From 87d8ce2da0f082e4ab8f2b9d030c66a152bc8eda Mon Sep 17 00:00:00 2001 From: Jeremy Teitelbaum Date: Thu, 5 Jul 2018 15:24:09 -0400 Subject: [PATCH] dropped old jax_gl directory --- jax_gl/README.md | 3 -- jax_gl/Untitled.ipynb | 83 ------------------------------------------- jax_gl/graph.tex | 29 --------------- jax_gl/graph.tex~ | 11 ------ 4 files changed, 126 deletions(-) delete mode 100644 jax_gl/README.md delete mode 100644 jax_gl/Untitled.ipynb delete mode 100644 jax_gl/graph.tex delete mode 100644 jax_gl/graph.tex~ diff --git a/jax_gl/README.md b/jax_gl/README.md deleted file mode 100644 index ed90f12..0000000 --- a/jax_gl/README.md +++ /dev/null @@ -1,3 +0,0 @@ -This work is obsolete and superseded by **graphE**. - - diff --git a/jax_gl/Untitled.ipynb b/jax_gl/Untitled.ipynb deleted file mode 100644 index 7a6c272..0000000 --- a/jax_gl/Untitled.ipynb +++ /dev/null @@ -1,83 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.neural_network import MLPClassifier" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "X=np.array([1,0,0,1])\n", - "X.shape=(2,2)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 0],\n", - " [0, 1]])" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "clf=MLPClassifier(solver='lbfgs',alpha=.0001,hidden_layer_sizes=())" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.6" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/jax_gl/graph.tex b/jax_gl/graph.tex deleted file mode 100644 index 4fb92a6..0000000 --- a/jax_gl/graph.tex +++ /dev/null @@ -1,29 +0,0 @@ -\documentclass{beamer} -\begin{document} -\begin{frame} -\begin{center} -Overview of \\ -Section 4.2.1: DL based Graph Embedding with Random Walk \\ -from \\ -\textit{A comprehensive survey of graph embedding: problems, techniques, and applications} \\ -\textit{Cai, et. al.} \\ -\textit{IEEE Transactions on Knowledge and Data Engineering, Sept. 2017} \\ -\end{center} - -Jeremy Teitelbaum \\ -July, 2018 - -\end{frame} -\begin{frame}{Context} -\begin{problem} -Given a finite graph $G$, find an embedding of $G$ into a relatively low dimensional Euclidean space in a way that captures -relevant information about the structure of the graph. -\end{problem} -\bigskip\noindent -\textbf{Deep Learning} algorithms in general are typically based on neural networks and are characterized by non-linearity and hierarchical structure. - -\bigskip\noindent -Deep learning techniques for graph embedding sample structure from a large graph and apply techniques arising from -natural language processing to those samples to construct an embedding. -\end{frame} -\end{document} \ No newline at end of file diff --git a/jax_gl/graph.tex~ b/jax_gl/graph.tex~ deleted file mode 100644 index eb8a43f..0000000 --- a/jax_gl/graph.tex~ +++ /dev/null @@ -1,11 +0,0 @@ -\documentclass{beamer} -\begin{document} -\begin{frame} -\begin{center} -DL based Graph Embedding with Random Walk \\ -from \\ -\texit{A comprehensive survey of graph embedding: problems, techniques, and applications} \\ -\textit{by Cai, et. al.} -\textit{IEEE Transactions on Knowledge and Data Engineering, Sept. 2017} -\end{frame} -\end{document} \ No newline at end of file