx44dMRgMqiPjCkQIgcFgoGPHjnh5eZGTk9PWQ1JRade4ejkwZUE/Bt8eitDYvvNMpRZ+/PcJfv5PDBYLeD9wP13Xr8OxT5/K7Uqjo0mYNp2cTz9FKkpbDV+llVCdGSoq7YiKyIJly5ZVRjzU5eBoS9rbeFRU2htSSv6+9++cKzgHgJPOiVdHvYqjzrFtB6ZyxVJYWIi7u3tbD0OlmXB3d6ewsLCth6Gi0u7RaAQDJoYw/YkbcfOu+g2N+TWVr5f/Rub5QhzCwgj58gt8Hp1fqaUhy8pIX/4ySbP/iDk9va2Gr9IKqNVMVAVxlTamMfoTl6JR0ZRtFKlQZC6i0FRY+a/AVGD3unpb/JF4Eg8n4tLTBV2oDhedC95O3nRw7IC3kzfejt5Vr8v/7+3ojbuDOxpRtw/128MprPrhNBfySuns6cSTN/dgar+ARh2rSvugvWqptDbrzqxjyd4lla9fHvkyk0Mnt92ALhG1mknr0dBcJCYmhp49e6oRGVcJUkpOnTpFL7WkpIpKozGWWtj5+Slif8+obNPpNYy/P4LQfjbR0LKYGC48vciujKvW25vA1W/gPHBgq49ZpXlQS7NeBNWZodKWtJT+RF39hvcNJzojmuiMaGJyNEqNgAAAIABJREFUYsgz5lU6KYrNxUha/rtAJ3R4OXrZHB0OHXAzeOGi9SQlW8svp42YTS4opo5IsxcOOi1PTLA5NFwctDjptY2eyKuOkdanPWuptCanc04zc/NMjFYjADPCZ7Bk2JK2HdQlojozWo/GODPUB9+rC/Waqqg0HSklp/amsWvtmaoSrgKGTQ+j77gghBBIk4nMd94h+4N/Q4VYsk5Hp6eewuv/7lOdwlcgF5uPqAKgKipNoLlXnuvSn2iOfn/e8TNGkxHFqlBmLGPh8wsY1XsQnmXeOFm8Gchom6G0ArZ/EgsSBSksSKy2f8LWrggFRdheK8JKQnoS8amJdAnoTEBnXwqc8kn1yCbJO4sCp1Ko53fCIi0kHkvk5KmTuPR0wTnMufI9vR9UVAhXLK5YS4NYtb8Lr0QFYS0LQkgHXAw6XBy05X/r/v/5nBK2n8rAoticMyl5pTy9/ihAu3FoXI0RDC11L19JlJhLeGLnE5WOjDDPMBYOUnUyVFRUVFRUmgMhBL2G+eMX6s7Gt49QkFUGEvasiyM/s5Sb7gpHYzDgu2ABLkOHkfLYY1hzcsBiIX35ckqPH8N/6VI0Tk5tfSgqzYTqzFBRaSQtsfJ8uaVEFUVSmJZP6vE44mNOk5WSS1m+JD+lGC06EBa0Qs9A1/vwM0XYVHIMNvfFxRDU648gPu0EH258A4tiRndQz7zJq+jmF0G3QiAZtJZSNOYcLDKXUm0e+Y45ZLhlkuKdxqn8cyS8loA0S4Re0PWprnYOjQo0uiI0bjHgFgOAlALF6Iu5LIic0i5kFnZByfKlsbI/ZWaFJ745wuZjqXTzdaWbjyvdfFwI9XHFw0nfcAfNyNUawXCtl8WVUrJs3zI7nYzXRr2Gk06dMLUmQohzQF21b6dJKb+tYfsn4HGgK3AOeENK+W4dfU4FXgB6AenAB8DLUkprDbsRwEqgH5APfAE8K6UsvbyjUmkKUVFRjB49mh07drTo91Bqaipvvvkm27ZtIzY2FoPBwPXXX88LL7zATTfd1GL7VVFRAS8/F+5YOIDN/zpGWnw+ACd2pVCYVcrNf+qDwUmHy+BBdF33X5LnP0rZsWMAFGz4HmNsHIFvvYkhMLAtD0GlmVCdGSoqjaQlVp4bW0q0OLuIpKjj5CblUJBRQl6+mWKTHqPGHamp+Bj72/4JCA6MYN5kf2JTjxDufwOhfhGXNc7qxKYewaKYkVLBYjWx+eCn9O06kmJjQeW+rLoAIABHwFFCpwK4rgA0hz7jrOkcIBFmGLKlI5MHBZHvlsmFDlkkuZs45WigWGPvpBBConVMR+uYDp62UGyDIvAtc8azzB3nUh+0pX6UWjuSJ13Jw4ULyRfISYrFsct1OAT0wqJIfjyZDifthaB83BwI7ehi5+To5uNKgKcTGo1o9pSVqzWC4Vovi/tt3LdsjN9Y+fq5Ic8R6hnahiO6pvkBWFKj7XT1F+WOjPeAl4GfgLHAO0IIIaX8VzW7m4F1wIfA37A5KpYDbsDCanbXA9vK9z0Zm4NkFRAA3NV8h6bSXjh48CBr165lzpw5DBkyBJPJxDvvvENkZCQbNmxg8uQrTydHReVKwsnNwO2P9eXnT2IqdTSSTuaw/tWDTHrkBtw6OKL39yf4s/+Q/uKL5H3zXwCMMTGcm3EHnV97DdcRw9vyEFSagUZrZgghXIDxQBegpiS7lFKuauaxtQqqZoZKTepLAWjtFfX85BxOfXuAcycLyLJ2gHqEMy+GRjHjYMzBSRTj4QJGneRAXikpOj1WQCfBgMTPSWAwFeJgKsJDluGKEWdMOEszTpjRI1GkFgUdxzIy+dvPmzBZLXYqGwKBTqtn3uRX63WexKed4K2NT2JVzGg1tqiO6rZ6cxGupgu4yQQszudI9DnHr4H5nHHSoTQix9HfYuG6MiPOpwtZ9W4WFgvotILF9w1B17kPsTKAOBlAkvTFivaifTnoNHRw1pNRaMRa7UCd9Fpenn5dox0aNe+n6veRVqvl/vvvZ9asWdfcw//VRGxuLPduupcyaxkAU8Omsmz4sjYe1eVTM0f1SpgHlEdm/CKlvO8iNjrgArBFSjm7WvtHwBTAX0ppLm87DBRIKUdVs1sMPAd0kVKmlbf9D+gD9K627SzgE6C/lPLQxcatamY0DaPRiIODQ53vNWdkhpQSs9mMwWCo9V5eXh6urq7odFXrghaLhYiICDp16sSuXbsu2rd6TVVUmgepSA5sTOD3zecq25zdDUx65Hp8g6uqQOWu/Zq0F18Es9nWIAQ+Cxbg/dCfVB2Nds5la2YIIQYBG4GO9ZhIbCsQKipXNBdzWLTGynP2mVRObTjIudhS8oQ3YAA61p/zAehNBejMWQiRh97ZhHtHRwJCgwju3QPPHl3QeXlSYrKwPz6H5V9G0cvlAgM08QSJTAJFJoEii07kohGNc2yODIN+QQaWREl+SrBSLk2BRKIoJlyzF3OrfwR5pkDyzZ0okJ0oEh0p0XUk1C+CeZNX1RsxYta7kqvvTi7dbceWDePSS5helogzCZS6JhDnm0xUYAHpDrW/vlJ1OlJddWSmlmC0ANKWihOTfpw3u8bgVV5v3Cz0pAh/Yiz+nFE6E6fYnBzx0h8jtkmr0aKQWmCstY9Ss5Xnvj2Ol4uBQSEdcDLU7xSp737avn07n376KWvWrOGDDz7gk08+uWrSTa41KnQyKhwZYZ5hPDP4mTYeVfNzlc0DhgI+wGc12v8DzAFGADuEEEFAX+ChOuyWAhOBNUIIPXAL8HqFI6Ocr7GlpNwOXNSZ0Ra0B6HkrVu3snTpUqKjozEYDIwePZoVK1bQo0ePSpvIyEgsFgsLFy5k8eLFnDx5kldeeYXHHnuMzMxMHn30UTZu3IhGo2HKlClMnz69zn2tX7+elStXcvToUQwGA+PHj+e1116jS5culTYhISGMGDGCMWPGsHLlSs6ePcvXX3/NtGnTavXn6elZq02n09G3b1/URTIVldZDaASDp4Ti4ePEjs9OoVglJQUm/vfqIcY/EEFoX1ulE6+7/oBjj+4kz38US0YGSEnmG29QdiqGzitWoKnDaanS/mlsmsmbQBowDTgG1J7hq6hcBTSUAjB06NBmfeCUUpJ+5BynNx4hMclCoaYD4Ayiho6EVHAqScAkzlNkyKLQtQCHQBf8eofR67qhXNdpHK4G10pzqyI5kZLLj78eoCj2F7xzo+nHaX7RpMElfFdLBMI9ADy7gGcXht4UxJKRJnb+eQVGoxmQIARagwO3vPI9XYePqLMfY34RuTH+5MRFkJ+ST0FWGoWFkiKzgVKtO4qmtn6FRedMjmsvcrCtYHllwB9SinC3pmEwZFDokcwJn3h2+qRSUh684tLTBaEXSIsEnWBPfx8iuzjRr8zI6JJSxpSUEmJJIkSTxMRqAS8KggytH7GKPyfN/sTJgEpHRyFV16TIaGH2RwfQawU3dvFieFhHhod5c32gJ3ptVYf13U9Dhw4lKioKi8Vy1aWbXGu8tP8l4vPjAZtOxqujXr1adTKupHnAbUKIEkALHAZeqaGXUeFFPV5juxPlf3sDO+qzk1ImlPffu7ypG7ZIlZp2ZUKIs9Xs2g3fHk5h0fpjlJptsh8peaUsWm/LKW8th8bWrVuZNGkSY8aMYe3atRQVFbF48WJGjBhBdHQ0AQFV4zhz5gzz58/n+eefJzQ0lA4dOgAwffp0jhw5wvLlywkPD2ft2rXMmzev1r7effdd/vKXvzBnzhwWL15MYWEhS5YsYdSoURw9ehQ3N7dK2x07dhAdHc0LL7yAr68vISEhjT4mk8nE3r17uf766y/9xKioqFwSPYf649bBkS3vHcNYYsFiVtjy3jFG39eT3sM7A+DUty9d168jecECSn8/CEDhlq2cz8sj8K230bq6tOUhqFwCjXVm9AHullL+2pKDUVFpa1pDxFAqkuQ9MZz5MYakVA0lWg/AvZaWpVCsOJac5rfCbewyRtN9Yj/uueVeRvvcQJhnGFqNfURASkYWpw/upCjuV7yyD3GdPMP1otj2ZgMZKlY0SFc/tB2CEZ7B4NmFvUlGok6kETnuZnD2IeqXX4nsVRWRMhTY0WMiUVFReHt7k52d3WDEioOHK35DeuE3pHZorWJVKEhI48JvcaSfSicrw0yu2R2zrrZAqFnvSrY+DAiDQgguhAdP5eNGNjqXfLK9M9k891f2nz+DSy9XnMOcUYCDTo4cdHLkVW8vwkwmm2OjuJTeJhMaQIPEz5qKH6mMrPHtmCw7sl/pyT6lN/uVXiRJX8xW2J+Qw/6EHF7fBi4GLYNDvSudG6NGjar3frrce60ifaWx516l+fk27ls2nN1Q+fqZwc/QzbNbG46oRblS5gHfA78BCUAn4K/A/4QQ/yelrIjE6FD+N7fGtjk13q/PrqKtMXY51d63QwjxEOVRH9WjA5pCyNObLmm7uig1W1mwNpoFa6Mvaftzr0xqkv1zzz1HaGgoW7ZsqUzVGDp0KN27d+e1117j9ddfr7TNysrixx9/pG/fvpVt27Zt45dffuHLL7/k7rvvBuDmm29m4sSJJCcnV9oVFRWxcOFC5syZw0cffVTZPnjwYLp3786HH37IggULKttzc3M5ePAgfn5+TTsBwJIlS0hOTubzzz9v8rYqKiqXT0APL2Y81d+u0smOz04BVDo0dB07ErxmDekvv0LuF18AULJ3H0lz5hD0/nvovLzabPwqTaexzozkJtiqqFyx1EwlAXj55Zfr1M9oSrqJ1WLl3E9HiY2KJTnLEaPOlfi0C7XSLTRWE/rSGC64HeXXnsfJLpUcXXYUxaKQsCuTpwYtrAy/LcpM4uyhnymJ+wWv7Gi6WeMJENXE9etITTGj56jSlYNKOLEygGTpQ5a2E3+dehO39+9qd3xj55brOrz5CUIILBZLnak3zfUArdFq8AzrjGdY58plTCkleWfTSNl3mvTTmWRlWsmzumPR1kzXB5PBg2w8wAykwQQmMMU1G+eUNHLzEvndM5ojXdIwGWwnJs5gIM5g4ANPD3zREWm0Mjovg0ElpXUGrwSKLAK1vzBD+wsAmcKbXy09Kp0bCdKPYpOVn09l8PMpmxBVR1cDty58B116DHfffgvpjl0Y/srPlWHdi9/5Cpl6osmOiIr0FaPRiKIoaDQaHBwc1FSVViQuN47l+5dXvp7SbQpTw6a24YhanFafBwghxmET1WyInVLKSAAppd2yfLmWxT5sQp8VzoyKb8eGcusuZicuwc4OKeX7wPtg08xoYCxXFcXFxRw6dIhnnnnGTnOia9euDB8+nJ07d9rZh4SE2DkywPY9qNVqmTFjhl373XffzdatW+3sCgoKmDlzJhaLpbI9MDCQnj17smvXLjtnxpAhQy7JkfHFF1/wyiuv8PzzzzNy5Mgmb6+iotI8VFQ6+f6tI2QmFVY6NDQaQc+h/gAIvZ5Ozz+HzteHzNX/AKDs2DESZ95Hlw//jd7fvy0PQaUJNHZi8hLwpBBim5SyuCUHpKLS1lQ8oNend9BYIVCL0czZjb8TtyeRlAJXzFpnoCPoqoQwLYoZnUbH38Y9iC48j196x5DraWVkwEgWdV/Fr//5lcPmaBTFSmmZkaXPP8Xfb/EhpOQYvkoGN1TfYR1T5kKtJ4U+N+IePgLX8BHo/W/g/PFsPqmRJ317jbDi6ukRSrnOhJSy1dMhhBB4hfnjFeZPn/I2qUhyzlwgZf8Z0mOzyM5SyFM8sGpquyDKHL0pwxvMEfTPvJUhF4pwNCWRY4jlrHcc0V2SyXNTyMDC1w7wdScfXLROjHAPZbTGg5Elxcjk0zgVxGPAYte3j8xmqnYPU7V7AMjCi73WHuxXerFX6c1Z2ZmsIhNZ+IC7D/t2lCCIrnzaSckr5ZNiAy9Pn8XQJoZ1V1yfimujKIqaqtKK/Jb2G49HPU6pxVZxM9QjlGcHP9vGo2px2mIesAdojEJiSX1vSCmtQohvgBVCCH8pZSr2ERip1cwrIihyavytK7LCs5F2XlSlr6iUk5ubi5QS/zoeGPz8/EhMTLRrq8suNTUVLy8v9Hr79MROnTrZvc7IsDmXx40bV+dYvGqswta1r4b4/vvv+eMf/8gDDzzA0qVLm7y9iopK8+LkZmDKo335bvVhss4XgYTtn8YgBPQYUu7QEIKOf/4zWk9P0pb+HaTEFB/PuXtn0uXDf+MQqlYkuxJorDNjJNAZiBdC7Kbqh7sCKaV8uFlHpqLSxtSnd9CQrobVbOHIh9s5/HspZTp3wJeahTPik3/DYjUhkZiliY/d1nHdqOu4K+xPTAufhp+LH0jJSdff0WpASDBoFV4IPsSgovo/tsn6YHYXBHEsx4HJ0+9h2C134FZDoXlqv4AGc6Krp0BotVq7yIyWSL1pCkIj8O4ZgHfPqmNQFEl2TDIpB+JIj80mO0eSr9TW4DDrXTHre6OnNz0LoPcRE46liZRo4zjvGc+RoESSO5bwQ+4JfgB0Qkf/Pv0ZHTCfsQ6++KXFQOKvkLgXTIV2fXckl9u0+7hNuw+AbDzYV+7c2Kf0JlYGIGvk+5Sarby46SS39+3cJCVtb29vNBoNiqIgpUSj0VRem6ZGDak0HiklX5z6glW/rcIqbVFQjlpHXh31Ks762ulQVxmtPg+QUpYAp5qhq5qRExXOhQjsnRkVQWEn67DbW9mZECGAczW7s9g0ROwUjYUQjkAo8M3lDP5iNDW1o4KamhnQ9EpNl4OXlxdCCNLS0mq9l5aWhre3t11bXd+P/v7+5ObmYjab7Rwa6en25bcr+vr444+JiKhdaau6XkZ9+7oY27dv584772TatGm89957TdpWRUWl5XB00XP7o/34dvVhspNtDo2fPokBIegxuCr6yuvuu9F6epLy5FNgNmNJTSXx3pkEffA+Ttdd14ZHoNIYGuvMuK38rwLUVZBXAqozQ+Wqoj5Ng/raFUXh5Be7+D0qi2JdB9DZP0jrjblYlKOc8j1CzLhjNgk9C+j0Ohbft5iHb3sYrdDAhUMUbn8DeeJb5hrT6DfLgahzViJDtAwNqvrIlkoDsfoeFPn2x7PHCEL7jeH8iTM8UB41svrzrWzfHnhJD7R1pdu05wdkjUbgExGET0RQZZvFYiXtYDzn98aSGl9EVqlzeXRMFYrWQIlrOBBOkBGCYhWcjiRjJp4013hOdI7nd8s+9qfu5xWgf6f+TB54F+OnvYdH7jmbY+PcLzbnhjHfrm9v8pmkPcAk7QEAcqQrB5Re7Fd6skeJ4LQMAgRZRSZGrYpi+o0BTO8XSBfviz8U7927lwULFmC1WtFqtfztb3/D09Oz8jq1Zvngawmj1ciL+17k27gqHUlvR29Wj15NuFd4G46s1bgi5wHlZVjvBJIqyqhic0xkATOBn6qZ34fNSfMrgJQySQhxpNzu3zXszMCWcjuTEGIr8AchxBIpZUUY1x2AA7CBdkaFw6Ktqpm4uLjQv39/vvnmG5YsWYJWa/P4JyYmsmfPnjpFPGsydOhQrFYr69atq9TMAPjqq6/s7IYNG4abmxtxcXHMnj27ZjeXxd69e7n99tsZO3Ysn332GRpN00uoq6iotByOrnpuX9CX796IJjulPELj45MIAd0HVTk03G+5BY2bG8nz5iNLSrDm5ZE4+48Evf0WLsOGteERqDREo5wZUko1cUjlmqO+Uqw124cMGULst/vYvymRfK0P6KoijfWmAoxyP8f9j7C/23ms5Z+4Li7duP2DO9Al6Jg8fhJDQ5yxbFtK8ZF1uJQkU32daGiQjqFBOnKkKxutERxUunNQ6c5HT9/P9R6uVKehqJGmHn/NSi5XEjqdlsDB4QQOtj1oSinJOpPG+d0xXDidTWa+nhKNu/1GQkOpSxegCx1lJKNSYEJcJljiyXaK47R/PK8kLWG503JGBY5icuhkRg5+GIPQQvpxOFfh3PgVyvLsuu4girhF+xu3aH8DIEHpxBZlMJutgzie05XVP8Wy+qdYBoV0YPqNAdx6vT/ujrWru1RPMRFC4OnpyaJFiwCbvktzXX+VKjJKMnhsx2MczTpa2dbHuw+rR6+mk0uni2x59XAlzAOEEPdgK4O6GTiPTQD0EaA/cE+FnZTSLIR4HnhHCJGCzaExBrgfmCelNFXr9hlgoxDiPeBLoB/wHPCPas4RgCXYnCRfCyH+CYRgK1X7XynlweY/2sunMVF6LcmyZcuYNGkSkydPZu7cuRQVFfHCCy/g4eHB448/3uD248ePZ8SIETz88MNkZWVVVjM5fty+SI27uzurVq3ikUceITMzk4kTJ+Lh4UFKSgo7d+4kMjKSe++9t8njP3XqFJMmTaJjx448+eSTHDxof5mHDBnS5D5VVFSaHydXA7c/1pfv3jhMdkoxUsJPa04ihCB8YNVvuOvw4QR/vIbzf3oIa34+sqSE8w//mc6rVuF+y81teAQqF0NIeU1pTtViwIABUq0HfvXRWqH2/3vrE9b+ZwsBnYdXingCaC2lFPMT/+u3k3xXs61NaIkMiuSO7ncw1G8IB7Z8xY7/fcwwl3NEdsiss/886cJW60A2KUPYq/TGUu5/DPB04tenx9Syb6yex6VS/bxC+47WaAyFGQUkRZ0g5VgqGRmSfDxAXHxlTW8qQGc8S67DWeJ8zxIbXsDI3rcwOXQy/Xz7oREaUBTIOAmJv7L3x/VE7fmNyM5Gu8ia6iQpPmxWBrPFOogjshsgcNBpmBDhx4wbAxgR1hFdecnXi13jlr7+1yLRGdE8FvUYWaVZlW1Tuk1h8dDFOGgd2nBkLY8Q4qCUckBbj6OxCCGGAMuxpXt0wKal8RuwSkr5Qx32DwOPA8FAEvCGlPKdOuymAy8APYF0bFEaL0kprTXsbgJWYHN45GNzfjxTni5zURqai8TExNCrV2PkQ64stm7dytKlS4mOjq6MdFy5cmWl0DXYoiEtFgu//PJLre0zMzOZP38+GzduRKvVMmXKFGbMmMHUqVPZsWOHXVrk5s2bWbVqFQcPHsRsNhMQEMBNN93EE088Qe/etgyjkJAQRowYwWeffVZrXzX5+OOPmTNnTr3vNzS/vlqvqYpKe6W00MS3bxwm54JN9kkIGP9ABOED7BcljGfPkvTAg1gq0uCEoPPKlXjcNrm1h6xSzsXmI412ZgghHID/A0ZhmyRkA1HA51LK9lxv/qKozoy2o6UcDq3xQJd24DQfvfIlSza8Ui7iqWfe5FWE+YRjtuzku77byfC0iQMGuAYwI3wGU8Om4lOUBSf+x+7vPuHmf57BZAWDFrbPcq580C2QzvygDOBcpwkUB4zgq0NplJmVyn03lNfcGue1po5GXee4rbUbLmX/ZcUmkn89RfLBRNKSjeSa3WrpbtREaynFUBZPof4sWf6ZdB5zPRMG3EE3z27296Jez7uLHyDQHMcg62FcRVmd/SXLjmy1DmSzdTCHZRgSDb5uDkztF8CMGwPp4ed20WNri/N+tTm5Klgfu54X972IWalySD4x4Alm9prZ5Lz6K5Gak4erdR7QHrhWnRnXMuo1VVFpfUoKbA6N3NRyh4ZGMOGBCML6+9rZmS9cIOmBBzElJNgatFoC33oLtzGjW3vIKlzcmdGoNBMhhA/wM7bVjnQgDbgRW97oAiHEGCll1kW6UFGxoyUdDs2ZalGTnJPn+OW9Xzlf1ol9KclYFDNSKlgVM3FJ3xEzopTzPgUAdHLuxKM3Psok9+5oTnyLsmYyZNq07H45ZsRkBasEkxV+OKchtfMIfnMeRZdBk7m9f1fu9HQCoG9ISpPympuzXGp1mlLhpK0jBC51/44uBsImXE/YhOsBsFoUUg+fI2lPLGnxBWSVumDW2JeFteqcKHWNQEcEfjnA12Z2fvwTOxw+4eeUA5iMRqyKgglIIYBZi98Gcxmc/RlOfgenN4OxoLK/QJHFg7otPKjbQqrsYHNsFA3m37tKeX9XPBGd3ZlxYyCBo+/hiah4Lny3ye6+aKnrXx9NdXJdCZgVMysPrOSr01W5954Onrw66lUG+w9uw5G1Heo8QEVFRUXlSsfZ3cDUx/rx7euHyE0rQSqSbWtO4OxhoHOYZ6WdvnNngj//jKTZszHGxoHVSsqCBQS9/x4uagpZu6KxAqArAH9gvJRye0WjEGIstjDKFcADDXUihLgDW97qAMAXW1jnemC5lLKwml0EsAwYAngA54CPsOWoWqrZOZbb3YetTFo0sFBKuauRx6XSRrSkw6E+gc7LoSAxjb1v/8zZ/I5IjT8ICPe/AZ1Gj1UxIXRwfFICzj7OOOmcGO55O4HR6YQdewaNJgmgso7F3vMWkvIVdBqQCgitjvjRq5l03zSmBXvVWvFtrrzmy12xb0qFk5a8vo2hufav1WkIHBhK4EBbeS6pSDJOp5K0K4YLp3PILHLEqHGx20bR6CktFxX1d/RBI6KQwowWDf4ZCnnHY/GICEP0vBV63goWI3vX/YuojV8R6ZrA0E5VERv+Ioc5uh+Yo/uBDOnJVutAtqQN4qWNPbFWK5GTklfKovXHAFo9B76pTq72HrWRU5bD41GP83t61Sp5d6/u/GP0Pwh0C2zDkbU5zTIPUFFRUVFRaUuc3Q3c/lg/vn39MHnpJSgWyZZ/HeOOp/vj4VMlwq7r0IGgDz8kceZ9mM+fR5pMnJ/7CMFrPsLphhva8AhUqtOoNBMhRAbwrJTygzreewhYJqVsUAVNCLEPmwPjOyAZW17pEmyl14ZJKRUhRGfgCJCCLfc1CxgLLMKW97qwWn+fA5OAJ4F4bEJfE4GhUsroBg8MNc2krWhNbYfL6bckI5d9b/7AmXQPrDXy4w2lJ1mn/4zo/HNoXbVYi6xMHDWaP3t40Svuf7iL2mnSUUmCm/9TiNkqERodY6fexdPzHmLMqJGXNL7Ghvdf7vmu2I+3tzfZ2dktvr/LpbX2L6UkLymHxKgTpJxIJy1XQ5nWy84mPu0cjOjhAAAgAElEQVQEsalHCPe/oVJXxbksnY5OJXTu5k6aWyl3PvbnyrGufvZhsk/vI9L1HEN96061z5Lu/GAdyGZlEPuU3pWOjc4ejuxZNLbZj/NiNDYyo63vicZwMvskC3YsILW4qlrnhOAJLBu+7FoovVqL6mGdzTUPUKkbNc3k2kO9pioqbUtBVin/XfE7pYW2VFIvP2dmPNUfB2f79GJTcjKJM+/DUl72WePhQfCnn+LYo3urj/la5bLTTAB3bE6Iukgsf78x3CalrK50uFMIkQN8AkRiC2GdDHQEhkspz5Tb/SyE6AbMAhYCCCFuAO4F7pdSrilv24mtLvzfgSmNHJNKG1BfpZDm7P9y+jTlF3Hgra2cOOeIRedLtUVwHEvj2R+4gb3dbXl0LnEuJK5MRFqsrP32Kx6a5Yx7NaHHMqlnh9KXTdYhbElJxqz8ByklGhRG9+99WY6Mxob3X06kwsUeQuvro6Wvb0O01v6FEHgFe+M1+yb6lrcVZhQSu/0gp3+PpSjPmdBOvezEYQFKHDuRJCEpDn44/AVlZUakVCgrLeORF95Cgu1cf7qKoY5xEPM9FFd9dXYUBczUbWcm28mWbqyz3sSX1jEk5Pvz/q6z3Ds4GFeHxn69Xx6NLePb1tE6DbE5fjMv7HmBMqstMkYgmH/jfB7o88A1oY/RCJprHqCioqKiotLmuHd04ta/XM+3rx/GalHITSth6/vHmTzvBrTaKjF4Q2AgXT6yRWhY8/JQ8vNJeuABQj7/DENwcBsegQo03plxBlt6SC01cOCu8vcbpIYjo4Lfyv9WxEYbyv8W1LDLoypSH2zOCjOwtlr/FiHEV8DTQggHVZCsfdPauf2NwVJm5NA7Wzh6Aoz6DnafEMeyCxz13cDPg0+CxvZwE+zog/+pRNaYrSgSTBKizlkZGqTjrOLPh9Zb+c46jGJs+hefL/Zi/O6vmyUFpinh/ZeTenOpD6FtfX3bav9uvm7ceE8kN94TCUBiWhK7Nmwk+1gWDkX+SH0wUlN1Y1WlK5kBgdWqIJEYy4x89PYuvP/8Z7rMehbH0lM2jY2TG6CoqiKktyjkId0mHtJt4ldrBJ9vHct7Pw/hvuHh/HFYCF4uBlqaxpTxbYn0r+bAqlj5x6F/sObEmso2V70rK25awU2BN7XhyNodzTIPUFFRUVFRaS/4hXowdnYvfvzwBADJp3LZ9eUZImf2sFvIcOjWjaB//5ukP/4RpagIa1YWSXPuJ/jzz9D7t/vK5Vc1jXVmvAF8WC4A9jmQCvgBd2OLpLj/MsYwqvxvTPnfb7CVQHtbCPEkNrX0sdgU1JdW2y4CSKij5NkJbA6RsPL/q1zFNGcO/oVdR9n28SmO5qTbpQU4mLKJc/+ezYMOI7UAAnetI38pUbgr4SC/u1v4XEtlZRKf4FAeNN3NdqUfspr/LcDTieHDhzVbxEBTNCwuJ1KhvT6EXikE+3Xh/x6aC8DpnNNsOrWJ2N2H8U/qSMeSUMJ8Qpk3eRWxqUdwcXBn3Z53sCpmtBo97p4j2BYlETsO427OwsfrBjr3HEtW5xzOn9rAeLEff5FTua/h2hMM154gU37C2p2R3Ll7HKMHD+DBkaF0cnesb4itxuzZswGYNWtWu3Bk5hvzeWrXU+y5sKeyratHV/4x+h909ejahiNrl7TkPEBFRUVFRaVNCB/YibyMEg58b4u4PvnLBTw7OdNvfBc7O6c+EQS9+y+SHvwTsqzMVvHk/gcI/uw/6Ly922LoKjStNOt8YDG2cmwSEEAOsFRK+dYl7VyIAOAwcERKOb5aexg2XY3e5U0SWCKl/Hs1mx8BdymlnaSsEGIcsA24SUq5u579PgQ8BNClS5f+iYmJlzJ8lTamuXLwFUXht9e+41CsM3EZZ3hr45Pl5VZ1zJ46iYO3nMWst0U+6BDcXWLmz5lpeChV5VJ3Jyl8cM6P+MDJFHW7hWKTFbO16rPVUDnVS6W1SmJeCcKNVxKKVDiYfpBN8ZvYdm4bPskuRKSE4l8YyvkMCzGZ8XYaG3XhaMrBZM7BqMnkuo6HiHT5Ga1GsbNRpGCncj1r5Xi8+03mocjuBHu71NNjy9Ee9TLicuOYv2M+5wvPV7ZFBkayfORy3AxubTiy9kMdpVmbfR6gYkPVzLj2UK+pikr7QUrJTx+f5Mx+my4GAiY+fB2hfX1q2Rbt3s35uY+A2aa14dCrF8GffIzWXc22bCmaQzMDKeWbQoh/AX2wTWRygONSSvMlDsoVm8PCAsyp1u6DrcJJMXAHtsiMMcBzQgijlHJFhSm2yVStrhtxLO8D74NtAnEp41dpeRp6gG6OHPyS1Cy2Lt1CKgGggdjUI5XlVs3SxPdiDz562xfZ6FIjf8vKJsRSWVCHIunIWuto1nS6BW2vYOZHhjG1XwCbj6U2qZxqU6h5XhoK728OR0Rbp4y0FS3lxNEIDQP9BjLQbyDPDH6G3cm72ZSwiTXn12JSTHTK84QkE+a8bJyt3TA7+IPQ2PVRZugAhg7oCeNU8VAS8mbRUaTgr4km2GUfvm5JaDSS0dojjOYIF45+xNrDY8jtcRf3jh9CT7/L/9Ft7Plpb3oZ25O288zuZyixVAX2PXT9QzzS9xE0Nc6zShXNPQ9QUVFRUVFpDwghGHNfLwqzykg9mw8Stn10gulP9Meni/0Ch+vIkQSsWkXK3/4GioIxJobkuY/Q5aMPEYaWT+1VsadeZ4YQIh6YJqU8UtFWPmE5fLk7LS+pugEIBUZJKZOrvf0UEAIESylzy9uihBBaYJkQ4sPyWvY5gH38j42KUgI5dbyn0o6pGWXQ0Eru5aY/nNu8j+3rLlCmr3IyRHQMYLMOrFYQOoFLTxd6Gk08mZPLoLIqCZZU2YGPLTfzpXUMvr6deGJ0GJOv90en1bB3715ioqJ4NTIScCIqKopOZU5UycJcOk1d4W6PK+LthZoP4nW9bujcNUdkjEFrYGzwWMYGj6XQVMhPiT+xKWET2zwPIMu/bt2LHembFII46cCFlGJCA2+iq799WTCj3o0UepJCT34vvRt9YREdjafx150k2OMondzjeUz3Xyxx6/npTH+2dJ7OqFvv4sbgSwuNbMq91V5SlRSp8O6Rd/nXkX9VtjnpnHhx+ItMCJnQJmNq51wnhLihJeYBKioqKioq7QmtXsPEP1/Hf1f8TkFWGRaTwqZ/HuGOpwfi6mVf0dD9lptRiv9O6rPPAVDy+++kvfgSfkuXqKLhrczFIjNCAIeLvH9JCCH0wDpgEDBOSnmshsl1QFw1R0YFBwA9Ni2MLGx6GNOEEM41dDN6AyYgrrnHrtJy1Hwwmj17doMruZeqA6GYLfz60n85dsEbqfes1v4LP03dQPCNIRSfKiYg3JHnPEqZcqG4spjJSSWYDyy3slEZSrh/B1aMCePmCD805YKgTakwcik0dYW7va2Itxdq3m+rV69mwYIFdg/mDZ27lrjWbgY3poVPY1r4NDJKMtiSsIVN8ZuIIYat+kMk/JCANEvEse+YeN8wxjgOxacsnFJNABadk11fZp0rqbr+pNKfQ2WgKyrB23QGf10MfdyPMi71OVI+fIMvPCaTHX4nX50s5UJeWaMjiZpyb7V1dZu8sjw2xm9kXew64vKqfhoCXAN4c8ybdPdSy6vVg4EWmAeoqKioqKi0R5zcDEz+6w38d8VBTKUWivNNbHrnCNOf6I/eQWtn6zljBpbsHDJffx2AvK+/xqFnDzrce29bDP2apXVq95UjhNBgEw4bC0ySUu6rwywNGCaE8Krh0Bhc/jel/O8GbIKgd2Ir7YoQQodNVf1HtZLJlUXNByOgUSu5TU1/KDibwtZXfiZTG1BZG0drKeWM5xdsu+4oAB7dnHjM28z9+Xk4F9mykKKsN/C+dRJ7lAj6Bnnx3tgwRvfwreV9bUqFkUuhqSvc7WVFvL1R835bt25drQfzhs5dS19rX2dfZkfMZnbEbOLz43n0uUeJt8SDBGmVHCyMI2lUPrAVrRUGXOjK4Jx+uBQEUCT9MOtd7fqz6JxJ1/Ulnb5El92DtriMDsY4grQxDEp6mi6urnypGc2+vF4sWm/zMV/ModHUe6u1U5UUqXAg7QDrz6znp6SfMCv2mRCD/Qfz6k2v4unoWU8PKioqVyJRUVGMHj2aHTt2tPhv3pw5c9i3bx8pKSkoikK3bt148MEHmTt3LlqttuEOVFRU2h1efi7c8lAfvn/rCFKRZJ0vYtdXpxk7u3ctW+8/PYjxzBkKNm4EIH35yziEdsNlyOBatiotQ0POjObWk/gnNufDS0CxEKK6eGdyebrJu8BM4EchxCpsmhmRwBPA/6SU5wGklNFCiLXA6vJojwTgL0DX8u1V2jnVQ/RrPhjNmjWLWbNmNctKbsV+Qs1uFCQGYSpPK4lPO0HC+ShSh52l6DorAKEmMysys+hpMmOUOr62Duff1ls5I4MYEtqBz8eEM6ybd70hZE2pMHIpNHWFu61XxNsLNVNIat5vM2bMYPfu3XYP5g2du5a81jXHG+oRyjP3PsP2D7fbnH0a0ORpKIkrwTnMGasW9gclsD/IpsStsUom5N1I3/Re6HM6km/1wWSw18iwah3ZXyCITTUT7n8nYb7dmWo8yyztNnZ4dOTVLbqLOjMae2+1tnhsenE63539jvWx60kpSqn1vpPOiZm9ZvJI30fQaVrVn3+loupKqajUQ2lpKfPmzaNbt24IIfjhhx949NFHiYuL4x//+EdbD09FReUSCerVgVH3dCfq89MAnNqbRlCvDnQf5GdnJ4TA/8VlmBISKDtxAiwWUhYsIOS/32AIDGyLoV9z1FvNRAihAFuxpXQ0hJRSzm5wZ0KcA4LreXuplHJJud0QbIrp/QB34BzwJfCalLK0Wn9O2Bwj9wKewBFgoZQyqhFjBhpWEFdpGerKt4fmr8ZRsR9jmRGtRs+8yasI9YsgPu0Eb238G2bFgtALuj7VlTm+Vh7PycOsOPKpdQKfWCaQiRejuvvw1zFhDAzp0Oh9Xq6OQltxNVYtqU/boSHNjIptL3Y+WuJaX0yLYu/evXz66aesWbMGi8WCTq9j1puzSPRK5ELxhVp9lcSVUHyqGN/eHZnZeTw9koM5dSyd384nYXDpxLo975RX7qn6bFTgZMyks2cePW4dQtDoPuh0TV9lbC3NFrNiZnfybtbHrmd3ym4UqdSy6ePdh+ndpzMxZCKuBtc6elGpSbnTdgvNOA9QqRu1mknTMBqNODjUnQHVnJEZUkrMZjMGQ+NF/e655x42btxIYWHhRe3Ua6qi0v7ZtuZEZYUTvaOWu54diIePcy07c1oaCXfciTXL9nPpEB5O8JdfonVt/QpyVyOXU82kL9CYdI1GrdxIKUMaabcPuLURdqXA38r/qVxB1JVvv2jRomZ/0Nn81TqMZUbbw41iJjb1CN29u/BL3nuYFYstZN8iGfNbBosGa/nKOobXLXeQjQdgK43zyf2DmrTPxlQYaY9crWKh9Wk71HWd6tPEqO98tMS1vpgWxdChQ4mKisJisWC12qKJumZ15b0H3yMhP4HdKbvZnbybgxkHKThTQMJKm8ZGxoYM3n/K5gdO2JKAtEg0QoNUJFJKrOWfjerOjFIHH86W+nB2XTa6r7fi51pE6IDOhE3qj5Nn7R/yph5Lc5BYkMj62PVsOLuBrNLaz9tuBjduC72N6eHT6dGhR7Pt9xqjWecBKirV2bp1K0uXLiU6OhqDwcDo0aNZsWIFPXpUfV4jIyOxWCwsXLiQxYsXc/LkSV555RUee+wxMjMzefTRR9m4cSMajYYpU6Ywffr0Ove1fv16Vq5cydGjRzEYDIwfP57XXnuNLl2qtORDQkIYMWIEY8aMYeXKlZw9e5avv/6aadOmNfqYvL290enUqC8VlauBUff0ID2+gPzMUsxlVn789wmmP9kfrc6+8pnez4/At94kadZspNmMMTaWC08vJPDNNxEatUpaS9LQt+1UKeWBVhmJyjVFzRD9pKQk9u7d26wPOp89/Rq7fjyJRthWlLUaPb28vVh7wwqyOpci9gqwSBw0cKN/V241/YXT0r5ATmdPp7q6viq5WsVCL1U3pL7z0ZjolcuJcKlrvPWlZFV8dvbt22dLR/EMZXbEbIrNxcx/bj4JloRKh13xqWIApFmCBEUoNt0YCVIryAkxUVCwjy6KM4Wu3bHqHCvHZNE6kVzqRPJuM7t3/UoHTS7BPVwJv7UfHbv7X/RYtFotiqKg1Wrx9vbm5ZdfvqzolTJLGdsSt7E+dj2/p9e9kj3YbzDTwqcxtstYHKsdh8oloc4DVFqErVu3MmnSJMaMGcPatWspKipi8eLFjBgxgujoaAICqtLczpw5w/z583n++ecJDQ2lQwdbpOT06dM5cuQIy5cvJzw8nLVr1zJv3rxa+3r33Xf5y1/+wpw5c1i8eDGFhYUsWbKEUaNGcfToUdzcqkov7tixg+joaF544QV8fX0JCQm56HFIKbFarRQVFbF9+3Y++eQTnnrqqeY5SSoqKm2KwVHHhAcjWLfyIIpVkpFYyL7v4hk+I6yWrXO/fvgtWULqs88CUPTTdrLe/ic+82t/J6k0Hw2lmQy52icxappJ21EzZL65ogHM+YW89acVPL3+VSyKGY3QMrTHBHr1dGHfbSeRGtBLyeRD6RQfh9OBUzne+XYEwm5p0Umv5eXp1zVY1eFq4WqNzIBLcy7UlwrVmHKtl3seGypTDDT42ak+Dr1Bz2PvP0Z0ZjRbn96KtEiETuB/rz/WIisuPV1wDrNFWwirO91Mvgw95kpQbleKDddhdKy/fKuLkk+gvyQssjtBI3uhrZaOsnfvXkaPHo3JZEKn06HRaC75s34q5xTrzqxjU/wmCs21w7d9nHyYGjaVaWHTCHIPanS/KvVTnmYy+GqfB7QHLjnNZIlHC46qiSzJb5L5gAEDyM/PJyYmpjKSISEhge7duzNv3jxeL68QEBkZya5duzh06BB9+/at3H7btm1MmDCBL7/8krvvvruyfeLEiWzdurUyzaSoqIiAgABmzJjBRx99VGl37tw5unfvzsqVK1mwYAFgi8zIyMggPj4ePz/73Pj62LhxI7fddhtg+8w8/fTTLF++vMHt1DQTFZUrh8Pbktizrqoa2uR5NxAcUffcKP3ll8n55NPK1wGrV+N+y80tPsarmctJM1FRaTFqhsw3RzRA+p5j/PjBcaIS07AoZqRUkECR/1n23m673buZTDyXUcxmt7vYMGg8Wr2BxyPD8PNwZPVPsVzIK210ecq6uFJ1J65msdBLqaRR1/l4+eWXG4xeaY4Il+rjrWufixYtuuhnp+IeXL16NdnZ2XbX86f+P/HFxi+Q3STnvM7VSs+Q2gLinAqIGwQQjc68ngHx/vRJ7YO7pQ8lzsEgqkImizUenE6H02sz0H2RSH7hIS7IZKY+eDd7f9+HxWJBSonFYrH1X6Pii0WxkG/MJ9+YT54xj1xjbuX/84x55BvzicmOISYnptZ50gotIwNHMiN8BiMCRqiCnioqVwjFxcUcOnSIZ555xi4lo2vXrgwfPpydO3fa2YeEhNg5MsD2PafVapkxY4Zd+913383WrVvt7AoKCpg5c2bl9xBAYGAgPXv2ZNeuXZXODIAhQ4Y02pEBMHLkSH777Tfy8/PZvn07r776KkIIXnrppUb3oaKi0r7pOzaI5FM5JJ3IAWD7xye567lBuHjU1u7xffJJjLFxFO/ZA8CFRYswBHfBUXVetgjqzE+lTWmu0qFSSg698T9+i3HE6tCJcP8b0Gn0WBUT6CQFw0w4o+MP+UX4Z/bjT+Y7ycWdW6/z49lJvQkoTye5c8Dlrehe6dENrV0+s71T83w05n5t7nK49fVXX3tD9+C4m8Yx7qZxgK186emc05VaGyeyT9QqYWrRC/b1SGNfjzSQ2+iW5saghN50Ku6Dyaknirbqh/xMZjxvbXwJi2LmnXWfMGvEH9BqNUgkQmOrAKRYFdDCBjbw/ZffU2i6uEheXQS5BTE9fDpTuk3B19m3ydurqKi0Lbm5uUgp8fevnabm5+dHYmKiXVtddqmpqXh5eaHX6+3aO3XqZPc6IyMDgHHjxtU5Fi8vrwb3dTE8PDwYMMC2YDh27FgMBgPLli1j7ty5dqkyKioqVy5CIxg7uzdrXzxASYGJ0kIz2z8+yW3z+lbObyptdToCXn+NhLvuwpyYhCwt5fwjj9B13Tp0Nb5vVC6fep0ZUkpVrUSlxam5+g22lWhvb+9aK8r1UZaezZt/fp1fLqQT7n8DoX4RdPPtzr3TJrJV7sWllwsBXR2484IL3xX8lTgZSJivK29PiWB4WMdmPZ6rVXfiSqapkTIXs29M9EpzR7jU11997U25BzVCQ96ZPLKjspkbORerh5WN2zbS9cauuIa7kliQSFJBEucKzhEbHUvxqWJyXHPZV5SAS88o/P3cGH4mnNCcPmh0fYhNPVIZEWVVzGSUGvjrxNeIP/8zhh5FHAyJpyi2GJeeLhR1LgJT48+DQWNgfMh4ZoTPoH+n/miE+hPVChxUU0zaOU1M7WgveHl5IYQgLS2t1ntpaWl4e9uHb9dVDt3f35/c3FzMZrOdQyM9Pd3OrqKvjz/+mIiICGpSXS+jvn01hQEDBqAoCgkJCaozQ0XlKsLZ3cC4Ob3Z8GY0SDgfk8vhbUnceHPtQp1aT0+C3nmHc3+4C6W4GMuFVFKfeZbAd/552d8xKvaokRkqbU7F6ndlGVWjEUVR0Gg0ODg4XDS6IevQaVY//zUrf3itssTkYzcvIn74Xk4NT8EHH/qWSJSEqbxmHoqrg47nxoUze1gIem3zPww196q8yuXR1EiZS6lgUhfNHeFSX391tTflHqx+vFqtFiGEnabFzKEzq+z+byxlxjKkIkGARqcheEEIB64/wWbdKXTmbwhSXNAd1GBVbIK7Fc7FiiopY1MzyfSOYovffvKxRYAIBO4O7ng6eOLh4IGng6fdPw8HD7wdvRngNwAPh3akD6CionLJuLi40L9/f7755huWLFmCVmvT2klMTGTPnj11injWZOjQoVitVtatW2enmfHVV1/Z2Q0bNgw3Nzfi4uKYPbvlqwfv3LkTIQShoaEtvi8VFZXWJahXB26cEMyhH2zRY/u/i6dzd0/8utaenzh060bnVatInjsXgKIdO8j76iu87rmnVcd8taM6M1RalYutelesKCuKAoCiKBddWb7w80E2fX6eo1mJ1VaDTXxheB/PgA7opaRnZjh7s2dhwcCMGwNZOLEHvm4tV92gtXUnrlR9jtaiqZEyV0NkTX33YF33SvXjrfjc1dS0qG4nlXKJXAnSKjj620hu1vXked23pGbEsC1D4c4ZriSXCnq4hxIhiilTrEiN7UHF7OCDJ3cyfGs30rJ/5fY/TuL2B+eg1WhRUVG5tli2bBmTJk1i8uTJzJ07l6KiIl544QU8PDx4/PHHG9x+/PjxjBgxgocffpisrKzKaibHjx+3s3N3d2fVqlU88sgjZGZmMnHiRDw8PEhJSWHnzp1ERkZy7733Nnn8mzZtYs2aNdx222106dKFwsJCtmzZwvvvv8/DDz9M586dm9yniopK+2fQlK6knMklPaEARZFs+/AEf3h2EA5OtR+r3caMxuu++8j97DMA0l9ZgfPAgTiE1a6GonJpqM4MlVajoVXvihXl6pEZ9a0sx/9vN9s25WPRu1fqY1gUE1IPhj6OdDA6kJMyiz3GbvQJcGfplD70D26dPLW6Vstbwulwufoc14IjpKmRMldLZE3Ne7C+e6VmmdfqkRnVj72uz6aDg4EPFs5mS4YbM7fpyPzqGaTVjIMWts9yZmhQLPAyWQW+7C+YTTJ9seiciU87wVtbnsOimPnywBb+/n0cd80cTcgdYxE69SdJReVa4ZZbbmHTpk0sXbqUP/zhD5XfOytXrmy0I2D9+vXMnz+fRYsWodVqmTJlCm+//TZTp061s3v44YcJCgpi1apVfPHFF5jNZgICArjppptqCYs2lm7duqEoCs899xwZGRl4enoSHh7Op59+yj3qyquKylWLVqthwgMRrH3xAKYyKwVZZez84jQTHqidxgbg++QTlOzfjzE2Fmk0kvLEk4R8vRaNwdDKI786UWeOKq1GQ6ve1VeUL6aZEbNmK1F7QNHZSkmG+YQyftZgDhaexqWnCx28h5CYcCf/z955h0dVbX343TPpIY0aCCUECL2jJBAhGiQ0BelSRVGK4lVREQVBUUD5QL1XEVQQsCAKqBQJTQIiURQQCFVqIIQUUiCFzExmf3+cyaQXIAlJ2O/zzJM5+6yzzzqTSWbPOmv9lrujE+8+1pTh99VHr7t79WmlJQp6J1kEFV2otLjcaqZMZe3oUtB7JT/NmvyuvbC/zceACYd/4rOMDJCQlqFjyfk6+NfTRPequ8bQ13UB6bIqhw0T2HXgaA5djX0xcbiE2uLxy1e0bGlL86d6Y1e94FawCoWi8tCrVy969epVqE1oaGiB+2rUqMHq1avzjEsp84z16dOHPn36FHquCxcuFLo/O82aNWP9+vXFtlcoFJUH1+qOBI5qxrYvjgHw71/R+N5fC+/WebX4dPb21Fn4f1wYPARpMJB+8iSxCxdRa/prZe12pUQFMxRlRmHdF7J/gSrsC+TBD9fzx3EXpKW+Vm+8wa+NPiXCKx5PU11uRA0n9mpzRvs1YGpPX9ydsqKedysTobRKF+4ki6AylFMUl1vVr6iMHV0Ke6/kvt5M/Zp58+blERwt6HV5YnBfvvp0EWk30xF6G7Z5TaBfuj3TbVbTVa990NuLeO63n8eL97my+bCedKMEBM72rgAkODVg73k4MHUHvlWv0WZsN1zbtSqdF0ShUCgUCoXiDmjSqRYXj17j1J+akPHu1aeo08QdO4e8X68dfH2p+corRFtaNsevXInzAw9QJaBrmfpcGRfUwXEAACAASURBVCmWAqIQ4gMhxFcF7PtKCPF/JeuWojKSeXd3zpw51kyAzAyBmTNnEhQURFhYWL7HSinZN2sVYSdcrfX3NoZ4NjX/kBNekcjUeiSdn0pGcnMEMGdAqzyBjOKcpzTI/CKp1+tLtHQhv9fzbvukKJ/cynvldv5WMuev33MctYa/i71Xc8KlDyONrzPWMI0T5qyWx11rXuejYB02OgmYWR/2CeevHrXuT3OsweG0Zqz+33lCnlhE1NrNSKMxn7MqypK7vQ4QQrwkhNgohIgSQkghxOxCbJ8WQpwUQqQLIU4JISYWYDdACHFICHFTCHFRCDFDCJFHwEUIESCE2CeESBNCXBVCLBJCOOZj11IIsU0IkSyEuCaE+FIIUfWOLlyhUCgU5ZauQxrj4Kx1U0qOT2f/pvMF2nqMGolz927W7SvTX8MUH1/qPlZ2itvO4VFgWwH7tgIDCtinUOTA39+f6dOnF9pGMjfmjAx2/Wcxh6LrgqUdo016FGvafcDFGnEYk9qTHPEM0qTd4a3jnmeNWazzlBZ3EnQoztzZX8/y4JOifFLc98rt/q34+/vz0by3cPfOnk0h2G1uS1/DPF42TiBGaOUj11LBLMEsJRlmA871jtPSJx0bc7r1SJOtM2cd2vHjNjt+HP0xF5d9j7SIlCruCnd7HfA0UBP4qTAjIcTTwFJgHdAL+AFYLISYlMsu2GLzF9Ab+AiYAczNZdcG2A7EAP0sNuOAFbns6gChgCMwGHgW6AFsEkL1EVYoFIrKiGMVO7oOyRLzPLLzEjEXr+drK4Sgzty56KtrpSgZsXFEvf5GvmVxiuJT3DITL+BSAfsuW/YrFLdMUaUS5pQbhExZwnm7jtYxffp5Vt6/lBtOaaTHBGO4FghomhiOtnpeCW56y+cpbcpj6UJ59Km0uBfETkuKO/lbGdBe+yhYsPUUVxLT8HRzoJarPf9cSmJtRnc2pvnzpE0I/j7rsNuTjiED7HTQK/Vr/Buk0mXkTI7uiufo77GkSGcApE5PlHtbfvnDQMu9c+n89ljs69UrzA1F6XC31wEtpZRmIYQNUFCmhQ3wLvCVlPINy/AuS6BhjhDiCyllZprPfGCvlPKZbHZVgBlCiA+klFct42+hXd+QzGOFEAZgpRDiPSnlQYvdK4At8IiUMtFidwXYjRboUeIKCoVCUQlp2tmTU39c5fLJBKSEXV+fZMhrndDp88axbapVo868uVx6WvvoSQ4NJWH1aqreRkclhYYoTjRICBEFzJRSfpHPvvHAXCllzVLwr9Tp1KmT/Pvvv++2G/c0+X3RDAsLY+e6r7E5KnBpONBqK9KPs7zLcm7agDl6OH0bB7PvTBxXEm9Sx92RV4KbWr9QFec8isrPvSJ2WpKU5N+KlJINh68w86dwrt80AeDBdYYmrkSe+Y0HG4B/PUtcXWcDHZ/A/MCrnD10g4M/nyQu1SnHfDXjD/NAn1rUGjMcoVM3vEsTIcQBKWUny/NysQ6wBCyMwFtSytm59j0A7AF6Sim3Zxt/EPgVeEhKuUsIUQ+IAJ6RUn6eza4hcA54Ukr5pRDCFrgOLMoWHEEI4QAkAfOllLMsY2eBP6SUI3P5dBEIlVKOLey6ilqLnDhxgubNmxc2haKCoX6nCkXlITEmle/m7CfDqGWQdh3cmHY96hdof3XuXBJWaZWbwt6ehmt/wL5JkzLxtSKSfT2Sm+JmZuwA3hBCbJRSRmebuBbwOloKpkJxW+RpI/n7XoIeeoh0gwm93o4p/Zri49kSs/FvlgV8g1FWof7N51g8/lEaVne+7fMo7g3uJbHTkqIk/1aEEPRv58X9Davy6toj/PZvHAm4stR9Cj6dhzHEawvEbNWMzSb46wt0h7+jSdf/0GT+s0RduMmOj//gukErH4up2pZNofF03P0aLec8j13duiXip6JIKsI6ILMvXniu8WOWny2AXQXZSSnPCyFSLXYAjQCHfOxuWoIXLQAs+hkNgTyBHsu5W+QzrlAoFIpKgntNJ+7r680fP50D4M8N5/BpVwPX6nlL3wFqTp1K6p/7ST91Kme7Vnv7snS7UlDc21ozgSrAv0KIb4UQ7wshvgFOW8ZnlJaDinuMhAtsffdp0g0mzEgyzEb+jTrMTfNuPgv4CoOpNiPqLWTjM8NuKZChuHdRYqd3TmZ3k88++4x58+bdloBubTdHVj15P2/3b4mDrfbRcy6jJg9HjOXVqh9y06tLlrEhGXa9S9hLzVjx3wl4D6xCs1YOnLt6jK2HvuVEYhT77HqyY9LHxH3zrdLSKBsqwjogU2wzIdd4fK79BdlljhXHLj7bfg+0Wsei7BQKhUJRSWn3cH2q1tG+m5gMZnavPl2gHobO3h6v/1uAsAQv0k+dInbRB2Xma2WiWJkZUsoLQoj7gLeBh4FqQBzwIzBLSnmx9FxU3BNICYe+Jn71AkxyKHr9e2A2otfZ4umVyoou67EztOOTnu/j17D23fZWUYHIFDtVJUa3R2aZTnp6OmazGZ1Oh729/W2V6wghGOPvTUDj6rz4/WEOX0oE4PsrNdlk9zyL7xtJ94iPEbEnCLtkImjVZQwZl7H7bD0fvvk8i0OWkm4wYKOzZUq/BeDVk/hNZ+m4fQqN3pmusjRKkZJcBwghelC8TI7dUsrAW3BTZLp7B3aiFO1y7hDiGeAZgPr1C05HVigUCkX5R6/X8eCoZqxbcAAkRBy7xpkDMTTpVCtfe/smTaj56itEz3kHgPhVq3Dt1xfH1q3L0u0KT3HLTJBSXgDGlJ4rispOgXX4ybGw8T9c3XeUzclvUrtBNab0q86/V/7Bo2E8YX2OUu1CJwJ1jZBXL4AKZihuEVVidPtklumYLdkPZrP5jst1fGpUYd1EfxaHnuW/O//FZJakGsw88bsHD/l+wIc9TxD6zjQMGalkSDCYJOu+/BijMQMpsWZs+Xi2JMmtEXtMtYkZO5M243viPmyY0tIoJUpwHbAPKI5YQOotzps9AyMq23jVXPtzZ2pkx72Ydh5kla8koAUyCrLLt/eelPIz4DPQNDPys1EoFApFxcHTx43W3bw4ujsSgN/WnKZe86rW9q258RgxguRfd5Hy++8gJVFvzqLhD98jbIr9Ff2eR634FGVC5t3dmTNnEhQUlJWmfnIzLPbj4u4zbEh5h5v2WuvGRjWb0TDQyMHeF+iWNpj9763hnbdm5zxWoVCUOpllOjpLgECn05VIuY6NXsfzQU34cXJXGtesYh3/9XQ83XbUxX7op9jZ2aIXYKeHQS1ssNOBXoC9nZ7+gx5GWG6Em2ycCG8yml3fneHcuGcwXI68I98UpYuUMlVKebIYj4hbnDozuNAy13imZsXxwuyEEN6AUza7s0B6PnYOgE+mnZQyFbiQz3kzz308n3GFQqFQVEL8BjTC2V0rH0m7YSTsx7MF2goh8Jw9C+HgAED6iRPEr1xVJn5WFgoM+wghlgNzLIJYy4uYR0opnypZ1xTlkdvtcpBHhHFHCP7RX8M/X3P6cgd+5WUy7DSRHF2GgQO1lnGwyRU+CfyM37/doQQcSxDV1UVRFLnfI5llOtWqVePatWsl+t5JvnSc7ql7aVi9Idvj3ABITDXy35OOPPL6ZzQznKJXldP439xB65p6Qi9kEOitx9/5A66OXsDWnzNIvq5ljUTV7kpSaiNaDZ9I42dHqCyNO8dbCNGwAq0DwtBKX0aiCZZmMgotO+J3ACllhBDisMXui1x2RmCLxc4ghAgBhgohZkspTRa7wYA9sCHbsRuAsUIINyllEoAQIgBokMtOUcqEhoby4IMPsmvXrjLVSNq3bx8BAQFIKTEajdioO6sKxT2JnaMN3Yb5smXpUQCO771C0861qNPEI3/7evWo/uxkYhcuAiD2449xCQ7Grm5pdzyvHBT2n/ZB4CPL84covAZVpUfeA9xJi8vMu7sGgwE7WxsCr30N/8Rx5Hw39to/h9Rp6Vd6Uwq7GywlpolgY9/v8XLxwjbQlHWsEnC8I1SbUkVRFPQeKY33Se5zfbhyHSvP2hOZmAbAn6k1+EvUYGViAL1dH2R+ixX41/tXOzj2BJ7b+zG80xhC48Zw5sgNAFKdPPmrxXPEL/uZplu3Ueedd9SC4PZxAVwtz+/qOkAI0QnwJiujtIUQYrDl+S+WbA+jEGImsFgIEYkW0HgIeBKYIqU0ZJvydWCTEGIpsBpojyZi+pGU8mo2u9loQZLvhRCfWHxYAKyVUh7IZrcALRiyQQgxD3AD3gf2o+mKKCoxRqORCRMmUKtWLa5evVr0AQqFolLj074GDdtW5/zhOAB2fX2K4TPuR2+b/w2Wak88wfWNm0g/fRqZlsbVOW9Tb8kShChQdklhocBbVlLKhlLKw5bn3pbtgh4+Zeey4m6RX4vL4pJ5d3fOc8PZOsoJP7c49p/py28O/7EGMmyMiWzx/QjHTnXZMOg7vFy8ch47Z4768n2H3MnvUHFvUJbvkdznunbmH7a88ACDOmQJeZotX5G3XG9I18RZHG35KthllaXYH19Fz6RBBHWLIfNGqNTZcqbxYMJSOnBy4AgSvvuuQEVxRaEcLUfrgOeAH4A1lu0hlu0fgJqZRlLKJcAkYCiwFXgceE5K+Un2yaSUv6BlWPhZ7F4E5gKv5bL7BwgGagObLTargLG57CLRbgIZgHXAErQ2sH2klKrdTgmTnp5eJueRUmIwGIq0W7BgAVJKnnzyyTLwSqFQVAS6DffF1kEPQGJ0Kod/vVSgrbC1pfbbb4EleJGyew83QkLKxM+KTpH5t0IIOyHEBxYVc8U9zB21uDSb8U/byXT3jQTUyeC3f4fzV5XxILS3oI0hhrVtPqRLYE8+D/4EZ9ucbVf9/f2ZPn26CmTcIapNqaIoyvI9kv1cer2eiIgIjh36m4VD21LV2S6PfbJRx9Nn/ODZ/dBigHVcpCfR7PQEhvl+TA3PrI+1+Got+bPVixz76Hsixj2ptDRuk/KwDpBSPiGlFAU8LuSyXSql9JVS2kspm0gpFxcw53opZVuLXX0p5dtSyox87PZIKf2llA5SylpSyhcsOhm57Y5KKR+WUjpLKT0sPl8rsRehEhISEoK/vz+Ojo64ubkxYMAATp06lcMmMDCQgIAANm7cSPv27bG3t2fxYu1XGhsby4gRI3B1dcXd3Z0xY8aQmJiY77nWr1+Pn58fTk5OuLu7M2TIECIicsqyeHt7M2rUKJYvX06zZs2ws7Nj8+bNhV7D2bNneffdd1m8eDG2tvmL/CkUinuPKh4O+PXPivMfCLnIzWRjgfaO7drh8fhw6/bVuXPJuH69VH2sDBQZzLCkZU4AHEvfHUV55rYzJNJvwJpRsGcBUsLuf0dw1HWYdbdN+iW+6fBfJvb+D9PufxW9Tl9KV6BQWS6KoijL90jmuZ5++mmEEHz++edWkd+ElPzvhl5NusmRG84wdCWMWgdVsxYK7vE7GSQH075RltiWwc6Vw22f43BsHc72f0xladwGah2gKA1CQkLo27cvVapUYc2aNXz66aeEh4cTEBBAZGTOwOPp06d5/vnnmTJlClu3biUoKAiAgQMHsmnTJubOncuaNWuwsbFhypQpec61ZMkSBg0aRIsWLVi7di1Lly4lPDyc7t27c+PGjRy2u3btYtGiRcyaNYuQkBDatGlT6HVMmjSJwYMH061btzt8RRQKRWWjZTcv3Gs5AWBIM/HXL+cLta/x4ovY1KgBQEZsHDGLFpW6jxWd4qoTHQJaA3tK0RdFBeCWa+fjz8PqxyH2BAD7zgzkmOsQ625d+r8su/9r4mOHM8h3UEm7q8gH1aZUURRl+R7x9/cnNDQUk8mUo7Sljntnq3ZGbgYvCePdAa0Y0qkHTAqD3z+C3xZCRjp6YaRLysvUq92NHYnPk5qmBUcv1Qsi0b0JLd/7lJp7fsPrww/Q2eXN/lAUiFoHlENar2x9t12wcnTs0VuynzFjBj4+PmzZssUqlunv74+vry8LFy5kUbZFfFxcHNu2baNdu3bWse3bt7N3715Wr17N8OHa3czg4GB69+7N5cuXrXbJyclMmzaNcePGsXx5lo5t586d8fX1ZdmyZbzwwgvW8YSEBA4cOICnp2eR1/D111/z999/c/LkyVu6doVCcW+g1+vwH9DIKgYavjuSNg/Wxa2GU/72Li7UeuMNIi3/kxK/W4Pbo/1x6tC+zHyuaBRX5n0q8LIQop9QSiSKYhK2bjHzRnQg7KD2B7z/TF/+cRlt3a9LP8XS+34g9sp4atm1KnyusDDmzZtnbcta1LZCoag45Ffa8kpwUxxt88/SMpjMvLL2CG/+HI5B2EHgNHj2D2jcw2pTT+5hWJWnaOB+zjp2w6U++zu9xpnw61x55VVkRp6KAkXBqHWAosRISUnh4MGDDBs2LEfXj4YNG9K1a1d2796dw97b2ztHIAO0z329Xs+gQTlvhGQGNrLbXb9+nZEjR2IymayPunXr0qxZM/bsyRmf8/PzK1YgIz4+nqlTpzJ37lxq1qxZpL1Cobg3adiuOrUbad3azBmSP346V6i9S3BPqmQr8b06601kMbR77lWKm5nxA5oy98+ASQgRQ07lcimlbFDSzikqKFIStnw6QRPfw5ABdnr4X49AbtbPEsbSp59labttJF6egKPehVeCmxY4XZ6OBx9+yAsvvFDgtiqfUCgqFtnbv+Zu+7pg6ymuJKZRx92RJ7p4s/bAZU5Fa2nhq8IuciLqOp+M7EDNqj4wci2c2Aghr8H1SJz0SfTVTeWI66PsSx6L2azDrLfnePOx2Py1BN2sWdSeM0ephRcPtQ5QlBgJCQlIKaldu3aefZ6enly8eDHHWH52UVFReHh45NGpqFWrVo7tmJgYAHr06EF+eHjkbJeY37nyY8aMGdSqVYuhQ4dadTpu3rwJQFJSEg4ODjg7Oxc2hUKhuAcQQtBlUGPWva81wDpzIIa2PZLwbOhWoL3nmzM5u38/MjWV9H/PcO3LFVSf8ExZul1hKG4wYyeq/aqiOJgM8MvLhH77GYYMyJCQngEbrjWkZwOL2Gd6BKva7yIxagxebm68EtyUAe0Lbp2Yu+PBunXrCt0ODQ1VwQyFooKRX2nLgPZeef43jOhcn1fXHmHz0SgA/rqQwCP/28unozrSob4HtHgUGj0Eu+dD2GIEGbR12kAd2yNsuz6NRKMnCB3HWjyJw5aF6Ku8T81pr6qARtGodUA55FZLO8oLHh4eCCHybWN69epVqlWrlmMsv7/P2rVrk5CQgNFozBHQiI6OzmGXOdeKFSto2bJlnnlcXFyKPFd+HD9+nKNHj+bxFaB69er079+fn376qVhzKRSKyo2njxuNOtTg7MFYAPatO8NjUzsU+P/Gtk4dakyZQsx77wEQt3gxrr17YVe/fpn5XFEoVjBDSvlEKfuhqGCEhYXlvYuaHAvfj4aIMAK99djptUCGXmdP4zparZdNehQRj50gtO9KbPXFU/3OTEHPzLwYNGgQv/32W4HbqkOHQlF5cba34eMR7Wm9x433Q05ilhB9PZ3hS//g7f4tGX5/fbCvAj3fgbaPw+apEBFGDdsLPOb+Gmuvvc8Nc00ybBw43HoSdt+8j97NleqTJt3tSyvXqHWAoiRxdnamY8eO/PDDD8yePRu9Xispu3jxIvv27ctXxDM3/v7+ZGRksG7duhylJd99910Ouy5duuDi4sKZM2cYO3Zs7mlumw8//DBP55QVK1awcuVKduzYkSdDRKFQ3Nv4DWjE+X/iMJslUWeSOH84Dp92NQq0rzp6FEkbN5B+/AQyPZ2rs2dTb9kydfMlF8UKZggh3gS+kFJeyWdfbeBpKeXbJe2conySu+xj586d+Hs7w3cjIEnroexfz4Y3egWz/2ptGnt1wMezJTaGWBIHnePtPnNvqWNJfinorVu3LnRboVBUXoQQTOzeiJZ1XJmy+hCJqUYMGWZeW3+Uw5eTmP1oC+xt9FCrJYzbAodXw7YZOKVeo6/Hu6yLn49ROpLuUJUjrZ5B/7+P0Lm4UnXUyLt9aeUWtQ5QlDRz5syhb9++9OvXj8mTJ5OcnMysWbNwc3Nj6tSpRR7/8MMPExAQwIQJE4iLi6NJkyasWbOG8PDwHHaurq4sWLCAZ599ltjYWHr37o2bmxuRkZHs3r2bwMBARowYccv+59bwAC2TFKB79+45tEAUCoXCvaYTLbt7cXSXJlAc9uNZvFtXQ6fPX8JS2NhQ+623uTBsGJjNpOwL40ZICK69e5el2+We4gqAzgLqFrCvjmW/4h4hd9lH6JpPYFlPayDDLAWfRI2gWq0p9Ow42hLIiMc0KJJX+864rdar/v7+TJ8+3RqoKGpboVBUfh5oUoONzwXQvLardWz1/giGf/YH0de12nWEgHYj4Lm/oeM4qtlG0NNtIQJN/PO6mw8nm47i6jvvkLRhw924jIqCWgcoSpRevXqxefNmEhMTGTp0KBMnTqR58+bs3buXOnXqFGuO9evX06dPH6ZPn86wYcMwmUx8/PHHeewmTJjAhg0bOHXqFKNHj6Z3797MmjULk8mUb1BCoVAoSoP7+nhj56B9D0qMTuX471GF2ju2boXHyKwbLTGLPsCsxEBzIKQsugRWCGEG/KSU+/PZ1wPYIKXMv8dMOadTp07y77//vttulGtyl5TkyMywEewcaYd/Pe0OxHXpyHsxY6hveACTrSZ8ZWNMwuGxaMb2m3g3L0OhUFRS0gwZTFt3hA2Hs5IGarjY8+nIDnTyrprT+Pwe+PlZDke2Ye+Np6zDDc9vpOHl7dT9339xeeihsnK9XCOEOCCl7GR5XmnXAeWBotYiJ06coHnz5mXokaK0Ub9TheLe5EDIBWtHE0cXW0bN8cfOoeBMroykJM70DMaclARAzdemUe2JJ8rC1XJD9vVIbgp85YQQgUD2Fd0EIUS/XGaOQF/g2J06qSif5FtS4u/Pzi0bCP10KoHOZ6yBjHNmT/5zPACbC1HcrHsBH8+W6E3JVBtwncEqkKFQKEoJRzs9Hw1vR5u6bszbcpIMsyT2RjrDP/uDWY+0YJRfg6wa04bdYFIYbbbPIn7nVo6nBQNwvuEjOKdGI154gXqffY6zX+e7eEXlBhchRPbSEbUOUCgUCoXiDmj7UD3Cd0eSnJBO2g0jh7ZH0PkRnwLt9W5u1Jg8ieh58wGI+3QJ7o89ht4t/24o9xqFFfR1B2ZYnktgXD42BuA48HwJ+6UoJ+QpKQkNxb+pJ/7HZuLf7AKZb6HdGW1482RLwn76EpPZhM0/P/Cf3u8Q+FRd+j5ScoJbCoVCkR9CCMY/4EOL2q48t/oQ8SkGTGbJzJ+PceRyEnMGtMLB1lLiZl8F0W8h3ZqGkvTpSSJTfQE43mwMDv98gJj4DPVXrsKxbdu7eEXlgiqodYBCoVAoFCWGjZ2e+x/x4ddVJwD4Z3sErR7wwtndvsBjPB5/nPhvvsUYEYE5KYm4JUupNe3VsnK5XFOgZoaU8i0ppU5KqQMEWnqpLtfDQUrZQUoZVnYuK8qSzE4ier1e6xTi6wafPwgxx602n5n68m5KP6qdS8JkNiGlmQyzkXjXQ/QdMLyQ2RUKhaJk6dK4Ohue60orrywdjR8OXGbY0jCuJKblsNU3CaTXjGG4OScDYNbbcaTVBFKlE5eeGEn64T/L1PdySJRaBygUCoVCUbI09fOkmlcVAEwGM/s3nS/UXtjZUfOlF63bCV9/jeHy5VL1saJQLAFQy4IlT52sovKT2Ulkzttvs/N/z+MfPgPSEgBIlza8ZJjIN4ZWDL1Wl4b1umCjs0UndNja2jD+uefusvcKheJepK6HE2sndmFgBy/r2OHLSTy8aDed3tlOw9c203X+r/x0KBKHqh70e7UH9g6ancHenSOtJmBI1xMxbiyGHZ9DMbSlKjtqHaBQKBQKRcmg0wm6DGpk3T7x+xWuXUku9BiX4GBrxqg0Gold9EGp+lhRKG43E4QQzkKI54UQa4UQu4QQTSzjw4UQzUrPRcXdxt/Pj0H14/C/9ClIrQNAjHRnuGEmfwhHRkd7ke5YGx/Pljzf9z3GDx7JrtBQ1VlEoVDcNRxs9Swc0pbZj7TARqfpZaQYMohLNiCByMQ0pq8/yk+HInGv5USvie3QWeySXepzrPlYjKk6Iqa9j3HZcEiOuYtXUz5Q6wCFQqFQKEqG+i2qUa+5B6DdM8kUBS0IIQQ1p02zbl//5RfSDh8uVR8rAsUKZggh6gFHgAVAE6Ab4GLZ/SDwcql4p7j7mM2cWzkR3zPLrEP/mH14JP0drthF8+SluqQ71tN2SDOPPdqQpd+vUoEMhUJx1xFC8ETXhnwzvjOWOEUO0owZLNh6CoC6zarS7XFf6764Gu041/ARjCk2XPr8ABmLOkP4uns2S0OtAxQKhUKhKFm6DGqsFXECF47EEXvpRqH2Th3a49Kzp3U7+v0FFKczaWWmuJkZC4F0tAVMR6wvOwC70RY1ispGhgl+nozPhe+sQ9syOjLMMJPEa5vw2nCcE9ezatDbtU2l61OP5jtVWFgY8+bNIyxMlVUrFIqypbNPtQJjENl1NFo+4EXboHrW7YsNgony9CM9yZaIrTrMq5+C78dAcmxpu1weUesAhUKhUChKkOp1XWjUvoZ1+8CWi0UeU3PqS2CjNWBIO3CA5J07S82/ikBxgxkPA7OklBFoiubZiQS88h6SFyHEYCHEOiHERSFEmhDilBBinhDCJR9bPyFEiBAiUQiRIoQ4KoQYnsvGQQixQAgRZZkvTAihFlQlgckAa8fB4dXWoZ8yujDZ+DwZ17/m/Jc/8tPhTfxv0yucu3qMNk1v0HVywYGMoKAgZs6cSVBQkApoKBSKMqeOu2O+43Y2OlINJut2l0GNadC6mnX7pO/jJLo14uY1Oy7trYo5fAMs7gzh60vd53JGiawDFAqFQqFQZNGxl7f1+dlDMSRcTSnUgst/JgAAIABJREFU3q5BAzxGPG7djlnwf0ijsbTcK/cUN5hhBxSU9+IGFPcVfBnIAF4HegGfApOA7UIIqy9CiL7AHuAqMALoD3wOOOSabxnwNPAm0A+IArYKIdoV0x9FfhhS4bvH4cQG69C3pod4yTgRhxo/0TrsJiZzhrVryY2bf/LAi/0LnC6/9q63isrsUCgUd8IrwU1xzGzNmo10k5kRn/9JfIoB0ES5ej7Zkqp1nAGQOhuOtnqGNIdqpEbbE7nPA5l8TQv2fj8GUuLK9DruIiW1DlAoFAqFQmGhRn0XGrSy3ESRcHBr0dkZ1SdNQuei5QIYLl4kYc33peliuaa4wYwjwKAC9vUGDhRznkeklEOllN9IKXdLKT9E603fGQgEsGRpfAksllI+IaX8RUq5Q0r5XynlisyJhBBt0QIdL0opP5dS7gSGAhHA28X0R5Gb9BvwzRA4s8M69LmpD1Mvdibl6Jv03eGIT4PeWV1L9DaMm/VsoVPmae8aGHhLLqnMDoVCcacMaO/FvIGt8XJ3RAAu9jbWff9cSmTwkn1cTkgFwM7Rhr6T2+DoYguA0bYKh1tPwqR3IDnSkaj97lrZyvGfYbEf/LsjnzNWOkpqHaBQKBQKhSIbHXs1sD4//Wc016+lFWINNh4eVJ84wbod98knZNwoXG+jslLcYMYC4CkhxOdk1cW2EEK8BTxl2V8kUsr8Co3/svzMTFEdAtRAq88tjEfR7gStyTa/CfgOCBZC2BfHJ0U2UuNhVX+4uNc69KFpIG9GtCVmzQxifznKB9u/BGBKvwWM7T6UX3fvKlLs09redc4cdu7cecvioCWR2aFQKBQD2nvx+2sPcX5+X46+Fcyc/i0RFuWHc7EpDFy8jxNR1wFwre5I74lt0NtoH5OpzrUJb/kUZqEj6YIT0YdctYBGSix8Mwi2vgGm9Lt0ZWVCiawDFIrSJjQ0FCFEmawVAgMDEULkeXz44Yelfm6FQlF5qN3YnTpN3AEwmyWHtkUUeYzHqFHY1qkDQEZCAtc++7xUfSyvFCuYIaVcD0xGCzRk3oJaBbwAPCelDLkDH7pbfp6w/AwA4oHWFp0MkxDikhBilhAie45wS+C8lDI113zH0NJhG9+BT/ceyTGwoh9EZt1ce8c4ko/M/XE3rkEazUgkGWYj/0YdJqhJTb7Y+Q1dunQp1vT+/v5Mnz79trqc3Glmh0KhUOTHaH9vPhnRATu99lEYcyOdoUvD+OPcNQBqN3LjwdFZHUfjq7bgTCMtOSHhdBXiTntmTRb2MXzRA+L+LbsLKENKeR2gUFRY2rRpQ1hYWI7H8OHDiz5QoVAostGpt7f1+Ynfo0hJKvwGic7enhovvWTdjl+5EuOVK6XlXrmluJkZSCmXoGVPBAOj0NJK60opP7vdkwshvNBKQnZIKf+2DNcBnIBvgRVAD2AlMBP4v2yHVwUS8pk2Ptv+gs77jBDibyHE37Gx96QqfU6SLsOXvSHmGABmKXjd+BSrRDBtO67joZRG2Ojt0Akdep0tAd71CJ4/BJ2u2G+fO+JOMzsUCoWiIPq0rs2KJ++zlp3cuGlizPL9hIRHAdC0syed+nhb7S/XDeRynQcAiDukIz6+Y9ZkV4/A0m5wcFWlbOFaGusAheJ2SE8vmywoKSUGg6FQGxcXF/z8/HI8PD09Cz1GoVAoclO3uQc1G2g6GBkmM4d3XCryGNc+vXFo1QoAaTAQ+9F/S9XH8sgtfRuVUqZY9Cu+lVJulVLednGOEKIK8DNgAsbl8skBeFtKuVBKGSqlnIEmAPqsEMItcwryKqpnjhd1HZ9JKTtJKTvVqFGjKPPKzbWzsLw3XDsDgEnqeMk4iZ9tutGq4/e0+9WGFnUmM6XfAvreN47Z/afz0tdvoNeXTSAjkzvJ7FAoFIrC6NKoOmsm+FPDRatONJjMTPrmIF//oYlw3d+vIY06ZH1W/NtkKPEeWsZG9ParpPm+CHo7bacxFTZM0QRC0xLL9kLKgJJcBygUISEh+Pv74+joiJubGwMGDODUqVM5bAIDAwkICGDjxo20b98ee3t7Fi9eDEBsbCwjRozA1dUVd3d3xowZQ2Ji/n9369evx8/PDycnJ9zd3RkyZAgRETlTub29vRk1ahTLly+nWbNm2NnZsXnz5tK5eIVCociGEIKO2bIzwvdEcjOlcG1todNRa9qr1u2kjRsxXLhQSh6WTwr8RiqE8LmVx62cVAjhAGwAfIBgKeXlbLuvWX5uz3XYNsAWrbwEtAyM/LIvPLLtVxRGzAn4sg8kaR/mBqnnWeN/2OPUhWbtv8fnNxM1TCMA8PFsyePtevDKylexsbUpbFaFQqGocLSo48r6SV1oWN3SxUTCjJ/CWbT9NAgIeqKF9Y6JFDrC2zxDilMtkJKrP59APrUDqvtmTXjsR1jyAET8cTcup6SwK611gEIREhJC3759qVKlCmvWrOHTTz8lPDycgIAAIiMjc9iePn2a559/nilTprB161aCgoIAGDhwIJs2bWLu3LmsWbMGGxsbpkyZkudcS5YsYdCgQbRo0YK1a9eydOlSwsPD6d69Ozdyiebt2rWLRYsWMWvWLEJCQmjTpk2h13Ho0CHc3NywtbWlTZs2LFu27A5fGYVCca/SsE11azc1Y3oGR3ZdLuIIcLrvPpy7dtU2zGbi7jHtjMK+lZ4h/8yHgsjb8y4fhBC2wDrgfqCHlPJoLpNjlp+5z52ZcWHOZveYEMIpl25GC8CA5r+iIK4cgq8GQpoW80mTdkwwvshZ9zY0bPoVNf9Io9GNyZj12q/VxRTHgPf6YFvFMcc0YWFhhIaGEhgYqLImFApFhaZeVSfWTvTnyRV/cfhyEgD/3fkvsTfSmdO/JX0mteGH+X+TkpiOSdhzpPUkOh5cAIePkBR2FvdndsPW6XBghTZhUoRWwtf9Nej2MuiK9TFZnmgN3IoISKldoBDiJeBBoBPgCbwlpZydj10oWVpc2XnR0kEtu+0AYBbQHIhGywCdJ6XMyGUXALwPtAeS0Mpg35BSpuWyawl8AHQB0tFu2kyVUpbazZUTzZqX1tS3TPOTJ4o2ysaMGTPw8fFhy5Yt2Nhoy1F/f398fX1ZuHAhixYtstrGxcWxbds22rVrZx3bvn07e/fuZfXq1VaNiuDgYHr37s3ly1lfAJKTk5k2bRrjxo1j+fLl1vHOnTvj6+vLsmXLeOGFF6zjCQkJHDhwoFilIt26dWPkyJH4+vqSmJjIqlWrGD9+PFFRUcyYMeOWXg+FQqEQOkGH4Abs+PI4AEd+vUS7HvWwcyj8RnL1yZNI+f13AJJ+/pnqkydhV7duqftbHiiqVuAGmm7FU8CTRTyKRAihA74BgoD+Usr8bln9ZPnZK9d4MHATCLdsb0DL1BiSbX4bYBiwTUpZqWXl74iIP5ArH7UGMm5IR8YapnG1VntqNV2J4z8JtI2dgNmSNu1kTGTAm4E4VnPNMY1qmapQKCob1arY8+3TfnTzzSorWb0/gsnfHETvrLVstbHTPjrTHGsQ3nI8EkHMwoVk3DTBIx/B0FXgoKmSI80QOlcTWE4suv61HFKi64A74GmgJllrhMI4AvjnenyX3UAIEYx2Y+UvNO2Pj4AZwNxcdm3QMkVjgH4Wm3For0l2uzpAKOAIDAaeRdP82mRZ+yiykZKSwsGDBxk2bJg1kAHQsGFDunbtyu7du3PYe3t75whkgLYG0ev1DBqUs2NwbvHNsLAwrl+/zsiRIzGZTNZH3bp1adasGXv27MlhfyuaF2+//TZPP/003bt3p3///qxbt44BAwbw7rvvkpycXKw5FAqFIjtNOtXEtboDAOmpJsL3RBZxBDh17IhT587aRkbGPdXZpLAP2CfR+saPRRPf9AH2SilX5vco5vk+QQs+/B+QIoTwy/aoCyClDEdbJLwthHhVCNFDCDEfGA+8J6VMttj9g9aW9UMhxHghRBDaYqUh2p0WRX6c3YX86jFEutZ+MEFWYaThdYwN2uDs/QXyRCwPXJxMho2WgWFnusGjUzviWr9mnqlUy1SFQlEZcba3YdnYTjzW3ss6tu14NGOW7ceuugMPj2tpHU909yW6Vicy4uOJ/d/H2mCL/jDpd2jQNWvSiH2wpCsc/7msLqMkuEDJrwNul5ZSys5A3hqCvNyQUv6R63E1l818tGt5Rkq5S0q5CC2Q8aIQIvs32beAy8AQKeVOKeUXwH+AoUKIDtnsXkG7wfKIlDJESvkdMBItkDLgtq64EpOQkICUktq1a+fZ5+npSXx8zmSW/OyioqLw8PDA1tY2x3itWrVybMfExADQo0cPbG1tczyOHj3KtWvXctjnd65b4fHHH+fmzZscPZo78VihUCiKRqfX0SG4gXX7nx2XMBkzCjlCo/qkSdbniT/+eM90NikwZ0VKuQJYYQkyjEFTLp8hhPgDrbvI91LKW1U36235+YblkZ23gNmW5xOASLRFSy20BdVLUsqPch0zDngXeAdwBw4DvaSUB2/Rr3uDk5uRPzyByNCUuWOlG6MM0/Fs5kuS28fcPBvNoFMvYLDXMjBsMtLoO74p1Vo0yHe6zJapBoNBtUwtA65fv05MTAxGY+FiQIryi62tLTVr1sTV1bVoY8VdxVavY+GQttRwseezPecA2H8hnqFLw1j55P10CK7Pwa2a3tA5777UjDlIwjff4D54EA5Nm4JbXRi7EX5bCKHzQWbAzST4fgx0GAu95oOd0928xOJwTUoZVMLrgNtCSmku2qp4CCHqAe2AZ3Lt+gptLdIb+NJSFtsLWCSlzP6P93u0kpT+QOZ641Fgc/bXQ0q5RwgRYbFbX1L+Z+dWSzvKCx4eHgghuHo1d4wJrl69SrVq1XKMCZFX27127dokJCRgNBpzBDSio6Nz2GXOtWLFClq2bEluXFxcijzXrSAtnYzudB6FQnHv0syvNn9tvkBKYjpp1w2c+D2K1oGFl404db4fxw4dSDt4EIxGrn2xDM83Z5aRx3ePIpUcLeKcc4G5Qoj7gdFoAYSPhBDzpJRvF/dkUkrvYtoZ0FI5Cy04tNSrvmR5lAvKrYbE0bXI9c8gLKXAkbIaIw2v06Z9Yy7YLiLxchSjD0/B4FgdAJ3ZSM/BntTxa1bglJktU8vl9VYyrl+/TnR0NF5eXjg6OqpFUgVESklaWppV2E4FNMo/Op3g9T7NqelizzubtS+Np6JvMHDx7ywb2QH7vVdITzFx07EGUbX98bqyl+g571D/q1Xa36hOD91fhYbdYd14q9gyB1dqwqCDl4Fn67t4hcWjJNcBZUR7IUQSWpv3E8BHUsrsqoyZ32jDsx8kpTwvhEhF094CaITWXS233U0hxNlMOyGEI1pW6Bf5+HIs23wKC87OznTs2JEffviB2bNno7foc128eJF9+/blK+KZG39/fzIyMli3bl2O0pLvvstRUUSXLl1wcXHhzJkzjB07tmQvJB++/fZbHB0dad26/P9tKxSK8oneVkf7h+uz9wdNturQtghaPFCn0G6SQgiqT57MpfHjAUhcu5ZqEyZgWytvdn1l4pbaUkgp9wshMizHPQ20LRWvKiiZGhKZmQo7d+4sH1/wD6xEbvwPwqKpet5ci1GG1wl6oAkH0+cRGxPJ+P2TMDhpET8hM3gwyJGGwR2LnNrf3798XGMlJyYmBi8vL5ycyv2dXEUBCCFwcnLCy8uLK1euqGBGBWL8Az5Ur2LPyz8cxmSWXEm6ycDP/6CzjS33Wao1zzfog+fVP0n9+2+ub/4Ft359syao3xkm/gabXoRjlhv0cafg84fg4TnQeQJUkABlBVgH7EHT5jqNlrE5BvhCCFFbSvmOxSazE1pCPscnZNtfmF32jmoeaCLlBdk1vZULuFeYM2cOffv2pV+/fkyePJnk5GRmzZqFm5sbU6dOLfL4hx9+mICAACZMmEBcXBxNmjRhzZo1hIfniD3h6urKggULePbZZ4mNjaV37964ubkRGRnJ7t27CQwMZMSIEbfs/2+//cb8+fMZOHAg3t7eJCUlsXLlSjZs2MD8+fNxdna+5TkVCoUikxYBdfh7ywVuJhu5EX+Tf/dH08y/8DI4565dcGjThptHjiANBuKXL6PW9Oll5PHdoViiVEKIekKI14QQx4D9aArnz6IJgikslEsNibDFsPF5ayDjlLkuQw1vMqhnM/66+Q6R8RE89fs4DE6NrYd06ZBBQn1b5s2bp0Q9ywlGoxFHR8eiDRXlHkdHR1UqVAEZ0N6L5U/ch5Oddgc5zWhmL+kkC+1/q8HejUivbgDEvP8+GckpOSdwdIfBy+HRj8HWEpTMMEDINPh2GKTEldm13A4luQ6waGHJYjxCb3VuKeWbUsrPpZS7pZQ/SykHoYmGviGEqJLpQqZ5fu7l87yk7HLuEOIZIcTfQoi/Y2NjCzKrtPTq1YvNmzeTmJjI0KFDmThxIs2bN2fv3r3UqVOnWHOsX7+ePn36MH36dIYNG4bJZOLjjz/OYzdhwgQ2bNjAqVOnGD16NL1792bWrFmYTKY8wqLFpXbt2pjNZt5880369OnDmDFjiI2N5dtvv2XatGm3NadCoVBkYmuvp21QPev2gZCLmM2FNxoVQlB90kTrdsKa7zHFle/1xZ1SYGaGEMIFTZF7NFqbswvA18AqKeXZMvGuglHeNCTCf3iHVscWWLcPm314yvQakx9rxJpLbxB14wqTfhuB0amV1aa9z3XS2tQqnxkm9ziqtKRyoH6PFZduvjVY/bQfjy3+HbMEk4AwByMPp2mdn87X70WdK79DTAzXlnxKzZdfzjmBENBhNNT3g7VPwtUj2vi/W+HTLvDYUmj0YBlfVaHohBDjKPl1wD60dqhFkVq0SbFYjSbC2RoIQ8uWgKzMiuy4Z9tfmJ0HWa3kE9ACGQXZ5duaVUr5GfAZQKdOnQpfoVZSevXqRa9euZvX5aSwG0M1atRg9erVecYzdSuy06dPH/r06VPouS5cuFDo/uw0btyYLVu2FNteoVAobpXW3b04tPUihpsZJEancuFwHD7taxR6TJXAQOxbNCf9+AnkzZtc+/JLar3yShl5XPYUlplxFa1f+gW0Vqq+aMJY54UQutyP0ne1/JOpITFnzpy7HgA4+NP/cgQy9pubMtLwOg/71+DbiNe4ciOSp37rj9mxs9WmefVYurw6oHxmmCgUCkU5oG09d7J/Tzpil0GiTtOmzLB1IqJeEADXVq4i/dy5/Cep3gTG7wD/57LGkqPhq8c0sVBziWld3iltKYV1gJQyVUp5shiPiBK6jtyZE5lBiBxqkEIIbzSdjeOWobNAej52DmidXY5nXg/aa5RXXVLTyziez7hCoVAoFIVi72RLq2zCn0dCLxd5jJadkdXZJGH1d5gS8quCrBwUtvhwBFzRWrLtBAyAsYCHoXTdrDj4+/szffr0u5vJcHIzbf9507r5p7kZYw3TSLFLYXPsTKJToxkZ9jA2dg9ZbRo6RRH49hAgK8NEr9eXiwwThUKhKE/Ucc8q+TIL+N3BZN2+1KAHBtsqYDQS/c67+d4hBsDGHoLfhVHrwDlTnEtC6Dz4dgik5nszv6zRUTnWASOANOAogCVIchitdWp2RqFdyxaLnQEIQWvDmj2TdTBgD2zINrYB6CuEcMscEEIEAA1y2SkUCoVCUWxadfOyympFnkog/kpK4QcALkFB2Pv6AiBTU4lfUdrd0+8ehQmAvlVmXihKjgt7Mf/wBHq0O3vHzA0Yb3iZdLsknBp8jtQnM/AvP1x0j1gPqa27QvB7w9HptNiW6lKiqKiEhoby4IMPsmvXrlINwkVFRfHf//6X7du38++//2JnZ0ebNm2YNWsW3bp1K7XzKsoHrwQ3Zfr6o6RZ+r6fsM2gs85MdbOODGHHxQbBNDmzjpR9+7ixYweuDz9c8GSNe8Ck32HdU3B+jzZ2Zgcs7QZDV4JX0ULMpcgVLGUQdxshRCfAm6ybMC2EEIMtz3+RUqYKIR4AXkNrg3oBcEMLxDwKvCalzL4CfB3YJIRYilaG0h6tg9pHUsrs/UJno5WmfC+E+MTiwwJgrZTyQDa7BWjBkA1CiHmWc7+Ppi/y451ev0KhUCjuTVyqOtCwXQ3OHdK0lY7uvkz3xwvXlRY6HdUnTSTyRa3hZ8LXX1PtyXHo3dwKPa4iUmAwQ0qpghkVjajDZHwzDH2GdoPsvLkWYw2vkWKfhGP9L9DZpNDzSGtqGodZk26rm6N4ZOFg9LY53wqqS4lCUTAHDhxgzZo1jBs3Dj8/PwwGA4sXLyYwMJANGzbQr1+/u+2iohQZ0N4LgAVbT3ElMQ2dXrDXwciAVHsALtftTr1LO3FITyRm3nyqBASgK0zAt0pNGP0T7HoXfluojSVdguW9oNd86PTk3ep2ElWO1gLPoQUmMhlieYDWFvUCEIUW7HgbqI6WZXEEGCGlzCGsIKX8xRIMmQU8AUSjtZ99N5fdP0KIYOA9YDOQBKxCC4Zkt4sUQjwILALWoWWq/AxMlVKWm7ohhUKhUFQ8Wnf3sgYzTv1xFf8BjbBzLLwpqUvPntj5+GA4dw5zSgrxq76ixpTnCj2mIlKYAOhWtLsJG6SUV8rOJcVtEXcG08rHsDEmAxAt3RltnE68fTJO9ZchbFLpeqoxjW6MRVoyMNxMMTw6/xFsnR3upucKxS2Rnp6Ovb19qZ9HSonRaMTOzi7PvoCAAE6fPo2NTda/0ODgYFq2bMn777+vghn3AAPae1mDGpGJaQxfGkZUhJnaGTokes437k/zYysxXrnCtS+WFb2A0Okh6E2oex+snwDpSVq3k80vwaX90O8DsCvz1sxNhBATKQfrACnlE2hBh8JszgC9b2HO9WhZHEXZ7QGKjO5LKY8ChaThKBQKhUJx63g19cDD04mEq6kY0zM4+cdV2jxYt9BjhF5P9UkTufLKqwDEf/UVVcc9gb5KlUKPq2gUpplxAZgJXBJC/CmEmC6EKI76+D1NWFhY2bc0vX4Fw4r+2Ny8BkCSdOI5/Zv0CPTE2fsLhE0qbS/UpW3s00idLQDOxmv0f/MhHKu7lp2finLDT4ci6Tr/Vxq+tpmu83/lp0ORZe5DSEgI/v7+ODo64ubmxoABAzh16lQOm8DAQAICAti4cSPt27fH3t6exYsXAxAbG8uIESNwdXXF3d2dMWPGkJiYmO+51q9fj5+fH05OTri7uzNkyBAiInJqC3p7ezNq1CiWL19Os2bNsLOzY/PmzfnO5+7uniOQAWBjY0O7du2IjCz711Jxd/Fyd2T1M36cqJH1kXql+n2kOmqK49c+/xzDpUvFm6xpb5iwGzxbZ40d+Q6+6AHXyryRmAG1DlAoFAqF4q4ihKB1NiHQ8N2XC9bkyoZr797YNqgPgPn6dRK+/qbUfLxbFBjMkFJOkFJ6AQHALmAMEC6EOCWEeE8I4VdWTlYUwsLCCAoKYubMmQQFBZVNQCM1nvQv+2OXrKnbpkp7puheZ8TgZmy99jbo0mgSVYMHIiZi1msZGPbG6/Sfeh8u9WsWNrOikvLToUimrz9KZGIaEu2u8vT1R8s0oBESEkLfvn2pUqUKa9as4dNPPyU8PJyAgIA8wYDTp0/z/PPPM2XKFLZu3UpQkNYtYuDAgWzatIm5c+eyZs0abGxsmDJlSp5zLVmyhEGDBtGiRQvWrl3L0qVLCQ8Pp3v37ty4cSOH7a5du1i0aBGzZs0iJCSENm3aFPuaDAYDYWFhNG+uvuvdi9T1cOKDKZ25akl0E0JwxFergpAGA9Hz3yv+ZFUbwlPbof2orLGYY/BZIBwvUy3Ji2odoFAoFArF3aepnye2DnoAEq6mcvlU0R1KhI0N1SdMtG7Hf/kl5pSiBUQrEoUX2wBSyjA08avXhBDNgMeA/sDLQogYNJXuH4GdUkpjaTpb3smvpWmp6k4YUkhbOQjHhNMAGKWeqWIq/Qa1Zt6hF0kzpVHnmhu9Tk/GaOcCgK0plX5P++LRwrv0/FKUCd6v5Z81cDukGTN4Yc0/vLDmn9s6/sL8vrdkP2PGDHx8fNiyZYs1w8Hf3x9fX18WLlzIokWLrLZxcXFs27aNdu3aWce2b9/O3r17Wb16NcOHDwe0Mo/evXtz+XJW26rk5GSmTZvGuHHjWL58uXW8c+fO+Pr6smzZMl544QXreEJCAgcOHMDT0/PWXgBg9uzZXL58mW++qXxRb0XxqF/NmcFPtGTvEq3zZ6pHS244e+GSEknyzp0k79lDleIKxNo6Qv9PoF5n2PwyZKRD+nX4fjR0mQJBs0Ff5Ed4iaDWAQqFQqFQ3F3sHGxo5lebo5b2rOGhkdRrVrXI49we6UfcJ59gjIwkIymJxPU/UnX0qCKPqygUuy88gKXv+zwppR/ghSay1QD4CYgrBf8qFGXa0tRkIOWrEThGHwTALAVv8CwBj3VkwT+vkGZKw+OGI4OPTsZop73R9RnpBA+uhadfi9LzS6EogpSUFA7+P3t3HldVtT5+/LPOOYDMICCgaDijVopiglJiagJqztrXyrRJMy273X5lWdq16V6v3rqppbfMbFBTKTVSUxPNRHNOUzEnTJRRkBnOsH9/7MNhhgMeFHO9X6/zkr332nuvg9ZZ59lrPc+hQ4wbN67cUo3WrVvTp08fdu7cWa59YGBguUAGqLOgtFoto0aNKre/JLBRtl12djYPP/wwBoPB8goICCAoKIhdu3aVax8aGlqvQMbXX3/Ne++9x+uvv869995b5/Olv46u3XzxDfK0bO/r/Kjl55S338FUXMcKpt0nwBM/gscdpfv2fAgrHoSc5OrPayByHCBJkiRJN8edfVtYfj5/NI2cq4W1niPs7Gj6xOOW7atffoFi+uvkpa5TMKMsRVGSFUX5SFGUSMAHeNp23bo1lZQ0nTt3Ltu3bwdomPwZJiO5q5/A+c84y653mUSn4WEs+O1lCo2FeOY48uiB6RQ7qF/MhMlAvwGO3BFjtHAaAAAgAElEQVTZ07Z9kaQ6yszMRFEU/P39Kx3z8/Pj6tWr5fZV1e7KlSt4enpiZ2dXbr+vr2+57dTUVAAGDBiAnZ1dudexY8fIyMio9V612bhxIxMnTuSJJ57gzTcbS+EH6WaKGN3eUjFK49ySK55qCbXixMT61Xpv3k3No9EhsnRf4i9q+dYLv9igx/UjxwGSJEmSdOM09XcmwPzARFHg+C7rloh7DBuGxlWdpa9PvEhuhQeHtzKr56gKIQQwFLgP8ALmKIqSKIToC/yhKMrqBurjLaWkpGlJ/ozi4mLs7e3Zvn27bZacKAo5376A6x+l66YXKaPxGdqP/x5/DYPJgGeuI48enE5xE3P0TjHRp4eBjuMeuP77S41GXZd2lCjJmVGgN1r2OdppeXfkXZbqDA3J09MTIQTJyZWfKicnJ+Pl5VVun6iiJKW/vz+ZmZno9fpyAY2UlJRy7UqutXz5crp06VLpOq7m/7HXdK+abN++nTFjxjBixAiWLFlSp3Olvy7vABfah/jyx3713+PBzo8w+JfXEUDqosW4PzgUu7rOAHL0hIdWwu4FaglXxQS5KfD5UBgwR1160sDlW+U4QLoVxMXF0a9fP3bs2NGwM2TNMjMzefPNN4mJiSElJQUfHx8GDBjA8uXLG/zekiTdfu7qG8ClU2q+jBO7L9NzcCA6O22N52icnfEYM4ar5iXXmV98gWu/fg3e1xvBqpkZQghPYA/qNNInUZOAlXzjeAp4pUF6dwurKn+GLVzb9A9cj5U+2fvKNAiio/joxGxzIMPJPCOjNJAR2iWfrpOjbXJ/6dY3PLgF7468ixYejgjUSgw3KpAB4OzsTI8ePVizZg1GY2lAJTExkT179tC3b99arxEWFobRaGTdunXl9q9atarcdu/evXF1deXMmTOEhIRUenXs2LHe7yM+Pp5hw4bRv39/vvzySzSaek90k/6C7hnaGqFRgwtOdk052aI3AKKokFOz36rfRTUauO/v8EgMOJk/ghUjbH1dzaVReM0WXa+SHAdIUmWZmZmEh4ezbds23nrrLbZu3cq///3vSoFySZIkWwm82wsXTwcACnP1nD2YatV5TR8er44jgLw98RSePt1gfbyRrJ2ZMQ9oCfQB9qOWayuxDXjJxv265ZXkzyiZmWGLpwNZOz7E49fSxIgbTb1JiRzG5wlzMSkmcyBjWqVARo/nHrzue0t/LcODW9yw4EVV5s6dy+DBgxkyZAhTp04lNzeX2bNn4+7uzosvvljr+QMHDiQ8PJzJkyeTnp5O+/btWb16NcePHy/Xzs3NjXnz5vHss8+SlpZGVFQU7u7uJCUlsXPnTiIiIhg/fnyd+3/q1CkGDx6Mt7c3L730EgcPHix3PDRUFnm43Xk0c6JTH39O/HwZgDMdRtIpaQ8C0O3czuH12wgeNqB+F2/bDyb/DGseg0v71X0nN0LKCRj3BfhWnoVkA3IcIDUaRUVFODg4NPh9FEVBr9djb29f5fGZM2eSm5vLsWPHcHMrLXVfMX+TJEmSrWi0Grrc14J9688BcGxnEh1Da18mbdeiBa4DBpDz448AZH7xJf5z/9Ggfb0RrH2UOAx4zZzRvGJR24uoAxypgscee4ynnnrKJktMMvd+icfOWZbtXaaunBwwhuV//LNMIKPCjIzOefUOZMTHxzdMvg9JAiIjI4mNjSUrK4uxY8cyZcoUOnXqxO7du2nevLlV14iJiSE6OpqZM2cybtw4DAYDCxcurNRu8uTJbNiwgYSEBB599FGioqKYPXs2BoOhUmJRa+3du5fMzEwSExPp16+fZXlZyUuSAHpGB6LVqR+zLoojuzuPtBxLffttDp9Lq//F3VvAxB/gnsml+66ehf/1h6Orqj+v/uQ4QLK5zZs3ExYWhqOjI+7u7gwfPpyEhIRybSIiIggPD2fjxo0EBwfj4ODA4sWLAUhLS2P8+PG4ubnh4eHBhAkTyMrKqvJeMTExhIaG4uTkhIeHB2PGjOHixYvl2gQGBvLII4+wbNkygoKCsLe3Jza26spheXl5rFixgieffLJcIEOSJKmhde7THI1Onf2Zcj6b1MRsq85rOqE0Kfm1DRswZNZe3rWxs3ZmhgtQXYaRJlhSnUlApXwZwcHBxMXFERERUa8vOplHvsd183OW7UOm9uzq93+sPv8fADwsgQzzl8CSQMbzw+rc77i4OLy8vJgxY4bt831IUhmRkZFERkbW2Kam5Vk+Pj6sXLmy0n5Fqfg9C6Kjo4mOrnmp1YULF2o8XtbEiROZOHGi1e2l25OLZxPujGjB0W1/AmAfFEnB6VgcDUW0yk5m+asLEPNepltLj/rdQGcP0f+ClvfAhudAnweGAvh2Mvy5DyL/qbax0dtBjgMkG9q8eTODBw/m/vvvZ/Xq1eTm5vLGG28QHh7OkSNHaNGidPbg6dOnee6553j99ddp06YNTZuqVdpGjhzJ0aNHeeeddywz9KZPn17pXh9//DHPPPMMkyZN4o033iAnJ4c5c+bQt29ffvvtt3LLQnbs2MGRI0eYPXs2zZo1IzAwsMr+Hzx4kIKCAnx9fRk9ejSxsbFotVoGDBjAf/7zH1q3bm3bX5gkSZKZk5s97Xv4krBPzT93LO4S/R+rvVqlY48eOHTuRNGJkyhFRWR9swbvybd27m5rgxkJwAOoU0kr6gscs1mP/gLK5ssoKipi2rRpmEymegUGMk/twvG7SehQcwucVgJYH/5/xFxUn0p45DoxwUaBjJIAjBACk8mEyWSy5PuQwQxJkqS66zHoDk78fBl9kZG8q3qujX4Rx1XvADDm+GamLerB4mkDuDugngENgLtGg++dat6MdPMa2APLIPUkjP0CXHxs8E7kOKAxWjTlp5vdBYtnP76/Tu1nzZpFmzZt2LRpk6VMd1hYGB06dGD+/PksWFC6rDY9PZ0ff/yx3Gy6rVu3snv3blauXGlZ1jFo0CCioqK4dOmSpV1ubi4vv/wykyZNYpk5+R1Ar1696NChA59++ikzZsyw7M/MzOTgwYO1lum+fFldQvb3v/+dqKgoNmzYQFpaGjNnziQiIoLjx4/L3BmSJDWYOyNaWIIZf+xPpfeodji61PwAQwhB0wkTuPLKTAAyv/4ar8cnISpUB7yVWLvMZBEwQwjxGtDKvM9DCDEJmGY+LpmV5MvQarVoNBqMRmO9EoFmnj+EbtVDNDEvTf5T8eHz0P8j5spyoCSQ8Vy5QEZYp9w6BzKgfADGZDKh1WrRarU2y/chSZJ0O3J0tafbgNIVGJf0bTC1DATA2VDImEPrGfvxHnq+vY3Wr8TS572f+O6wdaXWymkWBE/9BF1GlO67GA9LI+DK0et7Eyo5DpBsJi8vj0OHDjFu3DhLIAOgdevW9OnTh50VygYGBgZWWhYYHx+PVqtl1KhR5fZXzFcRHx9PdnY2Dz/8MAaDwfIKCAggKCiIXbt2lWsfGhpaayADwGQyWfq8atUqBg4cyPjx4/nmm2+4ePEiX375Ze2/CEmSpHryDXSj2R1qwNRoMHHylytWnecWHY3W2xsAQ0oK2eYcGrcqq4IZiqL8D1gAvAmcMe/eCiwF3lcU5auG6d6tKSwsjO3btzN37lwWLVqEg4NDnQMDWUmnUVaMxJU8ANIUNxaGjGNDqlr5ziPXiT6both4Ygfnkn+3BDK6zxherz6XDcA4ODiwcOFC5s6dK5eYSJIkXaduA1rh4Kx+YcvOKKLgoZmWYw9cPEBg6nnScopQgKSsAmbGHKtfQMPBFUZ/BgP/gWXVR/Yl+HQQHI+5rvcgxwGSLWVmZqIoCv7+lZPW+fn5cfXq1XL7qmp35coVPD09y5XnBvD19S23nZqqZvofMGAAdnZ25V7Hjh0jIyOj1ntVpaT094ABA8qV9e7Vqxdubm4cPnzYqutIkiTVhxCCO/sGWLaP70zCZKq81Loijb09nmWCvpkrvmiQ/t0o1i4zQVGUV4QQHwEDgWZABrBVUZRzDdW5W0lJvomSvBhlEwHeddddVufM+O5wEv/bFM+iwlcJ1KhJWbIVR94LHs2PVzcA4JHjTPjmSOZvfg+DSY9OY8fSaXPoPqP+lfFKAjDXk9tDkiRJqszeUUePQYHsiVFjAMcSNPQbMIiCbVsAmHr0W2ZEPI9JqM8XCvRG5m1JqF/FISGgz/Pg0wnWPQFF2WoejbWTIOV36PeapTRbXclxQONT16UdjYWnpydCCJKTkysdS05OtgQKSpQNFpTw9/cnMzMTvV5fLqCRkpJSrl3JtZYvX06XLpUr/VRcClLVvapScq3q2sty3ZIkNbT2Ic3Ys+4MhXl6cq4WkngsndZda19a6vnQODKWLEHR6yk4epSCo0dx7Nr1BvTY9qwOZgAoipIIfNJAfbllVUz4WXE2g7UVDr47nMTbMfF8Lv5BoEb9MC5U7JjWNorD19Rlyh65zjx2aDob0nZgMOlRFBMmRc8V39ojcbWRlRgkSZIaxl0RLTi6/SJ514rJzy4m7f7Hcf05DqWoiPbXkhh0YR+bWpf+//dyVsH13bDDA/Dkdlj5kFrlBODnf6t5NEYuUWdx1IMcB0i24OzsTI8ePVizZg1z5sxBq9UCkJiYyJ49e6pM4llRWFgYRqORdevWlVtasmpV+Wo+vXv3xtXVlTNnzvDYY4/Z7D0EBAQQEhLCjz/+iKIolqBGybKWnj172uxekiRJVdHZa+nUx5/DP6qVmY7vTLIqmKHz9sYtOppr69cDcHXFF7SYf2sGM6wKGwshJgkh5lRzbI4QwnafDreguLg4ioqKLAk/65IXo6z5m35nAf+hsyYRgGJFw73XuvDjxk3kn8lXAxkHp1Nk7097/67oNHZohQZ7BweZ10KSJKkR09lrCRlcWt3g6N4sXJ8oLas68cQmXIvzLNt+7k2u/6Y+HeCp7dC2f+m+hFj4ZCBcPV+nS8lxgGRrc+fO5Y8//mDIkCFs3LiRlStXMnDgQNzd3XnxxRdrPX/gwIGEh4czefJkFi5cyJYtW3j88cc5fvx4uXZubm7MmzePd999lylTprB+/Xri4uL46quvePrpp/n666/r/R7ee+89Tpw4wejRo9m0aRMrVqxg7NixBAUFMX78+HpfV5IkyVp33tfCsrL04smr5GYWWnWeZ5kyrdlbtqCvMKvtVmHtHLjnUaeTViUVmFHNsduCl5eXJRGUyWSqND3SGkaTwsT8ZdyrVT+ETcB914I4+NHPpKxL4cI/LxC+KYoie3UtZxvfTix5djZz335L5rWQJEm6BXTq7Y+btxqkKMo38GdAf4p91ESDbvp8Hjux2dLWyV5LkcF4/Td19ITx30DYtNJ9aSfhf/3g3M7qz6tMjgMkm4qMjCQ2NpasrCzGjh3LlClT6NSpE7t376Z58+ZWXSMmJobo6GhmzpzJuHHjMBgMLFy4sFK7yZMns2HDBhISEnj00UeJiopi9uzZGAyGSolF66J///5s3LiRixcvMmLECF544QX69etHXFwcjo6O9b6uJEmStdy8HWnRwVPdUOD0r9YFJRy7dMExpIe6YTCQ+fXKBuphw7J2mUk74Pdqjp0E2tqmO7emjIwMNBoNJpMJjUZTKZlUbRRFYePn83hCtwkAIzDGK5gLv59C0SugAAb4Pe1PAgJQk30GXaP7CzNruqwkSZLUiGh1Gu4Z2oZtn50A4OjOK4x4ZRYZL6qBhqgLe1nfNpw/XX05m5bH3745yocPBaPRWLeGv4Ybw6C31fKtG58DYzEUZMIXIyDyPbjnKTXXRs3kOECyucjISCIjI2tsU9NsVx8fH1aurDwAV5TKS2+jo6OJjo6u8V4XLlyo8XhVoqKiiIqKqvN5kiRJthIU5kdSgppr8VT8FYIfaGVV/p+mEyaQdOAgAFmrV+P9zBQ0TWwwM/QGsnZmhgHwruaYTQrY38oiIiIsFUscKiz5iI+P59133yU+Pr7a89d//y1RF/4JgB6Y6N2eP9wycA5yRqPToBEatBo72vt35VzycU5e+oyi0MpPLay5lyRJknTztO/pS9PmzgAYiowk5LXEuU8fADQovM5pS9vY364wN/ZElV/M6qXb/8HEH8DFXO1BMcKml9QAh6G4trPlOECSJEmSGqE23XzQOai5hzKT80lNzLHqPNf+/bEzz4QzZmVxbePGButjQ7E2mPErMKWaY1OA/bbpzq2pbCnWsks+ShKDvv766/Tv37/KIMOW+EP0PvACDsJAgRBM8W3FEdciAJr7+fDSA28wuOckpg+ZBygs+uElPt6yutL1rLmXJEmSdHNpNIJeD7axbB/flYT9mNJ0E4GHdvH4PaVVTD775QJLd9mwWEjLnvB0HDTvXrrv0ApY8SDkptV0phwHSJIkSVIjZN9ER9vg0ucKCXsrV4qqitBq8Xz4Yct25oovbPcA5QaxNpjxNnCvEGKfEOIpIUS0+c99wL3A3Ibr4q0hLCyMmTNnlstdERcXR3FxMUajkeLi4kpTJfeeuoT/pidoJrLI0mh43M+fX53UY2rVkhm0DLiXQcHjaePbiSL9PgwmY5XXq+1eknQ7iIuLQwhxQ/79T5o0iU6dOuHm5oaLiwtdu3blww8/xGi0QZ4D6S+tdVdvmgW6AWAyKJxI9ULXXM2HZMzM5LkmVxh8l7+l/bubThFz6JLtOuDWHCb9AHePK913MR6WRsCVo9WdJccBkiRJktRIBYX6WX7+Y38KRoPJqvM8Ro9COKlfQIv++IP8ffsapH8NxapghqIoO4HRqHXllwDfm//0AUYpihLXUB28lUVERGBvb49Wq8Xe3r7c8pOTl6+RtnIKd2vOcUWr5TF/X443UVOYeOQ6M/HQDIrsmqmNFRNhHa/x8Kxp1V6vpntVRy5LkaT6KygoYPr06axZs4aYmBgGDBjA888/z9/+9reb3TWpkRNCEDq8dHbGqb0paKNLS0tmr1vH/LFd6dW6qWXf/1v7G7tO1zhzom7sHGHEEhj4Dyxp0LMvwaeD4PdvKzWX4wBJkiRJarxadPDExdMBgMI8PYnHrMvhqHV3x2P4MMv21RVfNEj/Goq1CUBRFGU9sF4I0RHwAtIVRTldy2m3jfj4eOLi4oiIiLDMzihZflJxf1JWAVs/ncVz4mf+sLNjip8PqTr1r8Iz14WJh2dQYGeeKmQOZHT/2ygA3n//fdatW8eoUaPKzQKp7l419bd///4UFxdjb28vK6JIt4yioiIcHBwa/D6KoqDX67G3t6/y+KpVq8ptP/DAA1y+fJlly5bxwQcfNHj/pFtby6CmtOjoSVJCJopJ4bRDMHcIAYpC3p49aFOTWTohhHFL4jmVnIPBpPDMlwdZ9XQYdwW426YTQkCf58GnE6x7AoqywVAAayZCSuVcn3IcIEmSJEmNk9AIOvby4+DmRABO7b1Cm2DrUlp5PvKopZpJ7s6d6FNTsWvWrMH6akvWLjOxUBQlQVGUPXIAU6qmfBUVl59cy9ezcOlHPGv4goMODjzm72sJZPS8EMQjh2dSoCsTyOiQZQlkxMfHM2PGDLZv386MGTMqzaioaqlLdeSyFOlm27x5M2FhYTg6OuLu7s7w4cNJSEgo1yYiIoLw8HA2btxIcHAwDg4OLF68GIC0tDTGjx+Pm5sbHh4eTJgwgaysrCrvFRMTQ2hoKE5OTnh4eDBmzBguXrxYrk1gYCCPPPIIy5YtIygoCHt7e2JjY+v0nry8vNDprI4RS7e5srMzzv6eg6G3udKCopAV8y3ujnYsn3QPzd3VzOJ5xUYmLf+VxIw823akwwPw5Hbwale6b9e8apvLcYAkSZIkNT4dyyw1STyWQUFurcm9AXBo0xqnkBB1w2jk2nfrG6J7DaLaYIYQYoIQwqvMzzW+blyXGx9rAwOFeiNvLPuOmXnziHNuwtN+zcjRatAYBQ//OpQelyej17mojRUTYR0y6f7i6Drfxxr1WZYiSbayefNmBg8ejIuLC6tXr+ajjz7i+PHjhIeHk5SUVK7t6dOnee6555g+fTpbtmyhf//+AIwcOZLvv/+ed955h9WrV6PT6Zg+fXqle3388ceMGjWKzp07s3btWpYsWcLx48fp27cvOTnlsz3v2LGDBQsWMHv2bDZv3szdd99d4/tQFAWDwUBWVhbr1q3j888/l8tMJKv5tXanddfSAiFnA0pLVGZ9G4NiNOLn3oTPH78Hd0c7ANJzi3ls2a+k5xbZtjM+HeDJbdC2f9m9XnIcIEmSJEm3Bk8/Z3xbm3NymRT+2J9i9bnuo0dZfr62bt0tkwi0pkeIy4FQIMP8c00UYIVtunTrKQkMlCzZqCowYDIpvLpyN8+lvs5mdw1ve3liEgLfLA/GHJ2Iwb61ZdnyxaT96O1P0H3ilDrfx1p1XZYiNUJzbDTV3BbmXKtT81mzZtGmTRs2bdpkmckQFhZGhw4dmD9/PgsWLLC0TU9P58cff6Rbt26WfVu3bmX37t2sXLmShx5Scw0MGjSIqKgoLl0qTZSYm5vLyy+/zKRJk1i2bJllf69evejQoQOffvopM2bMsOzPzMzk4MGD+PmVRrZrEhsby9ChQwE1D8Irr7zC66+/XqffhXR76/VgG87/lg4KJKVoCGjeGefLJzBcvkLennhc7g2nva8rnz4WwsOf7KPIYOJCRj5PLN/P10+F4uxgw5lAjp4w/hvYNhviFwIEAm25yeMAIUQH4FmgH9AGyEGtnvK6oiiVMpYKIZ4CXgRaAxeA/yiK8nEV7YYDs4FOQArwP+BdRVGMFdqFA/8CgoFrwNfAa4qiFFRo1wX4D9AbKAI2AC8qinK1vu9dkiRJkuoiKMyflPPZAJyKT+bufi2tOs9t0CBS3nobU24uxYmJFBw4gFPPng3ZVZuoaZlJa+BImZ9rerWp6gK3i+pKs5ZQFIW3vj9G9B9vsLlpPnO9m2ISgnsT7mb0sZfVQIZZxp8/8eG2Ofx3/VdVLlmp6T716be1y1IkyVby8vI4dOgQ48aNK7cko3Xr1vTp04edO3eWax8YGFgukAHqkiutVsuoUaPK7S8JbJRtl52dzcMPP4zBYLC8AgICCAoKYteuXeXah4aGWh3IALj33nvZv38/27Zt45VXXuHf//43r732mtXnS5JXCxfadS9dl5oZMtLyc9a6dZafQwKb8t//C0ZjDnofvXSNZ78+hN5oXbZyq2l1MOhtGP4xwDEaxzjgAdRAxufAUGAqauLRfUKIHmUbmgMZS4B1QCSwBlgshHimQrtB5jb7gSjgA2AW8E6FdncDW4FUYIi5zSQqBHeEEM2BOMARNVHqs8AA4HshRJ2X9EqSJElSfbTr0QyNTh0spF3MIeNyrlXnaRwdcRsy2LKdtXZtg/TP1qp9pKMoSiKAEMIO6Ab8pijK+RvVscasumSf1QUFPvn5PE1//Re/+Cay1s0dnUHHw/uG46i5F6P5b0AoRrp4JLG7hQPFW/TllpJUTPRZ3X2q6pckNTaZmZkoioK/v3+lY35+fiQmJpbbV1W7K1eu4OnpiZ2dXbn9vr6+5bZTU1MBGDBgQJV98fT0rPVeNXF3dyfEvMawf//+2NvbM3fuXKZOnUqLFi3qdC3p9tUx1I8zB9V/q5eVAFqgTtTL2b4dw9Wr6JqqVU0GdfHjH8PuZNZ3xwGIS0jjlXXH+PeYuxFC2LZT3f4PGF+sKEpxIxgHrAIWKWXmvAohfkKddfE8MMG8T4daQvYLRVFKooo7zIGGuUKITxRF0Zv3vwfsVhTl6TLtXIBZQoj/KIqSbN7/JnAJGFNyrhCiGPhcCPFPRVEOmdu9BNgBQxVFyTK3uwzsBIYDMTb8fUiSJElSlZo429H6bm/OHlIroCXsTab3yHa1nKXyGDWarFWrAcje8iO+s2ahdXVtsL7aQq3zUxVF0QshvkF9wnHbBzNKkn0WFRWh0WhYtGgRTz/9dLXt1x9J4siWpWhbxLPD2ZU70pox9PeJGBxKv+g0KcqkX5QnbcZOxD4+nrfffbfOS0lqqk4igxx/UXVc2tFYeHp6IoQgOTm50rHk5GS8vLzK7avqS5q/vz+ZmZno9fpyAY2UlPJrA0uutXz5crp06VLpOq4V/gd9vV8IQ0JCMJlMnD9/XgYzJKu17NQUBycdRfkGcnOMFHUfSJNDW0Gv59r6DXhNmmhp+0joHaRmF/Lfn84AsO7QJfzcHXhpUFCD9e9mjwMURUmvYt81IcRpoOx/aGGoMza+rND8C9TZFOGoQYuWqMGZih/eX6AGL6KAz8xBnEhgQZkgCMA3qEtShgElwYwHgdiSQIa5j7uEEBfN7WQwow5Kxj51yQ0WFxdHXFwcb7zxBhqNnAwjSdLtKyjU3xLMOL0vmdDhbdFoah/jNrmzCw4dO1KUkIBSWEh2bCyeFWY9NzbW/t/+HGpt+dteXFwcRUVFmEwmDAYD06ZNq1RVpMSeM+l8sm4l11p9yw4nJwYdu4fBCX8vF8jwM1xg3BuhtBl7P1D/pSTVJQetqdKKJN0Mzs7O9OjRgzVr1mA0li5NT0xMZM+ePfTt27fWa4SFhWE0GllXZho+VC6X2rt3b1xdXTlz5gwhISGVXh07drTNmzLbuXMnQgjatLmtV95JdaTVaWjTrbR82tUuZRKBrltbKQnXCwM7MC6kdA3soh1nWRF/oaG72ajGAUKIpsCdwMkyu0silscrNC+pM9u5pnbmWSf5Zdq1BZpU0a4QOFvSTgjhiLrUpuJ9S+7duYr9ko3FxcXx5ptvYjLZeOmVJEnSLaZll6Y4uqoP+/KuFXPppHWpm4QQeIwuLT6RtabxLzWxNnPYv4DXhBA/KYqS1pAdauwiIiLQaDSWD0uj0VhpKQjAySvZvPx1DG6tlnFaceXJn8eiswvBpFWPa4zFBLfM4J5XJ6CpUMqxpqUkNfWrquSgVQU55OwM6WabO3cugwcPZsiQIUydOpXc3Fxmz56Nu7s7L774Yq3nDxw4kPDwcCZPnkx6esvlVp0AACAASURBVDrt27dn9erVHD9e/ruEm5sb8+bN49lnnyUtLY2oqCjc3d1JSkpi586dREREMH78+Dr3PzY2ls8++4yhQ4fSqlUrcnJy2LRpE0uXLmXy5Mk0b968zteUbm/tQppxcs8VAP7MdqW5kzPk51F85iwFR47gFBxsaSuE4O0Rd5KWW8RPp9TlKbM3/I6PiwNRd9VtqVQdNLZxwIeoq3HeL7OvqfnPzAptr1Y4Xl27kn3WtLta5rinuS/VtasyaiqEeBrz7JBWrVpV1USSJEmS6kyr1dChpx9Hf/oTgFN7k2nVxauWs1TuQ4eQOm8eSnExhb//TuGpUzQJarjZn9fL2pkZ96N+aJ8XQmwTQnwhhFhR5vW5NRcRQowWQqwTQiQKIQqEEAlCiHeFENUuxhFCLBFCKEKIitNGEUI0EULME0JcMV8vXghxn5XvqV7CwsJYtGgRdnZ2aDQaHBwcKi0FScoq4PEV6xAtPsQ57Q6e2PsSOrsQy3HnojSGjvYg9I2HKwUyqhIfH8+7775b46yK6mZ0yBKsUmMUGRlJbGwsWVlZjB07lilTptCpUyd2795tdSAgJiaG6OhoZs6cybhx4zAYDCxcuLBSu8mTJ7NhwwYSEhJ49NFHiYqKYvbs2RgMhkqJRa3Vtm1bTCYTs2bNIjIykqeeeopjx46xYsUKFi1aVK9rSre3gI6eNHEpeYqiRz9wnOVYVoUZSAA6rYaF44Pp2tIDAEWB51cf4dfzDVY4wybjAAAhxADz53ptr7hqzp8JjAemKYpypuwh85+11ZOrqZ1owHblKIqyVFGUEEVRQnx8fKpr9pe3atUqgoKCcHBwoEuXLnz77bfljhcWFvLCCy9w55134uLigp+fH0OHDuXUqVOWNnPmzOHNN98EwM7ODiFEuWWDs2fPpnv37ri7u+Pt7c3999/P3r17b8wblCRJugk6hpUmtD9/JI3iAoNV52k9PHAtk2sua23lMUhjYu3MjHBAD6ShTrtsW+G4tYVo/w5cBF5FTagVDMwB+gkheiuKUm5uoBCiN/AwkF3N9T4FBqMm3jqHmj18ixAiTFGUI9Wcc92efvpp7rrrrirzUFzL1zP+85UYvP/LgKN98S98EIN96a+5FecY8N5wHH29rbpXTbkwKqo4o6MkV8b7779PRkaGzJkhNSqRkZFERkbW2Kam9dI+Pj6sXLmy0v6q6mJHR0cTHR1d470uXLhQ4/GygoKCiImRS+Al29FoNbQN9uH3ny8DkB7QG3/UcsLZP2zC95WZaF2cy53jZK/js4k9Gf3RHs6l51FsMPHk5/tZ+0xvOvjaPGGXrcYBAHtQy6HWJr/iDiHEFNSKI7MURVlW4XDZGRhXyuxvWuF4xZkaZXlY2c6T0uUrmajvv7p2jbY0683OqbVt2zbGjx/P4MGDmT9/PmlpaTz//PPo9XrLMsCioiJycnKYNWsW/v7+XL16lcWLFxMaGsqpU6fw8/PjySef5NKlS3z66afs3r0brVZb7j5JSUm88MILBAQEkJeXx5dffsl9993HgQMHuPvuu2/4+5YkSWpoPi1d8WrhQkZSLga9iTOHUuncx7oHhh5jRpP9ww8AXNu4kWYv/R2Ng0NDdrferApmKIrSuvZWVhlaYXrqTiHEVdRyaxHATyUHzIm3lqJmJp9c8UJCiK6oT2YeVxTlM/O+naiDi3+gJuNqMFUtBSnUG3noq09QtCuYtPtxFIc7UcxzX7SGQnp1zqfbC0/UKclgfZeJ1CUIIkmSJN187UJ8LcGMC38qtGrXDv2ZMyj5+WRv+gHPMWMqndPU2Z7PH7+HkR/tIS2niOxCA5Hv70JRoLmHIy8N6sjw4OtPRmvDcQCKouQDp2ptWIEQ4lFgMTBfUZS3q2hSElzoQvlgRknOihNVtLNMeRRCBAJOZdqdBYoozbFR0q4JainaNSXvRwhxoWK7MvfeWcX+m64xjBNmz55NUFAQ69evtyTt7NSpE6GhoZZghru7O5988onlHKPRyKBBg/D19WXlypWWIEVAQAAAvXr1Klf2G6h0fmRkJF26dOHTTz/lgw8+aOi3KUmSdFN0DPVjzzp1AmPC3mSrgxlOvXphFxCA/tIlTNeukbN1G+5lyrY2JlYtMxFCeJs/vK9LNets95v/rDjaegnQAvOrudyDqE+JVpe5vgG1hNsgIcQNCx99dziJ3u9t5675/8D30o88fPglFIc7Lcfdi64w8okAgv82uk6BjPj4eC5evIhOp6vzMpGqgiDWLFeRJEmSbo7m7T1wdLMHoCC7mOKBpflcrtUwzbNlUyc+m9gTB636+WJS1GkCSVkFzIw5xneHk667b7YaB1zH/UcAnwGfKIry92qaxQPpqDM6y3oEdXbELwCKolwEjlbTTg9sMrcrBjYDY81lX0uMBhyADWX2bQAGCyHcy/Q5HLijQrtGo7rE4TeK0Whk//79jB49ulz1kV69ehEYGFiu7TfffEOvXr3w8PBAp9Ph7OxMbm4uCQkJVt1r27Zt9OvXDy8vL3Q6HXZ2dpw+fdrq8yVJkm5FHe7xRZirmFz+I4vs9AKrzhMaDe4jR1i2s9Y13kSg1QYzhBBaIcQcIUQWkAJkm/NdeNi4DyWlCywZyYUQbYFZwFTzYKIqXYDz5ic8Zf0O2APWFdS9Tt8dTmJmzFEyNN8zKTGfnsnPYrAr/RW1sz/PuPcfpFlY3aYxljwx+d///oeiKDz11FN1empSMVeGl5eXrGoiSZLUiGk0gnbBpbkTkl07g7n0cMHRoxT98Ue1597Zwh2XJnaV9hfojczbUv8vbDdoHFBbH+4DVgK/AcuFEKFlXpbMqObyqa8Djwkh3hJCRAgh/gE8DrxRYTzxKtDXnJcrQgjxAuq44wNFUcrWjZ4DtAS+EUL0F0I8AfwXWKsoysEy7eYBRmCDECJSCDEO+Ar4FSifBKKRuNk5tdLT09Hr9fj6+lY6Vnbfxo0bGTduHJ06deLrr79m37597N+/Hx8fHwoLC2u9z6FDh4iOjsbFxYVPP/2UvXv3sn//frp27WrV+ZIkSbcqZ3cHWnUuXQF5am9yDa3L8xgxAsyB5vz4vRRfumTz/tlCTctMpgBvAHGosyfaACNQ81dMssXNhRAtUJeEbFMU5UCZQx8DMYqi7Kjh9KZUnzm85Hh197VZBvGFGw8SnreDHpc6YXRoZ0n1ZafPIbxHIZ2nPlGvNalln5iU9LMu0z9LEoKW3FdWNZEkSWr82oX4cmynOpPi/Ils2t0/gLwtmwA1CZfvzFeqPfdqXtWx/8tZ1j2JqYIPDTwOsNL9qDMhgjHPrigjEQgs2VAU5WMhhAK8iDrD8yJqotDFZU9SFOUHIcRoYDYwETVY8w7q0tay7Y4IIQYB/wRigWvACtRgSNl2SUKIfsACYB1QDKwHXqyYD6yxqDhOuNFjAm9vb+zs7EhJSal0LCUlhTvuuANQE4S2a9eO5cuXW47r9XquXrUuFcm6devQ6XTExMRgZ1ca8MvMzMTD44bG5SRJkm64jqF+JB7PACBh7xV6Dg60aqWAnb8/zuF9yNv1M6AmI2/2/PMN2tf6qCmY8RTwP0VRLPkqhBCTgYVCiMk1zJiwihDCBfWD3kCZQZEQ4hGgJ1BbDRhBHTOHl1AUZSlqPg5CQkLqkrSM3AtXSNzxG0kn0km+qmGEzgfEUIxlFrU0zTnJTs9snp46s95rUqsrtVoXFfN6XO/1JEmSpIbl39YdZw8H8rKKKMzVU3D/cDAHM66tX4/Pi39DY29f5bnNPRxJqiJw4eFUecaGlXxowHGAtRRFmYM6Q8La9kuAJVa0iwFqzeSrKMouoNYPbkVRjgEDreljY1GfUvC2otVq6dmzJ2vXrmXOnDmWpSb79u3jwoULlmBGfn5+pRwYX3zxheVhTwkHc3K6goICXF1LE+Dm5+ej1WrLDd5/+uknLl68SOvWNksFI0mS1Ci17uqNvaOO4gID2emFJJ+9hn876wK5HqNGW4IZ1779Dp9p0xAVEizfbDXlzLAktypjNWoeizuu56bmdbcbzPcYpCjKJfN+F9SnGv8ECoUQHubprBrAzrxdMiorW+O9LM8yx6+LYjCQdeh3fvtgLQtGv8qYHuOYPWMNcfvs+CPHnxw7XxClv0KhGOmcs5bDAec4FtALqP+a1OpKrdaXra8nSZIk2Z7QCNp1b2bZvlTgja65PwDGrCxyf/qpulN5aVBHHO0qDzKyC/Qc+TOrPt1xoIHGAZIE8Oabb3Lq1CmGDx9ObGwsy5cvZ+zYsfj5lZYUjIyM5NSpU7zwwgts376df/3rX7zxxhuVZlV07qzmeZ0/fz779u3jwIEDlvNzc3OZOHEi27dv56OPPuKRRx6hRYvrT4wrSZLU2OnstLTrXrqE9cyhVKvPde0Xgbap+nXbkJxM3i8VJ0fefDUFM1yoXBI1x/xnvWu+mYMR64B7gGjzk4wS3qhPgt5BXUJS8moJjDX/XJJK9XegtRDCqcItOqNO7zxDHRlzckjf+jOH31pO7JOLWfH4Kr5amsLnO67wyncLWHd4LR9+//84l/x76UmKCYf8RHxyf2SweJVzra+y0X4gLw1Ss3Bfz5rUsLAwZs6cabPAg62vJ0mSJNleu5DSYMb5o+m4Dh9l2c5aU30SruHBLXh35F208HBEADpz0i+jApO/OEBqdp3zA2hogHGAJJUYMGAAX331FQkJCYwcOZJ58+bx/vvvWyqZADz11FO89tprrF69mqFDhxIbG8vGjRtxd3cvd60hQ4YwdepUFi9eTFhYGD179gRg0KBB/Pe//+WXX35hyJAhLFu2jBUrVtCu3Q1JrSZJknTTte1ROq44dzgNxWTdwgRhb4/7sGGW7awakpHfLEJRqn4zQggTMAo143cJLZAADKO0tBkAiqKcq/VmQmhQq408CAxWFGV7heNNgNAqTl0FHENdy3pcUZR0IUQ34DAwUVGUz83n68ztziiKMrS2/gB0bdtO+WTMDJKT9GTgQ55z5ZI1Ww5/zff7P0NRTGiEhgeDhxPevQOJnme54n+Gtwou0rFYz15TJ/6f41z+Ftm5XCm8m13HXbr1nTx5kk6dOt3sbkg2Iv8+pZooisKK1/aQe7UIgMj/C6B4ynBQFBCCdtu2YmfFU+UL6XkMW/QL1wr0AHRr6cGqp0NpUsXsjaqYp+WPxIbjAKlqISEhSslMgqrI/2f89ci/U0mSbhSj0cRnL+2mKN8AwKiXe+DX2r2Ws1RFZ89ybvAQdUOno/3OOHReXg3V1SoJIQ4qihJS1bGacmYAVPcI6Lsq9lkzOloEjEENSuQJIcoGLi6Zl5vEVTxJCFEIpCiKYjlmTsq1GnjfPNvjPPAM0JrK5daqlZmt5deszuBc9XGhmOjRvA1btFr0RgVFp/Bb9BHOtDtN1xwHPss4h4uigKMnoc/EsMutcjCkujWpMsghSZIkVSSEoF0PX45svQjA+fMGOvTpQ97u3aAoZMV8i8/0abVeJ9DbmUXju/PYZ79iNCkc+TOLV789xvwxXetSJtzW4wBJkiRJkm4grVZD624+nNpzBYCzh9KsDmY4tG2LY7duFBw5AgYD19ZvwOvxG5kDvGY1BTMaopdR5j9fM7/KepM6JPgym4QaGHkL8EB9ehSpKMqh+nZQKEY8HfLwb+VIq3ta06x7AItOHCTgzpbkncrDOcgZxzau3J3Sji/yt5ZmGx22GKoIZFSnvolBJUmSpL++9iHNSoMZR9LoMWKUGswAsmJi8J76jFVJuMLbe/NadCf+8f0JAGIOJdHZ340n721jTTcuUPfPZUmSJEmSGpm2waXBjHOHU+k9sq3VDzY8xoxWgxmoVU2aTppYl4ciDaraYEbJ0g1bUhQl0JbnKYpSAPzN/KoXgYK3Uz7N27lxR1g7/Dv7YuegDhAv517m6Z1Pciz9GE7t1NQcub+b8LgcwrKA77D8Hd4zGYKia71X2ZkYslSqJNleXFwc/fr1Y8eOHTe0Ys+ePXsIDw9HURT0en2lzPuSVFc+rVxx825CdnohxYVGrvp2RevpiTEzE8OVK+Tticfl3nCrrjWpTyAnr2Sz5qBaI/6dH07S3teVvh18ajmTjIYYC0iSJEmSdGO1DGqKfRMtxYVGstMLSf8zF59W1qW/couMJOXtdzDl51N89iyFR4/i2K1bA/fYOjUlAL0teLdyY9yCIdw79T5aBTe3BDJ2/rmTMRvHcCxdzU+afyaf8/9MJPW7i5xYsYxDl8zl73zvgoH/qPU+JTMxXn/9dfr374+Xl1e9E4NKktR46PV6Jk+ejK+v783uivQXIoSgXUjpv6mzR6/i/uCDlu2stdUnAq3qWm+NuJPurdTqDyYFpn99iHNpubbrsCRJkiRJjZbWTkNgV2/Ldl2qmmicnXGNjLRsX4v9waZ9ux63fTCj4gwZvUnPgoMLmPbTNLKL1STuOqFDnGiDYlBAMaE3KsRdMIKdE4xeBnZNar1PxZkYGRkZslSqJNVDUVHRDbmPoigUFxfX2m7evHkoisLjjz9+A3ol3U7alck+fv63dFyGjbBs5/z0E4ar1lcgd9Bp+fjRHvi7q59X2YUGnlxxgOxCve06LEmSJElSo9U2uHRccfZQKtUVAqmK+5DBlp+zN29CMRpt2rf6uu2DGWWl5KXw5JYn+ez4Z5Z9vk6+hLu8QZ7TIHRaDVoB9lqICNRC1L/Ap4NV166qRGtYWJhlyUl8fHxDvS1JapQ2b95MWFgYjo6OuLu7M3z4cBISEsq1iYiIIDw8nI0bNxIcHIyDgwOLFy8GIC0tjfHjx+Pm5oaHhwcTJkwgKyurynvFxMQQGhqKk5MTHh4ejBkzhosXL5ZrExgYyCOPPMKyZcsICgrC3t6e2NjYGt/D2bNnefvtt1m8eDF2dnbX8duQpMq8A1zw8FWXOBqKjCQXepZO69TrubZ+Q52u18y1CUsfDcFBp370n0vL4/mVhzFaWaJNurnqMuiUGjf5dylJ0s3QqnNTdOZVCNdSC7h6Oc/qc5169ULrrc7sMKalk79/f4P0sa5kMMNsT9Iexmwcw6HU0tyh4S3CeaTl+2z81Z62Ad5setSNuf0c2D7BibCocRD8iNXXDwsLqzQTo+LSExnQkG4XmzdvZvDgwbi4uLB69Wo++ugjjh8/Tnh4OElJSeXanj59mueee47p06ezZcsW+vfvD8DIkSP5/vvveeedd1i9ejU6nY7p06dXutfHH3/MqFGj6Ny5M2vXrmXJkiUcP36cvn37kpOTU67tjh07WLBgAbNnz2bz5s3cfffdNb6PZ555htGjR3Pfffdd529EkipTq5qUPkX540AqHqNHWbaz1q6t85eiuwLc+dfo0n/XOxLSmLcloYYzpMbA3t6egoKCm90NyUYKCgpwcHC42d2QJOk2o7PXEnhXaVnVs3VYaiK0WtwGDbJsZ9fywO9GkVnqgIWHF7L0t6UoqINCjdAwPXg63dxGMH7pr+gw8IHdQnq0MjCglQN43AFD/lN5jUotKpZolUlApetx1+d33ewuWBx77Fid2s+aNYs2bdqwadMmS7LMsLAwOnTowPz581mwYIGlbXp6Oj/++CPdyiQa2rp1K7t372blypU89NBDAAwaNIioqCguXbpkaZebm8vLL7/MpEmTWLZsmWV/r1696NChA59++ikzZsyw7M/MzOTgwYP4+fnV+h6+/PJLDhw4wKlTp+r03iWpLtqFNOPADxcASDyWTr83H0Dj9K4lCVfBkSM4BQfX6ZrDurXgVHIOH8WdBeDjnWcJ8nNleHALW3dfshFvb28uXbqEt7c3rq6u6HS6RpNJXrKOoigYDAZycnJIT0+XeZYkSbop2gY348wBNYhx9nAa9wy1qroZAG6DB5P51VcAZP+4Fb/XX0fY2zdIP6112wczErMTWfLbEsu2j6MP/7zvn7RyuouhH+6m2Gji77p19ND8oTbQ6NQ8GU2sq81bk5KlJyXlWWUSUOl2kJeXx6FDh3j11VfLVf1o3bo1ffr0YefOneXaBwYGlgtkgJpQV6vVMmrUqHL7H3roITZv3lyuXXZ2Ng8//DAGg8GyPyAggKCgIHbt2lUumBEaGmpVIOPq1au8+OKLvPPOOzRr1qzW9pJUX17NXWja3Jmrl/Mw6E1cPFuAa3QU19auA9TZGXUNZgD8/YGOJCTn8NMpdUDz8rrfaOPjzN0BHjbtv2Qb7u7uODg4kJaWRkZGRrn/n0m3Dp1OR5MmTWjVqhVNmtSeb02SJMnWWnVpis5Og0Fv4urlPDKT8/D0c7bqXMfgbtg1b47+8mVM166Ru/sXXO/v18A9rtltH8zI1Zdmc+/l34v37n0PF50n45buJTWniDDN70zVlVmXfP8sCAi57vuWlGl9//33ycjIsOTQkKS/uszMTBRFwd/fv9IxPz8/EhMTy+2rqt2VK1fw9PSslKei4pOu1FT1i9qAAQOq7Iunp2et96rKrFmz8PX1ZezYsZY8HYWFhQBcu3aNJk2a4Oxs3QeDJNWmXY9m/Hr5PABnDqYSMXq0JZiRvWkzvjNfRetSt39vWo3g/Ye6MWLRL5xNy6PIYOLpFQfZMK0Pzdzkl6zGqEmTJrRs2fJmd0OSJEm6hdk30dHqTi/OHU4D4OyhNEKirRtDCCFwGxxNxv8+AdSlJjKY0QgIBFO6TmHy3ZPRCA1/X/MbR//MoinZvG+3CI15+QltIqD389d9v5JcGSUzMmQ1E6k+6rq0o7Hw9PRECEFycnKlY8nJyXh5eZXbV9VUan9/fzIzM9Hr9eUCGikpKeXalVxr+fLldOnSpdJ1XF3L19e2dtr2iRMnOHbsWKW+gjodfNiwYXz33XdWXUuSatOuRzN+3agGMxKPZ6CZ0Af7dm0pPnMWJT+f7E0/4DlmTJ2v69bEjk8e68mwhbvJLjSQnF3I5C8PsurpUBx0Wlu/DUmSJEmSGoG2wT6lwYzDqYREB1p9rtvgwZZgRs5PP2HKz0fj5NQQ3bTKbZ8AVKfR8fHAj5nabSpajZbPfrnAukOXAIV5dkvwFebqCE7eMGIJaK7/V1ZVrgxJul04OzvTo0cP1qxZg7FMWafExET27NlD3759a71GWFgYRqORdevWldu/atWqctu9e/fG1dWVM2fOEBISUunVsWPHer2H999/nx07dpR7PfbYYwBs27aNt956q17XlaSqePo54xXgAoDRYOLCsQw8Ro+2HM9au7be127t7czC8d3RmON4hy9m8dq3x2W1BUmSJEn6iwq8yxuNTv3gT/8zl2tp+Vaf69CxI/Zt2wKgFBSQs2NHg/TRWrf9zIw27m3o3bw3ALv/SOftH05SlHSSLpfW4dTmN2hp/hWN+Bhca19Lbw2ZK0O63c2dO5fBgwczZMgQpk6dSm5uLrNnz8bd3Z0XX3yx1vMHDhxIeHg4kydPJj09nfbt27N69WqOHz9erp2bmxvz5s3j2WefJS0tjaioKNzd3UlKSmLnzp1EREQwfvz4Ove/Yg4PwBKU7Nu3b7lcIJJkC+1DmpFxSV0WeeZACm3HDyN1/gLQ6yk8+huFp0/TpIN1pcIruq+DD69Gd+Kt2JMArD14iU7+bjbruyRJkiRJjYe9o45Wnb248Fs6oC416T7oDqvOFULgFh1F+ocLAcj+YRPugwc3WF9rc9vPzLDTqFPUL2bkM23lIfL/PEHqqleJ27mX/ivyif/TAGHToP1Am92zqjKtknQ7iYyMJDY2lqysLMaOHcuUKVPo1KkTu3fvpnnz5lZdIyYmhujoaGbOnMm4ceMwGAwsXLiwUrvJkyezYcMGEhISePTRR4mKimL27NkYDIYqgxKS1Bi161GaD+biiasY7F1wNZcpBrhWYZZSXT0R3ppR3QMs22/Hnriu60mSJEmS1Hi1Dfax/FyXEq1AueBF3q5dGLOzbdavuhK3+1TSkJAQZecvexm5eA8JKTnkx3/N1Z+/xqiAVsDcYYHMXJMAuptbdka6vZ08eZJOnTrd7G5INiL/PqX6WPPuflITcwC4f0InWprO8eeTTwKg9fCg3a6daK6jRFqh3shDS/dy5E91eWXiP4ccVBTl+jNeS7UKCQlRDhw4cLO7IUmSJN0mCvP0fPbSbkwmNRbw6NthuHk5Wn3++VGjKfz9dwD8334LjwoVBm1JCFHteOS2n5lx5coVHn57BQkp6gBxRttE7LVqIEOrgYseYcTvP3iTeylJkiTd7tr2KC0DfOZgCs69w9A1VyvwGLOyyN2+/bqu38ROy9JHe+Dr5gCAxtGt6XVdUJIkSZKkRqmJsx0BnUqr+pUkBLWWW5nZGdmxsTbrV13d9sGMy5cvs+HdZyhKOsmDml94tdUxtk9w4qnudgitjv998Q39+/cnPj7+ZndVkiRJuo21KxPMuHQyk6J8Ix4jS5+EZK29vqUmAM3cmrD00RC0AnRuPtYtoJUkSZIk6ZbTNrh0XHH2UB2DGdFRYK4CmLd3H4a0up1vK7d9MANAMRpo8mc885p8BkBYSx2tgrphMCqy4ogkSZLUKLh5OeLbWk3MaTIpnD2cisfIEaWDiT17KL6UdN336drSAzdHOxBCjhEkSZIk6S+qdTdvhLmcWfK5a+RmFll9rp2fH049eqgbJhPZm7c0RBdrJQcqABoNIbk7OZRoTl7StA0RT72Dvb09Wq1WVhyRJEmSGoX2IaWJQM8cTMWueXOc+/RRdygK12JibHKfrHy9Ta4jSZIkSVLj5OhiT4sOHpbtc0fqutQk2vLzzVpqctsHMzSObugw8e2hDPqvyGfpIQPvXgkHe2dZcUSSJElqVNp2L50SmpSQSX52MR6jR1v2ZX37LYrReN33ae5hfRIwSZIkSZJuTddT1cR10CDQagEoOHLEJrND6+q2D2Y4aEExmTAqUGSAaT8U8vq8j+hvLnk3c+ZMGciQJEmSGgUXTwf827kDoChw7nAqrvf3Q+upJvEydFBFwQAAIABJREFUXLlC3p49132flwZ1BEUxXfeFJEmSJElqtFp38wF1pQmXz2SRn11s9bm6pk1x7t3bsp296Qdbd69Wt30wo4VDvqV6idAIjAoyT4YkSZLUaLXrUbrU5I8DqQh7e9yHDbPss0Ui0OHBLTBkpyVe94VsQAjRQQjxgRDiNyFErhDiihBigxCiaxVt44QQShWvGVW0HS6EOCyEKBRCJAohZgkhtFW0CxdC7BFCFAghkoUQC4QQlaauCCG6CCF+NPcxQwjxmRBCVoSRJEmSGi1ndweatzMvNVGud6mJDGbccO72JrZPcOKVfu4889IsHBwcZJ4MSZIkqdFq292nJOcnl89kkZdVhMfo0qomOT/9hCEj47rvYyrIvnrdF7GNB4B+wOfAUGAq4APsE0L0qKL9b0BYhdeqsg2EEIOAdcB+IAr4AJgFvFOh3d3AViAVGGJuMwlYXqFdcyAOcARGA88CA/j/7d15fFTV/f/x1ycrEEiI7IISEZXFXRRiqaDoj8V9xeJu3VsXWvu1VCtobbW1Wtv6dWnV4g4qWEG+4oLGpQYUtAooIMgiyCphCYGQ5fz+uHfCnclkY5LMJHk/H4/7mMy5n3vvuWcudw5nzj0HXjcNpCoiIgmsV+BRk28/r+OjJiefjKV7U7oXL1pE8bJl9Zq3mugLFhi4Xyoj/+ef/P2+uzVOhoiIJLSMrHT2PXjPryhLP9tAeu/etD7ySC+tpIStr02LXwbr3yTgCOfcA86595xzrwIjgJ3AzVHitzvnZkcs6yJi7gM+cs5d4+/zQbyGjLFm1jUQdxewGjjfOTfLOfeEf8wLzOzoQNyvgFTgdOfcTOfcJOAivIaUs2IvAhERkYbR68g9jRlrvtnC7l2ltd42uW1b2g4ZUvG+sQcCVWMGkDT4Fn40/HwAcnNzNU6GiIgktOCjJkvner+iBHtnbJkyBedco+erITjnNrmIk3HObQWWAN3ruj8z2w84EnguYtWzeA0SI/24VLxGk5ecc8HpXV4CdgNnBtLOAGY457YE8vgBsCoiTkREJKG026cVHbq3BaC81LF6UUGdts8ctedRk60zZjRq/UONGWkZcOLt8c6FiNSDvLw8zKxRxrsZOnQoZlZpeeihhxr82CIHHtUpbG747Zt3kTlyJElt2gCwe9kydv73v/HMYoPyx6I4FPg6yuqjzGyrmZX442z8NGJ9f/91QTDRObccKAL6+UkHAq2ixO0CloXi/PEzDoiM8y0M7E9ERCQh9Ty0Q8XfKxfW7VHVtkOHkJSRAUDJylXsWvhVveatOmrMaN8TklPjnQsRaYIOP/xw8vPzw5YLL7ww3tmSFqB1uzR6HLJnbvhln20gKSODdiNGVKQVvv9+PLLWWP6ON/56ZOvhB8AteD0lzgO+AZ4wszsCMaFBOaP99FQQWF9d3ObA+mw/LzXFhTGza8xsrpnN3bixbgOuiYiI1KdgY8aqBT/UqXdFUqtWtDt5WMX7xnzURI0ZKenxzoGI1EFxcXGjHMc5x+7d1U9P1a5dOwYNGhS2dO3atdptROpL7wHhs5oAYc+tFuXPbvQ81YaZnVzFjCORS14V248DxgA/d84tDa5zzt3pnPunc+5959xrzrlzgX8Dt5tZ29AuQuHRdh/l7/qKC+Oc+4dzboBzbkCnTp2qChMREWlwXXtlkt4mBYDCgmI2f7+jTttnnnpqxd/b3ngDV944s7urMUNE4mLmzJnk5ubSunVrsrKyOOuss1i8eHFYzNChQxk8eDDTp0/nqKOOIj09nUceeQSAjRs3MmbMGDIzM2nfvj2XXnopW7ZsiXYopk6dyqBBg2jTpg3t27fn/PPPZ9WqVWExOTk5XHzxxTz11FP06dOHtLQ0ZjTyIEYiddHryE4k+Y+abFixjW2bdpIx8DhCU53snD+fsu3b45nFqnwM9K3FcmnkhmZ2Hd5AnXc4556q5fFexHtc5DD/fWiWlmg9JtoH1lcXlx1YX4DXkFFTnIiISEJKSk5iv357vsZWzN9Up+0zcnNJ7tCBNsceS8frroPS2g8iGgs1ZohIo5s5cyannnoqbdu2ZfLkyTz66KMsWLCAwYMHs2bNmrDYJUuWcNNNN3HjjTfy5ptvMmyY143tnHPO4fXXX+cPf/gDkydPJiUlhRtvvLHSsR577DHOPfdc+vXrxyuvvMLjjz/OggULGDJkCNsj/qP33nvv8eCDDzJ+/HhmzpzJ4YcfXu15fP7552RlZZGamsrhhx/Ok08+GWPJiNReq4zUsIrH0nkbSG7fnlb9/CEayssp+uSTOOWuas65IufcolosYS2OZnYJ8AjwgHPu93U4ZGTPiYX+a/+wILMcoA0Qeth3GVAcJa4V0CsU55wrAlZExvn6BfYnIiKSsMLGzVhQt3EzLDWV3m+9Sc9nnyH7wtFYWlp9Zy+qlEY5iojUu6/79I13Fir0XRRtDL6q3XHHHfTq1Ys33niDlBTvNpSbm8vBBx/MAw88wIMPPlgRu2nTJt566y2ODE07Cbz99tt89NFHvPjiixVjVAwfPpyRI0eyevXqirjCwkJuu+02rrjiCp56as+PuAMHDuTggw/mySef5JZbbqlILygoYN68ebV6VOSEE07goosu4uCDD2bLli0888wzXHXVVaxdu5Y77rijxu1F6kPvAZ0rKhxL523g6OE9ycgdxK6F3v/Xd+TPpt2wYdXtokkws7OBfwFPOOdurePmY/CmcZ0P4JxbZWZf4E2d+kQg7mKgBHjDj9ttZjPxpmGd4JwL/cx0HpAOBOe/nQZcZmZZ/kwrmNlgoGdEnIiISELav9+exox1325j144SWmXUfmzJ0CCgjUk9M0SkUe3YsYPPPvuM0aNHVzRkABxwwAH86Ec/4v2IQQtzcnLCGjIA8vPzSU5O5txzzw1Ljxx8Mz8/n23btnHRRRdRWlpasfTo0YM+ffrwwQcfhMXXZcyLu+++m6uvvpohQ4Zw5plnMmXKFM466yx+//vfU1hYWKt9iMTqgCM6kZTidTzYuGo7WzYU0SYwtfiO/Px4Za3emNkJeI+KfAlMNLNBgeWoQNyPzWyGmf3UzIaZ2Tlm9hreYKB3OeeCDwD/BhhiZo+b2VAzGwvcAfzVObcuEDcB2A94yd/nT4G/Aa845+YF4u4HyoBpZjbCzEYDzwOfAK/Wc5GIiIjUuzaZaXTu2Q4AV+747uvEf0pSjRki0qgKCgpwztGtW7dK67p27crmzeE3zmhxa9euJTs7m9TU8NbiLl26hL3fsMEbFPHkk08mNTU1bJk/fz4//BDehS7aseriJz/5Cbt27WL+/Pkx7UekttJbp4T9krJ07gbaHH005v/b2L1sGSXrN8Qre/XlJLyeEEcB/wHyA0uwoWAtXr3mbuD/gGeATsAY59wfgzt0zv0fXg+LQcCbwFi8sTh+HRH3X2A40A2Y4cc8A1wWEbcGOBHYDUwBHgPeA0Y55xpnFDQREZEYRc5qkuj0mIlIE1XXRzsSRXZ2NmbGunXrKq1bt24dHTp0CEszqzwZQLdu3SgoKKCkpCSsQWP9+vVhcaF9TZw4kf79Kz/O3q5duxqPVRehaaxi3Y9IXRw0oDMrvvQG6lo6bz0DRuXQ+uijKZozB4Ci2flknXlmPLMYE+fcBLweEjXFLQVG1mG/U4GptYj7AMitRdx84JTaHl9ERCTR9DysI5/OWAHAyoU/4ModlpS49Vr1zBCRRpWRkcExxxzDyy+/TFlZWUX6ypUr+fjjjxkSmFqyKrm5uZSVlTFlypSw9EmTJoW9P/7442nXrh1Lly5lwIABlZZDDjmkfk7K98ILL9C6dWsOO+ywmoNF6knO4R1JTvW+zn9Ys4PNa3eQEfaoSWJO0SoiIiKJpfP+7WjdzvuhcOf2EjasSshZ0SqoZ4aINLrf/e53nHrqqZx22mnccMMNFBYWMn78eLKysvjlL39Z4/annHIKgwcP5tprr2XTpk0cdNBBTJ48mQULFoTFZWZmcv/99/Ozn/2MjRs3MnLkSLKyslizZg3vv/8+Q4cOZcyYMXXO/4cffsh9993HOeecQ05ODlu3buXpp59m2rRp3HfffWTEYQAkabnSWqWQc2gHln2+EfAGAj0sdxAbH/LW78jPxzmnHkMiIiJSLUsy9u/fgcWzvR7UKxf8QJeczDjnqmrqmSEijW7EiBHMmDGDLVu2cMEFF3DdddfRt29fPvroI/bdd99a7WPq1KmMGjWKcePGMXr0aEpLS3n44YcrxV177bVMmzaNxYsXc8kllzBy5EjGjx9PaWlppYFFa6tbt26Ul5dz5513MmrUKC699FI2btzICy+8wG233bZX+xSJxYHHdK74e+nc9aT360eS/xhV6fr17F6+Ik45ExERkaYklilaG5t6ZohIXIwYMYIRI0ZUG5OXl1fluk6dOvHiiy9WSg+NWxE0atQoRo0aVe2xVqxYUe36oN69e/PGG2/UOl6koeUc1pGUtCRKd5dTsK6Igg3FtDnuOApnzQJgR/7HpPc6IM65FBERkUS3X999sCTDlTs2rNxG0bbdtMlMi3e2olLPDBERkSYuNT2ZnMM7Vrz/Zu76sHEzimZr3AwRERGpWauMVLr28h8tcbDqq8TtnaHGDBERkWbgoGP2TE28dO4G2gwaWPF+x5xPcIEBd0VERESq0lQeNVFjhoiISDOw/6H7kJqeDMDWjTvZltqZlM7eWBrl27ax66uv4pk9ERERaSJ6Hrqnt+d3X22mvKw8jrmpmhozREREmoGU1PBHTVYvKiAjd1DF+x0f58cjWyIiItLEdOieQUb7dACKi0pZt3xbnHMUXaM2ZpjZeWY2xcxWmtlOM1tsZveaWbtAzDAze87Mlvkxy8zsUTPrHGV/rczsfjNb68fmm9kJjXlOIiIiiaJHn+yKv9cu20qbwLgZO/LVmCEiIiI1M7Mm8ahJY/fMuBUoA34DjAAeBa4H3jazUF6uAzoA9/gx9wJnALPNrG3E/p4ErgbuBE4D1gJvmtnezbcoIiLShHXtlVXx97pvt9Jm0J6eGTs/+4zyXbvikS0RERFpYsIaM+YnZmNGY0/NerpzbmPg/ftmthl4GhgKvAvcECVmCfA+cAHwFICZHQGMAa50zv3LT3sfWAjcjdcAIiIi0mJkd2lDekYKxTtK2VVYQpFlktarF7u//Ra3ezc7P/uMjOOPj3c2RUREJMH16JNNUrJRXub4YU0hhQW7aJvdKt7ZCtOoPTMiGilCPvVfu9c2xncGUAJMDuy/FJgEDDez9JgzLCIi0oRYkoX1zli7bCsZgd4ZO/I1RauIiIjULK1VCvse1L7ifSI+apIIA4AO8V+/rmNMf2C5c64oInYhkAb0rp/siYiINB2Rj5pkHK9xM0RERKTuEn3cjLg2ZphZd7xHQt5xzs2tIqYd8BBeQ8a/A6v2AQqibLI5sF5ERKRF6RbRM6PNccdBkvd1v2vhQsq2bo1X1kRERKQJCTZmrF5UQFlJYk3RGrfGDH8wz9eAUuCKKmJSgBfxHi+50H+MpGI14KJtVotjX2Nmc81s7saN0Z5qEZGmKC8vDzMjLy+vUY5XUFDALbfcwv777096ejo9evTg8ssvb5Rji1Sl8wGZWJL3VViwdgclya1pdeih3krn2DFnThxzJyIiIk1F+y5tyOzojZNRUlzG98u2xDlH4eLSmGFmrYBpQC9guHNudZSYJLyBQU8GznLOfRkRspnovS+yA+ujcs79wzk3wDk3oFOnTntzCiLSwhUUFDB48GDeeecd7rnnHt5++23+/Oc/065du5o3FmlAqWnJdNpvz+Rf65dvIyMwRWvRbI2bISIiIjUzM3oe1rHifaLNatLYs5lgZqnAFOA44GTn3PwqQh8DRgPnOedmRVm/EDjbzNpEjJvRD9gNLK3HbItIgiguLiY9veHH93XOUVJSQlpaWtT148aNo7CwkPnz55OZmVmRfuGFFzZ43kRq0rVXFhtWbgdg7bItHJY7iB8efxyAHR9r3AwRERGpnZ6HdmD+e17fg5ULfmDw+QfFOUd7NGrPDL+3xfPAMOBM51zUn4fM7AHgKuAK59y/o8Xg9exIBc4PbJeC1wDylnOuuD7zLiL1a+bMmeTm5tK6dWuysrI466yzWLx4cVjM0KFDGTx4MNOnT+eoo44iPT2dRx55BICNGzcyZswYMjMzad++PZdeeilbtkTv+jZ16lQGDRpEmzZtaN++Peeffz6rVq0Ki8nJyeHiiy/mqaeeok+fPqSlpTFjxoyo+9uxYwfPPPMMV111VVhDhkii6Hpg+CCgrY86CvMbAXevWEHJ2rXxypqIiIg0Id0Pak9KqtdssGV9EVs3Rs6/ET+N/ZjJ/+I1PvwZ2GFmgwJLDwAzuw34BfAv4JuImANDO3LO/RdvWtaHzOwqMxuGNy3rAcD4Rj4vEamDmTNncuqpp9K2bVsmT57Mo48+yoIFCxg8eDBr1qwJi12yZAk33XQTN954I2+++SbDhg0D4JxzzuH111/nD3/4A5MnTyYlJYUbb7yx0rEee+wxzj33XPr168crr7zC448/zoIFCxgyZAjbt28Pi33vvfd48MEHGT9+PDNnzuTwww+Pmv958+axc+dOunTpwnnnnUfr1q1p27YtZ511FsuXL6+nUhLZe90CjRnrl2+DlFTaHHN0RZqmaBUREZHaSElLpvsh2RXvVy+KNgdHfDT2YyYj/dfb/SXoLmBCIOZKfwl6Grg88P4K4PfAPUB74AtghHPus3rLsUiC+t/r3o13Fir87LGT6hR/xx130KtXL9544w1SUrzbUG5uLgcffDAPPPAADz74YEXspk2beOuttzjyyCMr0t5++20++ugjXnzxxYrHOoYPH87IkSNZvXrPEDyFhYXcdtttXHHFFTz11FMV6QMHDuTggw/mySef5JZbbqlILygoYN68eXTt2rXa/H///fcA3HrrrYwcOZJp06axceNGxo0bx9ChQ1mwYIHGzpC4apvdirbZ6RQWFFO6u5wf1uygTW5uxSMmO2bn0/6cs+OcSxEREWkKevTJrpiadfXiAvr/uHucc+Rp1J4Zzrkc55xVsUzwY4ZWE3N5xP52Oud+4Zzr6pxr5Zwb6JzLa8xzEpG62bFjB5999hmjR4+uaMgAOOCAA/jRj37E+++/Hxafk5MT1pABkJ+fT3JyMueee25YeuR4Ffn5+Wzbto2LLrqI0tLSiqVHjx706dOHDz74ICx+0KBBNTZkAJSXl1fkedKkSZxyyimMGTOGl156iVWrVvHcc8/VXBAiDSz4qMnaZVvIGLRnENAd+fk4F21CMBEREZFwwZ4ZaxYXJEwdIm5Ts4pIy1RQ4N0Au3XrVmld165d2bw5fCKiaHFr164lOzub1NTUsPQuXbqEvd+wYQMAJ598MqmpqWHL/Pnz+eGH8BGZox0rmg4dOlTs12zPbNADBw4kMzOTzz//vFb7EWlIwUdN1i3bSqt+fUnK8tLKNm5i97Jl8cqaiIiINCEdu7clPcP7EXLn9hI2f78jzjnyNPpsJiJSP+r6aEeiyM7OxsxYt25dpXXr1q2raCgICTYWhHTr1o2CggJKSkrCGjTWr18fFhfa18SJE+nfv3+l/UQ+ChLtWNGE9lVVfFKS2okl/rr2CvTM+HYrlpxMxnHHsf3ttwFvVpP03r3jlT0RERFpIizJ6HFwNss+3wh4j5p06N62hq0anmrcItKoMjIyOOaYY3j55ZcpKyurSF+5ciUff/wxQ4YMqXEfubm5lJWVMWXKlLD0SZMmhb0//vjjadeuHUuXLmXAgAGVlkMOOWSvzqFHjx4MGDCAt956K6ybXeixlmOPPXav9itSnzr0aEtKmvc1X7i5mMKCXWQcH/6oiYiIiEhtRD5qkgjUmCEije53v/sd33zzDaeddhrTp0/nxRdf5JRTTiErK4tf/vKXNW5/yimnMHjwYK699loefvhh3nzzTa688koWLFgQFpeZmcn999/Pvffey3XXXcdrr71GXl4ezz//PNdccw0vvPDCXp/Dfffdx1dffcV5553HG2+8wTPPPMMFF1xAnz59GDNmzF7vV6S+JCcn0SVnz9TBa5dtpc2gQRXviz75BFdaGo+s1YmZtTOzl8xsqZntMLMtZjbHzC6uIv5qM1tkZsVmttjMrqsi7iwz+9zMdpnZSjO7w8ySo8QNNrOPzWynma0zswfNrHWUuP5m9paZFZrZD2b2LzPbJ/YSEBERib8efQKNGUu2UF4e/3Ez1JghIo1uxIgRzJgxgy1btnDBBRdw3XXX0bdvXz766CP23XffWu1j6tSpjBo1inHjxjF69GhKS0t5+OGHK8Vde+21TJs2jcWLF3PJJZcwcuRIxo8fT2lpaaWBReti2LBhTJ8+nVWrVnH22WczduxYTjzxRPLy8mjdutL/c0TiIjgI6Lpvt5KWk0OKPzZM+Y4d7Jw/P15Zq4s0oBS4FzgDGAMsAp41s7HBQDO7GngcmAKMAF4GHjGz6yPihvsxn+LNovZX4A7gDxFxhwNvAxuA0/yYK4CJEXH7AnlAa+A84GfAycDrZqa6loiINHntu7QhIysNgN07S9n03fY45wgsUUYijZcBAwa4uXPnxjsbItX6+uuv6du3b7yzIfVEn6c0lhXzNzHjf78EoHPPdpw/7li+H/cbtr76KgCdbr6JjtdfH3VbM5vnnBvQaJmtIzPLB9o65w7z36cA3wNvOOcuC8Q9hdcI0s05V+KnfQ5sc84NCcTdiddYsb9zbp2f9ipwKNAvsO2leFPFHxOaCt7M/oLXyJHjnNvip50AvA+c65ybWt25qC4iIiJNwdv/WsiSOd4YdblnH8jRw3s2+DGrq4/o1wIREZFmKjgI6KbvCinZXRY+bsbHTXrcjB+AksD7XKATEDk38rNAB2AwgJntBxxZRVwqXk8NzCwVr3fHS6GGDN9LwG7gzEDaGcCMUEMGgHPuA2BVRJyIiEiT1SPBxs1QY4aIiEgz1SojleyubQAoL3dsWLGNNgMHVqzf+d//Ul5UFK/s1Yl5Usysg5ldAwwHHgqEhKYsWhCx6UL/tV91cc655UBRIO5AoFWUuF3AslCcP37GAVGOGzp2vyjpIiIiTU5wENDvl26hrLQ8jrlRY4aIiEiz1i1i3IzUzp1JP8ibktWVlFA077N4Za2ufobXE2MT8DBws3PumcD60GCbkT8VbY5YX1VcKK02cZsD67MBq0VcGDO7xszmmtncjRs3RgsRERFJKJkdWpPZsRUApbvLWb9iW1zzo8YMERGRZixsENBlWwFokxt41GR24z5qYmYnm5mrxZIXselk4Fi8x0CeAP5uZtcGd+2/1jQYWHVx1oBxYZxz/3DODXDODejUqVNVYSIiIgklkR41UWOGiIhIMxYcN2Ptt1txzpExKNCYkd/o42Z8DPStxXJpcCPn3Ebn3Fzn3Ezn3A14Y1z82R/bAir3wCDi/eYa4gDa1zIuO7C+AK8ho6Y4ERGRJq97YIrW1Yvi25iREteji4iISINq36UNrTJS2bWjhOIdpWxZX0TmccdCcjKUlVH89SJKCwpIyc6ueWf1wDlXhDe1aqzmApcBXYDV7Bkboz+wNhAXGrPiK/81GFfRkmNmOUCbQNwyoJg9Y2yE4loBvfCmfcU5V2RmKyLjAsd+vy4nJSIiksi6H7ynvrBu+VZKdpeRmpYcl7yoZ4aIiEgzZmZhj5qsXbaV5LZtaX3YYV6CcxTNmROn3MVkCFAIbPDf5+ONp3FRRNzFeL0j/gPgnFsFfFFFXAnwhh+3G5gJXOBP+xpyHpAOTAukTQNONbOKgjazwUDPiDgREZEmLSMrnexuGQCUl7qKR1jjQY0ZIiIizVzXXpkVf6/71qt0hE3Rmj+70fNUW2Z2rZn9y8wuMrMhZnaOmU3Ca1S4x290wJ8+9bfAZWZ2j5kNNbO7gSuBO0Nxvt8AQ8zscT9uLHAH8Ffn3LpA3ARgP+AlMxtmZj8F/ga84pybF4i7HygDppnZCDMbDTwPfAK8Wv+lIiIiEj/BcTNWx3HcDDVmiIiINHPdog0COmhQRVocxs2oi/l4j5L8GXgL+DvQETjNOffHYKBz7jHgeuAC4E3gJ8DPnXP/GxH3f3iNIYP8uLHAH4BfR8T9F28K2G7ADD/mGbzHW4Jxa4ATgd3AFOAx4D1glHMuvvPWiYiI1LNEGQRUY2aIiIg0c517ZpKUZJSXOwrWFbGrsITWRx6JtW6N27mTklWr2L16DWk9usc7q5U45z4GRtUh/nHg8VrETQWm1iLuAyC3FnHzgVNqk0cREZGmbN+D23vzdTnYsGIbxTtLSW/d+E0L6pkhIgll6NChDB06tE7b5OXlMWHCBMrL9QOoSDQpacl03L9dxft1y7eSlJZGm2OOqUgrauQpWkVERKRpapWRSqf9vHqFc7D2my1xyYcaM0SkycvLy+Ouu+5SY4ZINbr1qvyoSUZuYNyMj9WYISIiIrXTPQHGzVBjhoiISAsQOaMJQEZuYNyM2bNxahAUERGRWkiEQUDVmCEicTNp0iT69OlDeno6/fv359VXwwf937VrF2PHjuXQQw+lbdu2dO3aldNPP51FixZVxEyYMIG77roLgNTUVMwMM6tYP378eI4++miysrLo2LEjJ510ErNnJ+7MDSINJTgI6IYV2ygrKye9Tx+S27cHoGzzZoq/+SZe2RMREZEmpFvvLJKSvDr3D6sL2Vm4u4Yt6p8aM0RaqPz8fO69917y4zSLwTvvvMOYMWM46KCDmDp1Kr/61a+4+eabWbx4cUVMcXEx27dv54477mDGjBk8+uij7Nq1i0GDBrFunTd74lVXXcVPf/pTAD766CPy8/PDzmnNmjWMHTuWf//730ycOJHOnTtzwgkn8OWXXzbuCYvEWUb7dNrt0wqA0pJyflhdiCUlNaVZTURERCRBpLVKoXPOnqnf1yxu/HHEyl5MAAAgAElEQVQzNJuJSAuUn5/PsGHD2L17N2lpacyaNYvc3BoH669X48ePp0+fPrz22mskJXntqn379mXQoEEccsghAGRlZfHEE09UbFNWVsbw4cPp0qULL774ImPHjqVHjx706NEDgIEDB5KSEn5bi9x+xIgR9O/fnyeffJK//vWvDX2aIgml64FZbN+8C/AeNencM5OM3Fy2z5wJeI0ZHS6/PI45FBERkaaiR59s1n3rPbq6ZnEBvY/p3KjHV88MkRYoLy+P3bt3U1ZWxu7du8nLy2vU45eVlfHpp59y3nnnVTRkgNcYkZOTExb70ksvMXDgQNq3b09KSgoZGRkUFhaG9eCozjvvvMOJJ55Ihw4dSElJITU1lSVLltR6e5HmpGu0QUCP39OQWfTpXFxJSaPnS0RERJqeeA8CqsYMkRZo6NChpKWlkZycTFpaWp2nQo3Vpk2bKCkpoUuXLpXWBdOmT5/O6NGj6du3Ly+88AJz5szh008/pVOnTuzatavG43z22WeMGjWKtm3b8uSTTzJ79mw+/fRTjjjiiFptL9LcBMfNCP2SkrbffqR27w6AKypipx7BEhERkVro2iuT5BSvSWHL+iIKC4ob9fh6zESkBcrNzWXWrFnk5eUxdOjQRn/EpGPHjqSmprJ+/fpK69avX0/Pnj0Bb4DQ3r17M3HixIr1JSUlbN68uVbHmTJlCikpKUydOpXU1NSK9IKCAtr7gx6KtCQdumeQkp5MaXEZhQXFbN+8i3b7tCLj+Fy2vPwKADvyZ9PmmGPinFMRERFJdCmpyXQ9MIs1fq+MNUsKOGRg10Y7vnpmiLRQubm5jBs3rtEbMgCSk5M59thjeeWVVygPTAU5Z84cVqxYUfG+qKio0hgYzz77LGVlZWFp6enpAOzcuTMsvaioiOTk5LDZTd59911WrVpVX6ci0qQkJSfRJTBYV6h3hgYBFRERkb0Rzyla1ZghInFx1113sWjRIs466yxmzJjBxIkTueCCC+jadU9r7ogRI1i0aBFjx45l1qxZ/OlPf+LOO++s1KuiX79+ADzwwAPMmTOHuXPnVmxfWFjI5ZdfzqxZs3j00Ue5+OKL6e53qRdpiYKPmqwNjZsRaMzY+cUXlO/Y0ej5EhERkaanR59AY8aizTjnGu3YaswQkbg4+eSTef7551m8eDHnnHMO999/Pw899FDFTCYAV199NbfffjuTJ0/m9NNPZ8aMGUyfPp2srKywfZ122mnccMMNPPLII+Tm5nLssccCMHz4cP72t7/xn//8h9NOO42nnnqKZ555ht69ezfquYokkq4HVh4ENKVDB9JD//ZKSynyGwRFREREqtOpZztS05MBKNxczLZNjTcunTVmy0kiGjBggJurSpskuK+//pq+ffvGOxtST/R5SjwVF5XwxC8+BMCSjKv/cgKp6cmsv++PbPbHp9nnssvo+ptx85xzA+KY1RZDdREREWnKXn/4C1Yu+AGAEy/uQ7/B+9bbvs2syvqIemaIiIi0IOltUtln3wwAXLlj/YptAGTkBsbNmD07LnkTERGRpideU7SqMUNERKSFifaoSZsBA8AfcLd48eK45EtERESanshBQBvr6Q9NzSoiItLCdOuVxVcffg/smdEkKSOD1kccwc558+KZNREREWliOvZoy4FHd6LLAVlhDRsNTY0ZIiIiLUzXXoGeGd9uxZU7LMnIyM1VY4aIiIjUiSUZI645rNGPq8dMREREWpiszq1p3S4VgOKiUgrWFQHh42aIiIiIJDI1Zog0ES195qHmQp+jJAIzq9Q7A6D14YeT1KZNvLIlIiIiUmtqzBBpAlJTU9m5c2e8syH1YOfOnaSmpsY7GyJhjRlr/cYMS02l9bGajVVEREQSnxozRJqAzp07s2bNGoqKivTLfhPlnKOoqIg1a9bQuXPneGdHJOqMJgAZubnxyI6IiIhInWgAUJEmIDMzE4Dvv/+ekpKSOOdG9lZqaipdunSp+DxF4qnz/u1ISjbKyxxb1hexs3A3rdumkZF7fLyzJiIiIlIjNWaINBGZmZn6T7CI1JuUtGQ67d+O9cu3AbDu220ccHhH0g8+iOQOHeKcOxEREZHq6TETERGRFiraoyZmRsYgzWoiIiIiia1RGzPM7Dwzm2JmK81sp5ktNrN7zaxdRFy2mT1hZpvMbIeZvWNmlSauNbNWZna/ma3195dvZic03hmJiIg0Xd2izGgCmqJVREREEl9j98y4FSgDfgOMAB4FrgfeNrMkADMzYJq//kbgXCAVeM/MekTs70ngauBO4DRgLfCmmR3Z8KciIiLStAV7ZqxfsY2y0nJAg4CKiIhI4mvsMTNOd85tDLx/38w2A08DQ4F3gTOAwcBJzrn3AMwsH1gO/A9wk592BDAGuNI59y8/7X1gIXC3vx8RERGpQkZWOpkdW7Ft0y7KSsrZ9F0hXQ7IJLV793hnTURERKRajdozI6IhI+RT/zVUczoD+D7UkOFvtxWYDpwZ2O4MoASYHIgrBSYBw80svR6zLiIi0ix1reJRExEREZFElggDgA7xX7/2X/sDC6LELQT2N7O2gbjlzrmiKHFpQO/6zqiIiEhzE2zMWLtsSxxzIiIiIlJ7cZ2a1cy64z0S8o5zbq6fvA+wIkr4Zv81Gyj04wqqidunmuNeA1zjvy02s2iNJ7JHR2BTvDOR4FRGNVMZ1UxlVDOVUc1iK6NrK/7qWQ95kVqYN2/eJjNbWc+71b+V2KkMY6cyjJ3KMHYqw9jFswyrrI/ErTHD72HxGlAKXBFcBbhom0R5X5u4Spxz/wD+4edjrnNuQG3y3FKpjGqmMqqZyqhmKqOaqYxqpjJqepxznep7n7oOYqcyjJ3KMHYqw9ipDGOXqGUYl8dMzKwV3owlvYDhzrnVgdWbid6rItt/Lahl3OYo60RERERERESkiWv0xgwzSwWmAMcBo5xz8yNCFuKNhxGpH7DKOVcYiDvAzNpEidsNLK2/XIuIiIiIiIhIomjUxgwzSwKeB4YBZzrnZkcJmwZ0N7Mhge0ygdP9dcG4VOD8QFwKMBp4yzlXXMts/aNOJ9EyqYxqpjKqmcqoZiqjmqmMaqYyEtB1UB9UhrFTGcZOZRg7lWHsErIMzblow0400MHMHgWuA34PvB6xerVzbrXf4PERsB/wK7zHSsYBhwNHOOe+C+xvEjDcj1sOXA+cBhzvnPusgU9HREREREREROKgsRszVlD1aKR3Oecm+HH7AH8GzgJaAfnAL5xzX0TsrzVew8gYoD3wBXCbcy6vAbIvIiIiIiIiIgmgURszRERERERERERiFZfZTBqame1nZq+Y2VYz22ZmU81s/1pu28rM7jeztWa208zyzeyEhs5zY9vbMjKzAWb2DzNbZGZFZrbKzJ43swMaI9+NKZbrKGI/48zMmdlHDZHPeIq1jMysr5m9bGab/H9vi83s5obMc2OL8X60v5k97f87KzKzJWZ2j5llNHS+G5OZ9TCzv/v32yL/30tOLbdtKffsvSqjlnTPbglUv4ldjGXoqliObOh8JxLds2MXYxnqOgTM7Dwzm2JmKwN1yHvNrF0tttV1SMxlmBDXYbNrzDBvdpN3gT7AZcAlwEHAe7X8D8CTwNXAnXjjb6wF3mxON4gYy+hCvNlm/gaMBH4NHA3MNbP9GizTjawerqPQfnoBtwMbGiKf8RRrGZnZAGAOkA5cBYwCHgCSGyrPjS2WMvLXvwOcAPwWOBV4Avgl8FQDZjseegMX4I2R9GEdt23292zf3pZRi7hntwSq38Sunr7bJwK5EcuSes9sYtM9O3axlCHoOgS4FSgDfgOMAB7FGz/xbfPGYKyOrkNPLGUIiXAdOuea1QLcjPeh9A6kHQCU4o27Ud22RwAOuCKQlgIsBqbF+9wSpIw6RUnrCZQDd8f73BKhjCL28ybwOJAHfBTv80qUMsJrSF0IvBrv80jgMvp//v3o/0Wk3+dv3ybe51eP5ZQU+Psq/7xzarFdi7hnx1hGLeKe3RIW1W/iW4Z+rAPuifd5xHvRPTt+ZejH6zp0VX6/XeqXz0nVbKfrMMYy9OMS4jpsdj0zgDOA2c65paEE59xy4D/AmbXYtgSYHNi2FJgEDDez9PrPblzsdRk55zZGSVsJbAS613M+4ymW6wgAMxuD9wvouAbJYfzFUkZDgX7Agw2Wu8QQSxml+a/bItK34DUGWX1lMt6cc+V7uWlLuWfvdRm1oHt2S6D6Texi/m4X3bPrQwxlKL5o32/Ap/5rdd9vug59MZRhwmiOjRn9gQVR0hfi/eeppm2XO+eKomybhtclrDmIpYwqMbO+QGfg6xjzlUhiKiMzywb+AvyPc25zPectUcRSRoP911ZmNtvMSsxsg5n9zbxZipqLWMroHeAb4I9m1s/M2prZSXi/LD7mnNtRv1ltklrKPbteNdN7dkug+k3s6qP+c72ZFfvjHLxrZj+uv+w1e7oO64+uw+iG+K/Vfb/pOqxebcowJO7XYXNszNgH7/mzSJuB7Bi2Da1vDmIpozBmlgI8hvcr35OxZy1hxFpG9+M9MzaxHvOUaGIpo33918nAW8ApwJ/wulq+UF8ZTAB7XUbOuV14jT6hR3K2A7OA14Gf1282m6yWcs+uN834nt0SqH4Tu1i/258DbgBOBq4BOgDvmtnQ+spgM6frsH7oOozCzLoDdwPvOOfmVhOq67AKdShDSJDrMKUxD9aIos03W5su2RbDtk1NfZ3nw8DxwKnOuWg3hqZsr8rIb5W8FDja+Q+VNWN7ex2FGlKfc87d6f+dZ2bJwH1m1s8591W95DD+9vY6aoXX2NMZb5C6VcBxeINVleIN0NTStaR7dn1pzvfslkD1m9jtdTk45y4JvP3QzF7D6+lxD3t6HErVdB3WA12HlZlZW+A1vPrRFTWFo+uwkjqWYcJch82xZ0YB0VvUsoneChe0uZptQ+ubg1jKqIKZ3YvXEnelc+6tespbooiljB7H+8VztZm1N7P2eA2Hyf775vIsXixl9IP/+nZEeug6ai6jScdSRj/FG1tklHPuOefcB865P+PNZnKdmR1RrzltmlrKPbteNPN7dkug+k3s6qX+E+Kc2w7MAI6NMV8tha7DBtDSr0P/x59pQC9guHNudQ2b6DqMsBdlWEm8rsPm2JixEO9ZqEj9gJp+6V0IHOBP3RW57W5gaeVNmqRYyggAM7sdb4q/m51zz9Zj3hJFLGXUF7gOr2IUWn4EDPL/bi6/qMf6bw0qt4yHWsWby8BYsZTRYUCBc25ZRPon/mvfGPPWHLSUe3bMWsA9uyVQ/SZ2Mdd/oqjqV16pTNdhw2mR16GZpQJT8HqujnLOza/FZroOA/ayDKvcHY18HTbHxoxpwCAz6xVKMLMcvP9MTqvFtqnA+YFtU4DRwFvOueL6zmycxFJGmNlNeF2IbnfO/b2B8hhvsZTRiVGWL/C6Xp0IvFL/2Y2LWMroDaAYb07roOH+a03P6TUVsZTROiDbzCIHohrov66ppzw2ZS3lnh2TFnLPbglUv4ldTPWfSGaWCZwKzKmn/DV3ug4bQEu9Ds0sCXgeGAac6ZybXctNdR36YijDaPuKz3UY77lh63sBMvBa1ObjTbN1Bt5/JL8F2gbieuI9E3RnxPaT8H49vwrvg30F2IU3/kHczy/eZQRciPer+Rt4PQ2CS794n1silFEV+8sDPor3eSVSGQHj/fQ/4A0e9GtgJzAx3ueWCGUE5OBNy7oEuAyvIexXftpcAnPUN4cFOM9fHsVr1b/efz+khuuo2d+zYymjlnLPbglLPdxzW8y/lYYoQ+BW4J/AGLxHAC/z97Mb+HG8zy0OZal7dhzKUNdhWPmFyu2eKN9vPXQdNlwZJtJ1GPdCbKAPZn+87jLb8GYA+DeQExGT4394EyLSWwMP4v0quguvdWlovM8pUcoIb3YOV8WSF+/zSoQyqmJfeTSzxoxYywivK9ov8CqWu4GVeCMop8b7vBKojPoBLwHf4TX0LAH+DGTH+7waoJyqva+09Hv23pZRS7pnt4QlxvtJi/m30hBlCJwO/AfYBJTgjf00DTgu3ucUp3LUPTsOZajrMKz8VlRThhN0HTZcGSbSdWh+hkREREREREREmoTmOGaGiIiIiIiIiDRjaswQERERERERkSZFjRkiIiIiIiIi0qSoMUNEREREREREmhQ1ZoiIiIiIiIhIk6LGDBERERERERFpUtSYIY3OzC43M2dmW8wsO2Jdir9uQpyyt9cC55UTSFthZhPjmYfmzsx+aWZfmpn57w82s7/6aYVmttbMppnZEVVsf7WZLTKzYjNbbGbXRYk53cxeMLMlZlZuZnm1yFd7M1vnfx4n1yI+z4+NtswMxOVUE9e+Fsc5z8ymmNlKM9vpn/O9ZtYuSmy2mT1hZpvMbIeZvWNmh0XEDDCzf/hlWGRmq8zseTM7IMr+ksxsnP/vYpeZfWFm50bEtPY/s/NrOhcRkVioPtK4eWjuVB9pUvWRFVXk+6xAjOojTUBKvDMgLVoWcBvw63hnpAGdDWyLdyaaK//L8jfAtc455yf/P+BE4GngM6A98D/AHDP7kXNuXmD7q4HHgXuBd4BhwCNmZs65RwOHOgs4EpgNtKpl9v4IuBqj9rgByIxIywUeBKZFib83Svr2WhznVmAVXrmtBo4CJgAnmtnxzrlyAL8yNg04ALgRKADGAe+Z2ZHOudX+/i4E+gN/AxYC3YHfAnP9uO8Cx/6df/zbgXn+ti+b2WnOuf8DcM7tNLM/Afea2b+dcyW1OCcRkVioPiIxUX2kydVHAN70jxe0OPSH6iNNhHNOi5ZGXYDL8W6qbwI7gK6BdSn+ugn1dKz0OJxXTgKUbdzy0JifD/BLYB2QHEjrCFhEXBbel98zgbQUYAPwdETsU8AmIDWQlhT4+yMgr4Z8/ci/tq/0P4+T9/L8ngSKgX0CaTn+Pq/ay312ipJ2qb/PkwJpZ/ppJ0aU42bgbzXsrydQDtwdSOvsn8tdEbGzgC8j0rL92AvifY1q0aKl+S6qjzTvPDTm56P6yF7tMy71ET99BfBcLfKo+kiCL3rMROLpHv/19poCzew4v0tZod+9bJaZHRcRM9HMVptZrpl9bGY7gT/561aY2XNmdonfjW2nmX1oZgeZWYaZPW5mP5jZejN7wMxSAvttZWZ/MbMF/vHXmdl0M+tTi3xXdOusoTteXmCbFPO64oe6Gn7v56lVxL57mdkMvyvdRjP7K5Beizw97J9nakR6WzPbbmb3BtI6mtmjZrbGz8siM7smYrtOfvkt8fPynXldILtHxE3wz/VQM3vTzAqBl/x1w/3PbKtfxovN7M6azgW4CpjsnCsLJTjnNjn/GyiQthVYgtdKH5ILdAKei9jns0AHYHBg+/Ja5CV0nql4v67cB3xb2+2i7Kc1cD4w3Tm3eW/3E8k5tzFK8qf+a7B8zgC+d869F9h2KzAdr2JR5f6ccyuBjRH7Gw6kUbm8nwMOC3YDdc4V4P3n4qpanJKISKxUH1F9RPWRqvfT3Oojdcmj6iMJTo0ZEk9rgYeBa8ysZ1VBZnY48D5e6+jleK22mcD7Vvm5wyxgEvAiMBJ4IbDuBLyuc7cBlwEHAlOA5/G6w10I/AP4BRD8gkwH2uFVdk4Frsfr2jfbzLrW8XxzI5ar8FqMvw7EPQfc4ef9VLzuez/18xkqkzTgbbwueT/DK5cD/O1q8gjer+RnR6RfBGQA//SPkQn8x8/DBP91OvComd0Y2G4fYBdel78RwK+Ag4D/RFZ4fK/hfZ5nAH8xs1543QeXA6P99Af9vFTJzPYH+gAf1nTCZrYPcCjh5dzff10QEb7Qf+1X036r8D94/2n/015uH3IO3nX3dBXr7zWzUr/CNc0inh2toyH+a2T5RJYNeOWzv5m1rWpnZtYX7xqL3F8xsDTK/qByeX8ADKniGhIRqU+qj6g+ovpI1ZpbfSTkdL/Rq9jMZltgvIwIqo8ksnh3DdHS8hb2dD3sjffFswV4yl9XqVsn8Iof0z6QlonXvWxqIG2iv+2ZUY65wo/PCqTd5Mc/ERH7GfBeNflPBtrgVTjGRjmvnIjjTqxiP53wWso/Blr5aT/293FpROxFfvqR/vur/feDAjFJeDf2Grt1AnnArCjnPTPw/rd4lYKDIuL+idftMaWa8tnPz8fZgfQJftrNEfHn+emZdbyORvvbHVSL2OeBIqB3IO03/vatImJD1+Bvq9hXld06/Wt6J3CK/34oe9mtE++XgPWR5Qx0Ax7Dq1z82L8WlvvXY9+9OE53vO6tb0ekLwEmRYm/yj+n/arYXwpe5XADkB1I/wewrooyc8AlEenD/PTj63pOWrRo0VKbBdVHQutUH3Gqj1ST52ZVH/HX/R2vMfLH/uee5+/r4ij7UX0kgRf1zJC4cl53tQeAS83skCrCTgBed85tCWy3Da/1fEhEbCnwehX7yXdet7SQRf7rmxFxi/C+/CqY2QVmNsfMtvjH2AG0BarKc7X8XzJe9d+e6Zzb5f89AtgNTPG7d6b4XUzf8tef4L/mAt8552aH9um8rocv1TILj+ANsHSQn59j8X5VeTwQMwKYAyyPyMubeN0eK34pMLPrzZuZohCvfFb5q6KVz6sR7/8LlACTzBvZunMtz2Ff/zVaN8UKZjYOGAP83DkX7BVg/qurvNVeexR4zTn3diw7MbN9gZOB551zpcF1zrm1zrnrnHNTnXMfOuf+iXddOAJdpIOfmb8YEfxfM17D+8yuiFxN9LKptJ8IDwPH41UICmLYX+hz3beK9SIi9Ub1EUD1EdVHIjTT+gjOuRudc8/4+X4Fr8FiLl7vo0iqjyQwNWZIIvgL3q8Ud1exfh+8LpGR1uF19Qza4ALPK0YoiHi/u5r0iq5kZnY6MBmvi9oYYCBwLN7NbW+7nP0Tr5vhaS78Gb/OeF0CC/G+UEPLBn99B/+1G14reaRoadG8ild+1/rvrwO+x+u2GczLCRH5KAFeDubF7+L5CN7o2+cAxwGD/Jho5RP2Wfpf6MPx7kfPAuv8ilpkxTBSaN/FVQWYN63ZH4A7nHNPRawOPfe5T0T6PhHra8XMLsAbaOtu86ZBa49XwQTIMLOsOuzuYrzyqKpLZxjnjdD9Ed51GRL5uYWVp99dchrQCxju9owGHrKZymUDe/7NRf67wbznm68BrnTOvRWxejOQHaUSkx1YH7TTf20dJQ8iIg1B9ZE9VB9RfQSaZ30kWr7L8K6nHmbWLWK16iMJTFOzStw55wr9m84DwP1RQjYD0Z4F7UrlG3x9tmqHXAgsdc5dHkrwB1WKdmOtkZn9Bq8SMso591XE6h/wulL+uIrNv/df17LnGcugLrXJg3OuxMyeAG4wb9qpC4EHIlrdf8CrtNxcxW5C01ddiNdF9JehFRZlTu/g4aPk5z28KbbS8b+AgRlmluOc21TFfn7wX7PZ80VTwcwuwavUPOCc+32U7UPPovYnvEIT+oUn8rOpST+8L7qFUdb9G9iKNy1bbVwKfOGc+6IOx4/85eLYiPUV04351+8UvIreyc65+VH2txBvWrlI/YBVzrnCsIOb3Y43reFNzrlnq9hfOt6z4cFfpKoq79C/r6o+fxGReqX6SBjVR1QfgeZZH6ku31D5ulB9JIGpZ4YkikeANewZUTzofeBUM2sXSvD/Pt1f19Da4HV7C7oE71nMOjGzc/DO8edVdP2bidfCn+WcmxtlCVUe8oH9zCz0iwNmlgRcUIfsPI43QNnLeP/J/GeUvPTB+6KIlpfQHOJt8FragyK7CNaKc67YOfcu3mBVGXiDiFUl1C23V+QKMzsb+Bfe88e3VrF9Pt4X00UR6RfjVUr/U4esg/eM9IkRy1h/3a3AabXZiZkNwKvQ1OpXEH+b/fEqXXNCaVV9Xv518jxel8ozg12DI0wDugd/kTJvELbTiZhP3sxuwruub3fO/b2K/c3E+5UxWnkvcM4tj0gPffaLERFpPKqPeFQfUX2kudZHouU7BW/GllXOuXURq1UfSWDqmSEJwTlXbGZ34w0SGOl3eDfeWWb2R7wW09vwvrSq6gpan2YCZ5nZX/Cefz0Gb7CuLdVuFcG8UbKfxXve9IvgFz+wzTn3lXMuz8xeBF4xsweBT/BGF88BRgG3OeeW4H2x/BqY6v+ysgGva2ZmbfPjnFtjZtPxRhGf7ncNDPoL3qBWH/rnvhjvC70P8GPnXGg6rJnAbX4+PgFOwhtMqVb8rpcnAP8HfIc3L/s4vF99oo1eHfIJXpfO4/C6NIb2dwLe6PFfAhMjyrnYOfe5f/4lZvZb4BEzW4PXLfUkvLnYb3TO7Q7ssyd7flnoAJSbWegcP3XOrXTOrcAbYC14bqE/v3DOBfN4Kd788cOcc5EV4EvxKqsvEIWZPYDXEJ2P17X4ELzyKsfrwlqT/8X7wv49sCOifFYHundO84/xnJn9Cq8b5zi8Xy4qRkY3swuBh/Cug3ejXdcAzrkN/nU0zsy24w3wNhqvzM+ksoHAGufcXk8nJyJSV6qPqD6C6iMhzbI+YmY/wat3hD7nLngz8RwD/CRKPlUfSWQuAUYh1dKyFgKjh0ekp+CNWBw2eri/biDezb0Qb7CrWcBxETET8W5+0Y65AnguIm0oUUZ2jtwP3o36HrwvsyK8X1+OImJkcGoYPTxwvGhLXsTxbga+wOviudX/+0+Ej37eC+9GXIT3JfJXvGdOaxw9PLCPn/jxp1axPhuvErEc71f1DXhTj90SiGmNN9DURrwRrF/Ha8WOHAV+gp8WORp2Lt6gT9/hVQbW4v06c0gt8j+ZiJHeA8eJtqyIso9r/euuGPgGuKGaazbacnk1+avqGgvtb2hEeqpfjtOr2eeVePOwF+BVMtbhVTRqLK/ANVnVuUT+u9sHr5Kz2b/OZgFHRPn3UuN17ccm403Xt9Iv7y+B86rI5xLgz7Hca7Ro0ccADGwAAAEVSURBVKKlugXVR1QfCT+G6iN70pttfQRvHJV38cZ1KcG7rt/BG68jWj5VH0ngxfwPSURaIDN7Hq87YC/njT7epJjZULwvpBzn3KoawqWJMLOBeFME9nXeL38iItKMqT4iiUj1kcSnxgyRFsjvenck3rRVv3DO/S3OWdprZvYWsMQ59/N450Xqh5m9ChQ4566Md15ERKThqD4iiUz1kcSnMTNEWqZ8vC6yT+MNdtaU3YT3DLE5tc42ef4UbZ9TeQA4ERFpflQfkYSk+kjToJ4ZIiIiIiIiItKkaGpWEREREREREWlS1JghIiIiIiIiIk2KGjNEREREREREpElRY4aIiIiIiIiINClqzBARERERERGRJuX/A/Z3js9h4DPQAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 1296x432 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"yr_st_ext=np.linspace(0,10.25/4)\n", | |
"Z_ext=np.block([[yr_st_ext**0],[yr_st_ext**1]]).T\n", | |
"Z=np.block([[yr_st**0],[yr_st**1]]).T\n", | |
"max_N=6\n", | |
"for i in range(2,max_N+1):\n", | |
" Z=np.hstack((Z,yr_st.reshape(-1,1)**i))\n", | |
" Z_ext=np.hstack((Z_ext,yr_st_ext.reshape(-1,1)**i))\n", | |
" A = np.linalg.solve(Z.T@Z,Z.T@price_st)\n", | |
" if i==2:\n", | |
" order_2_price_st_ext=Z_ext@A\n", | |
" if i==3:\n", | |
" order_3_price_st_ext=Z_ext@A\n", | |
" if i==4:\n", | |
" order_4_price_st_ext=Z_ext@A\n", | |
" if i==5:\n", | |
" order_5_price_st_ext=Z_ext@A\n", | |
" if i==6: \n", | |
" order_6_price_st_ext=Z_ext@A\n", | |
" #plt.plot(yr_al_ext,Z_ext@A,label='order {:d}'.format(6))\n", | |
"\n", | |
"f, (ax1,ax2)=plt.subplots(1,2,figsize=(18,6))\n", | |
"ax1.plot(yr_st_ext,order_2_price_st_ext,'-o',label='order 2')\n", | |
"ax1.plot(yr_st_ext,order_3_price_st_ext,label='order 3')\n", | |
"ax1.plot(yr_st_ext,order_4_price_st_ext,label='order 4')\n", | |
"ax1.plot(yr_st_ext,order_5_price_st_ext,label='order 5')\n", | |
"ax1.plot(yr_st_ext,order_6_price_st_ext,label='order 6')\n", | |
"ax1.plot(yr_st,price_st,'k.',label='data')\n", | |
"ax1.set_xlabel('Normalized years (2014.75-2020)')\n", | |
"ax1.set_ylabel('Price/Metric Ton');\n", | |
"ax1.set_xlim(0,1.25);\n", | |
"ax1.set_ylim(200,325);\n", | |
"f.suptitle(\"Price Per Metric Ton of Steel\")\n", | |
"ax1.legend(loc='best');\n", | |
"ax2.plot(yr_st_ext,order_2_price_st_ext,'-o',label='order 2')\n", | |
"ax2.plot(yr_st_ext,order_3_price_st_ext,label='order 3')\n", | |
"ax2.plot(yr_st_ext,order_4_price_st_ext,label='order 4')\n", | |
"ax2.plot(yr_st_ext,order_5_price_st_ext,label='order 5')\n", | |
"ax2.plot(yr_st_ext,order_6_price_st_ext,label='order 6')\n", | |
"ax2.plot(yr_st,price_st,'k.',label='data')\n", | |
"ax2.set_xlabel('Normalized years (2014.75-2025)')\n", | |
"ax2.set_ylabel('Price/Metric Ton');\n", | |
"ax2.legend(loc='center left');\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The plot on the left shows the polynomial fits of the steel unit price data, and the plot on the right shows the extrapolated fit results. Notice that fits 6, 5, and 4 change pretty drastically in the extrapolated area (years 2020-2025, or normalized yr. 1.0 to 2.5). Thus, I would choose order 2 or 3 (preferably 3) to predict the 2025 price." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 364, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Using an order 3 fit, the extrapolated unit price for Aluminum would be $-37458.35 / Metric Ton.\n", | |
"Using an order 3 fit, the extrapolated unit price for Steel would be $83.41 / Metric Ton.\n", | |
"\n", | |
"Obviously, the unit price for aluminum is not logical. I attribute this answer to the severe fluctuation in aluminum data,\n", | |
"especially towards the end of the data set. For future extrapolations, polynomial fits (specifically higher order) are usually more dangerous for data extrapolation.\n", | |
"Therefore, I would consider using a piece-wise linear fit to estimate future prices for steel, and especially aluminum;\n", | |
"this should offer a more stable or conservative estimate\n" | |
] | |
} | |
], | |
"source": [ | |
"print(\"Using an order 3 fit, the extrapolated unit price for Aluminum would be ${:5.2f} / Metric Ton.\".format(order_3_price_al_ext[-1]))\n", | |
"print(\"Using an order 3 fit, the extrapolated unit price for Steel would be ${:2.2f} / Metric Ton.\".format(order_3_price_st_ext[-1]))\n", | |
"print()\n", | |
"print(\"Obviously, the unit price for aluminum is not logical. I attribute this answer to the severe fluctuation in aluminum data,\\nespecially towards the end of the data set. For future extrapolations, polynomial fits (specifically higher order) are usually more dangerous for data extrapolation.\\nTherefore, I would consider using a piece-wise linear fit to estimate future prices for steel, and especially aluminum;\\nthis should offer a more stable or conservative estimate\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 368, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Part e\n", | |
"Since the data for aluminum's unit price is so volatile, I would not trust this value to not spike back up in price (as it did in 2018).\n", | |
"So although aluminum's unit price seems significantly lower than steel's, I would still consider steel the cheaper option since its data fluctuates less.\n", | |
"In fact, the trend for aluminum seems to have somewhat of a flat slope, then spike in 2018, and now (as of 2020) seems to have started to level out again around $2500/Metric Ton. Steel, on the other hand, seems to have risen, peaked, and now seems to be on a slight decline in price as of 2020 (currently at about $260/metric ton.\n", | |
"In number 3, the price for aluminum given was 1545 $/ton for aluminum and $476/ton for steel.\n", | |
"Considering $2500/ton > $1545/ton for aluminum and $260/ton < $476/ton for steel, I would still consider steel to be the\n", | |
"cheaper (and safer) option.\n" | |
] | |
} | |
], | |
"source": [ | |
"## Part e\n", | |
"print(\"Part e\")\n", | |
"print(\"Since the data for aluminum's unit price is so volatile, I would not trust this value to not spike back up in price (as it did in 2018).\")\n", | |
"print(\"So although aluminum's unit price seems significantly lower than steel's, I would still consider steel the cheaper option since its data fluctuates less.\")\n", | |
"print(\"In fact, the trend for aluminum seems to have somewhat of a flat slope, then spike in 2018, and now (as of 2020) seems to have started to level out again around $2500/Metric Ton. Steel, on the other hand, seems to have risen, peaked, and now seems to be on a slight decline in price as of 2020 (currently at about $260/metric ton.\")\n", | |
"print(\"In number 3, the price for aluminum given was 1545 $/ton for aluminum and $476/ton for steel.\")\n", | |
"print(\"Considering $2500/ton > $1545/ton for aluminum and $260/ton < $476/ton for steel, I would still consider steel to be the\\ncheaper (and safer) option.\")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# References\n", | |
"\n", | |
"1. <https://en.wikipedia.org/wiki/Direct_stiffness_method>\n", | |
"\n", | |
"2. Aluminum and steel price history on <https://tradingeconomics.com>" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |