Skip to content
Permalink
6fe682d0b3
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
623 lines (623 sloc) 38.1 KB
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Computational Mechanics Project #01 - Heat Transfer in Forensic Science\n",
"\n",
"We can use our current skillset for a macabre application. We can predict the time of death based upon the current temperature and change in temperature of a corpse. \n",
"\n",
"Forensic scientists use Newton's law of cooling to determine the time elapsed since the loss of life, \n",
"\n",
"$\\frac{dT}{dt} = -K(T-T_a)$,\n",
"\n",
"where $T$ is the current temperature, $T_a$ is the ambient temperature, $t$ is the elapsed time in hours, and $K$ is an empirical constant. \n",
"\n",
"Suppose the temperature of the corpse is 85$^o$F at 11:00 am. Then, 2 hours later the temperature is 74$^{o}$F. \n",
"\n",
"Assume ambient temperature is a constant 65$^{o}$F.\n",
"\n",
"1. Use Python to calculate $K$ using a finite difference approximation, $\\frac{dT}{dt} \\approx \\frac{T(t+\\Delta t)-T(t)}{\\Delta t}$. "
]
},
{
"cell_type": "code",
"execution_count": 199,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"K = 0.00458333333333 per min\n"
]
}
],
"source": [
"Temp_t1 = 85\n",
"Temp_t2 = 74\n",
"Temp_ambient = 65\n",
"delta_t = 120\n",
"\n",
"def measure_K(Temp_t1,Temp_t2, Temp_ambient,delta_t):\n",
" ''' Determine the value of K based upon temperature of corpse \n",
" when discovered\n",
" \n",
" Arguments\n",
" ----------\n",
" Temp_t1 = Temperature at point 1\n",
" Temp_t2 = Temperature at point 2\n",
" Temp_ambient = Constant ambient temperature\n",
" delta_t = Time in hours that have passed\n",
" \n",
" Returns\n",
" -------\n",
" dff1 = dT/dt\n",
" K = an empirical constant\n",
" '''\n",
"\n",
" dff1 = (Temp_t2 - Temp_t1)/(delta_t)\n",
" \n",
" K= -(dff1/(Temp_t1-Temp_ambient))\n",
"\n",
"print('K =', K, 'per min')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"2. Change your work from problem 1 to create a function that accepts the temperature at two times, ambient temperature, and the time elapsed to return $K$. "
]
},
{
"cell_type": "code",
"execution_count": 200,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Temperature at 3 hours = 66.5750000000054\n"
]
}
],
"source": [
"Temp_t1 = 85\n",
"Temp_t2 = 74\n",
"Temp_ambient = 65\n",
"delta_t1 = 120\n",
"delta_t2 = 180\n",
"\n",
"def measure_K(Temp_t1,Temp_t2, Temp_ambient,delta_t,t):\n",
" ''' Determine the value of K based upon temperature of corpse \n",
" when discovered\n",
" \n",
" Arguments\n",
" ----------\n",
" Temp_t1 = Temperature at point 1\n",
" Temp_t2 = Temperature at point 2\n",
" Temp_ambient = Constant ambient temperature\n",
" delta_t1 = First amount of hours that have passed\n",
" delta_t2 = Second amount of hours that have passed\n",
" \n",
" Returns\n",
" -------\n",
" Temp_t3 = Temperature at 3 hours\n",
" dff1and2 = dT/dt\n",
" K = an empirical constant\n",
" '''\n",
"\n",
"Temp_t3 = Temp_t2 + (-K*delta_t2*(Temp_t2-Temp_ambient))\n",
" \n",
"\n",
"print('Temperature at 3 hours =', Temp_t3)"
]
},
{
"cell_type": "code",
"execution_count": 201,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"K = 0.0048506944444436945 per min\n"
]
}
],
"source": [
"\n",
"dff1 = (Temp_t2 - Temp_t1)/(delta_t1)\n",
"dff2 = (Temp_t3 - Temp_t1)/(delta_t2) \n",
"K= -((dff1+dff2)/2)/(Temp_t1-Temp_ambient)\n",
"\n",
"print('K =', K, 'per min')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"3. A first-order thermal system has the following analytical solution, \n",
"\n",
" $T(t) =T_a+(T(0)-T_a)e^{-Kt}$\n",
"\n",
" where $T(0)$ is the temperature of the corpse at t=0 hours i.e. at the time of discovery and $T_a$ is a constant ambient temperature. \n",
"\n",
" a. Show that an Euler integration converges to the analytical solution as the time step is decreased. Use the constant $K$ derived above and the initial temperature, T(0) = 85$^o$F. \n",
"\n",
" b. What is the final temperature as t$\\rightarrow\\infty$?\n",
" \n",
" c. At what time was the corpse 98.6$^{o}$F? i.e. what was the time of death?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A:"
]
},
{
"cell_type": "code",
"execution_count": 167,
"metadata": {},
"outputs": [],
"source": [
" \n",
"Temp_t1 = 85\n",
"Temp_ambient = 65\n",
"K = 0.00458333333333\n",
"e = 2.718281828459045\n",
"\n",
"def t_analytical(Temp_t1,Temp_ambient,t,K,e):\n",
" ''' Determine the value of T based upon time passed\n",
" \n",
" Arguments\n",
" ----------\n",
" Temp_t1 = Temperature at point 1\n",
" Temp_ambient = Constant ambient temperature\n",
" e = exp\n",
" K = empirical constant\n",
" \n",
" Returns\n",
" -------\n",
" T = Temperature at time t\n",
" \n",
" '''\n",
"\n",
" T=Temp_ambient+((Temp_t1 - Temp_ambient)*(e**(-K*t)))\n",
" \n",
" return T"
]
},
{
"cell_type": "code",
"execution_count": 171,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 0 seconds after death, the Temperature of the body is 85 degrees F\n",
" 1 seconds after death, the Temperature of the body is 85 degrees F\n",
" 2 seconds after death, the Temperature of the body is 85 degrees F\n",
" 3 seconds after death, the Temperature of the body is 85 degrees F\n",
" 4 seconds after death, the Temperature of the body is 85 degrees F\n",
" 5 seconds after death, the Temperature of the body is 85 degrees F\n",
" 6 seconds after death, the Temperature of the body is 84 degrees F\n",
" 7 seconds after death, the Temperature of the body is 84 degrees F\n",
" 8 seconds after death, the Temperature of the body is 84 degrees F\n",
" 9 seconds after death, the Temperature of the body is 84 degrees F\n",
" 10 seconds after death, the Temperature of the body is 84 degrees F\n",
" 11 seconds after death, the Temperature of the body is 84 degrees F\n",
" 12 seconds after death, the Temperature of the body is 84 degrees F\n",
" 13 seconds after death, the Temperature of the body is 84 degrees F\n",
" 14 seconds after death, the Temperature of the body is 84 degrees F\n",
" 15 seconds after death, the Temperature of the body is 84 degrees F\n",
" 16 seconds after death, the Temperature of the body is 84 degrees F\n",
" 17 seconds after death, the Temperature of the body is 84 degrees F\n",
" 18 seconds after death, the Temperature of the body is 83 degrees F\n",
" 19 seconds after death, the Temperature of the body is 83 degrees F\n"
]
}
],
"source": [
"for t in range(0,20,1):\n",
" print('{:5.0f} seconds after death, the Temperature of the body is {:1.0f} degrees F'.format(t,t_analytical(Temp_t1,Temp_ambient,t,K,e)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"B:"
]
},
{
"cell_type": "code",
"execution_count": 278,
"metadata": {},
"outputs": [],
"source": [
"t=('inf')\n",
"\n",
"\n",
" \n",
"Temp_t1 = 85\n",
"Temp_ambient = 65\n",
"K = 0.00458333333333\n",
"e = 2.718281828459045\n",
"\n",
"def t_analytical(Temp_t1,Temp_ambient,t,K,e):\n",
" ''' Determine the value of T based upon time = infinity\n",
" \n",
" Arguments\n",
" ----------\n",
" Temp_t1 = Temperature at point 1\n",
" Temp_ambient = Constant ambient temperature\n",
" K = empirical constant\n",
" t = infinity \n",
" e = exp\n",
" \n",
" Returns\n",
" -------\n",
" T = Temperature at time equals infinity\n",
" \n",
" '''\n",
"\n",
" T=Temp_ambient+((Temp_t1 - Temp_ambient)*(e**-(K*t)))\n",
" \n",
" return T"
]
},
{
"cell_type": "code",
"execution_count": 282,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"When t = inf Temperature = (55, 58, 60, 65, 66, 67)\n"
]
}
],
"source": [
"\n",
" print('When t =', t, 'Temperature =' ,T)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"C:"
]
},
{
"cell_type": "code",
"execution_count": 208,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hours passed since death = 1.8865228851474354\n"
]
}
],
"source": [
"import math\n",
"math.log(10)\n",
"\n",
"Temp_t1 = 85\n",
"Temp_ambient = 65\n",
"K = 0.00458333333333\n",
"Temp_0 = 98.6\n",
"t_1 = 11\n",
"\n",
"''' Determine the time of death, T = 98.6\n",
" \n",
" Arguments\n",
" ----------\n",
" Temp_t1 = Temperature at point 1\n",
" Temp_ambient = Constant ambient temperature\n",
" K = empirical constant\n",
" Temp_0 = Temp at time of death\n",
" t_1 = Time first given\n",
" \n",
" Returns\n",
" -------\n",
" t = time in seconds since death\n",
" t_hours = time in hours since death\n",
" t_death = time in hours (decimal) since death\n",
" \n",
" '''\n",
"\n",
"t = math.log((Temp_0 - Temp_ambient)/(Temp_t1-Temp_ambient))/K\n",
"t_hours = t/60\n",
"\n",
"\n",
"print('Hours passed since death = ', t_hours)"
]
},
{
"cell_type": "code",
"execution_count": 209,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Time of Death = 9.113477114852564\n"
]
}
],
"source": [
"t_death = t_1 - t_hours\n",
"print('Time of Death =',t_death)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Answer__: The time of Death is 9:11 am"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"4. Now that we have a working numerical model, we can look at the results if the\n",
"ambient temperature is not constant i.e. T_a=f(t). We can use the weather to improve our estimate for time of death. Consider the following Temperature for the day in question. \n",
"\n",
" |time| Temp ($^o$F)|\n",
" |---|---|\n",
" |8am|55|\n",
" |9am|58|\n",
" |10am|60|\n",
" |11am|65|\n",
" |noon|66|\n",
" |1pm|67|\n",
"\n",
" a. Create a function that returns the current temperature based upon the time (0 hours=11am, 65$^{o}$F) \n",
" *Plot the function $T_a$ vs time. Does it look correct? Is there a better way to get $T_a(t)$?\n",
"\n",
" b. Modify the Euler approximation solution to account for changes in temperature at each hour. \n",
" Compare the new nonlinear Euler approximation to the linear analytical model. \n",
" At what time was the corpse 98.6$^{o}$F? i.e. what was the time of death? \n",
" \n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A:"
]
},
{
"cell_type": "code",
"execution_count": 227,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"time= (800, 900, 1000, 1100, 1200, 1300)\n",
"Temp = (55, 58, 60, 65, 66, 67)\n"
]
}
],
"source": [
"import numpy as np\n",
"t = np.array1=(800, 900, 1000, 1100, 1200, 1300)\n",
"T = np.array2=(55,58,60,65,66,67)\n",
"print('time=', t)\n",
"print('Temp =', T)\n",
"'''Created arrays for both time of day in military time and the temperature at that time\n",
"'''"
]
},
{
"cell_type": "code",
"execution_count": 235,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"If the time is 1100 hours, the Temperature is 65 degrees F\n"
]
}
],
"source": [
"'''Change i to correspond with the number in the time array, starting at 0, to determine what temperature it was at that time'''\n",
"\n",
"i = 3\n",
"print('If the time is', t[i], 'hours, the Temperature is', T[i], 'degrees F')\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 239,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAE0CAYAAAAR5SXAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXxU5fX48c9JQsK+JSyybwFEZbe4gCJUxWqr1g2pWlurte4bWlv112+trVqtG2qta8VdqXvFKm6AgrKLAiaEfU/CDiHb+f3x3Ewmw8wkk8xkJpnzfr3mdbn3PvfOSe4wJ/c+m6gqxhhjTLSlxDsAY4wxjZMlGGOMMTFhCcYYY0xMWIIxxhgTE5ZgjDHGxIQlGGOMMTFhCcYkBBHpJSJax1eveP8c9U1E3qrj7+xBv3Pt8LZdF8+fyTQelmCMMcbERFq8AzDGswZoFWLfGOC/3r8vB14MUW5vtINqACYS+v/xl8ARwLfAMSHKFMciKGPAEoxJEOqGlNgTbJ+I7PdbPaCqQcslI1UtCrVPRMq9f5bX5Hemqm2jFpgx2CMyY4wxMWIJxjQ6IjJMRP6fiMwUkW0iUuJVYC8Qkb+JSOdanneSX+X4odWUPcKv7DkB+w4RkXtEZKGI7BKRYhHZLCLfisgzIjKxNvHVVbhKfr/GBG9562O8bZtFZJ+ILBWRG0Skid8xWSJyl4gs98psE5FXRKRvDWLpICJ/FpF5IrJdRIpEZI2IPC8iw6P7k5uYUVV72SuhX8BYQL3XxdWUPd6vbKhXAXBMLeJoDuz2znFXNWXv8crtAJr6bR8JbK9BjGlR+L0t8s61qIbld3jlrwuy7y1v31vAVUBZiLhfAwQYCKwOUSYfyA4Tx2nArjC/m3Lgxnh/Lu1V/cvuYExjUw7MAm7ANQ7oB2QCg4Bf4Sq82wPTRCSiOgdV3Qf8x1udJCISrJy3/XxvdZpWrSd5FmgLrAcuAbK9+PoD44A7gZWRxFXPhgEPAu/hGg5k4X63L3v7zwEmUfl7ugDoCnQGLgOKcD/vQ8FOLiLH45JYK2A+cC7QwztmFPAKLoHdJyJnR/dHM1EX7wxnL3tV9yKCO5ganKspsNg71/W1OP7HfrGMqUG8Y/22d/fbfnw9/N5icQejwEuABOxPAZZ4+0uArUCXIOe5icq7kEMC9qUCed7+WUCTEHE+4pVZTRTu9OwVu5fdwZikou5u4lVv9cRanOITYKP371+EKHOBt1wHfO633b/V5oZavHciKMU9nqoykZSqluMej4H7Oe9R1Y2BB+PuQMDdhRwZsO9nQG/v3xerakmIGO7w4ugJHBtZ+KY+WYIxjY6IpIjIRBH5j4isFpG9/r3Xgbu8ogMiPbf3RfqSt3qOiKQHvHcGcJa3+lLAF/EaXP0LwJMiclik758AlqjqphD7/B/tfRisgKqup7LvTWBjix97yzxgs4i0DPbC3SGt9sqOjPgnMPXGEoxpVESkDe6u4WXgTNxfuc1DFG9Ty7d5wVu2B34SsO80XB2LfznAl5xu8FbHAktFJNdrOfYrEeley3jqU7C7kgr+/ZVCJSH/cs0Ctlck/D64xhThXv28sh2qD9nEiyUY09j8ExiNe8b/BHAK7gsrE1dx3Aq41Stbq47GqroY11gAKh+HVah4bLZIVZcGOfY5YALwBa4eoS+u8cEzwBoR+UhEBtcmrnpSFsVygY0kapPwm9biGFNPrCe/aTREJAvX6gjgj6p6d4hygX8518YLuKbIp4lIG1Xd6bVK+4nf/qBU9UPgQxFpj2uJdSwu6QzFPSb6UkRGqep3UYizIakYbeBjVa1N/ZhJMHYHYxqTwVR+pl8OU+6IKLzXi7i7pAygornsOd56eTXvD4CqFqrqe6p6q6oOwz1eKwFaAJOjEGNDk+cth4RqAm4aFkswpjHJ8Pt3arAC3l3OhLq+kapuAD7zVi8IWH4SogVVded8H/jKWw07UkAj9T9v2QGXbE0DZwnGNCZ5fv8+PXCniKTg6mii8YgMYKq3PF5EjsF17PTfHvj+nb1GCEF5w6z08FYLohRjQ/IfKluHPSoiPcKURUT6251OYrMEYxoNVV2B60QJcJeI3Cwi2d6YWOOBj3BNiL+P0ltOw7WIEtwjMwH8e/sHOgpYLyL/FpFzvS/IdiLSTUROwk1J0MsrW+0jtsbG6/dyEe4xYXdggYjcKiKDvd9TR2+cuctE5ANgGSHuVE1isEp+09hcAnyKay12j/fy9yQuwTxQ1zdS1d0i8jZuTpZe3ua3NfzQ+C1xX6IXhSnzmKoGvQtq7FR1poicgkuwHYC/eq9gSnAt8UyCsjsY06io6nxgBPA8ri9GCbAF1/HvHFW9LMpvGZgIQrYeA6bj6n/+DszGdbw8gBufayXuLmisql4Z5RgbFFWdgWu+fSPuj4VtuJ77+4Bc4A1cgu6oqjVtNm3iQAJGfDDGGGOiwu5gjDHGxIQlGGOMMTFhCcYYY0xMWIIxxhgTE9ZM2ZOVlaW9evWKdxjGGNOgzJ8/P19Vg45qbQnG06tXL+bNmxfvMIwxpkERkTWh9tkjMmOMMTFhCcYYY0xMWIIxxhgTE5ZgjDHGxIQlGGOMMTFhCcYYY0xMWIIxxpgkVVJWzterCnni85UxOb/1gzHGmCShqqzctpdZOduYmZPPnLwC9ha7GQ8mHN6Znpktovp+lmCMMaYRK9hzgNkrC5j5wzZm5eazaWdR0HIzc/ItwRhjjAmtqKSM+Wu2MzMnn5k52/hu466w5bu2bcZx/bM49JBWUY/FEowxxjRgqsryzbuZlZPPFznb+GZ1IUUl5SHLt8pI4+i+mYzJzmJ0dgd6ZTZHRGISmyUYY4xpYLbuKmJmTj6zcvOZmZNP/p4DIcumpghDu7dlTHYWY7KzGNKtLWmp9dO+yxKMMcYkuH3FpcxdVcisnHxm5eSzYsvusOV7Z7Vwdyj9sjiqbyatmzapp0irsgRjjDEJprxcWbpxp7tLycln/prtFJeFfuzVtnkTju2b5T32yqJbu+b1GG1olmCMMSYBrN++j1k5+czMzefL3Hy27ysJWbZJqjCiZzvGZHdgTHYWh3VpQ2pKbOpR6sISjDHGxMHuohK+WlnArFx3l5KXvzds+f6dWjImuwOjs7MY1bs9zdMT/+s78SM0xphGoLSsnMXrd/geey1ct4Oycg1ZPqtlhq8eZXR2Fp1aN63HaKPDEowxxsSAqrK6YJ+v1/xXKwvYfaA0ZPmMtBRG9clkjJdQBnZuFbPmw/XFEowxxkTJjn3FzM4tYFauSyrrt+8PW/6wLq199SgjerajaZPUeoq0fliCMcaYWiouLWf+mu3Myt3GrJx8lmzYiYZ+6sUhbZr6Ojge2zeTzJYZ9RdsHFiCMcaYGlJVcrbu8epRtjF3VSH7vMEig2mRnsrRfTO9epQO9O3QosE/9oqEJRhjjAlj2+4DzPZ6zM/K3caWXaF7zacIDO7WluO8u5RhPdrSpJ56zSciSzDGGOOnqKSMr1cV+oZhWbYp/GCRPdo39w3DcnSfLNo0j0+v+URkCcYYk9TKy5Vlm3f5mg9/vbqQ4tLQveZbN03jmL5ZjOmfxZh+HeiRmRi95hNRRAlGRFoAY4BhQCegLbAd2AosAGapavjeQsYYE2ebdu73JZTZufkU7C0OWTYtRRjeo51vGJbB3domZK/5RFRtghFXI3UacAUwzu8Y/99wRbuJUhGZATwGvK8arj2FMcbUj70HSpmTV+AbgTh3656w5ft2aOFrPjyqTyYtM+xhT22E/a2JyJnAvUAfXELZBXwNfA8UeuutgUxgEPAjYAJwMrBSRG5W1bdiFr0xxgRRVq58u2EnM3/YxszcfBau3U5JWei/d9u3SOfYflm+nvNd2jarx2gbr5AJRkQ+AY4HdgBPAP8Gvg53V+Ld7YwCLgbOBaaJyOeqOi6aQRtjTKB1hft8szh+ubKAnftDDxaZnpbCkb3cYJGj+2Ux6JDWpNhjr6gLdwczBPgD8LCqhu+O6vGSzxxgjohcD1wL3FTnKI0xJsDO/W6wyJk5bq75NQX7wpYf2LkVx/V3CeXIXu1plt64es0nonAJpreqhm+fF4aXlO4Wkcdqew5jjKlQUlbOonU7fHcpi9ftIMxYkXRslcHo7CyOy+7Asf2y6NCqcfeaT0QhE0xdkksszmOMSS6qSl7+XjdHSs425uQVsifMYJHNmqQyqk97X+V8dseWSdVrPhFZ0whjTMIo3FvMbG9+lJk529i4syhkWRE4omsbRvfLYkx2B4b3bEtGmj32SiThKvmfB75Q1afqMR5jTBI5UFrG/NXbmZnrEsp3G3eFHSyya9tmXq/5DhzTN5N2LdLrL1gTsXB3MBcApcBBCUZEdgFTVfXKWAVmjGl8VJUVW3YzKyefL3Ly+XpVAUUloXvNt8pI46i+mb6xvXplNrfHXg1IbR+RtQRi0lBcRJoBVwPnANlAOrAFmAc8qKqz/co+B/wyzOlWqOrAWMRpjKmZrbuKfNMCz8zNZ9vu0INFpqYIQ7u3ZXS/LI7rn8WQbm1JS+LBIhu6hKqDEZHewP+AfrjhZz4HDgC9gNOBxcDsIIfOBnKDbN8Uk0CNMSHtLy5j7qoCrx4lnxVbdoct3zurhVePksVRfTNp3dQGi2wsEibBeOOcfQT0Be4E7lTVEr/9mbgRA4J5SlWfi3mQxpiDlJcr323cxUxv0q15q7dTXBb6sVfb5k04tq8b12t0vyy6t7fBIhurhEkwwG245PK8qt4RuFNVC4CCeo/KGHOQDTv2++aan52bz/Z9oXvNN0kVRvRs52s+fFiXNjZYZJJIiAQjIunApd7q3fGMxRhzsN1FJczJK/Qllbz88IOm9+/UktH9OjCmfxajereneXpCfNWYelbdVR8lIg/XYp+q6rURxDEC9/hrnaouE5FjcCM4ZwKbgemq+lWY408QkcG4xgdbgFnAR6oa+j7dGBNW7tbdvL9kM7Nyt7Fw7Q5Kw3Sbz2qZweh+mYz2xvbq3KZpPUZqElV1CeZQ7xXpPsWNQ1ZTR3jLnBAtw+4QkWnAhSHGRbsoyLbvRWSiqn4bQRzGGGD60s1c9dKCkEklIy2FH/Vu7+uTMrBzK2s+bA4SLsHcX29RQHtveRyQCtwH/BNX53Icbn6Zs3DTA/za77hFwHxgBrAGN3XAcOAu3GCdH4vIcFXdEOxNReQy4DKAHj16RPcnMqaBWle4j8mvLz4ouRzWpTWjs90sjiN7taNpE+s1b8KTRJgTTET+gEsK4FqEXRqwfyRuHhoFslU1r5rzpeOaOB8FPKqqV1UXw8iRI3XevHm1Cd+YRqO4tJxznviKxet2AK7n/M0TBnBsvyyyWtpgkeZgIjJfVUcG25coPZj8G8o/GbhTVefh7lRSgLHVnUxVi4G/eas/iUJ8xiSF+/63wpdc0lKEKZOGcfrQrpZcTK0kSoJZ7ffvVSHKVGzvXMNzLveWXWsTkDHJ5tMVW/nXF5UPByafPIBhPdrFMSLT0IVMMCIyKRpvUMPzLPD7d6jOlFneMvxk2gefp6bljUlam3cWceNri33rYwd04NIxfeIYkWkMwt3BvCAii0TkLBGJqBG7iKSJyNkishiYWl15rxJ+rrc6Psj52uEq78GNSVYT53rLb2pY3pikVFauXPvKQgr3FgPQqXUG958zxKYQNnUWLsFcinsc9RqwUUQeFJGfikiHYIVFpKOI/MzrG7MReBXoCPymhrFUVPLfISJD/c7bFHgcaIOrh/nK2z5URE4TkSpNWbzkdgNwjbfpgRq+vzFJ6eEZOcxdVQhAisCD5w0j0+pcTBSEm9HyaRF5DbgV15T3Gtwox4hIIa4J8S5c0+BMKpsaC5AP/BW4V1XDj3RX+X7vish9wE3AXBGZ673Hj4AuwAbgfK1s9tYLeBMoFJEfgPVAK1yfmi5AOXCLqn5Yk/c3Jhl9tbKARz7J8a1fPS6bo/uGekptTGTCPvryksMfROTPwPnAGcBoXEIJ/BQW4JoGvwW85rXkioiqThaRL3GJbBjQHFgL/AO4W1W3+RVfDDyES0A9vfKKSzTP4ponz480BmOSRcGeA1z7ykLfvPajerfnmvHZ8Q3KNCo1qltR1SLcl/az4rrr9sQ9/moD7AC2quqaaASkqm/i7kyqK7cKuC4a72lMsikvV258fTFbvblZ2rdI56GJw2wQShNVEY9A5z2iWk3VpsXGmAbkyZl5fLai8oHA/ecOsfHDTNQlSj8YY0w9WbB2O3//cIVv/bLj+nDCgI5xjMg0VhHfwXhTGp8LHA10AD5X1Ye9fb1wFezzalMHY4yJrZ37S7jm5YW+ccaGdG/LTScNiHNUprGKtH/L8cAruPoXwVWq7/QrMhr4Ny4BTYtSjMaYKFBVfj9tCeu3uwHJWzVNY8r5w0hPswcZJjZq/MkSkQHAe7jk8jxwCS7J+HsLOIBrbWaMSSAvzF3LB0s3+9bvOWuwTVdsYiqSO5g/4poN/0JVXwEQkaf9C6jqHhFZhmsybIxJEN9t3Mmd733vW7/gqB785IhD4hiRSQaR3BuPA5ZUJJcw1gH2yTUmQew9UMrVLy2kuNRN8DqwcytuO3VQnKMyySCSBNMBWFFtKSjF3ekYYxLA7W8vJS9/LwDNmqQyZdJwmyzM1ItIEswOajb0fR9gW7WljDExN23+ev6zoHJC1zvPOJx+HVvGMSKTTCJJMPOAkV5T5KBEZAhuquIv6xaWMaauVm7bw+1vL/Wt/3x4V84e0S2OEZlkE0mCeQLIAF4TkYMmsBeRQ4Cn/coaY+KkqKSMK19cwL7iMgD6dGjBnacfHueoTLKpcYJR1XeAZ4CRQK43KCXAWBGZAazEzdnyL1X9NOqRGmNq7C/vf8/yzW4g8/S0FKacP5wWGRH3qzamTiLqYaWqvwFuBnYDR3mbewEn4Cr3b1PV30UzQGNMZD74dhMvzFnrW7/91EMZ1KV1HCMyyao2g13e500qdhSuQj8V1zR5lqrui3J8xpgIrCvcx83TlvjWTzm8Mxcc1TOOEZlkVuMEIyLjgFJV/cIbZ+wL72WMSQAlZeVc/fJCdheVAtCtXTPuPmswboYNY+pfJI/IPgbuiFUgxpi6ue/DFSxatwOAtBThkfOH0aZZkzhHZZJZJAmmENgSq0CMMbX36YqtPPFFnm998skDGNajXRwjMibyfjADYxWIMaZ2Nu8s4sbXFvvWxw7owKVj+sQxImOcSBLM/cBQEZkYq2CMMZEpK1eue3UhhXvd9EsdW2Vw/zlDSLGpj00CiKQVWQHwGPCiiJwFvAmsAfYHK6yqC+oenjEmnEc+yWFOXiEAKQIPTRxGZsuMOEdljBNJgpmHm2BMgJ97r1A0wnMbYyL01coCHp6R41u/elw2R/fNjGNExlQVSRJYgEscxpg4K9hzgGtfWYg38zGjerfnmvHZ8Q3KmAA1TjCqOjKWgRhjaqa8XLnx9cVs3X0AgPYt0nlo4jBSrd7FJBibjNuYBuapWXl8tqJyRoz7zxlC5zZN4xiRMcFZgjGmAVm4djv3Tq+c9++y4/pwwsCOcYzImNAiGSpmeCQntlZkxkTXzv0lXP3yQkq9ipch3dty00kD4hyVMaHVphVZTVgrMmOiSFX5/bQlrN/uegW0aprGlPOHkZ5mDyFM4opGK7IUoCfQ3tu/GCire2jGmAovzF3LB0s3+9bvOWsw3ds3j2NExlQvaq3IRGQU8CSwHjijjnEZYzzfb9zFne9971v/xage/OSIQ+IYkTE1E7X7a1Wdi0ss44GbonVeY5LZ3gOlXPXyAopLywEY2LkVt582KM5RGVMzUX2Aq6p5wDfAxdE8rzHJ6o63vyNv214AmjVJZcqk4TRtkhrnqIypmVjUEObjplE2xtTBtPnrmbZgvW/9zjMOp1/HlnGMyJjIRDXBiEhzYBSwJ5rnNSbZrNy2h9vfXupb//mwrpw9olscIzImcpH0g2kfZndL3FwxtwJdgNfqGJcxSauopIwrX1zAvmLXGLNPVgvuPOPwOEdlTOQiaaa8rfoiCG7Wy1trF44x5q73l7F8824A0tNSeGTSMFpkWLcy0/BE8qndTuiOlsXABmAG8ICqbq1rYMYkow++3cTUOWt867efeiiHdWkTx4iMqb1I+sFkxTIQY5LdusJ93DxtiW/9lMM7c8FRPeMYkTF1Y+NMGJMASsrKufrlhewuKgWga9tm3H3WYERsCH7TcNU4wYjIOyJyTQ3KXSUi79QtLGOSy30frmDRuh0ApKUIj0waRptmTeIclTF1E0kdzGm4Pi7VGQKcWrtwjEk+n67YyhNf5PnWJ588gOE92sUxImOiIxaPyNKB8hic15hGZ8uuIm58bbFvfeyADlw6pk8cIzImemKRYIYBBTE4rzGNSlm5cu0rCyncWwxAx1YZ3H/OEFJs6mPTSIR9RBakLmV8mPqVNGAAbpiYN+semjGN2yOf5DAnrxAAEXhw4lAyW2bEOSpjoqe6OpjT/P6tQHfvFc4K4Ja6BGVMYzcnr4CHZ+T41q8el80xfa0ngGlcqkswP/WWArwDfAw8FKJsMbBBVb8Psd8YAxTsOcC1ryzEm/mYUb3bc+347PgGZUwMhE0wqvp+xb9FZD4w03+bMSYy5eXKja8vZsuuAwC0b5HOQxOHkWr1LqYRiqQn/5GxDMSYZPDUrDw+W1E5rN/95wyhc5umcYzImNixnvzG1JOFa7dz7/QVvvVLx/TmhIEd4xiRMbEV8RCt3rD9pwL9gda4+plAqqrX1jE2YxqNnftLuPrlhZR6FS9Durdl8skD4xyVMbEVUYIRkUuBB4Bm/pu9pfqtK2AJxhhAVbn1P0tYv30/AK2apjHl/GGkp9kDBNO4RTIW2QnAP73VR4BvvH/fCDwObPLWHwWqHbPMmGTx4ty1/Pfbzb71e84aTPf2zeMYkTH1I5I/oa73lhNU9TpgGYCqPqCqV+Iemb0M/AJ4L6pRGtNAfb9xF39+r7Ll/i9G9eAnRxwSx4iMqT+RJJgfAQtVdVawnaq6D7gEOAD8XxRiM6ZB23uglKteXkBxqRuab2DnVtx+2qA4R2VM/YkkwbQDcv3WSwBExHevr6oHgFnA+KhEZ0wDdsfb35G3bS8AzZqkMmXScJo2SY1zVMbUn0gSTAHQ0m+90FsGTrmXBmTWJShjGrr/LFjPtAXrfet3nnE4/Tq2DHOEMY1PJAlmDdDDb30JrsXYWRUbRKQdcDywLirRGdMArdy2h9veWupb//mwrpw9olscIzImPiJppvwJcIuIdFXVDcD7wE7gTyLSG1gPTATaAM9GPVJjGoCikjKufHEB+4rLAOiT1YI7zzg8zlEZEx+RJJhXgT641mIbVHWniPwO+DfwK79yy7BKfpOk7np/Gcs37wYgPS2FRyYNo0VGxP2ZjWkUIhmLbAlwfsC2V0TkG+AMoD2wHHjNq+w3Jql88O0mps5Z41u/7dRDOaxLmzhGZEx81TjBiEgKbggY9d+uqiuB+6MdmDENybrCfdw8bYlvfcJhnbnwqMD2L8Ykl0gq+Uup7L1vjPGUlJVz9csL2V1UCkDXts245+zBiNgQ/Ca5RZJg9uAegRlj/Nz34QoWrdsBQFqK8MikYbRp1iTOURkTf5EkmBWAjXFhjJ9PV2zliS/yfOs3nTyA4T3axTEiYxJHJAnmGWC0iFibS2OALbuKuPG1xb714/p34LIxfeIYkTGJpcYJRlUfB14EZojIlSLSJXZhGZPYysqV615ZROHeYgA6tsrgH+cOIcWmPjbGJ5Lh+ncBZwNZwMPAOhEpEpFdQV47axuQiDQTkZtF5BsR2SEi+0RklYi8LiLHhjhmkojMFJGdIrJHROZ5SdAm3DAxMeWTXL7KKwBABB6cOJSslhlxjsqYxBJJD7BgAymle6+o8EYE+B/QD9gKfI4bnbkXcDqwGJgdcMyjwBVAETADNwjneGAKMF5EzlHVsmjFaMycvAIemvGDb/3qcdkc0zcrjhEZk5giSTCtYhYFICItgI+AvsCdwJ2qWuK3P5OAQTRF5CxcctkMHKeqOd72TsCnwJnAVcBDsYzdJI+CPQe49pWFeDMf86Pe7blmXL/4BmVMgoqkJ//eWAYC3IZLLs+r6h1B3r8AN6Kzv1u95S0VycUru8UbxuYz4Pci8oiqlscmbJMsysuVm15fzJZdbqCKds2b8PDEYaSl2pNYY4JJiP8ZIpIOXOqt3l3DY7oBI4Bi4PXA/ar6ObAB6AwcFZ1ITTJ7etYqPl2xzbd+/7lD6NymaRwjMiaxRTwKn/fFfglwNNABeL/ijkNEhgMDgXdVdXcEpx2Be/y1TlWXicgxwGnets3AdFX9KuCYYd7yO1XdH+K83wBdvbJfRhCPMVUsWreDe6ZX9jO+dExvxg3sFMeIjEl8ESUYEZkIPAU0w80Fo7iK9wo9ganAxd6ypo7wljki8hzwy4D9d4jINOBCv2TS21uuIbS1AWWNidiXuflMfmMJpV7Fy5DubZl88sA4R2VM4oukmfKRwPO4xPJnXEutwEb//8UNKXN6hHG095bHARcB9+FakrXzzrUBN7HZo37HVLRqC1c3tMdbxrSBgmmcvt+4i4ue+ZpJT81lww73d02rjDQemTiM9LSEeLpsTEKL5A7m97iEdKqqfgYcNJifqh4QkeXAYRHGUfG/NQ14SlUn++17R0Q2Al8DvxSRv6hqHpXJrcrozpEQkcuAywB69OhRTWmTLNYV7uMfH/3AW4s24D92eEZaCg+cN5Qemc3jF5wxDUgkCWY08E1FcgljPe7uJhL+9TVPBu5U1XkiMh8YCYwF8vyOCTfRecW+oPVBqvov4F8AI0eOrHWiMo3D9r3FPPppLs9/tYbisspGhykCZw3vxvUn9qdL22ZxjNCYhiWSBNOW8PUdFVKIvPPlar9/rwpRZhUuwXQOOCbcpBvdg5zfmCr2F5fx7JerePyzlb4h9yuMH9iRmycMZEBne8pqTKQiSTD5uB711ekPbIowjgV+/84EtgUpU9FVuqJeZaG3PExEmoVoSXZkQFljfErLypm2YD0PfJTD5l1FVfYN7d6WW08ZyKg+mSGONsZUJ5IE8yVwhogM9qZPPoiIHA8cCjwXSbH962oAAB9RSURBVBCqukFE5gKjcI/Xqsw7IyLtgOHe6jzvmHUissDbfg6uAUJgLN1wzZwDmzibJKaqfLxsK/dOX07O1j1V9vXJasHNEwZw8mGdbcIwY+ookgTzMK4l139E5CJVrdKvxOsD8wxQTtXWXjV1F/AOrknybFVd5J23KfA40AaYT9Vk8TdcJ8t7RORLVc31jukIPOaVudt68ZsK89ds5+4PlvHN6u1VtndolcF1P87m3JHdaWI9842JikiGipkpIn8C/gTMFJEtuBZcp4nIStzjMwFuV9X5kQaiqu+KyH3ATcBc746mAPgR0AXXVPl81cp2Par6hog8DvwO+FZEPqZysMvWwFu4QS9Nklu5bQ/3Tl/Oh99tqbK9ZUYavz2uD5eM6U3z9Ij7HRtjwojof5Sq/llEvsP1gznU25zlvfKAO1T1pdoGo6qTReRL4Gpc7/vmuM6S/8DdiRxUN6OqV4jILOBK4HggFfeI7Rngcbt7SW5bdxXxwMc5vDZvHWXllQ0Fm6QKvxjVk6vH9SPThtk3JiZEtXatc0WkB9AH94W+TlV/qOaQhDZy5EidN29evMMwUbK7qIQnPs/j6Vmr2F9SdbaGnw3pwo0n9adnZos4RWdM4yEi81V1ZLB9tX4moKprqRyKxZiEcKC0jBfnrGXKp7m+2SYrHNsvk99POJQjurWJU3TGJJdaJxgRaY0bSFKBTapa61ksjamr8nLl3SUbue9/K1hXWLXF+qBDWvP7UwYyJjvLWoYZU49qM5ryBcD1wBD8hmsRkcXAQ6r6fMiDjYmBWTn53D19GUs37KqyvVu7Ztx00gB+NqQLKSmWWIypbzVOMOL+9HsemERlYqm4a2mDq5R/VkROBi7Q2lbuGFNDSzfs5J7py5mZk19le7vmTbhqXDYXHNWDjLTUOEVnjInkDuYK4Be4XvZ3AlMrHot5j8suxM1KORHXV8WaB5uYWFe4j/v+t4K3F22ssr1pkxQuGd2b3x7fl9ZNm8QpOmNMhUgSzGXAAWCsqi7z36Gqu4BHReQT3LAsl2EJxkRZ4d5iHvkkhxfmrKGkrPIGOUXg3JHdue7H/W2GSWMSSCQJpj/wWWBy8efNRvkprj+KMVGxr7iUZ2at4onP89h9oOpglCcO6sQtEwbQr6MNRmlMookkwewCtldbCnYQYnh8YyJRWlbO6/PX88BHP7B194Eq+0b0bMetpwxkZK/2IY42xsRbJAnmM+AYEUlT1dJgBUQkDTga+DwKsZkkpar87/st3Dt9OSu3VZ2wtG+HFtwyYSAnDupkTY6NSXCRJJjbgG+AJ0XkGlWtcpciIi1xA2K29coaE7F5qwv52wfLmb+m6s1yp9YZXP/j/pw9ohtpNhilMQ1CJAnmp8AbwK+B00XkPSonB+vl7W+DGwPstCDTKf+jrsGaxitny27umb6Cj5dVHYyyVUYal4/ty6+P7U2zdGtybExDEkmCuQ/Xax/cXcoFfuv+2eTXAceJV84SjDnI5p1FPPDRD7w+fx1+Y1HSJFW48KheXDWuH+1bRDpBqjEmEUSSYP5BZUIxpk527i/hic9X8szsVRSVVB3w+oyhXbjxpAF0b988TtEZY6IhkvlgboplICY5HCgtY+pXa5jyaS479pVU2TcmO4tbJgzk8K42GKUxjYHNsGTqRXm58vbiDdz34Q9s2FF1MMrDu7bm9xMOZXR2VpyiM8bEgiUYE1Oqyhc5+dz9wXKWbao6GGX39m4wyp8OtsEojWmMajOa8hDgBNw0xqHG5VBVvbYugZmG79v1O/nbB8v4cmVBle3tW6Rz9bh+/GJUT9LTrMmxMY1VJKMpNwVeAM6s2BSmuAKWYJLUmoK93Pe/H3h3cdXBKJs1SeU3Y3pz2XF9aGWDURrT6EVyB/NX4OfAHuA1IMf7tzEA5O85wJRPcnlxbtXBKFNThPOO7M5147Pp2NoGozQmWUSSYM7Dzf8yQlXzYhSPaYD2Hijl6VmreOLzlewtLquyb8JhnZk8YQB9O7SMU3TGmHiJJMG0Az6y5GIqlJSV8+o363jw4xzy91QdjPLIXu34/SmHMqJnuzhFZ4yJt0gSzCqso6XBtQybvnQzf/9wBXn5VQejzO7YklsmDGT8oR1tMEpjklwkCeZ54FYRyVTVgmpLm0Zp664irn55IXNXFVbZ3rl1U244sT9njehGqjU5NsYQ+VhkxwMfi8jlqjo3RjGZBLV43Q5+O3U+m3cV+ba1aprGFWP78atje9G0iQ1GaYypFMlQMWUiMhGYBXwpIruB9UB58OI6JEoxmgQwbf56bn3zW4pL3eVOEfj1sb258oR+tLPBKI0xQUTSD6YrbiKx3rg+MK2BQSGKW11NI1FaVs7dHyznqVmrfNtaN01jyqThHNe/QxwjM8Ykukgekf0d6AN8DTwC5GL9YBq1HfuKufrlhczMyfdty+7YkicvGkmvrBZxjMwY0xBEkmB+DKwDTlDV/dUVNg3bD1t2c+nz81hTsM+37cRBnXjgvKG0zLAh7Iwx1Yvkm6Ip8Kkll8bvw+82c8Ori6p0mrxmfDbXjc+2QSmNMTUWSYL5FsiMVSAm/srLlUc+yeWBj3/wbWuensr95wzhlCMOiWNkxpiGKJIE8wDwsogMV9UFsQrIxMfeA6Xc+Npipn+32betW7tmPHnRSA49pHUcIzPGNFSRJJhPgPuBGSJyN/AhoZspo6qFwbabxLO2YB+XPj+PFVt2+7Yd0zeTKZOG096aIBtjaimSBLPNWwpuZOW/himrEZ7bxMns3HyufGlBlemLf3VsL/74k0NJS7W5WowxtRdJEtiO9W9pNFSVZ2ev5q7/LqOs3F3W9NQU/nLm4Zw7snucozPGNAaR9OS3CdMbiaKSMm57aylvzF/v29axVQb/vHAEw3vY6MfGmOiwx1hJZsuuIn47dT6L1u3wbRvSvS3/unAEnWwyMGNMFFmCSSIL127nt1Pns3V35dwtZw3vxl1nHm4DVRpjoi7iWlwRGSkiz4rIchEpEJHH/PadICJ/EBEbpCrBvD5vHec9MceXXFJThNtPG8R95wy25GKMiYmI7mBEZDKu9VjFN5LievhXaALcCRQAT0QjQFM3pWXl3PXfZTw7e7VvW5tmTXh00nBGZ1u1mjEmdmp8ByMiJwH3APnAr4C+uCbL/j7GtTb7abQCNLW3fW8xv3z26yrJpX+nlrxz1bGWXIwxMRfJHcwNQDEwQVUXAwdNiauq5SLyA9A/ahGaWlm+eReXPj+PdYWVQ8edfFgn7j/XBqs0xtSPSL5pjgTmViSXMNYDR9Q+JFNX05du4obXFrPPb7DK63/cn6vH9bPBKo0x9SaSBNMC2FxtKWjOwY/OTD0oL1cenJHDwzNyfNtapKfyj/OGcvJhneMYmTEmGUWSYDZTs0dfA3Hzxph6tOdAKde/uoiPvt/i29ajfXOevGgkAzq3imNkxphkFUkz5c+BwSJyXKgCInIGbtbLGXUNzNTcmoK9/Pyx2VWSy+h+Wbxz1bGWXIwxcRNJgrkPKAPeFJFJItK8YoeIpInIz4EngQPAQ9EN04QyM2cbP5symx+2VM5efcno3jz3qyNp29xGQjbGxE8kY5F9KyKX4/q3TAVKcf1gJgLnA+m4oft/o6o5IU9kokJVeXrWKv7632V4Y1WSnpbC3848grNGdItvcMYYQ4QdLVX1GRH5DrgDGIerzG+KSzafAX9S1ZnRDtJUVVRSxh/e/Jb/LNjg29apdQZPXDiSod3bxjEyY4ypFHGHCFWdC5wqIulAF1yv/k2qui/awZmDbd5ZxG+nzmPx+p2+bcN6tOWJC0bQ0QarNMYkkJAJRkSeAWap6jPB9qtqMbA6RnGZIOav2c7lL8xnm99gleeO7MadZxxORpqNJ2aMSSzh7mAu9pZBE4ypX699s47b3lpKcZmboTo1RbjjtEFcdHTPg0ZUMMaYRGBjhiS4krJy/vLe9/z7qzW+be2au8Eqj+ln44kZYxKXJZgEVri3mCtenM+cvELftoGdW/HkRSPp3r55mCONMSb+LMEkqO837uKyqfNYv71ysMpTDu/MfecMoYUNVmmMaQDsmyoBvb9kEze9vpj9JZWDVd54Yn+uGtfP6luMMQ1GdQnmbBEZW4vzqqr2rcVxSa28XHng4x945JNc37aWGWk8cN5QThzUKY6RGWNM5KpLMC29V6S0Fscktd1FJVz/6iI+XrbVt61XphusMruTjSdmjGl4qksw03GzWJoYWpW/l0ufn0fu1srxxMZkZzHl/OG0ad4kjpEZY0ztVZdgNqvq5/USSZL6/IdtXP3SAnYVlfq2XXZcH24+eQBpqZGMRWqMMYnFKvnjRFV5cmYed3+wvMpglfecdQRnDrPBKo0xDZ8lmDgoKinj99OW8Naijb5tnVs35V8XjWBwNxus0hjTOFiCqWcbd+znt1Pn8+2GysEqR/Rsx+MXDKdjKxus0hjTeFiCqUfzVhdy+Qvzyd9T7Ns28cju/N/ph9lglcaYRidkglFVq2GOope/Xssdby+lpMxVuKSlCP/vp4O44CgbrNIY0zjZHUyMlZSV8+d3v2fqnMrBKtu3SOfRScM5um9mHCMzxpjYsgQTQwV7DvC7Fxfw9arKwSoPPaQ1T140gm7tbLBKY0zjljCPwUTkORHRMK/l0Timvny3cSc/mzK7SnI5dfAhTPvd0ZZcjDFJIRHvYGYDuUG2b4ryMTHz7uKNTH5jMUUlbnIwEbjppAFcMbav1bcYY5JGIiaYp1T1uXo4JurKypX7/7eCxz5b6dvWMiONhyYOZfyhNlilMSa5JGKCaZB2FZVw3SuL+GR55WCVvbNa8ORFI+jX0QarNMYkH0swUbBy2x4ufX4eedv2+rYd378DD58/jDbNbLBKY0xySsQEc4KIDMZNE7AFmAV8pKrlUT4mKj5dsZVrXl7Ibr/BKi8/vi+TTx5AaorVtxhjklciJpiLgmz7XkQmquq3UTymzt6Yv57JbyxGvcEqM9JSuPfswZw+tGus3tIYYxqMhGmmDCwCrgEOw92JdAFOAxYDg4CPRSTwm7s2x/iIyGUiMk9E5m3bti3igEf1bk+75ukAdGnTlDcuP8aSizHGeEQ1sSefFJF04HPgKOBRVb0qFseMHDlS582bF3F8X60s4OEZOTwyaRhZLTMiPt4YYxoyEZmvqiOD7UvER2RVqGqxiPwNeBv4SayOqa2j+2ZyVJ/21r/FGGMCJNIjsnAqeuRH8vypNsfUiiUXY4w5WENJMBWjQu4JW6ruxxhjjImShpJgzvWW38T4GGOMMVGSEAlGRIaKyGkikhqwPU1EbsC1FAN4oC7HGGOMqT+JUsnfC3gTKBSRH4D1QCvgCFzT43LgFlX9sI7HGGOMqSeJkmAWAw8BPwJ6AsMAxSWNZ3FNjedH4RhjjDH1JCESjKquAq6L9THGGGPqT8J3tKwvIrINWFNtweCygPwohmMSk13n5GDXOTI9VbVDsB2WYKJAROaF6slqGg+7zsnBrnP0JEQrMmOMMY2PJRhjjDExYQkmOv4V7wBMvbDrnBzsOkeJ1cEYY4yJCbuDMcYYExOWYIwxxsRE0icYEekmIo+IyAoR2S8iRSKSIyL/FJE+YY6bJCIzRWSniOzxZsa8UkTC/k5re5wJT0QGiMi1IvKCiCwXkXIRURE5uwbH1uu1tM9A7UR6jUWkiYiMF5H7RWSOiGwSkWIR2SAib4jI2Bq8p13julDVpH3hhpfZjhtiZh3wlvda723bDRwT5LhHvf37gfdwY6Lt8rb9B0gN8X61Os5eNbqWD3q/x8DX2dUcV6/X0j4D9XeNgR/7ldnk/b5fBb712/7nRPlsNMZX3AOI6w8PX3oX/V9AE7/tTYCnvX2LA445y+8Dm+23vRPwvbfv2iDvVavj7FXja/kb4F7cNA19gc+qSzD1fS3tM1C/1xgYB7wBjAmy7zyg1Dv+BLvGMbpm8Q4gbj84NKXyr5jOQfZ38dvf3G/7PG/bRUGOOd7vw5USsK9Wx9mr1te3JgmmXq+lfQbq/xpXc/xT3vFPx/uz0VhfcQ8gbj+4u0sp8S74IUH2H+Lt20Nlc+5u3rYDQLMQ5614vHaM37ZaHWevOl3fsF8+9X0t7TNQ/9e4Bsdf6R3/YTw/G435lVwVTn5UtQSY4a3+n4g0qdjn/fsv3urT6n0ycHU2AN+p6v4Qp/4moGxdjjOxU9/X0j4DiSfbW24K2G7XOEoSYrj+OLoCmA5cCpwiIvO87UcC7XDzzUz2K9/bW4YbdXltQNm6HGdip76vpX0GEoiIdAYu9lanBey2axwlSZ1gVDVPRI4BngdOwd3iVpgHfOHd6VRo6S33hjntHm/ZKgrHmdip72tpn4EEISJpwAtAG2CGqr4bUMSucZQk7SMyAC+5LAX6Aafj5oHoAJyBu4OZJiJ3+B/iLZXI1PY4Ezv1fS3tM5A4/gmMx3VNuCDIfrvGUZK0dzAi0hbX56UFrsItz2/32yLyHbAEuF1EXlbVHFy/GKj8SyWYin27/bbV9jgTO/V9Le0zkABE5CHgEmAzMF5VNwcpZtc4SpL5DuZU3N3KnIDkAoCq5gJzcUl4rLd5tbfsGea83QPK1uU4EzurvWV9XcvaHmeiRETuB64BtuGSS06Ioqu9pV3jOkrmBNPDW+4MU2aHt2zvLRd6y8NEpFmIY44MKFuX40zs1Pe1tM9AHInIvcANQAFwoqp+H6a4XeMoSeYEs9FbjvBvolzB2zbCW10FoKrrgAVAOnBOkGOOxzUU2Ax8VbG9tseZ2Knva2mfgfgRkbtxrUG345LL4nDl7RpHUbw74sTrBXTEtfZQYAqQ4bcvA3jc21cItPHbdzaVvXH7BZzvO0IPIVGr4+xV6+v7GdX35K/Xa2mfgbhc4zu9MtuBERGc265xFF5JPeGYiPwSN+ZYKu6OZj6uJcgIXE/+A8BEVX0r4LjHgN8BRcDHuBEBxgOtcQ0HzlbVsiDvV6vjTPVEZDjwmN+mQbimoDm4PxIAUNWjAo6r12tpn4Hai/Qai8jPgLe9zfNwX/DBLFfVu4O8n13juop3hov3CxiO6wezCveBKAJW4sYpGhTmuEnAbNwoqXtxyelKqhljqLbH2ava6ziW4CPtVnklwrW0z0D9XGNcR8pqywOf2TWOzSup72CMMcbETjJX8htjjIkhSzDGGGNiwhKMMcaYmLAEY4wxJiYswRhjjIkJSzDGGGNiwhKMMcaYmLAEk8REZLWIqPf6WzVlX/Qr+1mQ/SoiB3WqEpHPvH1jA7b/ydv+pzr+GA2aiFzs/R6ei3csNSEij4tImYgMCthe8VnqFZ/I4kNE3hGR3SJySLxjSUSWYEyFi0QkNdgOEWkNnFkfQYjI2FBJrCEKlXgbIhEZgpte/AUNPxpxMvkjbk6pv8Y7kERkCcaAG6epC3BiiP0TgWbAN2HOcaj3qqkpXvkpERzTGL2J+z3cGu9AauDvuO+MP8c7kEShqt/iruEvRWRwvONJNJZgDMBz3vLiEPsvBsqAqaFOoKrLVXV5Td9QVfO9Y/JrekxjpKo7vd/DpnjHEo6IHIb7A+QzVV0Z73gSzDO4QXKvjncgicYSjAE3c+f3wOneVNI+IjIAOBr4EDcEeVCRPgoKVgfjPRb71Fs93q/Op8ojMxHpKSK3isinIrJORA6ISKG3PinE+/kevYlIcxH5i4gsF5H9IrJIRI7z9i8LE3OWiBR5x7QPVc7/5/Nb9/9Z/LcHrYMJiLepiNwpIrnee+eJyG0VjzRFpLuIPC0iG7z4vhWRYHPNV5y7iYhcLiIzRWS7d0yOiPxDRDqEOOwKb/nvcD+3d/4TRWSGiOwUkX0iMscb2ThU+SwRucfveuzyjrlCRA6a1r26+rswv1PfdhHJFJGHRWSViBSLyFt+5U4SkfdFZKuIlHifreUi8oy4EZ0DTQe2AJMC//8ku4MunklazwH3Aufj5sKpcLG3fLYeYpiOG836ZNx/2Ol++/zvji7EzfOx0ts+GzeR0xhgrIiMUtVrQ7xHU9w8IocCXwCLgXRV/UJEFgNDRGScqn4S5Njf4OYKek5VC4Ps97cI92X8S2+92i/mENKBj4DDvLhzgONwP39XEbkP9/PvA2YCXYHRwFQRUVV90f9kXn3a+16ZnbhRfnfgRhW/HjhLRI5X1dUBcZzuLT+uJt5LcPUS3wD/BQYAo4C3RORcVX0jIJ5+wCe4qYQ3A+8CzYETgEeBM0XkNFU9UM37RiLLi68N7nc2DzfTJSJyMe6zXo77w2sN0NKL72LgB9ykYj6qWub9AXQe8GOgys+Y1OI9nLO94vfCzQuuwEigM1AKzPXbnwpswP3nS6dyMqXPgpwr6HD4VE4KNTZg+5+87X8K2D421Hv4lTkSOCzI9mxgrXf8qBDnVdx0tZ2CHH+Jt/+NIPtScFM6KHBkBL/jkNMEePsv9so8FybemVSd9G4IUIx7bPk98CCQ6rf/Su+43CDv94q373WgXcC1vifY7977vSqwtgafpQPAhIB9t3n7coIc97W37zWgqd/27sAKb9/favLZqcHvtGK74u7IWwU5Ns/bf0yQfd0IMYUHcK133GPR+v/ZGF72iMwAoKqbcXcMPxKRisr6k3CV/y+panHcggugqt+o6kGTR6lqDu4ve3DJMJQrVXVLkO0v4SauOl1EugTsOxXoBXyjquEaO0RbOXCZqu6s2KBuyt//4pJec+BmrTqB1RO4n6OviPSo2CiuafF5uL/KL1LV7X7nLMM1NFiCezx5hN/5hnrLkI8P/TyiqtMDtt2Lu1vqFxDPGNwfC7uBy1W1yC+edcB13uqVItK0Bu9dUyXAb1V1d5B9nYAdqvpl4A5VXa+hW89VbB8WpRgbBUswxt9z3vLigOVzJBivXuJ0ry7lCe+5+nNUJpb+IQ7dEuzLA0BV9+MmmksDLgvYXVEH8WgdQ4/UGlUN9sWe6y0/CUz+qlqKu9sC9wdChVO85Xvez1qFqpYDs7zVo/12dfSWBTWI970g5y3G3RkExnO8t3xXgzxyVNUPcPV+rXCzzEbLAj34EWCFr4G2IvK8iAwTEanhOSvi71Tn6BoRq4Mx/t7BfYlcKCJ/xz13/1ZV58c3rKpE5GjcI5VuYYq1DrF9TTWnfxS4EbhURP6iqqUi0hdXL1QAvBppvHW0PsT2PTXc7/+Xfx9veaWIXFnN+/pX9rfxlruqOQbcI8pgKo71j6ert1xFaHm46cu7hikTqXCfgStwdVQXeq+dIvI1rh5sqnenH0zFz2eV/H4swRgfVS0WkZdwzS2fxVVo10flfo2JSHNcv4NOwNO4Bgm5wG5VLReRk3DP10P95XnQX+7+VHWtiLyD61h6Bq7C9nfe+Z7xf4xTT8rruN9fRUfa+cDSasr6P4Lc4S1DJe3axlNxjcK1PqzpHYS/6p7MhPwMqOoycS0nTwbGAcfiGhycCPxJRM4K8ggQKn8324PsS1qWYEyg53AJ5jRcpf+LYUvXv+NwyWW+qv4myP5+UXiPR3AJ5goReQ/4Fe6L859ROHc8rfOWn6rq5AiO2+otM6McT8XdV58wZXp7yw1+2yoeCbYMcUzPugSlqiW4R33vAYhIO+D/4Srynyb43VTF72ZrkH1Jy+pgTBWqugD3HL4AeF1V6/s/TMWXR6g/fir6n6wLsT9oP5hIqOqnuL/wTwD+z3vPD1Q1L+yBwZUABOvPEQcfeMszIoynolnuoLClIve5t/yp9yVehYicjHs8tgd311WhItkMDHKMABOiGaTXGGIy7o+MLiH6ClX8bhYE2Ze0LMGYg6jqGFXNUtU6f1nXQsWXR78QX4IV/WHGiYjvC0ZEUkTkDtwjjWioGMLmZm/5WC3PU/HzRDKMTkx4fzy8hbvLe01EDqrDEpFDROQ6/9+9l1jXAt2CHVOHeGbi+qO0Ah4VkQy/OLriml8DTAl4NPkp7sv+FBEZ7XdMKnAX8KPaxCOuA+4NIRLIqbjvy11UPjL0V9Eo4tMg+5KWJRiTUFR1DV4/FWCJiEwVkadEZLK3fwGuM15rYJGIfCAir+A6IN6OaxIbDVOpfJ6eR9VOn5F401vOEJFXvJ/lqTpHV3u/xN05nAnkeD3mX/V+j0txj60e4OA7yIqe7j+OcjyTvPc8H8jzYnkX1wdmIDAD1+/FR1XX4ureUoBPvFED3sRdp6uAh2sZSzpwP7BJRBaKyGveNfuGyut4i/cIzcdLxmNxnV2r64iaVCzBmET0c1wrsfa4L55LcH9BVjgb+D2ucn8sMB5XKT2aysdAdaKq+4CK5syPe014a+OPwD9wj3l+jvtZLql7hLWjqrtwv6+LcCMZ9PXiGoGrc/sncHKQxgwVozv8kihS1Vxc35G/435Hp+Ou6Xe4ZHGKBu/Ffw1wCy6pjPZec3GdhhfWMpw9uAYdb+AGdz0Z+BmuZdhLwFGqGqwebgKuKfdLqhrs7iZpiWqjGEncmKgSkY64ep4yoFuwfhrJRkSm4zrfZqsNeOkjIv/BtTgcqqpL4h1PIrE7GGOC+yPukcm/Lbn43Iyr+7gj3oEkCm/EgzNwnxNLLgHsDsYYj4gcA/wa99hoLG54k0GqujGecSUSEXkM+C0wONhwPclGRN7G9Zfprwk+5UI8WIIxxuM3ku4+XHPTyao6J65BGdOAWYIxxhgTE1YHY4wxJiYswRhjjIkJSzDGGGNiwhKMMcaYmLAEY4wxJib+P61Z8sQyQUisAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"plt.rcParams.update({'font.size': 22})\n",
"plt.rcParams['lines.linewidth'] = 3\n",
"\n",
"# x axis values \n",
"x = np.array1\n",
"# corresponding y axis values \n",
"y = np.array2\n",
" \n",
"# plotting the points \n",
"plt.plot(x, y) \n",
" \n",
"# naming the x axis \n",
"plt.xlabel('Military time(hours)') \n",
"\n",
"# naming the y axis \n",
"plt.ylabel('Temperature(F)') \n",
" \n",
"# giving a title to my graph \n",
"plt.title('Ta vs Time') \n",
" \n",
"# function to show the plot \n",
"plt.show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Answer__ : This graph does look correct as the temperature increases with the time. I am not sure of a better way to get Ta(t)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"B:"
]
},
{
"cell_type": "code",
"execution_count": 255,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hours passed since death = 1.6498199340873931\n"
]
}
],
"source": [
"import math\n",
"math.log(10)\n",
"\n",
"Temp_t1 = 85\n",
"Temp_a1 = 65\n",
"Temp_a2 = 60\n",
"Temp_a3 = 58\n",
"K = 0.00458333333333\n",
"Temp_0 = 98.6\n",
"t_1 = 11\n",
"\n",
"''' Determine the time of death, T = 98.6, considering different Temperatures at different times of the day\n",
" \n",
" Arguments\n",
" ----------\n",
" Temp_t1 = Temperature at point 1\n",
" Temp_a1 = ambient temperature at 11am\n",
" Temp_a2 = ambient temperature at 10am\n",
" Temp_a3 = ambient temperature at 9am\n",
" K = empirical constant\n",
" Temp_0 = Temp at time of death\n",
" t_1 = Time first given\n",
" \n",
" Returns\n",
" -------\n",
"t1 = time in seconds since death calculated with ambient temperature 1\n",
"t2 = time in seconds since death calculated with ambient temperature 2\n",
"t3 = time in seconds since death calculated with ambient temperature 3\n",
" t_hours = time in hours since death calculated using average of time in seconds for each ambient temperature\n",
" t_death = time in hours (decimal) since death\n",
" \n",
" '''\n",
"\n",
"t1 = math.log((Temp_0 - Temp_ambient)/(Temp_t1-Temp_ambient))/K\n",
"t2 = math.log((Temp_0 - Temp_a2)/(Temp_t1-Temp_a2))/K\n",
"t3 = math.log((Temp_0 - Temp_a3)/(Temp_t1-Temp_a3))/K\n",
"t_hours = ((t1/60)+(t2/60)+(t3/60))/3\n",
"\n",
"\n",
"print('Hours passed since death = ', t_hours)"
]
},
{
"cell_type": "code",
"execution_count": 256,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Time of Death = 9.350180065912607\n"
]
}
],
"source": [
"t_death = t_1 - t_hours\n",
"print('Time of Death =',t_death)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Answer__: Time of Death = 9:35 am"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}