Skip to content
Permalink
6510e3632e
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
executable file 380 lines (380 sloc) 56.7 KB
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Computational Mechanics Project #02 - Create specifications for a projectile robot\n",
"\n",
"On the first day of class, we threw $2\"\\times~2\"$ dampened paper (spitballs) at a target on the whiteboard. Now, we are going to analyze the accuracy of the class with some cool Python tools and design a robot that has the same accuracy and precision as the class, but we will have the robot move farther away from the target and use a simpler projectile i.e. a tennis ball so we don't need to worry about knuckle-ball physics. \n",
"\n",
"The goal of this project is to determine the precision of necessary components for a robot that can reproduce the class throwing distibution. We have generated pseudo random numbers using `numpy.random`, but the class target practice is an example of truly random distributions. If we repeated the exercise, there is a vanishingly small probability that we would hit the same points on the target, and there are no deterministic models that could take into account all of the factors that affected each hit on the board. \n",
"\n",
"<img src=\"../images/robot_design.png\" style=\"height: 250px;\"/>\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we ask ourselves some questions:\n",
"\n",
"1. How do we quantify the class accuracy and precision?\n",
"\n",
"2. If we design a robot, what design components can we control?\n",
"\n",
"3. How can we relate the controlled components to the class accuracy, and specify the component precision?\n",
"\n",
"The first question, we have some experience from our work in [02_Seeing_Stats](../notebooks/02_Seeing_Stats.ipynb). We can define the mean, standard deviation, measure the first, second, and third quartiles, etc. \n",
"\n",
"The second question is a physical question. We cannot control the placement of the robot or the target those are chosen for us. We cannot control temperature, mechanical vibrations, etc. We *can* control the desired initial velocity. The initial velocity will have some speed and direction, and both will be subject to random noise. Once the speed and direction are set, the location on the target is determined by kinematic equations for an object in freefall, as such\n",
"\n",
"$x_{impact} = \\frac{v_x}{v_y}d + x(0)~~~~~~~~~~~~~~~~~~~~(1.a)$\n",
"\n",
"$z_{impact} = d\\left(\\frac{v_z(0)}{v_y}-\\frac{g}{2v_y^2}d\\right)+ z(0)~~~~~(1.b)$.\n",
"\n",
"Where the location of impact is at a $y$-distance of $d$ at a point on the target with coordinates $(x_{impact},~z_{impact})$, and the initial velocity is $\\bar{v}=v_x\\hat{i}+v_y\\hat{j}+v_z(0)\\hat{k}$, the object is released at an initial location $\\bar{r}(0)=x(0)\\hat{i}+0\\hat{j}+z(0)\\hat{k}$, and the only acceleration is due to gravity, $\\bar{a}=-g\\hat{k}$. Equation (1) becomes much easier to evaluate if we assume that $v_x=0$, resulting in an evalution of the accuracy of the height of the impact, $z_{impact}$, as such\n",
"\n",
"$x_{impact} = x(0)~~~~~~~~~~~~~~~~~~~~(2.a)$\n",
"\n",
"$z_{impact} = \\frac{d}{\\cos{\\theta}}\\left(\\sin{\\theta}-\\frac{g}{2v_0^2\\cos{\\theta}}d\\right)+ z(0)~~~~~(2.b)$.\n",
"\n",
"Where $\\theta$ is the angle of the initial velocity and $v_0$ is the initial speed. Equation (2) restricts the analysis to height accuracy. You can incorporate the 2D impact analysis if you finish the 1D analysis. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The third question, is how we can relate equation (2) to the measured points of impact? For this, we can use Monte Carlo methods *(There are other methods, but Monte Carlo is one of the most straight-forward)*. Our Monte Carlo approach is as such, if we have a desired initial speed, $v_0$, and desired angle, $\\theta$, we can propagate the uncertainty of our actual speeds and angles into the $z_{impact}$ locations. Then, we can choose distributions in speed and angles that match the distributions in $z_{impact}$ locations. Here are the steps:\n",
"\n",
"1. Generate random $\\theta_i$ and $v_{0~i}$ variables\n",
"\n",
"2. Plug into eqn 2 for random $z_{impact~i}$ locations\n",
"\n",
"3. Compare to our measured $z_{impact}$ location statistics\n",
"\n",
"4. Repeat 1-3 until the predicted uncertainty matches the desired uncertainty, we can use a number of comparison metrics:\n",
" \n",
" - standard deviation\n",
" \n",
" - first, second, and third quartiles\n",
" \n",
" - visually, with box plots and histograms"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Project Deliverables\n",
"\n",
"1. Statistical analysis of class accuracy and precision (x- and z-locations) data is in the csv file [../data/target_data.csv](../data/target_data.csv) _Note: if you want to see how I turned the images into data check out the jupyter notebook [process_target_practice](./process_target_practice.ipynb)\n",
"\n",
"2. A Monte Carlo model to generate impact heights based upon uncertainty in $\\theta_0$ and $v_0$. \n",
"\n",
"3. The precision required to recreate the class accuracy and precision with a robot. \n",
"**You must show some validation of your work**\n",
"\n",
"4. [BONUS] Repeat 2-3 taking into account the variation in $x_{impact}$ due to misalignment. \n",
"\n",
"Given constants and constraints:\n",
"\n",
"- $d=$3 m, distance to target\n",
"\n",
"- $g=$9.81 m/s$^2$, acceleration due to gravity\n",
"\n",
"- $z(0)=$0.3 m, the initial height is 0.3 m above the bull's eye\n",
"\n",
"- 4 m/s$<v_0<$12 m/s, the initial velocity is always higher than 9 mph and less than 27 mph"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"#Import rcParams to set font styles\n",
"from matplotlib import rcParams\n",
"\n",
"#Set font style and size \n",
"rcParams['font.family'] = 'sans'\n",
"rcParams['font.size'] = 16\n",
"rcParams['lines.linewidth'] = 3"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"d = 3\n",
"g = 9.81\n",
"z_0 = 0.3\n",
"stats = pd.read_csv('../data/target_data.csv')\n",
"from numpy import sin, cos \n",
"cos = lambda x: np.cos(x)\n",
"sin = lambda x: np.sin(x)\n",
"throw = stats['throw #']\n",
"x = stats[' x position (m)']\n",
"y = stats[' y position (m)']\n",
"x_mean = np.mean(x)\n",
"y_mean = np.mean(x)\n",
"x_std = np.std(x)\n",
"y_std = np.std(y)"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.49068487 0.79583359 0.21518387 ... 0.01437084 0.92699977 0.6938211 ]\n",
"[0.49068487 0.79583359 0.21518387 ... 0.01437084 0.92699977 0.6938211 ]\n",
"[0.76682597 0.69501501 0.153107 ... 0.28873266 0.5962338 0.86720212]\n",
"[0.95416347 0.97362999 0.92502722 ... 0.19132799 0.70786501 0.85882531]\n",
"[1.51208032 1.7850183 1.4942239 ... 1.51264371 0.52696946 1.88996807]\n",
"[1.63239601 6.08331058 4.55268566 ... 7.80144293 3.25495737 1.28294062]\n",
"[0.56050172 0.42747321 0.24359657 ... 0.13892561 0.5718454 0.47511622]\n",
"[0.82965748 0.96767665 0.72213222 ... 0.43049109 0.40171648 0.8526274 ]\n",
"[-2.45241143 -1.06103644 -1.86420722 ... -0.34296986 -0.09265806\n",
" -2.33287546]\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD/CAYAAAD8MdEiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAUc0lEQVR4nO3df6xkZ33f8ffH9cLKsZHXYkUlO9tdiwZkywGUxSEBYRO32E7s9R8xkECixJbZ4lagFhUUQ0TANdmWH60lFCIcCIqEW6zUqViCBI6Du5BkTb127OKt49Zije3iquvejVPbK8Oy3/4xc+thmN079975ceY+75c0mr3nPHPme37NZ845c55NVSFJatcp8y5AkjRfBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuNWDIIkVye5Pcl3kxxN8nCSPUnOGGizPUmd4HHm0PQ2J/l4kif709uf5I3TmDlJ0sqy0n0ESe4GHgO+BDwBvAb4MPA3wM9X1fEk24FDwB5g79Ak7qmqHw5M71bgl4D3Ad8B/hlwOfBzVXX/OEW/9KUvre3bt4/TVJIE3HvvvU9V1dZR404d4/VXVtXhgb/3JVkC/gi4GPj6wLjvVNXdJ5pQklcBbweurarP94ftAw4CNwK7xqiH7du3c+DAgXGaSpKAJN890bgVTw0NhcCye/rPZ6+yll3AD4DbBqZ/DPgicGmSF69yepKkdVrrxeKL+s8PDQ3fk+RYkqeT7E1ywdD484FDVfXc0PCDwIuAl6+xHknSGo1zauhHJDmb3mmcO6tq+fzM88BngDuAw8ArgQ8Af5XkwqpaDoyzgCMjJrs0MF6SNEOrCoIkp9O7aHwMuGZ5eFU9CbxroOk3k3yV3jf9DwK/tjwJYNTV6Yzx3ruB3QDbtm1bTdmSpJMY+9RQks30fhF0LnBpVT1xsvZV9TjwF8BrBwYvMfpb/5aB8Sea3i1VtbOqdm7dOvLCtyRpDcYKgiSbgNuBC4FfrKpvjzn94SOAg8COJKcNtTsP+D7wyJjTlSRNyDg3lJ0C3ApcAlx1sp+HDr1uG/B64FsDg/cCm4C3DLQ7FXgbcEdVPT9+6ZKkSRjnGsHv0fvg/ijwbJLXDYx7oqqeSPJJeqGyn97F4lcANwDHgd9dblxV9ye5Dbi5f5RxCLge2AG8YwLzI0lapXGC4PL+8wf7j0EfoXeX8UF6H+i/CZwBPEXvRrOPVNXDQ6+5hl6o3AScCTwAXFZV962+fEnSeq3YxUQX7dy5s7yzWCey/be+wqP/+pfmXYbUKUnuraqdo8bZ++iQ7b/1lXmXIEkzZRBIUuMMggXhkYqkaTEIJsQPakmLyiBomOElCQwCSWqeQXASfmOW1AKDQIChp+lwu1oMTQaBG6fUTe6b89FkEKyHG6qkjcYg0LoZjtJiMwjUCYaJND8GgbQADEpNk0EgSY1rOgiGv2X5rUtaPfebxdd0EKyVG77G4XbSDYu2HuZRr0GwQSzaxj4vXV9OXa9v3lw+02EQdMi8N/J5v7/mx3XfNoNAkvpaDUSDoGNOtiG2upF22YnWietRi6S5IFjrTjiPnXcjfmB0dZ7GqWu9tU9z3ru6XLUYmguCLhn3w8edfLaWl7fLvV2trXuDoHGr2eDXsnO0tkOp29weRzMIJmBepwxGvW4WG/pa33catY07zWkvl0lMf5I1znNZb3QbcTkYBCMMruhpf2PuuvXM0yyXx0Zc9l3nMt84DIIF07VvnrMyryOOlnRl+XWljpYYBH0bYeNb6SJnl45uJnm9ocvrrsu1tcDlPx6DoBGT3iHmdX1io2hhWXV5Hrtc2zwYBFrRov/+fd47/bzfX1qJQTBha73QPA3zfv9JmNc8zOp9J3k6b5zXdGn73GgWeXmuGARJrk5ye5LvJjma5OEke5KcMdRuS5LPJnkqybNJ7kxywYjpbU7y8SRP9qe3P8kbJzlTXdWVnzpO26LXrza4nb5gnCOCfwn8EPgAcBnw+8D1wJ8lOQUgSYC9/fHvBn4Z2ATcleScoel9Dngn8CHgCuBJ4GtJXr3uuZmyVjacWVxP0OJahPXpfzq1OuMEwZVV9daqurWq9lXVzcB7gJ8FLu632QW8Afj1qvoPVfXV/rBTgPcvTyjJq4C3A/+iqv6gqv4ceCvwGHDjpGZKbvizMOtl3FLXFy3M47IuzOuKQVBVh0cMvqf/fHb/eRfwvaq6a+B1TwNfBq4aeN0u4AfAbQPtjgFfBC5N8uJVVa8mdWHHOZmu1zdokWodtsi1d81aLxZf1H9+qP98PvDgiHYHgW1JTh9od6iqnhvR7kXAy9dYjzpiEXfORax53lxmG8uqgyDJ2fRO49xZVQf6g88CjoxovtR/3jJmu7NO8r67kxxIcuDw4VEHKbN3sp5Bu969QhfqXq9Z/7JnWtNdy/ns1f76Z97L6kT1LlK38JPQ1f1uVUHQ/2b/JeAYcM3gKKBGvWTE3+O0+zFVdUtV7ayqnVu3bh2z4u6Z9wpfL39+OBsbddl2sYuUjbqsV2PsIEiymd4vg84FLq2qJwZGLzH62/zykcCRMdstjRg3FdPsbmGcD8su/ScnLfZU2fX6umBRl1GL2/N6jRUESTYBtwMXAr9YVd8eanKQ3vn/YecBj1XVMwPtdiQ5bUS77wOPjFu4pm/apxw2+s61XtM+JdU1Xa1rJV3/UjaOcW4oOwW4FbgEuKqq7h7RbC9wdpKLBl73EuDK/rjBdpuAtwy0OxV4G3BHVT2/lplYj3mco5xnPz2LurMtW9TlPi9d6Dywy8vY/a5nnCOC36P3wf0J4Nkkrxt4LN8sthfYD3whya8kubQ/LMDHlidUVffT++nozUmuS3IJvZ+O7gB+Z2JztUpdX0lam5VOy23E9T7pLinUhnGC4PL+8wfpfdgPPq4DqKrj9O4S/jPg08B/onc38puq6vGh6V0DfB64CfgK8JPAZVV137rmRBvKon44eX56cU1qOS/i+hrnhrLtVZUTPD480G6pqq6tqrOq6rSquqSqHhgxvaNV9d6q+vtVtbmqfraq/vNkZ2vxLeLGNK5W+lzS7BjA62Pvow3owgbdhRpWsujnu7tinqenZvnz5nl1MTINBoF0En7wr800f569VuN2z72eaS7q9mIQzMA0N45F3fDUTV3bnrpWz4ksSp0nYhBoLIbZj5pXzfO6b6Orv7RaxPUwiddPmkEgbRAb4camrtUwT7Ocf4NAG1ILHyKLPI8n67BxLdPqqi7XNsggUOfMc+fpau+QXefyWWwGgbTBrbdrjdY/5FuYf4NAnbLRLsKpTYu2HRoEJzCrPs/tG2ZtunR38mp+UWNf+ottXr+8mvZ6NgjUGX6o6UQmGbJuZz/OIFDnuePOlst7/ma9DgwCSeqAeQawQSBtUF37Zt+1evQCg0BaJT/QRtsoy2WjzMdqGATSDCzqh0sX6u7KDYbzqGNW72kQbHBd2JEldZtBIEmNMwgkaYoW4ajcIJCkOelKSBgEkjQFXfmQH4dBIEmNMwgkqXEGgSQ1ziCQtBAW6Zz7ojEIJKnDZhGABoEkNc4gkKQ56NKpLoNAkho3VhAkOSfJp5LsT/JckkqyfajN9v7wUY8zh9puTvLxJE8mOdqf7hsnN1uSpHGNe0TwcuCtwBHgmyu03QP83NDj/w61+RzwTuBDwBXAk8DXkrx6zHokSRNy6pjtvlFVLwNIch3w5pO0/U5V3X2ikUleBbwduLaqPt8ftg84CNwI7BqzJknSBIx1RFBVxyf4nruAHwC3DUz/GPBF4NIkL57ge0mSVjCNi8V7khxL8nSSvUkuGBp/PnCoqp4bGn4QeBG901CSpBkZ99TQOJ4HPgPcARwGXgl8APirJBdW1UP9dmfRu9YwbGlgvCRpRiYWBFX1JPCugUHfTPJVet/0Pwj8Wn94gBoxiZxs+kl2A7sBtm3btu56JUk9U72PoKoeB/4CeO3A4CVGf+vfMjB+1LRuqaqdVbVz69atky1Ukho2ixvKho8ADgI7kpw21O484PvAIzOoSZLUN9UgSLINeD3wrYHBe4FNwFsG2p0KvA24o6qen2ZNkqQfNfY1giRX9//5M/3ny5McBg5X1b4kn6QXLPvpXSx+BXADcBz43eXpVNX9SW4Dbk6yCTgEXA/sAN6xzvmRJK3Sai4W//HQ35/uP+8DLqZ3yud64DeBM4CngK8DH6mqh4deew3wUeAm4EzgAeCyqrpvFfVIkiZg7CCoqpP+qqeq/hD4wzGndRR4b/8hSZojex+VpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjRsrCJKck+RTSfYneS5JJdk+ot2WJJ9N8lSSZ5PcmeSCEe02J/l4kieTHO1P943rnx1J0mqNe0TwcuCtwBHgm6MaJAmwF7gMeDfwy8Am4K4k5ww1/xzwTuBDwBXAk8DXkrx6tTMgSVqfU8ds942qehlAkuuAN49oswt4A/ALVXVXv+1+4BDwfuA9/WGvAt4OXFtVn+8P2wccBG7sT0eSNCNjHRFU1fExmu0CvrccAv3XPQ18GbhqqN0PgNsG2h0DvghcmuTF49QkSZqMSV4sPh94cMTwg8C2JKcPtDtUVc+NaPcieqehJEkzMskgOIveNYRhS/3nLWO2O2uCNUmSVjDJIAhQJxi+lnY/OjLZneRAkgOHDx9eY4mSpGGTDIIlRn+bXz4SODJmu6UR46iqW6pqZ1Xt3Lp167oKlSS9YJJBcJDe+f9h5wGPVdUzA+12JDltRLvvA49MsCZJ0gomGQR7gbOTXLQ8IMlLgCv74wbbbQLeMtDuVOBtwB1V9fwEa5IkrWDc+whIcnX/nz/Tf748yWHgcFXto/cBvx/4QpL30TsVdAO9c/8fW55OVd2f5Dbg5iSb6N1ncD2wA3jHOudHkrRKYwcB8MdDf3+6/7wPuLiqjie5AvhEf9xmesHwpqp6fOi11wAfBW4CzgQeAC6rqvtWWb8kaZ3GDoKqOumvevptloBr+4+TtTsKvLf/kCTNkb2PSlLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMZNNAiSXJykRjz+dqjdliSfTfJUkmeT3JnkgknWIkkaz6lTmu57gHsG/j62/I8kAfYCO4B3A0eAG4C7kry6qp6YUk2SpBGmFQQPVdXdJxi3C3gD8AtVdRdAkv3AIeD99EJEkjQj87hGsAv43nIIAFTV08CXgavmUI8kNW1aQXBrkh8m+T9J/n2SbQPjzgceHPGag8C2JKdPqSZJ0giTPjX0NPBJYB/wd8BrgA8A+5O8pqr+N3AW8OiI1y71n7cAzwyPTLIb2A2wbdu24dGSpDWaaBBU1V8Dfz0waF+SbwD/hd65/98GAtSIl2eFad8C3AKwc+fOUa+XJK3B1K8RVNV9wH8HXtsftETvqGDYlv7zkWnXJEl6wawuFg8eBRykd51g2HnAY1X1Y6eFJEnTM/UgSLIT+CngW/1Be4Gzk1w00OYlwJX9cZKkGZroNYIkt9K7H+A+4G/pXSy+AfifwKf6zfYC+4EvJHkfL9xQFuBjk6xHkrSySf9q6EHgV+ndMXwa8L+APwF+p6qeAqiq40muAD4BfBrYTC8Y3lRVj0+4HknSCib9q6E9wJ4x2i0B1/YfkqQ5svdRSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGzSUIkvxkkv+Y5Okkf5fkT5Jsm0ctktS6mQdBktOArwOvBH4D+HXgHwJ3JfmJWdcjSa07dQ7v+U7gXOAVVfUIQJL/CvwP4J8A/3YONUlSs+ZxamgXcPdyCABU1SHgL4Gr5lCPJDVtHkFwPvDgiOEHgfNmXIskNW8eQXAWcGTE8CVgy4xrkaTmzeMaAUCNGJaTvSDJbmB3/89nkjw88ara8FLgqXkXobG4rhbHTNZV/s26Xv4PTjRiHkFwhN5RwbAtjD5SAKCqbgFumVZRrUhyoKp2zrsOrcx1tTgWfV3N49TQQXrXCYadB/y3GdciSc2bRxDsBV6X5NzlAUm2A6/vj5MkzdA8guAPgEeBLyW5Ksku4EvA48Bn5lBPazy9tjhcV4tjoddVqkZdt53ym/a6k/h3wD+md5H4z4F/XlWPzrwYSWrcXIJAktQd9j7aADv5WxxJzknyqST7kzyXpPrX0NQhSa5OcnuS7yY5muThJHuSnDHv2tbCI4INrt/J3wPA88Bv07uH4ybgNOCnq+rZOZanIUkuBm4D7gX+HvBmYIenTbslyd3AY/Subz4BvAb4MPA3wM9X1fH5Vbd687qhTLNjJ3+L5RtV9TKAJNfRCwJ1z5VVdXjg731JloA/Ai6m18PywvDU0MZnJ38LZNG+SbZqKASW3dN/PnuWtUyCQbDx2cmfNBsX9Z8fmmsVa2AQbHx28idNWZKzgRuBO6vqwLzrWS2DoA2r7uRP0niSnE7vovEx4Jo5l7MmXize+NbUyZ+klSXZTK9rnHOBi6rqiTmXtCYGwcZnJ3/SFCTZBNwOXAj8o6r69pxLWjNPDW18dvInTViSU4BbgUuAq6rq7jmXtC7eULbBJfkJejeUHeWFG8r+FXAGvRvKnpljeRohydX9f14CvAv4p8Bh4HBV7ZtbYfr/kvw+vXXzUeBPh0Y/sWiniAyCBtjJ32JJcqKdcl9VXTzLWjRakkc58f/49ZGq+vDsqlk/g0CSGuc1AklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJatz/A0Jl/9hNAmbuAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"n = 100000\n",
"z_0 = 0.3\n",
"pi = np.pi\n",
"r = [np.random.rand(n)];\n",
"print(r[0]);\n",
"L = [1,1,2,8,1,1,-4,-4]\n",
"for i in range(0,8):\n",
" r.append(np.random.rand(n)*L[i]);\n",
" print(r[i]);\n",
"R = np.append(r[1],r[2])\n",
"t_1 = r[5]*(pi/9)*np.exp(r[7])\n",
"t_2 = r[6]*(pi/9)*np.exp(r[8])\n",
"v_0 = 7\n",
"theta_z = r[1]*(pi/10.25)\n",
"theta_x = np.append(t_1,t_2)\n",
"x_im = 3*sin(theta_x)\n",
"z_im = (d/cos(theta_z))*(sin(theta_z) - (g/(2*v_0**2)*cos(theta_z)))*d + z_0\n",
"x2_mean = np.mean(x_im)\n",
"x2_std = np.std(x_im)\n",
"z2_mean = np.mean(z_im)\n",
"z2_std = np.std(z_im)\n",
"print()\n",
"plt.hist(z_im, bins=500);"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The mean of x Data 0.01207963411779779\n",
"The mean of y Data 0.01207963411779779\n",
"The standard daviation of x Data 0.25716367278418045\n",
"The standard daviation of y Data 0.2548611138551949\n",
"The mean for monte carlo for z axis 0.8006941112086495\n",
"The standard daviation for monte carlo for z axis 0.8204295655713363\n",
"The mean for monte carlo for x axis 0.12827035717505506\n",
"The standard daviation for monte carlo for x axis 0.17001268036850195\n"
]
}
],
"source": [
"print('The mean of x Data', x_mean)\n",
"print('The mean of y Data', y_mean)\n",
"print('The standard daviation of x Data', x_std)\n",
"print('The standard daviation of y Data', y_std)\n",
"print('The mean for monte carlo for z axis', z2_mean)\n",
"print('The standard daviation for monte carlo for z axis', z2_std)\n",
"print('The mean for monte carlo for x axis', x2_mean)\n",
"print('The standard daviation for monte carlo for x axis', x2_std)"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAD9CAYAAACvMECaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAavUlEQVR4nO3df5Qd5X3f8fdH1i8TwmF1LMIpRF4Z5YfFUSDpNqU1BSSnlgAh/pCBBHByIEBKT4CGANVGKaEgahVkw4kpsVWIkxMRoxAnjVQckLGFnORIOIuCGi0OlHQFOIgjySthhIRA8O0fMzcMo9ndZ++PvXd3P69z7hntc78z93m0q/nszDMzUkRgZmY2kint7oCZmY0PDgwzM0viwDAzsyQODDMzS+LAMDOzJFPb3YFW+tjHPhbd3d3t7oaZ2bjy7LPP7ouI2eX2CR0Y3d3d9PX1tbsbZmbjiqSXq9p9SsrMzJI4MMzMLIkDw8zMkjgwzMwsiQPDzMySODDMzCyJA8PMzJI4MMzMLIkDw8zMkjgwhtC94vF2d8HMrKM4MMzMLIkDw8zMkjgwEvkUlZlNdg6MYTgkzMw+4MAwM7MkIwaGpPMkRcXrQKmuS9JDkvZJekvSU5IWVGxvpqR7Je2WdFjSVknnVNRNkdQraZektyXtkLS8seGOXveKx32kYWbG6I4wbgT+TeH1C7U3JAnYACwBbgCWA9OAzZJOLW3nYeBa4HZgKbAbeFLSmaW6u4A7gAeA84FtwGOSLhhFn83MrElG8z/ufS8itg3x3jLgbGBRRGwGkLQVGABuIwsbJJ0BXA5cHRFfzdu2AP3Anfl2kHQScAuwOiLW5J+xWdI8YDXwjVH0u2m6VzzOrtUXtuOjzczarllzGMuA12phARARbwAbgYtLde8C6wt1R4FHgcWSZuTNi4HpwLrS56wDFkia26R+m5lZotEExiOS3pP0A0l/LGlO4b3TgZ0V6/QDcyQdX6gbiIhDFXXTgXmFuiPASxV1APNH0W8zM2uClFNSbwBfALYAPwR+FvgtYKukn42IPcAsYFfFuoP5sgs4mNftH6ZuVmF5ICJihDozMxsjIwZGRPwd8HeFpi2SvgN8l2xu4rcBAeWdO3l7+etm1h1bIF0HXAcwZ86cEarNzCxVXXMYEbEdeBH4V3nTINW/9Xfly/2JdYOFZVd+9dVwdVV9WxsRPRHRM3v27KEHYWZmo9LIpHfxKKCfbN6hbD7wSkQcLNTNlXRcRd07fDBn0Q/MAE6rqAN4voF+m5lZHeoKDEk9wE8Cz+RNG4BTJJ1bqDkBuCh/j0LdNOCSQt1U4DJgU0QcyZufIAuQK0offSWwMyIG6um3mZnVb8Q5DEmPkN1PsR04QDbp3Qv8E/ClvGwDsBVYJ+lWslNQvWRHIffUthURz0laD9wvaVq+3euBuRTCISL2SLoP6JX0Zv7ZlwGL+PBlumZmNkZSrpLaCfwS2R3cxwGvA38G/E5E7AOIiPclLQXWAA8CM8kCZGFEvFra3lXA3cAq4ERgB7AknxcpWkl2ZdVNwMnAC8ClEbFxtIM0M7PG6dgrVyeOnp6e6Ovrq2vdoZ4f5Tu9zWyik/RsRPSU2/20WjMzS+LAMDOzJA4MMzNL4sAwM7MkDgwzM0viwDAzsyQODDMzS+LAMDOzJA6MURrqhj4zs4nOgWFmZkkcGGZmlsSBYWZmSRwYZmaWxIFhZmZJHBhmZpbEgWFmZkkcGGZmlsSBYWZmSRwYZmaWxIFhZmZJHBhmZpbEgWFmZkkcGGZmlsSBYWZmSRwYZmaWxIFhZmZJHBhmZpakrsCQ9ISkkLSq1N4l6SFJ+yS9JekpSQsq1p8p6V5JuyUdlrRV0jkVdVMk9UraJeltSTskLa+nz2Zm1phRB4akXwLOqGgXsAFYAtwALAemAZslnVoqfxi4FrgdWArsBp6UdGap7i7gDuAB4HxgG/CYpAtG228zM2vMqAJD0onAfcDNFW8vA84GPhcRX4uIJ/K2KcBthW2cAVwO/EZE/M+I+BZwKfAKcGeh7iTgFmB1RKyJiM0R8WvAZmD1aPptZmaNG+0Rxj1Af0R8reK9ZcBrEbG51hARbwAbgYtLde8C6wt1R4FHgcWSZuTNi4HpwLrS56wDFkiaO8q+m5lZA5IDQ9LZwC8D/3GIktOBnRXt/cAcSccX6gYi4lBF3XRgXqHuCPBSRR3A/NS+m5lZ45ICQ9I04CvAmoh4YYiyWcD+ivbBfNmVWDersDwQETFCXbmv10nqk9S3d+/eIbramO4Vj7dku2ZmnSz1COM/Ax8F7h6mRkB5515rb2Xdh0TE2ojoiYie2bNnD1dqZmajMHWkAklzgJXANcCMwhwD+dcnAm+S/eZf9Vt/7ciidlQxCMwZpm6wsOySpNJRRrnOzMzGQMoRxieAmWSTzfsLL8iuYtoPLCCbWzi9Yv35wCsRcTD/uh+YK+m4irp3+GDOoh+YAZxWUQfwfELfzcysSVIC4zlgYcULshBZSLaT3wCcIunc2oqSTgAuyt+r2UB2f8YlhbqpwGXApog4kjc/QRYgV5T6cyWwMyIGEvpuZmZNMuIpqYg4ADxdbs/u0+PliHg6/3oDsBVYJ+lWsiOPXrI5h3sK23tO0nrg/nwyfQC4HphLIRwiYo+k+4BeSW8C28lCZREfvkzXzMzGwIiBkSoi3pe0FFgDPEh2GmsrsDAiXi2VX0U2gb4KOBHYASyJiO2lupXAQeAm4GTgBeDSiNjYrH6bmVmaugMjIo65WikiBoGr89dw6x4mu1u86o7xYt17ZKGyarg6MzNrPT+t1szMkjgwzMwsiQPDzMySODDMzCyJA8PMzJI4MMzMLIkDw8zMkjgwzMwsiQPDzMySODDMzCyJA8PMzJI4MMzMLIkDw8zMkjgw6tS94vF2d8HMbEw5MMzMLIkDw8zMkjgwzMwsiQPDzMySODDMzCyJA8PMzJI4MMzMLIkDw8zMkjgwzMwsiQPDzMySODDMzCyJA8PMzJKMGBiSFkv6tqTXJR2R9H1JfyJpfqmuS9JDkvZJekvSU5IWVGxvpqR7Je2WdFjSVknnVNRNkdQraZektyXtkLS8seGamVm9Uo4wZgHPAr8OfAboBU4Htkn6OIAkARuAJcANwHJgGrBZ0qml7T0MXAvcDiwFdgNPSjqzVHcXcAfwAHA+sA14TNIFoxuimZk1w9SRCiLia8DXim2Svgv8A/BZ4AvAMuBsYFFEbM5rtgIDwG3AjXnbGcDlwNUR8dW8bQvQD9yZbwdJJwG3AKsjYk3+sZslzQNWA9+of8hmZlaPeucwfpAv382Xy4DXamEBEBFvABuBiwvrLcvXWV+oOwo8CiyWNCNvXgxMB9aVPncdsEDS3Dr7bWZmdUoODEkfkTRd0k8AXwFeJ9vRQ3aKamfFav3AHEnHF+oGIuJQRd10YF6h7gjwUkUdwHw6gP8TJTObTEZzhPEM2U78ReBnyE4/7cnfmwXsr1hnMF92JdbNKiwPRESMUHcMSddJ6pPUt3fv3qHKzMxslEYTGJ8DziKbg/gh8E1J3fl7Aso791p7+etm1h0jItZGRE9E9MyePXukcjMzS5QcGBHxvYh4Jp8E/zRwPLAif3uQ6t/6a0cW+xPrBgvLrvzqq+HqzMxsjNQ16R0RB8jmF2pzDv1k8w5l84FXIuJgoW6upOMq6t7hgzmLfmAGcFpFHcDz9fTbzMzqV1dgSPox4KeBf8ybNgCnSDq3UHMCcFH+HoW6acAlhbqpwGXApog4kjc/QRYgV5Q++kpgZ0QM1NNvMzOr34j3YUj6c2A78H/I5i5+EvgN4CjZPRiQBcFWYJ2kW8lOQfWSzTncU9tWRDwnaT1wv6RpZPdpXA/MpRAOEbFH0n1Ar6Q388+/DFjEhy/TNTOzMTJiYJDdYX0p8Jtkl76+CjwNfD4idgFExPuSlgJrgAeBmWQBsjAiXi1t7yrgbmAVcCKwA1gSEdtLdSuBg8BNwMnAC8ClEbFxdEM0M7Nm0LFXrk4cPT090dfXV9e6qfdY7Fp9YV3bNzPrVJKejYiecrufVmtmZkkcGGZmlsSBYWZmSRwYZmaWxIHRID+A0MwmCweGmZklcWCYmVkSB4aZmSVxYJiZWRIHhpmZJXFgmJlZEgeGmZklcWCYmVkSB4aZmSVxYDSB7/Y2s8nAgWFmZkkcGGZmlsSB0SQ+LWVmE50Dw8zMkjgwzMwsiQPDzMySODDMzCyJA8PMzJI4MMzMLIkDw8zMkjgwmsj3YpjZRDZiYEj6rKSvS3pZ0mFJL0j6vKQfLdV1SXpI0j5Jb0l6StKCiu3NlHSvpN359rZKOqeiboqkXkm7JL0taYek5Y0N18zM6pVyhHEL8B7wW8AS4PeA64FvSpoCIEnAhvz9G4DlwDRgs6RTS9t7GLgWuB1YCuwGnpR0ZqnuLuAO4AHgfGAb8JikC0Y3xLHlowwzm6imJtRcFBF7C19vkTQI/CFwHvBtYBlwNrAoIjYDSNoKDAC3ATfmbWcAlwNXR8RX87YtQD9wZ74dJJ1EFlSrI2JN/rmbJc0DVgPfqHfAZmZWnxGPMEphUfO3+fKUfLkMeK0WFvl6bwAbgYsL6y0D3gXWF+qOAo8CiyXNyJsXA9OBdaXPXQcskDR3pH6bmVlz1TvpfW6+/F6+PB3YWVHXD8yRdHyhbiAiDlXUTQfmFeqOAC9V1AHMr7PfZmZWp1EHhqRTyE4fPRURfXnzLGB/RflgvuxKrJtVWB6IiBihrqp/10nqk9S3d2/VwZGZmdVjVIGRHyn8BXAUuKr4FlDeudfay183s+4YEbE2Inoiomf27NkjlZuZWaLkwJA0k+xKqE8AiyPi+4W3B6n+rb92ZLE/sW6wsOzKr74ars7MzMZIUmBImgZ8Hfh54IKI+PtSST/ZvEPZfOCViDhYqJsr6biKunf4YM6iH5gBnFZRB/B8Sr/bxZfWmtlElHLj3hTgEeDTwMURsa2ibANwiqRzC+udAFyUv1esmwZcUqibClwGbIqII3nzE2QBckXpc64EdkbEwEj9NjOz5kq5D+N/kO3g7wbeknRW4b3v56emNgBbgXWSbiU7BdVLNudwT604Ip6TtB64Pz9qGSC7CXAuhXCIiD2S7gN6Jb0JbCcLlUV8+DJdMzMbIymBcX6+XJm/iv4rcEdEvC9pKbAGeBCYSRYgCyPi1dI6V5GFzyrgRGAHsCQitpfqVgIHgZuAk4EXgEsjYmPKwMzMrLlGDIyI6E7ZUEQMAlfnr+HqDgM356/h6t4jC5VVKZ9vZmat5afVmplZEgdGi/hKKTObaBwYZmaWxIFhZmZJHBgt5NNSZjaRODDMzCyJA8PMzJI4MMzMLIkDw8zMkjgwzMwsiQPDzMySODDMzCyJA6PFfC+GmU0UDowx4NAws4nAgTFGHBpmNt45MMzMLIkDw8zMkjgwzMwsiQPDzMySODDMzCyJA8PMzJI4MMZQ94rHfXmtmY1bDgwzM0viwDAzsyQODDMzS+LAaAPPY5jZeJQUGJJOlfQlSVslHZIUkror6rokPSRpn6S3JD0laUFF3UxJ90raLelwvt1zKuqmSOqVtEvS25J2SFpez0A7jUPDzMab1COMecClwH7gr6oKJAnYACwBbgCWA9OAzZJOLZU/DFwL3A4sBXYDT0o6s1R3F3AH8ABwPrANeEzSBYn9NjOzJpmaWPediPgxAEnXAJ+pqFkGnA0siojNee1WYAC4DbgxbzsDuBy4OiK+mrdtAfqBO/PtIOkk4BZgdUSsyT9js6R5wGrgG6MbqpmZNSLpCCMi3k8oWwa8VguLfL03gI3AxaW6d4H1hbqjwKPAYkkz8ubFwHRgXelz1gELJM1N6Xsn82kpMxtPmjnpfTqws6K9H5gj6fhC3UBEHKqom052+qtWdwR4qaIOYH7DPe4AvpnPzMaLZgbGLLI5jrLBfNmVWDersDwQETFC3YdIuk5Sn6S+vXv3JnW8Ezg0zKzTNTMwBJR37rX2VtZ9SESsjYieiOiZPXv2cKVmZjYKzQyMQap/668dWexPrBssLLvyq6+GqzMzszHQzMDoJ5t3KJsPvBIRBwt1cyUdV1H3Dh/MWfQDM4DTKuoAnm+4xx3G8xlm1smaGRgbgFMknVtrkHQCcFH+XrFuGnBJoW4qcBmwKSKO5M1PkAXIFaXPuRLYGREDTex7R3FomFknSr0PA0mfzf/4L/Pl+ZL2AnsjYgtZEGwF1km6lewUVC/ZnMM9te1ExHOS1gP3S5pGdp/G9cBcCuEQEXsk3Qf0SnoT2E4WKov48GW6ZmY2BpIDA3is9PWD+XILcF5EvC9pKbAmf28mWYAsjIhXS+teBdwNrAJOBHYASyJie6luJXAQuAk4GXgBuDQiNo6i3+NS7Shj1+oL29wTM7NMcmBExLBXJ+U1g8DV+Wu4usPAzflruLr3yEJlVWo/zcysNfy0WjMzS+LA6HCeADezTuHAGAd8ua2ZdQIHhpmZJXFgjCM+0jCzdnJgjEMODjNrBwfGOFYLDQeImY0FB8Y456Aws7HiwJhAhgoPh4qZNYMDY4Ipnp5yUJhZMzkwzMwsiQNjgvJRhpk1mwNjknBwmFmjHBiTiEPDzBrhwJhkapPivqLKzEbLgTGJDRUeDg0zq+LAMKD6bnFfomtmRQ4Mq1QMiOGCxMwmDweGJSsHhU9lmU0uDgxrSFVIODjMJiYHhjVsqLmO4Y5GzGz8UUS0uw8t09PTE319fXWt6x1ca+xafeE//7n4d1xsN7P2kvRsRPSU26e2ozM2eQ13/8eu1Rf+8/vlABmq3czGjo8whuAjjM5VFSzFr2vhY2b1GeoIw3MYNu6U50aq5kpGuofE8ytmo+cjjCF4JzJ5VR211L6uOnLxEY1NNEMdYXR8YEj6ceA+4N8DAp4C/lNEvDLSug4Ma7Xi6bGh2qv+7ICxTjYuA0PSccAO4Ajw20AAq4DjgJ+JiLeGW9+BYePJSOFTvsJsqLkcHwVZo8ZrYNwEfBH4qYh4KW+bC/xf4LaI+OJw6zswzKoNFU5VNUOdorOJa7wGxreAmRHxqVL7FoCIOHe49R0YZp0h5dRdsQ2G/jfYyGk9H2mlGa+B8TrwFxHxa6X2B4FLImL2cOs7MMyskxTDbqhlJxivgfEO8MWIWFFqXwWsiIhjbjyUdB1wXf7lTwEv1PnxHwP21bnueDSZxjuZxgqTa7yTaazQuvF+vOoX8vFwp3dVomnI4oi1wNpGP1RSX1XCTlSTabyTaawwucY7mcYKYz/eTr9xbz8wq6K9K3/PzMzGSKcHRj9wekX7fOD5Me6Lmdmk1umBsQE4S9Inag2SuoFP5e+1UsOntcaZyTTeyTRWmFzjnUxjhTEeb6dPev8I2Y17h/ngxr27gB8lu3HvYBu7Z2Y2qXT0EUZ+J/ci4EXgj4BHgAFgkcPCzGxsdfQRhpmZdY6OPsJoNkk/LulPJb0h6YeS/kzSnMR1Z0q6V9JuSYclbZV0Tqv73Ih6xyupR9JaSf8g6ZCkVyQ9kj+WpSM18r0tbadXUkj661b0s1kaHa+kT0p6TNK+/Of5hfxRPB2pwX+7cyT9Yf5zfEjSi5JW5ae8O46kUyV9Kd/HHMp/HrsT123pfmrSBEb+IMNvAz8N/ArwOeAngM2JPzgPA9cCtwNLgd3Ak5LObE2PG9PgeH+R7Oq03wXOB1YAPwf05U8P7ihN+N7WtvMJYCWwpxX9bJZGxyupB3gGmAFcA1wAfAH4SKv63IhGxpu//xRwDvBfgAuBh4DfBH6/hd1uxDzgUrJbB/5qlOu2dj8VEZPiBdwEvAfMK7TNBY4CN4+w7hlkE+5XFdqmkt1FvqHdY2vBeGdXtH0ceB+4s91ja+ZYS9t5EvgK8DTw1+0eV4u+t1PILlf/83aPY4zG+5n83+5nSu2r8/WPa/f4qr5HhT9fk/e/O2G9lu+nJs0RBrAM2Bb5U28BImIA+Bvg4oR13wXWF9Y9CjwKLJY0o/ndbVjd442IvRVtLwN7gVOa3M9maOR7C4Cky8mOonpb0sPmamS855HdxzTsk547TCPjnZ4vf1hqP0AWnkM+NaJdIuL9Oldt+X5qMgXG6cDOivZ+sn9AI607EBGHKtadTnYI2WkaGe8xJH0SOAn4XoP9aoWGxiqpi+w/6botIgab3LdWaGS8Z+fLmZK2SXpX0h5Jvyvpo03tZfM0Mt6nyP47hP8uab6k4yUtIjtq+XKM8H/qjDMt309NpsCYRfXjRAbJHjVS77q19ztNI+P9EElTgS+THWE83HjXmq7Rsd5Ldun2HzSxT63UyHj/Rb5cD2wi+58s7yE79fHHzepgk9U93oh4mywka6fi3gS+Bfxv4Neb2822a/l+ajw8fLCZRvUgw1JNveu2U7P6/ADwb4ELI6JTn+FV11gl/Tvgl4Gfi/yk7zhR7/e29kviuoi4Pf/z05I+AqyWND8iOvGxO/V+f2eSheNJZJPlrwA/TzYpfBS4vol9bLeW76cmU2A08iDDQaDqEr6uwvudpikPbpT0ebLHxf9KRGxqUt+arZGxfoXsqOn7kk7M26YCH8m/PhwRR5rW0+ZoZLw/yJffLLVvIpsIPpPOe05bI+P9VbJ5m3kR8Y9523ckvQGslfTliNjRtJ62V8v3U5PplFQjDzLsB+bml/eV130HeOnYVdqu4Qc3SlpJdkntTRHxR03sW7M1MtZPAv+BbMdTe30KOCv/cyf+BtrozzIc+5to7bfQeidcW6mR8S4A9hfCoua7+fKTDfatk7R8PzWZAqORBxluAKYBlxTWnQpcBmzqwN9AocEHN0q6EVgFrIyIL7Woj83SyFgXVrx2kE2yLgT+tPndbVgj4/1L4AiwpNS+OF/W919UtlYj430d6JJUnvD91/nyn5rUx07Q+v1Uu685HsNrm3+ELGH/nuxSvGVkO4b/BxxfqPs42bnN20vrP0r2G+c1wKfJdiRvk537bvv4mjleshv33ifbuZxVes1v99ia/b2t2N7TdPZ9GI3+LP9O3v7fgF8gO4o8DPxBu8fW7PEC3WSX1L5IdtPfQuDWvK2Pwj0PnfQCPpu/fo/saPD6/OtzR/jetnQ/1fa/mDH+JswBvp7/sLwJ/C9KN8TkP2AB3FFq/yjZteuv59+AZ4Dz2j2mVoyX7GqhGOL1dLvH1ezvbcW2OjowGh0v2emnm/Od8DvAy8CdwLR2j6tF450P/AnwKlkwvgisAbraPa5hxjvsv7927af88EEzM0symeYwzMysAQ4MMzNL4sAwM7MkDgwzM0viwDAzsyQODDMzS+LAMDOzJA4MMzNL8v8BzPBbdt6hxdoAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.hist(x_im, bins=500);"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAD9CAYAAAC2l2x5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAASKElEQVR4nO3dfZBkVXnH8e+Di7uCUi4yWIoOI0oSMSilo6EiyiIoyrooBaYwCkTFNUo0SiCiJkaNCKilSIzgRhJSQEARUAiCgLxoRUhcVF5WRRfZRUpRYEFYXpSXJ3/cO2XT9Oz0zJyenj18P1VdPXPuuffcPn3nN7dP3z4dmYkkqT6bDHsHJEmDYcBLUqUMeEmqlAEvSZUy4CWpUguGvQMTttpqqxwbGxv2bkjSRuWqq666LTNHei2bNwE/NjbGypUrh70bkrRRiYi1ky1ziEaSKmXAS1KlDHhJqpQBL0mV6ivgI+IZEfEvEXFFRNwbERkRYz3qLY6IL0XEbRFxT0RcHBE7lt5pSdLU+j2Dfw7wF8AdwHd6VYiIAM4BXg28G9gX2BS4NCKeMftdlSRNR78B/+3MfGpm7gWcMUmdvYFdgAMy87TMvKAt2wT4+9nvqiRpOvoK+Mx8uI9qewO/zMxLO9b7LXAu8LqZ7Z4kaaZKvsn6POC6HuWrgNGIeGLBtiRJUyj5SdYtgTU9yte194uB9Z0LImI5sBxgdHS04K5IMHbEecW2tebopcW2Jc2VkmfwAfT6eqiYbIXMXJGZ45k5PjLScyoFSdIMlQz4dTRn8d0Wt/d3FGxLkjSFkgG/imYcvtsOwE2Zub7HMknSgJQM+HOAbSJi14mCiNgCWNYukyTNob7fZI2I/dofX9TevyYibgVuzczLaUL8CuCUiDicZkjmAzRj8J8st8uSpH5M5yqa7g84faG9vxxYkpkPR8RrgU+3yxbRBP5umfmLWe+pJGla+g74zJz0apiOOuuAt7Y3SdIQOZukJFXKgJekShnwklQpA16SKmXAS1KlDHhJqpQBL0mVMuAlqVIGvCRVyoCXpEoZ8JJUKQNekiplwEtSpQx4SaqUAS9JlTLgJalSBrwkVcqAl6RKGfCSVCkDXpIqZcBLUqUMeEmqlAEvSZUy4CWpUga8JFXKgJekShnwklQpA16SKlU04CPipRFxYUT8JiLuiojvR8RbS7YhSepPsYCPiOcDFwObAm8H9gW+B5wYEe8s1Y4kqT8LCm5rf+BxwLLMXN+WXRQRLwAOBI4v2JYkaQolh2geDzwA3NdVfmfhdiRJfSgZvCe198dFxNMj4skR8XZgd+CzBduRJPWh2BBNZl4XEUuAs4F3tcUPAH+dmaf3WicilgPLAUZHR0vtiiSJsm+ybg+cCawClgF7ACcAJ0TEm3qtk5krMnM8M8dHRkZK7YokibJvsn6C5oz9tZn5QFv2rYh4CvC5iDgtMx8u2J4kaQNKjsHvCFzdEe4T/g94CrB1wbYkSVMoGfC3ADtFxOO7yv8MuB9YV7AtSdIUSg7RfB44Azg3Ir5Ac7nk3sAbgc9m5u8LtiVJmkKxM/jM/CqwF7AQ+BLNG667AIcAh5dqR5LUn5Jn8GTm+cD5JbcpSZoZP2EqSZUy4CWpUga8JFXKgJekShnwklQpA16SKmXAS1KlDHhJqpQBL0mVMuAlqVIGvCRVyoCXpEoZ8JJUqaKzSUqzNXbEecPeBakansFLUqUMeEmqlAEvSZUy4CWpUga8JFXKgJekShnwklQpA16SKmXAS1KlDHhJqpQBL0mVMuAlqVIGvCRVyoCXpEoVD/iI2Csivh0R6yPirohYGRGvKN2OJGnDigZ8RLwD+DpwFbAP8AbgDGCzku1IkqZW7As/ImIMOBY4PDOP7Vj0zVJtSJL6V/IM/q3Aw8AJBbcpSZqhkgG/C/ATYP+IuCEiHoyI1RFxSME2JEl9KvmdrE9vb58CPgjcQDMG//mIWJCZnyvYliRpCiUDfhPgScBfZeZZbdkl7dj8ByLiuMzMzhUiYjmwHGB0dLTgrkiSSg7R3N7eX9RVfiHwVOBp3Stk5orMHM/M8ZGRkYK7IkkqGfCrJimP9v7hgm1JkqZQMuDPbu/37CrfE7g5M28p2JYkaQolx+C/AVwKfDEitgJ+DuwHvAp4S8F2JEl9KBbwmZkR8XrgKOCjwGKayybflJn/VaodSVJ/Sp7Bk5l3AYe0N0nSEDmbpCRVyoCXpEoZ8JJUKQNekiplwEtSpQx4SaqUAS9JlTLgJalSBrwkVcqAl6RKGfCSVCkDXpIqZcBLUqWKziapwRo74rxi21pz9NJi29LweExoQzyDl6RKGfCSVCkDXpIqZcBLUqUMeEmqlAEvSZUy4CWpUga8JFXKgJekShnwklQpA16SKmXAS1KlDHhJqpQBL0mVMuAlqVIDDfiIuCAiMiI+Psh2JEmPNrCAj4g3Ai8Y1PYlSRs2kICPiCcDnwUOHcT2JUlTG9QZ/CeBVZl52oC2L0maQvHvZI2IXYADcXhGkoaqaMBHxKbAF4FPZ+b1fdRfDiwHGB0dLbkrmkLJL2vW9Nj30+MXi89c6SGa9wNPAI7sp3JmrsjM8cwcHxkZKbwrkvTYVuwMPiJGgQ8BBwMLI2Jhx+KF7Ruvd2fmQ6XalCRNruQZ/HbAIuAU4I6OG8Bh7c87FmxPkrQBJcfgfwjs1qP8UprQPxFYXbA9SdIGFAv4zLwTuKy7PCIA1mbmo5ZJkgbHuWgkqVLFr4Pvlpkx6DYkSY/mGbwkVcqAl6RKGfCSVCkDXpIqZcBLUqUMeEmqlAEvSZUy4CWpUga8JFXKgJekShnwklQpA16SKmXAS1KlBj6bpKTHHr9YfH7wDF6SKmXAS1KlDHhJqpQBL0mVMuAlqVIGvCRVyoCXpEoZ8JJUKQNekiplwEtSpQx4SaqUAS9JlTLgJalSBrwkVapYwEfEfhFxZkSsjYj7IuL6iDgqIp5Uqg1JUv9KnsEfBjwEfBB4NXA88E7goojwlYIkzbGSX/ixLDNv7fj98ohYB/wnsAS4pGBbkqQpFDuz7gr3Cd9r77cp1Y4kqT+DHjrZtb3/8YDbkSR1Gdh3skbENsDHgIszc+UkdZYDywFGR0cHtSvTVvL7JNccvbTYtjQ8fseoNkYDOYOPiCcCXwceBN4yWb3MXJGZ45k5PjIyMohdkaTHrOJn8BGxCDgH2A7YNTNvLt2GJGlqRQM+IjYFzgReAuyRmdeW3L4kqX/FAr691v1UYHdgaWZeWWrbkqTpK3kG/6/AG4AjgXsiYueOZTc7VCNJc6vkm6yvae8/BFzRdTu4YDuSpD4UO4PPzLFS25IkzZ5zxEhSpQx4SaqUAS9JlTLgJalSBrwkVcqAl6RKGfCSVCkDXpIqZcBLUqUMeEmqlAEvSZUy4CWpUga8JFVqYF+6Pdfm65ciz9f9krp5rE5Pyf5ac/TSYtvq5Bm8JFXKgJekShnwklQpA16SKmXAS1KlDHhJqpQBL0mVMuAlqVIGvCRVyoCXpEoZ8JJUKQNekiplwEtSpQx4SaqUAS9JlSoa8BHxzIj4akT8NiLuioizImK0ZBuSpP4UC/iI2Ay4BPgT4CDgAGB74NKI2LxUO5Kk/pT8Rqe3A9sBf5yZqwEi4hrgZ8A7gM8UbEuSNIWSQzR7A1dOhDtAZt4I/A/wuoLtSJL6UDLgnwdc16N8FbBDwXYkSX0oOUSzJXBHj/J1wOJeK0TEcmB5++v6iLi+4P4MwlbAbcPeiXnAfrAPJmxU/RDHDGSzs+6DWe7XtpMtKBnwANmjLCatnLkCWFF4HwYmIlZm5viw92PY7Af7YIL9ML/7oOQQzR00Z/HdFtP7zF6SNEAlA34VzTh8tx2AHxVsR5LUh5IBfw6wc0RsN1EQEWPAS9tlNdhohpMGzH6wDybYD/O4DyKz17D5DDbUfJjpauA+4B9oxuP/GXgS8PzMXF+kIUlSX4qdwWfmPcArgJ8CJwOnAjcCrzDcJWnuFTuDlyTNL84mCUTEJhHxgYhYExH3R8TVEbFvn+ueFBHZ43Zsj7q7RMR3I+K+iLglIj4TEU8o/4hmZqb9EBFbRMSH28d2e0Tc2f78+h51PzJJf31tMI9q0n2e8cR4EbEoIj4VEb9qn8srIuLlPerN+LiaKzPth4gYj4gVEfGTiLg3Im6KiFMj4lk96q6Z5Dl/1PExLLM8Hno9toyInbrqzf3xkJmP+RtwJPA74DBgN+CLwMPAXn2sexLwG2Dnrtu2XfWeT/P+xNeA3YGDaS4f/fKwH/9s+wH4U+AW4CjgNcCebb8kcEhX3Y+05S/t6q8/msPHuRnNHEnXAa+nmUrjWuAGYPM+1j8VuJNm/qXdgbPa53anUsfVfO8H4NM005C8C9gV+Evgx8DtwDO76q4BLujxN7J42H1Q6HhI4D96PL7Nhn08DL1zh30Dtm47/aNd5d8Crulj/ZOAm/uod3Z7EG3aUXZge3C8cGPuB2Dz7oO5Y92busomAn7BEB/r3wIPAc/pKHsW8CBw6BTrvqDd/7d0lC0ArgfOKXVcbQT9MNKjbNs2sD7WVb4GOGXYj3cQ/dDWTeDjU9QZyvHgEE1ztvl44JSu8lOAHXu95JyuiNgUeDXwlcx8oGPRV4DfMz8mY5txP2TmPZl5b49FK4Gnl9vFYmYzMd7ewAPAlzvWfRA4HdgzIha2xQM/rgqYcT9k5q09ytYCtwLbFN7PQZuLiRKHcjwY8M2Hs34HrO4qX9Xe9zNR2tYRcVtEPBgRP42I90fE4zqWPxtYRNdkbJl5P83LwPkwGVuJfuj2cuAnkyz7RUQ8FBFrI+KYOX4vYjYT4z0PuLHHP7RVNH/Az+moV7o/Sys6QWBEPJfmTPXHPRYva8fqfxcRV86n8XfK9MM728d2b0RcEhEv69HGnB8Ppeei2RhtCdyZ7eulDus6lm/ID4GraJ6oRcA+NGPR29OMs3duY7LJ2KZqYy7Mth8eIZqJ5HYG3ty1aDVwBPADmpe2rwLeB7wQeOU093mmpj0xXp/rTiyfuC/WnwMym354hIhYAJxAcwZ/Ytfic4Hv0Vw2/VTgb4CzI+KAzOw+ox2G2fbDKcB/A7+kGaY6HLgkIl6ZmZd1tDHnx0N1AR8RewAX9VH18sxcQjMZ2rQmSeuUmd1Xy3wjItYD742IYzLzZx3bmnE70zXX/dDV9hLgOODkzDy1c1mPP+iLIuJm4NiI2CMzL55uezM008fabz8V688BK7WPnwf+HFiamY8Iy8x89yM2HnE2cCXNidB8CHiYXQYc0PHrdyLi6zSvCD4O7NKxrTk/HqoLeOC7wHP7qDfxEnsdsDgiouu/6+KO5dN1GvBeYJzmjdUN/ZdezB9eppU0lH6IiBfTTE1xCfC2Pvf1NOBY4MXAXAT8bCbGWwf0unyuu58GcVyVVmSCwIg4imba74My88Kp6mfmQxFxBnBMRDwtM3/Vb1sDUnSixMy8OyLO45HH/1COh+oCvh0bnWzct5dVwEKacfLO8bGJMbGZTJTWfcZ+A8342yMmY4uIRTRfc3jGDNrYoGH0Q0TsCHyTZthq3643lPsxV5+6m83EeKuAfSJis65x+B1o3jBf3VGv9HFV2qwnCIyID9EMub0nM0+eRtsbelU71wYxUWL3GftwjodhX6I07Bt/uHzpn7rKLwauneE2P0dzudizO8q+RjONw4KOsje3B8GLNvZ+oHnP4RaaK2e2mGbb72v7Ybc5eqzvpbkEbruOsjGaq2P+bop1d2r39aCOsgU0byyeO8jjaj71Q1v3PW1ffHCa7S5oj5O1w+6DEv3QY3tbADfRDH8O9XgYeufOhxtwNHA/cCiwBDi+DehlXfW+Bazu+H1b4Ns0H/Z4FbAM+Pd23eO71t2J5sMwZ9F8OOZtNC/Lzhj24y/QD1vTXOu8DljKoz/wsbCj7g/aQN+L5kNRn2n/kM6fw8e5Oc1Z1LU0l8HtTTNR3s+BJ3Y9vw8CH+5a/3Sal+4Ht8/lV9t+e2FXvb76c4jP94z7Adi/fSzn93i+d+io98a2vw6k+XDP/sB3aP4x7D/sPijQD4cB/0bzQa8lwEHtdn4PvGzYx8PQO3c+3IDH0cyAuZbmv+w1wH496l0GrOn4fUuaM/O17RN3H/B9mqsENumx/suBK9q6v6YZd37UB4Q2wn5Y0v7BTnYb66h7Os2Q1b1tGz8C/pGOfwJz9FhHgTOBu4C72+dxrKvOWLv/H+kqfwLNP6Zb2ufyf4ElM+3PIT/nM+oH/vBJ5V63yzrq7Uzzfsyvaf6R/5bmrHXPYT/2Qv2wjOZ6+dvax3c7zXtQL5kPx4OTjUlSpfygkyRVyoCXpEoZ8JJUKQNekiplwEtSpQx4SaqUAS9JlTLgJalS/w8cpAvlijO6fAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.hist(y, bins=16);"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD9CAYAAACcJ53WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAH2ElEQVR4nO3dT4jndR3H8dc7Noj+GLs4eNBoEKOwo0sIHRQrSCM9ZN4igjK6dehUBy2IbnWQirZThCfxoNfEWCUUGi+VRX/ALG8jOxBpl/LdwRFsmnF+Ozvf+fneeTxg+c7O77f7eR+W5374/H6/71R3B4A53rHuAQC4PMINMIxwAwwj3ADDCDfAMGeWXuDaa6/tzc3NpZcBuKo899xzL3f3xn6PLR7uzc3NbG1tLb0MwFWlql486DFHJQDDCDfAMMINMIxwAwwj3ADDCDfAMMINMIxwAwyz+Adw4KRU1Yms4x72rJtwc9U4SlCrSogZx1EJwDDCDTCMcAMMI9wAwwg3wDDCDTCMcAMMI9wAwwg3wDDCDTDMoeGuqnur6tGqerGq/lVVf6yq71XV+05iQAD+1yo77m8k+U+Sbyb5dJIfJ/lakl9UlR07wAlb5SZTn+3u7Tf9/mJVXUrysyS3J3lyicEA2N+hO+Y90X7Dr3ev1x/vOAAc5qhHHbftXv9wXIMAsJrLDndVXZ/kO0me6O6tA55zf1VtVdXW9vZ+G3YAjuqywl1V703yWJJ/J/nSQc/r7gvdfb67z29sbFzhiAC82co/Aaeq3pXk8SQ3Jrmtu19abCoADrRSuKvqnUkeTfKxJJ/s7t8uOhUABzo03Lvv1X44ySeSfKa7n118KgAOtMqO+4dJPp/ku0leqapb3/TYS45MAE7WKi9O3rl7/VaSZ/b8+vJCcwFwgEN33N29eQJzALAi9xoBGEa4AYYRboBhhBtgGOEGGEa4AYYRboBhhBtgGOEGGEa4AYYRboBhhBtgGOEGGEa4AYYRboBhhBtgGOEGGEa4AYYRboBhhBtgGOEGGEa4AYYRboBhhBtgGOEGGEa4AYYRboBhzqx7ADjIuXPnsrOzs/g6VbXo33/27NlcunRp0TU4XYSbt62dnZ1097rHuGJL/8fA6eOoBGAY4QYYRrgBhhFugGGEG2AY4QYYRrgBhhFugGGEG2AY4QYYRrgBhhFugGGEG2AY4QYYRrgBhhFugGGEG2AY4QYYRrgBhhFugGGEG2AY4QYYRrgBhhFugGGEG2AY4QYYRrgBhhFugGFWCndV3VBVD1XVM1X1alV1VW0uOxoA+1l1x31TkvuS7CR5erlxADjMquF+qruv6+67kjyy5EAAvLWVwt3dry09CACr8eIkwDCLhLuq7q+qrara2t7eXmIJgFNrkXB394XuPt/d5zc2NpZYAuDUclQCMIxwAwwj3ADDnFn1iVV17+6Xt+xe76yq7STb3X3x2CcDYF8rhzv//8GbH+1eLya5/VimAeBQK4e7u2vJQQBYjTNugGGEG2AY4QYYRrgBhhFugGGEG2CYy3kfN5yofuCa5MH3r3uMK9YPXLPuEbjKCDdvW/Xtf6S71z3GFauq9IPrnoKriaMSgGGEG2AY4QYYRrgBhhFugGGEG2AY4QYYRrgBhhFugGGEG2AY4QYYRrgBhhFugGGEG2AY4QYYRrgBhhFugGGEG2AY4QYYRrgBhhFugGGEG2AY4QYYRrgBhhFugGGEG2AY4QYYRrgBhhFugGGEG2AY4QYYRrgBhhFugGGEG2AY4QYYRrgBhhFugGGEG2AY4QYYRrgBhhFugGGEG2AY4QYYRrgBhhFugGGEG2AY4QYY5sy6B4C3UlXrHuGKnT17dt0jcJVZKdxV9YEkP0jyqSSV5IkkX+/uvy04G6dcdy++RlWdyDpwnA49Kqmqdyd5MslHknwxyReSfCjJL6vqPcuOB8Beq+y4v5LkxiQf7u6/JElV/SbJn5N8Ncn3lxsPgL1WeXHy7iTPvhHtJOnuF5L8Ksk9Sw0GwP5WCfdHk/xun+8/n+Tm4x0HgMOsEu5zSXb2+f6lJPu+XF5V91fVVlVtbW9vX8l8AOyx6vu493vZ/cD3aXX3he4+393nNzY2jjYZAPtaJdw7eX3XvdfZ7L8TB2BBq4T7+bx+zr3XzUl+f7zjAHCYVcL9eJJbq+rGN75RVZtJPr77GAAnaJVw/zTJX5M8VlX3VNXdSR5L8vckP1lwNgD2cWi4u/uVJHck+VOSnyd5OMkLSe7o7n8uOx4Ae610r5Lde5J8buFZAFiB27oCDCPcAMMIN8Awwg0wjHADDCPcAMMIN8Awwg0wjHADDCPcAMMIN8Awwg0wjHADDCPcAMMIN8Awwg0wjHADDCPcAMMIN8Awwg0wjHADDCPcAMMIN8Awwg0wjHADDCPcAMMIN8Awwg0wjHADDCPcAMMIN8Awwg0wjHADDCPcAMOcWfcAcFyq6kT+XHcfaR04LsLNVUNQOS0clQAMI9wAwwg3wDDCDTCMcAMMI9wAwwg3wDDCDTBMLf2hharaTvLioovA0V2b5OV1DwH7+GB3b+z3wOLhhrezqtrq7vPrngMuh6MSgGGEG2AY4ea0u7DuAeByOeMGGMaOG2AY4QYYRrg5Varqhqp6qKqeqapXq6qranPdc8HlEG5Om5uS3JdkJ8nTa54FjkS4OW2e6u7ruvuuJI+sexg4CuHmVOnu19Y9A1wp4QYYRrgBhhFugGGEG2AY4QYYRrgBhjmz7gHgpFXVvbtf3rJ7vXP3JzVtd/fFNY0FK3N3QE6dqjroH/3F7r79JGeBoxBugGGccQMMI9wAwwg3wDDCDTCMcAMMI9wAwwg3wDDCDTDMfwEJizBECKlKJAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.boxplot(z_im);\n"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD9CAYAAABQvqc9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAQZUlEQVR4nO3df6zddX3H8efLFmVgnLehmmxSSgNBClOjXcaGc9jNgdvSZsHfW0GdFN2cOqOLxg0V2ZzTINH9kBKihrFKJCQlm5tMQHREslyMEi7boNpatrB4tVeQH0ML7/1xzt3ubk/v+Z5zb3vbfp6P5Oa0n+/3fT7vm7Sv8z2f8znnpKqQJLXhKcvdgCTp0DH0Jakhhr4kNcTQl6SGGPqS1JCVy93AMCeccEKtXbt2uduQpCPGnXfe+b2qWj3o2GEf+mvXrmVycnK525CkI0aS7xzomMs7ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfSlEW3fvp0zzzyTFStWcOaZZ7J9+/blbknq7LDfsikdTrZv386WLVt44oknAJiammLLli0AvPa1r13O1qROOl3pJ3lOkk8m+VqSR5NUkrUda49N8tEkDyR5rH8fL1lM09JyueCCC/438Gc98cQTXHDBBcvUkTSarss7pwCvAmaAr444x9XARcAlwG8ADwBfTPKCEe9HWnb79u0baVw63HRd3vlKVT0bIMmbgF/tUpTk+cDrgDdW1af7Y7cBU8ClwKaRO5Ykja3TlX5VPTnm/W8CfgxcN+e+9gGfA85N8rQx71eSNIaDvXvnDGBXVT06b3wKeCq9ZSNJ0iFysEN/Fb3XAebbO+f4fpJsTTKZZHJ6evqgNSdJrTnYoR9g0DevZ6GiqtpWVRuqasPq1QM/HVSSNIaDHfp7GXw1PzHnuCTpEDnYoT8FnJzkuHnj64EfATsP8vySpDkOdujfCBwDvHJ2IMlK4NXATVX1+EGeX5I0R+ePYUjyiv4fX9S/fXmSaWC6qm5LchLwLeDSqroUoKq+keQ64IokxwC7gLcAJwO/tVS/hCSpm1E+e+fz8/7+V/3b24Bz6L04u4L9nz28AfgT4DLgmcA3gfOq6uujNitJWpzOoV9Vw3bc7GbArpyqegx4Z/9HkrSM/GhlSWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDekU+klOTHJ9kgeTPJTkhiRrOtauSfLZJHuSPJrk3iSXJTl+ca1Lkka1ctgJSY4DbgEeBy4ECrgMuDXJ86rqkQVqjwe+BBwD/DGwB/hZ4IPAqcCrF/sLSJK6Gxr6wEXAOuC0qtoJkOQu4D7gYuDyBWrPphfu51bVTf2xW5OsAt6V5LiqenTs7iVJI+myvLMJuGM28AGqahdwO7B5SO1T+7cPzRv/QX/udOxTkrQEuoT+GcDdA8angPVDar9E7xnBR5KsT/L0JBuBtwOfWmhpSJK09LqE/ipgZsD4XmBiocKq+m/gxf15poAfAjcDfwe89UB1SbYmmUwyOT093aFFSVIXXbds1oCxoUszSY4FrgOeBWwBfgl4N70XcP/ygJNVbauqDVW1YfXq1R1blCQN0+WF3Bl6V/vzTTD4GcBcvwOcA5xSVd/qj30lyYPAtiSfqqpvdm1WkrQ4Xa70p+it68+3HrhnSO3PADNzAn/Wv/RvT+8wvyRpiXQJ/RuBs5Ksmx1Ispbedswbh9T+FzCR5JR54z/Xv/3Pbm1KkpZCl9C/CtgN7EiyOckmYAdwP3Dl7ElJTkqyL8klc2o/Q+/F2y8kuTDJS5O8G/gYcCe9bZ+SpENkaOj3t1VuBO4FrgGuBXYBG6vq4TmnBlgx9z6rajdwFvANeu/i/QK9N3ttA15WVU8uyW8hSeqkywu5VNUe4Pwh5+xmwI6eqroHeNU4zUmSlpafsilJDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0JakhnUI/yYlJrk/yYJKHktyQZE3XSZKcnuTzSb6X5LEk/57k7eO3LUkax8phJyQ5DrgFeBy4ECjgMuDWJM+rqkeG1G/o138ZeBPwIHAq8PRFdS5JGtnQ0AcuAtYBp1XVToAkdwH3ARcDlx+oMMlTgM8CN1fVb845dOvYHUuSxtZleWcTcMds4ANU1S7gdmDzkNpzgPUs8MAgSTp0uoT+GcDdA8an6AX6Ql7cvz02yR1Jfpzku0k+keQnRmlUkrR4XUJ/FTAzYHwvMDGk9qf6t9cBNwEvA/6c3tr+3x6oKMnWJJNJJqenpzu0KEnqosuaPvRevJ0vHepmH1T+pqou6f/5y0lWAH+WZH1V3bPfZFXbgG0AGzZsGDS3JGkMXa70Z+hd7c83weBnAHN9v3/7T/PGb+rfvqDD/JKkJdIl9KforevPtx7Y7yp9QC3s/0xh9lnCkx3mlyQtkS6hfyNwVpJ1swNJ1gJn948t5B/o7e8/b974uf3byU5dSpKWRJfQvwrYDexIsjnJJmAHcD9w5exJSU5Ksi/J7No9VfV94MPAm5P8aZJfSfIe4BLgs3O3gUqSDr6hL+RW1SNJNgIfB66htzRzM/COqnp4zqkBVrD/A8mlwA+B3wXeBTwAfBT40KK7lySNpNPunaraA5w/5JzdDNjRU1VF781ZvkFLkpaZn7IpSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ3pFPpJTkxyfZIHkzyU5IYka0adLMl7k1SSfx69VUnSYg0N/STHAbcAzwUuBLYApwK3Jjm+60RJ1gHvA747XquSpMVa2eGci4B1wGlVtRMgyV3AfcDFwOUd5/pr4FrgtI7zSpKWWJflnU3AHbOBD1BVu4Dbgc1dJknyOuCFwHvHaVKStDS6hP4ZwN0DxqeA9cOKk0wAHwf+sKr2jtaeJGkpdQn9VcDMgPG9wESH+o8C9wKf6dpUkq1JJpNMTk9Pdy2TJA3RdctmDRjLsKIkvwhcALylqgbdx+DJqrZV1Yaq2rB69equZZKkIbq8oDpD72p/vgkGPwOY60rgauA/kjxzzpwr+n9/rKoe79qsJGlxuoT+FL11/fnWA/cMqT29//PmAcdmgD8ArujQg3RQJUOfuC7ZfYzwpFdacl1C/0bgY0nWVdW3AZKsBc4G3jOk9qUDxq4AVgC/D+wccFw65LoG8ULBbpjrSNAl9K8C3grsSPJH9Nb3PwTcT2/5BoAkJwHfAi6tqksBqurL8+8syQ+AlYOOSZIOrqEv5FbVI8BGejtwrqH3BqtdwMaqenjOqaF3Be/n+eiodaCrea/ydaTo9M7YqtoDnD/knN102NFTVed0mVM6XM0GfBLDXkccr8olqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1pFPoJzkxyfVJHkzyUJIbkqzpULchybYk/5bk0SR7klyb5OTFty5JGtXQ0E9yHHAL8FzgQmALcCpwa5Ljh5S/BjgD+ATwcuA9wAuBySQnLqJvSdIYVnY45yJgHXBaVe0ESHIXcB9wMXD5ArUfqarpuQNJbgd29e/3knGaliSNp8vyzibgjtnAB6iqXcDtwOaFCucHfn/sO8A08NOjtSpJWqwuoX8GcPeA8Slg/agTJjkdeBbwr6PWSpIWp0vorwJmBozvBSZGmSzJSuBT9K70r17gvK1JJpNMTk/v92RBkjSmrls2a8BYxpjvL4BfAH67qgY9kPQmq9pWVRuqasPq1avHmEaSNEiXF3Jn6F3tzzfB4GcAAyX5MLAVuLCqbupaJ0laOl1Cf4reuv5864F7ukyS5H30tmu+raqu6d6eJGkpdVneuRE4K8m62YEka4Gz+8cWlORtwGXA+6rqk+O1KUlaCl1C/ypgN7AjyeYkm4AdwP3AlbMnJTkpyb4kl8wZew1wBfCPwC1JzprzM/LOH0nS4gxd3qmqR5JsBD4OXEPvBdybgXdU1cNzTg2wgv//QHJef/y8/s9ctwHnjN25JGlkXdb0qao9wPlDztnNvB09VfV64PXjtSaNb9WqVczMdN5nMLZknE1s3U1MTLB3796DOofa0in0pSPNzMwMVYN2Gh9ZDvaDitrjRytLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDfE7cnVUqvc/Az7wk8vdxqLV+5+x3C3oKGPo66iUDz501Hwxen1gubvQ0cTlHUlqiKEvSQ0x9CWpIYa+JDWkU+gnOTHJ9UkeTPJQkhuSrOlYe2ySjyZ5IMljSb6W5CWLa1uSNI6hu3eSHAfcAjwOXAgUcBlwa5LnVdUjQ+7iauDXgXcD3wZ+D/hikp+vqm8spnlpIUmWu4VFm5iYWO4WdJTpsmXzImAdcFpV7QRIchdwH3AxcPmBCpM8H3gd8Maq+nR/7DZgCrgU2LSo7qUDOBTbNZMcFdtC1ZYuyzubgDtmAx+gqnYBtwObO9T+GLhuTu0+4HPAuUmeNnLHkqSxdQn9M4C7B4xPAes71O6qqkcH1D4VOKXD/JKkJdJleWcVMDNgfC8wbMFxodrZ4/tJshXYCrBmTafXi6VFGXf9f5w6l4S0nLpu2Rz0r7TLv/aMU1tV26pqQ1VtWL16dZf+pEWpqkP2Iy2nLqE/w+Ar8gkGX8XPtXeB2tnjkqRDpEvoT9Fbm59vPXBPh9qT+9s+59f+CNi5f4kk6WDpEvo3AmclWTc7kGQtcHb/2LDaY4BXzqldCbwauKmqHh+xX0nSInQJ/auA3cCOJJuTbAJ2APcDV86elOSkJPuSXDI71n/z1XXAFUnelOSX6W3XPBl4/9L9GpKkLoaGfv8dtxuBe4FrgGuBXcDGqnp4zqkBVgy4zzcAn6b3Lt6/B04Ezquqry+6e0nSSDp9iUpV7QHOH3LObgbsyqmqx4B39n8kScvIT9mUpIYY+pLUkBzubxZJMg18Z7n7kAY4AfjecjchDXBSVQ18Z+thH/rS4SrJZFVtWO4+pFG4vCNJDTH0Jakhhr40vm3L3YA0Ktf0JakhXulLUkMMfUlqiKEvjSDJc5J8MsnXkjyapPqfOisdEQx9aTSnAK+i9wVCX13mXqSRGfrSaL5SVc+uql8DPr/czUijMvSlEVTVk8vdg7QYhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqSKcvRpf0f5K8ov/HF/VvX97/hrfpqrptmdqSOvFTNqURJTnQf5rbquqcQ9mLNCpDX5Ia4pq+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSH/A2fnCE7HlHYtAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.boxplot(x_im);"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAD9CAYAAAB0i+q4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAUrElEQVR4nO3de5Dd5X3f8fcHcbNn6lTEEFzHugAZj8SlmWTpkJpmMIMDrQkkJeZSSGhDo0xSZPAMrU2V2oTLGGIP0NB0annIxSiVYzx2gIaCCWhoMIZmxSUjgRVEBMGtM4hK2IAsccm3f5yz+Ojo7Ors6jm7Qnq/Zs6c3ef33H5/rD56fs/vd06qCkmSWjhgricgSdp3GCqSpGYMFUlSM4aKJKkZQ0WS1MyBcz2BufTe9763Fi1aNNfTkKR3lLVr175UVYcPOrZfh8qiRYsYHx+f62lI0jtKkucnO+blL0lSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGb264cfpdmSZFbG8fuRNNcMFWkWTPcf+yQGhN6RvPwlSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWpmpKGS5ANJvprke0m+n+RrSRYM2bYmef1kX70DklyZ5Lkk25M8meSc0ZyRJGkqI/uYliTvBh4AdgAXAwVcC6xJckJVvTZEN38IfKGv7K/7fr8GuAJYAawFzgduT3JmVd098zOQJE3XKD/769eAo4APVtVGgCR/BTwD/Dpw4xB9/J+qemSyg0mOoBMo11fV57vFa5IcA1wPGCqSNItGefnrLOCRiUABqKpNwDeBsxuNcTpwMLCqr3wVcHySxY3GkSQNYZShciywbkD5emDpkH38RpIdSbYleSDJPxswxg5gY1/5+u77sONIkhoYZagcBmwdUL4FmD9E+1XAbwKnAcuAHwUeSHJK3xgv166fEb6l5/hOkixLMp5kfPPmzUNMQ5I0rFF/n8qgL4QY6tuKquqXe379iyR30Fn5XAuc3NPXtMaoqpXASoCxsTG/sEKSGhrlSmUrA1YKdFYpg1YwU6qqV4A/A07sKd4CzM+uX6s3v+e4JGmWjDJU1tPZ8+i3FHhqhn32r0zWA4cARw8Ygz0YR5I0A6MMlTuBk5IcNVGQZBHwoe6xaUnyHuCjwKM9xfcArwMX9lW/CFjXvdtMkjRLRrmn8kXgUuCOJL9FZ4VxDfACPQ80JlkIPAtcXVVXd8uuAD4IrAH+L7CQzvMoR9ITIFX1YpKbgCuTvAI8BpwHnEq725YlSUMaWahU1WtJTgVuAm6jc+nqfuDyqnq1p2qAeey8atoA/GL39SPA9+k833JJVf3vvqFWAK8Cl9EJnQ3AuVV1V/OTkiRNKbvejbv/GBsbq/Hx8bmehrSLJOzPf5vauyVZW1Vjg475KcWSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNjDRUknwgyVeTfC/J95N8LcmCIdqNJVmZ5NtJtiX52yR/nGTxgLrPJakBr18YzVlJkiZz4Kg6TvJu4AFgB3AxUMC1wJokJ1TVa1M0Px84FvhdYD3wfuA/AeNJfrKqXuirfy9wVV/Zhj0+CUnStIwsVIBfA44CPlhVGwGS/BXwDPDrwI1TtL2hqjb3FiT5JrCp2++n++q/VFWPtJq4JGlmRnn56yzgkYlAAaiqTcA3gbOnatgfKN2y54HNdFYtkqS90ChD5Vhg3YDy9cDS6XaWZAlwBPD0gMM/39172ZHkEfdTJGlujDJUDgO2DijfAsyfTkdJDgT+G52Vyq19h+8ClgOnAxcC24GvJ7lokr6WJRlPMr558y4LIknSHhjlngp0Nuf7ZQb9/BfgnwIfraqdgqqqlu/UefJ14BHgs8CqXSZUtRJYCTA2NjZofpKkGRrlSmUrndVKv/kMXsEMlOSzwDLgV6vqG7urX1VvAbcDP57kfcOOI0nac6Ncqayns6/Sbynw1DAdJFkBfAr4eFXdNo2xJ1ZDrkQkaRaNcqVyJ3BSkqMmCpIsAj7UPTalJB+n81zLiqq6ZdhBu/svHwP+tqr+bppzliTtgVGGyheB54A7kpyd5CzgDuAF4AsTlZIsTPJmkk/3lJ0P3AzcAzyQ5KSe19Keehck+XKSX0ny4W67NcBPA58c4blJkgYY2eWvqnotyanATcBtdC5J3Q9cXlWv9lQNMI+dA+6MbvkZ3VevB4FTuj9vonOb8efo7N9sA/4SOKOq7m15PpKk3UvV/rvtMDY2VuPj43M9DWkXSdif/za1d0uytqrGBh3zU4olSc0YKpKkZgwVSVIzhookqRlDRZLUzKg/+0va5xx22GFs3Tr0Jw3NWDKTj8mbnvnz57Nly5aRj6P9h6EiTdPWrVv3mdt9ZyO4tH/x8pckqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUzEhDJckHknw1yfeSfD/J15IsGLLtoUk+l+S7SX6Q5FtJfnZAvQOSXJnkuSTbkzyZ5Jz2ZyNJ2p2RfUd9kncDDwA7gIuBAq4F1iQ5oape200XtwIfBf498DfAvwPuTfIzVfVET71rgCuAFcBa4Hzg9iRnVtXdLc9JAqjPvAeu+pG5nkYT9Zn3zPUUtI9JVY2m4+Qy4Ebgg1W1sVu2GHgG+A9VdeMUbf8x8ATwq1X1B92yA4H1wIaqOqtbdgTwAnB9VX2mp/39wOFVdcJUcxwbG6vx8fE9OEvtj5Iwqr+b2bYvnYtmT5K1VTU26NgoL3+dBTwyESgAVbUJ+CZw9hBt3wD+pKftm8CXgdOTHNItPh04GFjV134VcHw3xCRJs2SUoXIssG5A+Xpg6RBtN1XVtgFtDwaO6am3A9g4oB5DjCNJamiUoXIYsHVA+RZg/h60nTg+8f5y7bp+76/3tiTLkownGd+8efNupiFJmo5R31I86GJthmiXIdsOW++HE6paWVVjVTV2+OGHDzEVSdKwRhkqWxmwUqCzShm0Cum1ZYq2E8cn3ucn6Q+R/nqSpFkwylBZT2fPo99S4Kkh2i7u3pbc3/Z1friHsh44BDh6QD2GGEeS1NAoQ+VO4KQkR00UJFkEfKh7bHdtDwI+1tP2QOA84BtVtaNbfA+dkLmwr/1FwLru3WaSpFkysocfgS8ClwJ3JPktOnsf19B5ruQLE5WSLASeBa6uqqsBquqJJH8C3JzkIGAT8BvAYnoCpKpeTHITcGWSV4DH6ATPqez+tmVJUmMjC5Wqei3JqcBNwG10Ns/vBy6vqld7qgaYx66rpn8DXEfnKfx/CDwJnFFVj/XVWwG8ClwGHAlsAM6tqrvanpEkaXdG9kT9O4FP1Gsm9qWn0Pelc9Hsmasn6iVJ+xlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqZlRfke9tM9KMtdTaGL+/PlzPQXtYwwVaZpm4+t3/ZpfvVN5+UuS1IyhIklqxlCRJDVjqEiSmjFUJEnNjCxUkhyQ5MokzyXZnuTJJOcM0e49ST6d5OEk/y/Jy92ff2FA3auS1IDXn47mrCRJUxnlLcXXAFcAK4C1wPnA7UnOrKq7p2i3APhN4A+6ffw9cAHw9SSXVtXvDWhzMvBWz+9bGsxfkjRNIwmVJEfQCZTrq+rz3eI1SY4BrgemCpVNwFFVta2n7N4kHwA+CQwKlUer6s0GU5ck7YFRXf46HTgYWNVXvgo4PsniyRpW1Wt9gTJhHPhH7aYoSWptVKFyLLAD2NhXvr77vnQGff4s8O1Jjr2Q5K0kzye5Icm7ZtC/JGkPjWpP5TDg5dr1cya29BwfWpJlwEnARX2HNgKfAh4HCvg54BPATwEfmeacJUl7aKhQSXIacN8QVR+sqlOA0PlHfpeuhp/a22OfAvwucFtV/XHvsarqv7x2X5LvADcnOa2q/nxAf8uAZQALFiyY7nQkSVMYdqXyMLBkiHoTeyFbgPlJ0rdamd9zfLeSnAjcCTwAXDLkXFcDNwMnAruESlWtBFYCjI2N+Yl9ktTQUKHS3TifbD9jkPXAIcDR7LyvMrGX8tTuOkhyPHAv8ARwTlW9MY3xYfBKSZI0QqPaqL8HeB24sK/8ImBdVW2aqnGSn6Bzue1vgDOr6gfTGHtizEen0UaS1MBINuqr6sUkNwFXJnkFeAw4DzgVOLu3bpL7gYVVdUz39yPoBMrBwGeApX1fiPR4Ve3o1n0c+BKwgc7K5CPAcuCeqlozinOTJE1ulE/UrwBeBS4DjqTzD/+5VXVXX715ffNYCizs/vw/BvS7GHiu+/MG4FLgfd1+ngWuBn5nz6cvSZqu7M/fLjc2Nlbj4+NzPQ1pF37zo/ZmSdZW1digY35KsSSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpmZGFSpIDklyZ5Lkk25M8meScIdv+YZIa8Lp5QN2Tkzyc5AdJ/i7JjUne1f6MJEm7c+AI+74GuAJYAawFzgduT3JmVd09RPvNwFl9Zd/t/SXJCcB9wL3AmcBi4HPA+4Hz9mj2kqRpG0moJDmCTqBcX1Wf7xavSXIMcD0wTKi8XlWP7KbObwPfAT5WVW90x34d+KMkN1TVYzM7A0nSTIzq8tfpwMHAqr7yVcDxSRbv6QBJDgLOAL4yEShdXwFeB87e0zEkSdMzqlA5FtgBbOwrX999XzpEH0ckeSnJm0n+Osknk8zrOX40cCiwrrdRVW0Hnh1yDGlWJJnWayZtJtpJc2lUeyqHAS9XVfWVb+k5PpUn6OzDrKcTHL8IfBb4CeDf9vWxdUD7LZONkWQZsAxgwYIFu5mG1MaufwrSvmmoUElyGp0N8d15sKpOAQIM+isa6r9SVdV/l9fdSV4FLu/ulTzT09e0xqmqlcBKgLGxMf/SJamhYVcqDwNLhqi3rfu+BZifJH2rlfk9x6drNXA5MAY8w9Srnvn88FKbJGmWDBUqVbUN+PY0+l0PHEJn36N3X2Vin+OpafQ1oX9l8iydfZtjd6qUHAocBdw+gzEkSXtgVBv199C5A+vCvvKLgHVVtWkGff4rOoHylwBV9Xp3nHOT9IbjL9EJtDtnMIYkaQ+MZKO+ql5MchNwZZJXgMfoPIx4Kn23+ia5H1hYVcd0f18I3AZ8mc4q5xA6G/X/GvhCVT3b0/wq4FvAV5L8HrCIzsOPX62qtaM4N0nS5Eb5RP0K4FXgMuBIYANwblXd1VdvXt88XqGzX/JJ4MforE6eBj4O/NfehlX1RJLTgRuAPwO+B3wJ+I+tT0aStHvZn291HBsbq/Hx8bmehiS9oyRZW1Vjg475KcWSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCR9iKrV6/muOOOY968eRx33HGsXr16rqckTcuBcz0BSR2rV69mxYoV3HrrrZx88sk89NBDXHLJJQBccMEFczw7aTipqrmew5wZGxur8fHxuZ6GBMBxxx3HLbfcwoc//OG3y9asWcPy5ctZt27dHM5M2lmStVU1NvCYoWKoaO8wb948tm/fzkEHHfR22RtvvMGhhx7KW2+9NYczk3Y2VaiMbE8lyQFJrkzyXJLtSZ5Mcs4Q7RYlqSle5/fUvWqSOn86qvOSRmXJkiU89NBDO5U99NBDLFmyZI5mJE3fKPdUrgGuAFYAa4HzgduTnFlVd0/R7rvAzwwovxY4GfjGgGMnA73/ldsyoxlLc2jFihVccsklu+ypXHfddXM9NWloIwmVJEfQCZTrq+rz3eI1SY4BrgcmDZWq2gE80tffu4F/AtxVVYMC49GqerPJ5KU5MrEZv3z5cp5++mmWLFnCdddd5ya93lFGtVI5HTgYWNVXvgr4/SSLq2rTNPr7l8A/AP6o0fykvdIFF1xgiOgdbVR7KscCO4CNfeXru+9Lp9nfxcCLwD2THH8hyVtJnk9yQ5J3TbN/SVIDo1qpHAa8XLveWral5/hQkrwfOBX4zwMucW0EPgU8DhTwc8AngJ8CPjJJf8uAZQALFiwYdhqSpCEMFSpJTgPuG6Lqg1V1ChA6/8jv0tXwU3vbL9NZUe1y6auq+i+v3ZfkO8DNSU6rqj8f0GYlsBI6txTPYD6SpEkMu1J5GBjmvsZt3fctwPwk6VutzO85PqxfAZ6oqieHrL8auBk4EdglVCRJozNUqFTVNuDb0+h3PXAIcDQ776tM7KU8NUwnSU6kE2afmMbYE1yFSNIsG9Weyj3A68CFwG/3lF8ErJvGnV8XA28C/30aY1/YfX90dxXXrl37UpLnp9G3NFveC7w015OQJrFwsgMjCZWqejHJTcCVSV4BHgPOo7PhfnZv3ST3Awur6pi+8oPoPDD5P6vqxUHjJHkc+BKwgc7K5CPAcuCeqlozxDwPn+65SbMhyfhkH4Mh7c1G+UT9CuBV4DLgSDr/8J9bVXf11Zs3yTzOBH6UqZ9N2QBcCryv28+zwNXA7+zRzCVJM7Jff6CktLdypaJ3Kr+kS9o7rZzrCUgz4UpFktSMKxVJUjOGiiSpGUNF2ksk+fEktyT5VpJt3S+cWzTX85Kmw1CR9h7HAOcCW4G/mOO5SDNiqEh7j/9VVT9WVf8CuH2uJyPNhKEi7SWq6u/neg7SnjJUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqZpTfpyJpmpL8UvfHn+6+//Mkm4HNVfXgHE1LGpqfUiztRZJM9gf5YFWdMptzkWbCUJEkNeOeiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjP/H33IWfKnhSLiAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"\n",
"plt.boxplot(x);"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAD9CAYAAAB0i+q4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAARyklEQVR4nO3de4yldX3H8fcHENQm2qGCWmUvgLEuwZp6TEi1hhIsqBQ0KKJgbbWu0XihCYnStYpAI1QixEtT1hitrPGC0QKVgBY21KhrnUUxLIpAF8VW49pZ5CaL6Ld/nDNyOHt258zM79lZdt+v5OTs/J7f7dlk5pPf83vOc1JVSJLUwj5LPQFJ0p7DUJEkNWOoSJKaMVQkSc0YKpKkZvZb6gkspSc96Um1YsWKpZ6GJD2qbNy48RdVddC4Y3t1qKxYsYLp6emlnoYkPaok+dGOjnn5S5LUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqZm9+sOP0q6SZJeM4/cjaakZKtIuMN8/9kkMCD0qeflLktSMoSJJasZQkSQ1Y6hIkprpNFSSHJLkC0l+meTuJF9MsmzCtrWD13NG6u2T5KwkdyR5IMmNSU7u5owkSTvT2d1fSR4PXAdsA14HFHAesD7Js6vqvgm6+SRwyUjZD0d+Phc4E1gDbAROBS5LckJVXbXwM5AkzVeXtxS/ETgUeGZV3QaQ5HvArcCbgA9O0Mf/VNWGHR1McjD9QDm/qi4cFK9PcjhwPmCoSNIu1OXlrxOBDbOBAlBVm4GvAyc1GuM4YH9g3Uj5OuDIJCsbjSNJmkCXoXIEcNOY8k3Aqgn7eHOSbUnuT3Jdkj8bM8Y24LaR8k2D90nHkSQ10GWoHAhsHVM+A0xN0H4d8BbgWGA18AfAdUmOHhnjrtr+o8czQ8cfIcnqJNNJprds2TLBNCRJk+r6MS3jnjMx0UOQquq1Qz9+Lcnl9Fc+5wEvGOprXmNU1VpgLUCv1/M5GJLUUJcrla2MWSnQX6WMW8HsVFXdA3wZeN5Q8Qwwle2f1jc1dFyStIt0GSqb6O95jFoF3LzAPkdXJpuAA4DDxozBIsaRJC1Al6FyBXBUkkNnC5KsAJ4/ODYvSZ4AvBT41lDx1cCDwGkj1U8HbhrcbSZJ2kW63FP5GPBW4PIk76a/wjgXuJOhDzQmWQ7cDpxTVecMys4EngmsB/4XWE7/8yhPYShAqurnSS4CzkpyD3AD8CrgGNrdtixJmlBnoVJV9yU5BrgIuJT+patrgTOq6t6hqgH25ZGrpluAlw9eTwTupv/5ljdU1X+NDLUGuBd4B/3QuQU4paqubH5SkqSdyt78RUC9Xq+mp6eXehrSdvySLu3Okmysqt64Yz6lWJLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZjoNlSSHJPlCkl8muTvJF5Msm6BdL8naJD9Icn+SHyf5dJKVY+rekaTGvF7WzVlJknZkv646TvJ44DpgG/A6oIDzgPVJnl1V9+2k+anAEcCHgE3A04B/AKaTPKeq7hypfw1w9kjZLYs+CUnSvHQWKsAbgUOBZ1bVbQBJvgfcCrwJ+OBO2l5QVVuGC5J8Hdg86Pc9I/V/UVUbWk1ckrQwXV7+OhHYMBsoAFW1Gfg6cNLOGo4GyqDsR8AW+qsWSdJuqMtQOQK4aUz5JmDVfDtL8izgYOD7Yw7/5WDvZVuSDe6nSNLS6DJUDgS2jimfAabm01GS/YB/ob9S+fjI4SuBtwHHAacBDwBfSnL6DvpanWQ6yfSWLdstiCRJi9Dlngr0N+dHZQH9fAT4U+ClVfWIoKqqtz2i8+RLwAbg/cC67SZUtRZYC9Dr9cbNT5K0QF2uVLbSX62MmmL8CmasJO8HVgOvr6qvzFW/qn4DXAY8PclTJx1HkrR4Xa5UNtHfVxm1Crh5kg6SrAHeBby9qi6dx9izqyFXIpK0C3W5UrkCOCrJobMFSVYAzx8c26kkb6f/uZY1VfXhSQcd7L+8EvhxVf1snnOWJC1Cl6HyMeAO4PIkJyU5EbgcuBO4ZLZSkuVJHkrynqGyU4GLgauB65IcNfRaNVTv1Uk+m+Svkvz5oN164LnAOzs8N0nSGJ1d/qqq+5IcA1wEXEr/ktS1wBlVde9Q1QD78siAO35QfvzgNex64OjBvzfTv834A/T3b+4Hvg0cX1XXtDwfSdLcUrX3bjv0er2anp5e6mlI20nC3vy7qd1bko1V1Rt3zKcUS5KaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzXX+dsLTHOfDAA9m6deIvL12wZCHfvD0/U1NTzMzMdD6O9h6GijRPW7du3WOeILwrgkt7Fy9/SZKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWqm01BJckiSLyT5ZZK7k3wxybIJ2z42yQeS/DTJr5J8M8kLx9TbJ8lZSe5I8kCSG5Oc3P5sJElz6SxUkjweuA74I+B1wGuBZwDrk/zeBF18HHgj8B7gBOCnwDVJnjNS71zgbOAjwIuBDcBlSV7S4DQkSfPQ5Tc/vhE4FHhmVd0GkOR7wK3Am4AP7qhhkj8GXgO8vqo+MSi7HtgEnAOcOCg7GDgTOL+qLhw0X5/kcOB84KoOzkuStANdXv46EdgwGygAVbUZ+Dpw0gRtfw18bqjtQ8BngeOSHDAoPg7YH1g30n4dcGSSlYs6A0nSvHQZKkcAN40p3wSsmqDt5qq6f0zb/YHDh+ptA24bU48JxpEkNdRlqBwIbB1TPgNMLaLt7PHZ97uqquao9ztJVieZTjK9ZcuWOaYhSZqPrm8pHv1jD5AJ2mXCtpPWe3hCVWurqldVvYMOOmiCqUiSJtVlqGxlzEqB/ipl3Cpk2MxO2s4en32fSjIaIqP1JEm7QJehson+nseoVcDNE7RdObgtebTtgzy8h7IJOAA4bEw9JhhHktRQl6FyBXBUkkNnC5KsAJ4/ODZX28cArxxqux/wKuArVbVtUHw1/ZA5baT96cBNg7vNJEm7SJefU/kY8Fbg8iTvpr/3cS5wJ3DJbKUky4HbgXOq6hyAqvpuks8BFyd5DLAZeDOwkqEAqaqfJ7kIOCvJPcAN9IPnGOa+bVmS1FhnoVJV9yU5BrgIuJT+5vm1wBlVde9Q1QD7sv2q6W+AfwTOA34fuBE4vqpuGKm3BrgXeAfwFOAW4JSqurLtGUmS5pLt78bde/R6vZqenl7qaehRJgl7yu/NnnQu2nWSbKyq3rhjPqVYktSMoSJJasZQkSQ1Y6hIkprp8pZiaY9U730CnP3EpZ5GE/XeJyz1FLSHMVSkecr77t5j7phKQp291LPQnsTLX5KkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKaMVQkSc0YKpKkZgwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKa2W+pJyA9GiVZ6ik0MTU1tdRT0B6ms5VKkn2SnJXkjiQPJLkxyckTtHtCkvck+UaS/0ty1+DfLxtT9+wkNeb1b92clQRV1flrV40zMzOzxP+b2tN0uVI5FzgTWANsBE4FLktyQlVdtZN2y4C3AJ8Y9PFb4NXAl5K8tao+OqbNC4DfDP3sb4okLYFOQiXJwfQD5fyqunBQvD7J4cD5wM5CZTNwaFXdP1R2TZJDgHcC40LlW1X1UIOpS5IWoavLX8cB+wPrRsrXAUcmWbmjhlV130igzJoG/rDdFCVJrXUVKkcA24DbRso3Dd5XLaDPFwI/2MGxO5P8JsmPklyQ5HEL6F+StEhd7akcCNxVszuOD5sZOj6xJKuBo4DTRw7dBrwL+A5QwF8Afwf8CfCinfS1GmDZsmXzmYYkaQ4ThUqSY4GvTlD1+qo6Ggj9P/LbdTX51H439tHAh4BLq+rTw8eqavTy2leT/AS4OMmxVfUfo/1V1VpgLUCv1xs3R0nSAk26UvkG8KwJ6s3uhcwAU0kyslqZGjo+pyTPA64ArgPeMOFcPwNcDDwP2C5UJEndmShUBhvnO9rPGGcTcABwGI/cV5ndS7l5rg6SHAlcA3wXOLmqfj2P8WH8SkmS1KGuNuqvBh4EThspPx24qao276xxkmfQv9z238AJVfWreYw9O+a35tFGktRAJxv1VfXzJBcBZyW5B7gBeBVwDHDScN0k1wLLq+rwwc8H0w+U/YH3AqtGHonxnaraNqj7HeBTwC30VyYvAt4GXF1V67s4N0nSjnX5ifo1wL3AO4Cn0P/Df0pVXTlSb9+ReawClg/+/e9j+l0J3DH49y3AW4GnDvq5HTgH+KfFT1+SNF/Z/q7fvUev16vp6emlnoa0nSTszb+b2r0l2VhVvXHHfPS9JKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1IyhIklqxlCRJDVjqEiSmuksVJLsk+SsJHckeSDJjUlOnrDtJ5PUmNfFY+q+IMk3kvwqyc+SfDDJ49qfkSRpLvt12Pe5wJnAGmAjcCpwWZITquqqCdpvAU4cKfvp8A9Jng18FbgGOAFYCXwAeBrwqkXNXpI0b52ESpKD6QfK+VV14aB4fZLDgfOBSULlwaraMEed9wE/AV5ZVb8ejP0g8K9JLqiqGxZ2BpKkhejq8tdxwP7AupHydcCRSVYudoAkjwGOBz4/GygDnwceBE5a7BiSpPnpKlSOALYBt42Ubxq8r5qgj4OT/CLJQ0l+mOSdSfYdOn4Y8FjgpuFGVfUAcPuEY0iSGupqT+VA4K6qqpHymaHjO/Nd+vswm+gHx8uB9wPPAP52pI+tY9rP7GiMJKuB1QDLli2bYxqSpPmYKFSSHEt/Q3wu11fV0UCA0UBhUD6nqhq9y+uqJPcCZwz2Sm4d6mte41TVWmAtQK/XG9dWkrRAk65UvgE8a4J69w/eZ4CpJBlZrUwNHZ+vzwBnAD3gVna+6pni4UttkqRdZKJQqar7gR/Mo99NwAH09z2G91Vm9zlunkdfs0ZXJrfT37c54hGVkscChwKXLWAMSdIidLVRfzX9O7BOGyk/HbipqjYvoM/X0A+UbwNU1YODcU5JMhyOr6AfaFcsYAxJ0iJ0slFfVT9PchFwVpJ7gBvofxjxGEZu9U1yLbC8qg4f/LwcuBT4LP1VzgH0N+r/Grikqm4fan428E3g80k+Cqyg/+HHL1TVxi7OTZK0Y11+on4NcC/wDuApwC3AKVV15Ui9fUfmcQ/9/ZJ3Ak+mvzr5PvB24J+HG1bVd5McB1wAfBn4JfAp4O9bn4wkaW7Z/q7fvUev16vp6emlnoa0nSTszb+b2r0l2VhVvXHHfEqxJKkZQ0WS1IyhIklqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKmZLh/TImkgmeirhBbdxk/ha6kZKtIu4B977S28/CVJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjOGiiSpGUNFktTMXv0d9Um2AD9a6nlIYzwJ+MVST0LageVVddC4A3t1qEi7qyTTVdVb6nlI8+XlL0lSM4aKJKkZQ0XaPa1d6glIC+GeiiSpGVcqkqRmDBVJUjOGirSbSPL0JB9O8s0k9yepJCuWel7SfBgq0u7jcOAUYCvwtSWei7Qghoq0+/jPqnpyVb0EuGypJyMthKEi7Saq6rdLPQdpsQwVSVIzhookqRlDRZLUjKEiSWrGUJEkNWOoSJKa2W+pJyDpYUleMfjncwfvLx58Q+mWqrp+iaYlTcynFEu7kSQ7+oW8vqqO3pVzkRbCUJEkNeOeiiSpGUNFktSMoSJJasZQkSQ1Y6hIkpoxVCRJzRgqkqRmDBVJUjP/D7XYzDyRqsWVAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.boxplot(y);"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}