
Deep Learning for Graph Embedding
Section 4.2 of Cai, et. al.

Jeremy Teitelbaum
July 6, 2018

Graph Embedding

Problem
Given a (finite, but large) graph G that represents some type of
relationship among entities, and an integer n, find a map
f : G → Rn that captures interesting features of the graph.

Deep Learning

Definition
Deep Learning is a buzzword that refers to a class of machine
learning algorithms that exploit a hierarchical, non-linear structure.

Random Walk Methods

Random walk embedding methods combine two ideas:

1. Random walks allow one to sample the neighborhood
structure of a graph in an efficient way.

2. Methods developed for natural language processing, applied to
samples obtained from random walks, yield a useful graph
embedding.

Random Walks

Definition
A (standard) random walk on a graph G is a sequence of vertices
v0, v1, . . . of G constructed so that vi+1 is chosen uniformly at
random from among the neighbors of vi .

A random walk is an example of a Markov Process, which is a
sequence of random variables with the property that the i th

random variable depends only on the immediately preceeding one
and not the entire history.

There is a huge mathematical literature on such processes.

Example

Karate club graph Graph labelled by number of visits
by a 5000 step random walk

Remark
In the limit, the number of visits to each node is proportional to
the number of neighbors it has.

Short random walks capture local structure
The following graph shows (American) football games played
between Division IA colleges during Fall 2000. Python code for this
example is in the networkx documentation.

M. Girvan and M. E. J. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci.
USA 99, 7821-7826 (2002)

https://networkx.github.io/documentation/stable/auto_examples/graph/plot_football.html

Example of random walks

The rows of this table are short random walks from the football
graph, showing the team and their conference.

Most teams play most of their games against their conference, so
the short walks stay mostly, but not entirely, within the conference.
The ’Big Ten’ conference is in yellow.

Wyoming [7] AirForce [7] Army [4] Tulane [4] Memphis [4]

Washington [8] UCLA [8] SouthernCali [8] OregonState [8] SanDiegoStat [7]

UCLA [8] Stanford [8] NotreDame [5] WestVirginia [1] MiamiFlorida [1]

Rice [11] SanJoseState [11] Tulsa [11] LouisianaTec [11] LouisianaMon [10]

Rice [11] Oklahoma [3] TexasElPaso [11] NewMexicoSta [10] SouthCarolin [9]

FloridaState [0] Maryland [0] NorthCarolin [0] Duke [0] Clemson [0]

VirginiaTech [1] WestVirginia [1] Temple [1] Navy [5] TexasChristi [4]

Oklahoma [3] Baylor [3] Minnesota [2] Ohio [6] Buffalo [6]

Stanford [8] SouthernCali [8] Oregon [8] SouthernCali [8] Stanford [8]

TexasA&M [3] OklahomaStat [3] IowaState [3] Nebraska [3] Iowa [2]

Local probabilities

We try to capture the local structure of the graph by
understanding the probability that a node y appears close to a
node x in a random walk.

Inspired by work in natural language processing, the authors of
DeepWalk suggested considering the probabilities Pw (y |x) the
probability that y occurs somewhere in a random walk of length w
that has x in the middle of it.

Computing these probabilities in a large network is not feasible.
We seek a dimension reduction in the form of two maps

n 7→ un
n 7→ vn

: V → Rk

with the property that, if n and m are nodes of V , then

p(n|m) =
exp(um · vn)∑
n exp(um · vn)

is a good approximation to the Pw . Here um · vn is the ’dot
product’:

(u
(1)
m , u

(2)
m , . . . , u

(k)
m) · (v (1)

n , v
(2)
n , . . . , u

(k)
n) =

∑
uimv

i
n

The vectors un give the graph embedding.

word2vec and SkipGrams

The DeepWalk approach is modelled on the word2vec algorithm
and the SkipGram concept introduced for natural language
processing by Mikolov and his collaborators.
They associate to every word w in a large vocabulary two vectors
uw and vw in such a way that

P(w |w ′) =
exp(vw ′ · uw)∑
w exp(vw ′ · uw)

estimates accurately the probability that if you look in English text
and find an occurrence of the word w ′, the chance that w occurs
within some fixed distance of w ′ is P(w |w ′).

Mikolov, et. al. Efficient Estimation of Word Representations in Vector Space. arXiv preprint:1301.3781.

DeepWalk and word2vec

word2vec DeepWalk
Vocabulary Nodes in a graph
Context of a word Short random walk centered on

a node
Corpus (Text) Many sampled random walks
Word Vector Node vector
Probability that a word w occurs

near a word v
Probability that a node v is in a

short random walk from v’

Maximum Likelihood

The vectors um, vn associated to nodes in the graph G are selected
by the maximum likelihood principle.

The Likelihood of an observation given a set of probabilities is just
the chance of that observation for the given probabilities. In
maximum likelihood estimation, one adjusts the probabilities until
the likelihood of the observed data is maximal for all possible
choices of probabilities.

Suppose that 1000 flips of a coin generate 200 heads and 800 tails.
This is most likely to occur if the probability of a head is .2.
That’s the maximum likelihood estimate in this case.

Stochastic Gradient Descent

In the case of word2vec or deepwalk, it is impractical to directly
calculate the maximum likelihood. Instead, one uses an iterative
technique to find parameters that are ’good.’ The basic iterative
technique is called stochastic gradient descent.

The principle is to look at each sample outcome and compute its
likelihood; then to make a small change in the parameters which
makes that particular outcome more likely. Iterating over all the
outcomes, the probabilites get moved into the right place.

In the coin flipping example, the idea would be: each time you get
an H, move the probability of heads up a bit; each time you get a
T, move it down.

If done carefully this will converge to a good estimate of the
maximum likelihood.

The Football Example
We can still run the deepwalk code against the football example,
which has 115 teams, and 613 games. We choose an embedding
into 20 dimensional space so we end up with 2300 numbers. (For
reference the adjacency matrix of the graph has about 6500
numbers).
Applying TSNE to the result we get the following picture, colored
by the conference that the teams belong to.

Remarks for further study

Optimizing the computation

Computing the softmax function is very inefficient because the
normalization step requires a sum over all of the nodes of the
graph. Negative Sampling and Hierarchical Softmax are
approaches to dealing with this bottleneck.

Modifying the algorithm and adjusting the hyperparameters

There are many ways to vary the way the random walk is carried
out, and one can vary the lengths of the walks and the number of
nodes chosen within each random walk. One can also modify the
way the random walk is constructed (for example, by weighting the
edges in some way). The program node2vec has many capabilities
of this type.

