diff --git a/project_1.py b/project_1.py index ddcd899..5a3d472 100644 --- a/project_1.py +++ b/project_1.py @@ -12,7 +12,8 @@ from torch.distributions import MultivariateNormal from torch.utils.data import DataLoader, TensorDataset import matplotlib.pyplot as plt -from sklearn.decomposition import PCA, silhouette_score, adjusted_rand_score +from sklearn.decomposition import PCA +from sklearn.metrics import silhouette_score, adjusted_rand_score import seaborn as sns def load_data(data_path, labels_path, dataset_size=10, train=True, standardize=True): @@ -281,8 +282,8 @@ def main(): labels_path = r"R:\ENGR_Chon\NIH_Pulsewatch_Database\Adjudication_UConn\final_attemp_4_1_Dong_Ohm" saving_path = r"R:\ENGR_Chon\Luis\Research\Casseys_case\Project_1_analysis" - train_data, segment_names, labels = load_data(data_path, labels_path, dataset_size=141, train=True) - test_data, _, _ = load_data(data_path, labels_path, dataset_size=141, train=False) + train_data, segment_names, labels = load_data(data_path, labels_path, dataset_size=20, train=True) + test_data, _, _ = load_data(data_path, labels_path, dataset_size=30, train=False) train_dataloader = create_dataloader(train_data) test_dataloader = create_dataloader(test_data) @@ -302,7 +303,7 @@ def main(): # Perform MFVI for your data K = 4 # Number of clusters n_optimization_iterations = 100 - miu_mfvi, pi_mfvi, resp_mfvi = perform_mfvi(train_data, K, n_optimization_iterations, convergence_threshold=1e-5, run_until_convergence=False) + miu_mfvi, pi_mfvi, resp_mfvi = perform_mfvi(train_data, K, n_optimization_iterations=1000, convergence_threshold=1e-5, run_until_convergence=False) # Calculate clustering metrics for MFVI zi_mfvi = np.argmax(resp_mfvi, axis=1)