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Clustering: The basic problem
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Clustering: The basic problem

Looks like three things of interest:



How to pick them out?



Not so easy in high dimensions
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I Clustering is a problem in unsupervised machine learning.

I Strategy 1: work from the bottom up.
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Bottom-Up (Hierarchical/Agglomerative) Clustering

General Strategy

I Group a few points that are very close together into clusters.

I Find the point not yet in a cluster, but closest to one of the
existing clusters, and add it to that closest cluster.

I Repeat step 2 until every point is in a cluster.

The Catch
What is the distance between a point and a cluster?
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What is the distance to a cluster?



Different Notions of Distance

I Distance between closest points.

d(X ,Y ) = inf
(x ,y)∈X×Y

d(x , y)

I Distance between farthest points.
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(x ,y)∈X×Y

d(x , y)

I Distance between centroids.

d(X ,Y ) = d(X ,Y )
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Some Test Cases



Algorithmic Considerations

Definition
Let Xi be a set of k clusters. The “dissimilarity matrix” is the
symmetric k × k matrix whose (i , j)-entry is d(Xi ,Xj).

Algorithm

1. Given n points yi to start, construct the n × n symmetric
matrix D0 whose entries are the d(yi , yj). Set N = 0.

2. Find the two closest points (later clusters) by finding i ′, j ′

where DN(i ′, j ′) is minimal.

3. Combine the two points into a cluster c0. Update DN by
removing the two points yi ′ and yj ′ and adding a row and
column for the distances between the remaining points and c0,
yielding DN+1.

4. Repeat steps 2 and 3 until you have only one cluster.



Algorithmic Considerations (cont’d)

To make this approach efficient, we want to be able to update the
dissimilarity matrix without recomputing all of the distances from
scratch.
When the distance between clusters is the distance between their
closest points, or the distance between their farthest points, this is
straightforward.

I (closest): If X and Y are merged, and Z is another cluster,
then the distance d(Z ,X ∪ Y ) is min(d(X ,Z ), d(Y ,Z )) and
this can be computed directly from the dissimilarity matrix D.

I (farthest): If X and Y are merged, and Z is another cluster,
then the distance d(Z ,X ∪ Y ) is max(d(X ,Z ), d(Y ,Z )) and
this can be computed directly from the dissimilarity matrix D.

I What about centroids?



A geometry problem

Problem
Let X = {x1, . . . , xnx}, Y = {y1, . . . , yny } and Z = {z1, . . . , znz}
be three sets of points in Rm and let x, y , and z be their respective
centroids. Find the centroid of the merged set X ∪ Y and the
distances between that centroid and z as efficiently as you can.

Recall that the centroid of a set of points is their (vector) average:

x =
1

nx

nx∑
i=1

x .

Let A = X ∪ Y and a be the centroid of A. The centroid of the
merged set could be computed from the original points, but a more
efficient approach is to observe that

a =
nxx + nyy

nx + ny
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Since knowing the sizes of the clusters is going to be helpful, lets
assume we keep track not only of the dissimilarity matrix D but
also the sizes nX for each cluster X . Initially, all nX = 1.
The remaining piece of our geometry problem is:

Problem
Write d(a, z) = |a− z | in terms of nx , ny , nz and x, y , and z.

Proposition

We have

|a− z |2 =
nx

nx + ny
|x − z |2 +

ny

nx + ny
|y − z |2 − nxny

(nx + ny )2
|x − y |2

Remark
It’s much easier to work directly with the squared Euclidean
distance than the usual one when making and updating the
dissimilarity matrix.



Ward’s Criterion

Ward’s criterion is an additional way to decide which clusters are
closest and should be merged next.

Definition
If X is a cluster, the ’within cluster’ sum-of-squared error is

s(X ) =
nx∑
i=1

(x − x)2

The error S is the sum of this over all clusters:

S =
∑
X

s(X ).

Notice that at the beginning of the clustering process, when all the
clusters have only one point, S = 0. Ward’s criterion says that
when merging clusters, always choose the two that increase S by
the least amount.



Ward’s Criterion (cont’d)

Proposition

When two clusters with sizes nx and ny , and centroids x and y, are
merged, the increase in S is given by

∆S =
nxny

(nx + ny )
(|x − y |2)

So one way to look at Ward’s method is that it combines the
closest clusters by their centroid distances, but it weights those
distances by the sizes of the clusters. It prefers to merge smaller
clusters.





Principal Component Analysis

This slide is for those who saw the PCA talk a few weeks ago.



Top Down Clustering

Hierarchical or Agglomerative Clustering works from the bottom
up. The most common top-down algorithm is called “k-means
clustering.”

1. Decide in advance how many clusters (say, k) that you want
to find. (How? good question!)

2. Pick k points at random in the space of data. Call these
points m1, . . . ,mk .

3. For each data point, find the closest of the mi and put your
point in that “cluster.”

4. For each “cluster”, compute the centroid, yielding new means
m′1, . . . ,m′k .

5. Repeat until the mi stop moving.
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Further Reading

For those interested in applying clustering algorithms, there is a
powerful set of tools in the Python scikit-learn library and in
many R packages.


