Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
BigData/LexiconEval.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
243 lines (222 sloc)
6.6 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import division | |
import sys | |
import nltk | |
from nltk.corpus import movie_reviews | |
import MPQALexicon | |
import AniaLexicon | |
import GlossLexicon | |
import LexFromFile | |
import XMLParser | |
import TwitterCorpus | |
USE_STEMMING = False # sync this up with lexicon! | |
USE_PARSING = True | |
LEX_ALG = "gloss" # "gloss", "conjunction", "none" | |
LEX_SOURCE = "mpqa" # "mpqa", "ania" | |
CORPUS = "movies" # "amazon", "movies", "twitter" | |
NEG_MOD = 1.5 # Taboada suggested 1.5. | |
# new and improved finite state machine | |
# kinda-sorta based on Taboada 2011. | |
# states are as follows: | |
# 0 - base | |
# 1 - negator found | |
# 2 - intensifier found | |
# 3 - un-intensifier found (unused) | |
# 4 - negator + intensifier found | |
def calculate_score(text, lexicon): | |
negators = ["not", "n't", "hardly", "barely"] | |
intensifiers = ["very", "really", "incredibly", "amazingly", "extremely"] | |
if USE_STEMMING: | |
negators = do_stem(negators) | |
intensifiers = do_stem(intensifiers) | |
punctuation = [".", "!", "?", ",", ";", '(', ')'] | |
state = 0 | |
score = 0 | |
num_double = 0 | |
num_single = 0 | |
num_neg = 0 | |
num_halfneg = 0 | |
for word in text: | |
if state == 0: | |
if lexicon.has_key(word): | |
score += lexicon[word] | |
num_single += 1 | |
elif word in negators: | |
state = 1 | |
elif word in intensifiers: | |
state = 2 | |
elif state == 1: | |
if lexicon.has_key(word): | |
score += -1 * lexicon[word] | |
num_neg += 1 | |
state = 0 | |
elif word in intensifiers: | |
state = 4 | |
else: | |
state = 0 | |
elif state == 2: | |
if lexicon.has_key(word): | |
score += 2 * lexicon[word] | |
num_double += 1 | |
state = 0 | |
else: | |
state = 0 | |
elif state == 3: | |
pass #TODO | |
elif state == 4: | |
if lexicon.has_key(word): | |
score += -0.5 * lexicon[word] | |
num_halfneg += 1 | |
state = 0 | |
else: | |
state = 0 | |
#print num_single, num_neg, num_double, num_halfneg | |
return score | |
def do_stem(text): | |
global stemmer | |
return [stemmer.stem(word) for word in text] | |
# Used to create a lexicon instance from the words + labels directly (i.e. without using an algorithm) | |
def create_lexicon(words, labels): | |
lexicon = {} | |
for i in range(len(words)): | |
word = words[i] | |
label = labels[i] | |
lexicon[word] = label | |
return lexicon | |
i = 0 | |
try: | |
args = sys.argv[1:] | |
while i < len(args): | |
if args[i] in ["--alg", "--algorithm"]: | |
if args[i+1] == "gloss": | |
LEX_ALG = "gloss" | |
elif args[i+1] == "conjunction": | |
LEX_ALG = "conjunction" | |
elif args[i+1] == "none": | |
LEX_ALG = "none" | |
else: | |
print "Invalid algorithm" | |
i += 2 | |
elif args[i] in ["--lex", "--lexicon"]: | |
if args[i+1] == "mpqa": | |
LEX_SOURCE = "mpqa" | |
elif args[i+1] == "ania": | |
LEX_SOURCE = "ania" | |
else: | |
print "Invalid lexicon" | |
i += 2 | |
elif args[i] == "--corpus": | |
if args[i+1] == "movies": | |
CORPUS = "movies" | |
elif args[i+1] == "amazon": | |
CORPUS = "amazon" | |
elif args[i+1] == "twitter": | |
CORPUS = "twitter" | |
i += 2 | |
elif args[i] == "--help": | |
print "Usage:" | |
print "--algorithm|alg X: Choose the algorithm to use ('gloss', 'conjunction' or 'none') (default: gloss)" | |
print " - gloss: Use the gloss-based algorithm (Esuli & Sebastiani)" | |
print " - conjunction: Use the conjunction-based algorithm (Hatzivassiloglou & McKeown)" | |
print " - none: Use the input lexicon as is" | |
print "--lexicon|lex X: Choose the lexicon to use ('mpqa', 'ania' or 'none')" | |
print " - mpqa: Use the MPQA lexicon" | |
print " - ania: Use the hand-labeled lexicon from the Brown corpus" | |
print "--corpus X: Choose the data set to test on" | |
print " - amazon: Use the Amazon data set" | |
print " - twitter: Use the Twitter data set" | |
print " - movies: Use the Pang&Lee movie data set (default)" | |
exit() | |
else: | |
print "Error: Invalid argument", args[i] | |
i += 1 | |
except Exception: | |
print "Invalid arguments" | |
exit() | |
print "Lexicon =", LEX_SOURCE | |
print "Algorithm =", LEX_ALG | |
print "Corpus =", CORPUS | |
# Load the test set. A few options here. | |
if LEX_SOURCE == "mpqa": | |
(test_words, test_labels) = MPQALexicon.load(False) | |
elif LEX_SOURCE == "ania": | |
(test_words, test_labels) = AniaLexicon.load() | |
else: | |
print "Invalid lexicon" | |
exit() | |
if USE_STEMMING: | |
stemmer = nltk.stem.porter.PorterStemmer() | |
test_words = do_stem(test_words) | |
if LEX_ALG == "gloss": | |
lexicon = GlossLexicon.create(test_words, test_labels) | |
elif LEX_ALG == "conjunction": | |
print "Error: Conjunction algorithm NYI" | |
elif LEX_ALG == "none": | |
lexicon = create_lexicon(test_words, test_labels) | |
if LEX_ALG != "none": | |
correct = len([(word, label) for (word, label) in zip(test_words, test_labels) if lexicon.has_key(word) and label == lexicon[word]]) | |
lex_acc = correct/len(lexicon.items()) | |
print "Lexicon accuracy:", lex_acc | |
# TODO refactor me again. | |
#lexicon = LexFromFile.lexfromfile("cblex.txt") | |
for key in lexicon.keys(): | |
if lexicon[key] < 0: lexicon[key] *= NEG_MOD | |
if CORPUS == "movies": | |
ids = movie_reviews.fileids() | |
reviews = [list(movie_reviews.words(fileids=[id])) for id in ids] | |
labels = [] | |
for id in ids: | |
label = movie_reviews.categories(id)[0] | |
if label == 'pos': | |
labels.append(1) | |
elif label == 'neg': | |
labels.append(-1) | |
elif CORPUS == "amazon": | |
(ids, reviews, labels) = XMLParser.get_all_reviews() | |
elif CORPUS == "twitter": | |
(ids, reviews, labels) = TwitterCorpus.load() #they're not reviews but we'll let it slide. | |
else: | |
print "Invalid corpus!" | |
exit() | |
""" | |
# It feels like there should be a more efficient way do to this. | |
shuffled = zip(ids,reviews,labels) | |
shuffled = shuffled[:20] | |
ids = [x[0] for x in shuffled] | |
reviews = [x[1] for x in shuffled] | |
labels = [x[2] for x in shuffled] | |
""" | |
#for k in lexicon.keys(): | |
# lexicon[k] *= -1 | |
# Iterate through all of the reviews and compute scores by taking the sum of their | |
# component lexicon words. Includes rudimentary negation testing. | |
correct = 0 | |
positive = 0 | |
scores = [] | |
for i in range(len(reviews)): | |
words = reviews[i] | |
if USE_STEMMING: | |
words = do_stem(words) | |
if USE_PARSING: | |
score = calculate_score(words, lexicon) | |
else: | |
score = 0 | |
for word in words: | |
if lexicon.has_key(word): | |
score += lexicon[word] | |
scores.append(score) | |
#print id, score | |
for i in range(len(ids)): | |
id = ids[i] | |
score = scores[i] | |
label = labels[i] | |
if score >= 0: | |
sent_value = 1 | |
positive += 1 | |
#print id, sent_value | |
elif score < 0: | |
sent_value = -1 | |
#print id, sent_value | |
if sent_value == label: | |
correct += 1 | |
print "correct:", correct/len(ids) | |
print "positive:", positive/len(ids) |