Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
import math
import nltk
from nltk.corpus import wordnet as wn
import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
from nltk.corpus import movie_reviews
from sets import Set
class Solver:
def demo(self):
def word_feats(words):
return dict([(word, True) for word in words])
def expand_sets(positive,negative,neutral):
newPositive = set(positive)
newNegative = set(negative)
newNeutral = set(neutral)
# Add Syns to Positive
for word in positive:
for syn in wn.synsets(word, pos=wn.ADJ):
for lemma in syn.lemmas():
curr = lemma.name().split('.')[0]
if(curr not in newNegative and curr not in newNeutral):
newPositive.add(curr)
elif( curr in newNegative):
newNegative.discard(curr)
newNeutral.add(curr)
# Deal with antonyms
for ant in lemma.antonyms():
if(ant not in newPositive and ant not in newNeutral):
newNegative.add(ant)
elif(ant in newPositive):
newPositive.discard(ant)
newNeutral.add(ant)
# Add Syns to Negative
for word in negative:
for syn in wn.synsets(word, pos=wn.ADJ):
for lemma in syn.lemmas():
curr = lemma.name().split('.')[0]
print curr
if(curr not in newPositive and curr not in newNeutral):
newNegative.add(curr)
elif(curr in newPositive):
newPositive.discard(curr)
newNeutral.add(curr)
# Deal with antonyms
for ant in lemma.antonyms():
if(ant not in newNegative and ant not in newNeutral):
newPositive.add(ant)
elif(ant in newNegative):
newNegative.discard(ant)
newNeutral.add(ant)
return (newPositive,newNegative,newNeutral)
# Set up initial Sets S_p and S_n
positive = Set(['Good'])
negative = Set(['Bad'])
neutral = Set([''])
# Expand on Sets to get S_p' and S_n'
for num in range(1,2):
newsets = expand_sets(positive,negative,neutral);
positive = set(newsets[0])
negative = set(newsets[1])
neutral = set(newsets[2])
print positive
print negative
# # Learn Classifier
# trainfeats = [({word : True},"pos") for word in positive] + [({word : True},"neg") for word in negative]
#
# #negfeats = [({'insulting': True},'neg'),({'bad':True},'neg')]
#
# #trainfeats = negfeats[:negcutoff] + posfeats[:poscutoff]
# classifier = NaiveBayesClassifier.train(trainfeats)
#
#
# # Testing
# negids = movie_reviews.fileids('neg')
# posids = movie_reviews.fileids('pos')
#
# negfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'neg') for f in negids]
# posfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'pos') for f in posids]
# negcutoff = len(negfeats)*3/4
# poscutoff = len(posfeats)*3/4
#
# testfeats = negfeats[negcutoff:] + posfeats[poscutoff:]
#
# print 'Dictionary of %d positive words and %d negative words, tested on %d instances' % (len(positive),len(negative), len(testfeats))
#
# print 'accuracy:', nltk.classify.util.accuracy(classifier, testfeats)
# classifier.show_most_informative_features()
#text = nltk.word_tokenize("And now for a production unlike any other a very fuzzy and cute dog")
#print(text)
#text = nltk.pos_tag(text)
#print(text)
#for token in text:
# if(token[1] == "JJ" or token[1] == "JJR" or token[1] == "JJS"):
# print(wn.synsets(token[0]))
Solver().demo()