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Single-Cell RNA Data

High throughput single-cell methods use bar-coding to label and
count individual RNA transcripts on a cell by cell basis. The
process is “noisy” and there are many proposed ways to model the
data statistically.

This talk describes ideas derived from the mathematical theory of
random matrices to guide the analysis.



Brief overview of scRNA-seq on 10x Genomics Platform

See Massively parallel digital transcriptional profiling of single cells
by Zheng, et. al. bioRxiv 10.1101/1065912.



Complicating factors with the process

I Relationship of cell barcodes to “real” cells is inexact, and
most putative cells have very few associated transcripts.

I The transcript counts are based on the 3’ end of the RNA, so
the identification of a gene may be ambiguous and alternative
forms of the transcript aren’t visible.

I Much of the RNA is missed, so even with many transcripts,
most genes have zero counts.



Single-Cell RNA Data 2

Preliminary preparation of output from a high-throughput single
cell experiment:

I Set a threshold number of transcripts to decide that a
bar-code comes from a cell

I Filter out seqences that don’t map uniquely to the genome



An example



Single-cell RNA Data 3

I Barcodes where the total UMI counts were less than 10% of
the maximum are considered artifacts and dropped. This left
about 3000 cells.

I About 2/3 of the sequences mapped confidently ( i.e. more or
less uniquely) to the transcriptome.

I Most of the genes in each cell showed zero counts.

Data
A large integer valued matrix ( 3000 cells by 30000 genes)
most of whose entries are zero.

Goal
Identify patterns of gene expression in this data that
characterize subpopulations of cells



Linear Analysis

A standard first step in the analysis of such data is to use a version
of “principal component analysis” to reduce the dimension of the
data to something comprehensible by humans.

2 steps

First, a linear step to reduce to, say, 30 or 50 dimensions, followed
by:

I a graph based method such as TSNE to reduce to two
dimensions, followed by a clustering algorithm, or

I a direct application of a clustering method to the 30
dimensional reduced matrix.

This talk will focus on the linear part.



Linear Analysis: A walkthrough

1. We begin with our matrix X , whose rows correspond to cells
C and whose columns correspond to genes G .

2. We normalize the matrix, yielding a new matrix X̃ .

2.1 We divide each row by the total transcript count in that row
(and maybe multiply by a million)

2.2 We take the logarithm of of entry (actually, it’s usually
log2(1 + x) zeros)

2.3 We standardize each column so that the (log)-measurements
of each gene in the normalized matrix have mean 0 and
standard deviation 1.



Walkthrough, cont’d

3. We compute the covariance matrix W = X̃ X̃ t/G . W is a
C × C matrix. The diagonal entries entries are the variances
of the gene expressions for each cell; the off diagonal entries
are the covariances.

4. We diagonalize the covariance matrix and obtain C
eigenvectors and C associated eigenvalues. The eigenvectors
can be thought of as ’pseudo-cells’ that capture some
particular variance pattern in the genes.



Walkthrough, cont’d

5. We look at the C eigenvalues and select a subset of, say, K
large ones as corresponding to signal. The eigenvectors
corresponding to large eigenvalues capture significant
variation among the expression data

6. We project the cells into the subspace spanned by the K
signal dimensions. This gives us a C × K matrix that
hopefully contains all of the useful information about the
data. Projecting into this subspace focuses us on relevant
information that will hopefully discriminate among different
patterns in the data



Walkthrough, cont’d



Insights from Random Matrix Theory

1. To distinguish “signal” from “noise”, we need to have a clear
understanding of noise.

2. Random matrix theory describes the noise.

3. Results originate with quantum physics and insights of
Wigner. Now a major area of interest in probability.

Key results

I How are the eigenvalues (the “principal values”) distributed
when a matrix has no signal at all?

I How big is the largest eigenvalue/principal value that can be
explained by noise?

I How are the principal directions distributed among the
coordinate axes? Are there any preferred directions in the
absence of signal?



The Marchenko-Pastur Distribution

How are the eigenvalues distributed?

Let X be an n × k matrix whose entries are chosen at random
from a distribution with mean zero and variance 1. (I omit some
technical hypotheses). Let W = XX t/k be the associated
covariance matrix, also called the Wishart Matrix. Suppose for
simplicity that n ≤ k. If we consider sequences of such matrices
with increasing numbers of rows n and columns k , under the
assumption that n/k → λ for some constant λ, then the limiting
distribution of eigenvalues of W is given by the distribution
function

MP(x) =
1

2π

√
(λ+ − x)(x − λ−)

λx

where λ± = (1±
√
λ)2.



The MP Distribution (an example)



A short digression on the beauty of random matrix theory

Consider the case of a large random N × N matrix with entries
that are chosen independently at random from the standard normal
distribution. Let W = XXT .

Consider the sequence tr(W ), tr(W 2), tr(W 3), . . ..

1, 2, 5, 14, 42.1, 133, 432, 1440, . . .

The first few numbers in this sequence 1, 2, 5, 14, 42 are the
beginning of the Catalan numbers:

1, 2, 5, 14, 42, 132, 429, 1430, ...



Random Matrices and Catalan Numbers

The MP distribution in the square matrix case reduces to a version
of Wigner’s semicircle distribution

f (x) =
1

2πx

√
x(4− x).

The moments of this distribution are the Catalan numbers Cn.
Therefore, in the limiting case, the expected value of the trace of
W n is Cn.



The Catalan Numbers

The nth Catalan number counts:

1. the number of expressions containing n matched parentheses.

2. The number of (ordered) binary trees on 2n + 1 vertices,
n − 1 edges, and n leaves.

3. The number of (ordered) trees on n + 1 vertices.

4. The number of paths from bottom left to upper right through
an n × n grid that stay below the diagonal.

Stanley’s Enumerative Combinatorics, Volume 2, gives at least 60
different interpretations of these integers.



42 Trees on 6 vertices



The Tracy-Widom Distribution

How big are the largest eigenvalues?

The MP distribution drops off at a largest critical eigenvalue λ+.
The largest eigenvalue of a random symmetric matrix is distributed
around this critical value. That distribution is called the
Tracy-Widom distribution.

Eigenvalues that lie “far out” in the Tracy-Widom distribution are
likely attributable to signal.

This was worked out in the late 90’s. Computing TW distribution
is complicated, arising as the solution of an ODE.



The Tracy-Widom Distribution cont’d



Eigenvector delocalization

Are there preferred directions in the absence of signal?

RMT tells us that, for random matrices, the components of an
eigenvector are essentially random. In particular:

I For a “pseudo-cell” eigenvector, the expression values of the
different genes are random; there are no preferred directions.

I The expression values of a gene are normally distributed
among the pseudo-cell eigenvectors.

I The variances of the genes are distributed by chi-square.



MP and TW in SC RNA

Statistical basis for analysis of covariance matrices – distinguish
“signal eigenvectors” from noise.

I MP distribution shows what the noise spectrum looks like.

I TW distribution sets limits on what constitutes an unusually
large eigenvalue

Catch for SCRNA data: Sparse matrices have different statistics.



Sparsity distorts the MP distribution



Sparsity shifts distribution of largest eigenvalue

A typical scRNA dataset is very sparse. The 10x example set of
1000 pbmc cells is a matrix that is 94% zeros.



Sparsity causes eigenvectors to make artificial choices of
direction



Use randomization to separate sparsity effects from signal

1. Randomizing the expression values for each gene destroys any
correlation.

2. The resulting “data” should have the statistics of a random
matrix distorted by any signal coming purely from sparsity.

3. Fit a Marchenko-Pastur distribution to the actual data and
compare with the randomized data.



Randomization cont’d

The MP distribution is determined by its mean and variance. The
key parameter γ is σ2/µ2 for the eigenvalues. The limits of the
MP distribution are (1± γ)2.

In practice we want to identify boundary points u− and u+ so that
the set of eigenvalues λ such that

u− ≤ λ ≤ u+

give mean and variance so that (1± γ)2
∼
= u±.



The green line is the MP distribution for the randomized data.

The red line is the MP distribution fitted to the data.

From the fitted MP distribution, one can estimate the 3σ limit for
the TW distribution and identify “signal.”



Application: Identifying ’bad’ genes

I One consequence of random matrix theory is that the
distribution of expression values for a gene in the absence of
any signal should be gaussian.

I The algorithm in the paper uses this criterion to exclude “bad
genes” from the analysis.

I The algorithm excludes genes whose expression values along
the eigenvectors of the randomized matrix fail a normality
test. This should exclude genes that are distorted by the
sparsity of the matrix.



Application: Selecting significant genes

Fitting the MP distribution to the data allows one to identify:

I The eigenvectors above the critical value, corresponding to
signal – say there are S of these.

I The S eigenvectors just below the critical value. These are
the “least noisy” noise eigenvalues.

Then we can compare the variance of a gene in the signal
directions with the variance in the “least noisy” directions.



Variance Statistics

I The left hand graph shows that portion of the variance of a
gene that comes from a particular part of the spectrum
follows different distributions; with the ’random case’ being
chi-square.

I The right hand graph compares the variance of the genes in
the signal space against the “least noisy” space.



What good is it?

The paper gives a number of examples to argue that selecting
genes that have high variance by their “RMT” criterion gives
sharper clustering and visualization results. Here is a naive
example.

TSNE on RMT selected genes TSNE on 50 largest eigenspaces
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