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Trees

Definition
An n-tree is a graph with no circuits that has n + 1 leaves (that is,
vertices with only one adjacent edge).

I The leaves are labelled 0, 1, . . . , n with the leaf labelled zero
treated as the root of the tree

I In a generic n-tree, all of the interior nodes have 3 adjacent
edges. There are 2n nodes and 2n − 1 edges. Of the edges,
n + 1 are attached to leaves and n − 2 are interior.

I Every edge of the tree carries a positive length, but we will
mostly ignore the lengths of the terminal edges.



Sample Trees

A Generic 5-tree A 5-tree with a collapsed
interior edge



Trees and Splits
Each edge of an n-tree partitions the space of leaves into two
disjoint subsets A and B. We’ll write A|B to indicate this
partition.

I The terminal edges give rise to trivial splits where one of A or
B has only one element.

I The interior edges give rise to non-trivial splits.

x ↔ (4, 5)|(0, 1, 2, 3)
y ↔ (0, 4, 5)|(1, 2, 3)
z ↔ (1, 2)|(0, 3, 4, 5)

Remark
In a rooted tree, we can
always choose the subset
not containing the root to
denote the split.



Tree topology is determined by its splits

Definition
Two splits A|B and A′|B ′ of the set {0, . . . , n} are called
compatible if at least one of the four sets A ∩ B, A′ ∩ B, A ∩ B ′,
and A′ ∩ B ′ is empty.

Theorem
Given a set of pairwise compatible splits, there is a unique n-tree
whose edges correspond to the given set of splits. [Note: it suffices
to consider non-trivial splits and interior edges].

Proof.
This is called the ’splits-equivalence theorem.’ It is not hard to
prove. You can find proofs on the web, and it is discussed in Paul
Lewis’s EEB5349 notes.



Trees, Splits, and Orthants

From the splits equivalence theorem, we know that to give an
n-tree with edge lengths is equivalent giving a non-negative valued
function on the set of all splits, such that the function takes
positive values on a set of pairwise compatible splits.

I We can locate a generic n-tree in the interior of a Euclidean
orthant with the Euclidean coordinates parameterizing the
length of an edge corresponding to a split.

I At the boundary of this orthant, certain interior edges of the
tree collapse to zero length.



Gluing Orthants to Build TreeSpace

Image of part of T4 from BHK

I Tree space Tn parameterizing n-trees is constructed by
’gluing’ orthants.

I The interiors of the orthants correspond to maximal sets of
pairwise compatible splits

I Orthants are glued along common faces corresponding to
common subsets of compatible splits.



A closer look at T4

I T4 parameterizes trees with a total of 5 leaves and 2 internal
edges. Internal edges correspond to non-trivial splits of the set
N = {0, 1, 2, 3, 4}.

I A split corresponds to a choice of a two element subset of N.
There are

(5
2

)
= 10 such splits.

I Each tree topology arises from a compatible pair of splits.
Given a split A|B where A has two elements, the compatible
splits are of the form A′|B ′ where B ′ has three elements and
contains A. This means there are 3 ∗ 10/2 = 15 pairs of
compatible splits.

I Conclusion: T4 has 15 2-dimensional orthants. Each orthant
has two boundary rays x and y corresponding to a pair of
compatible splits. Each ray, say x , meets two other orthants
corresponding to the two other splits u and u′ different from y
and compatible with x .



The flag complex for T4

We can get a sense of the structure of T4 by constructing a graph
such that:

I the vertices correspond to the splits of {0, 1, 2, 3, 4}
I two vertices are connected by an edge if the associated splits

are compatible.

(Edges correspond to 2-d orthants; vertices correspond to boundary rays.)



TreeSpace is a Cone

(Image from BHK)



The metric on tree space
The metric (distance function) on tree space comes from the usual
Euclidean distance on the orthants.

I If two trees lie in the same orthant, the distance between
them is the usual Euclidean distance.

I If two trees T and T ′ lie in different orthants, one can
connecct them by a ’piecewise linear’ path that is a straight
line in each orthant it crosses. The length of such a piecewise
linear path is the sum of the Euclidean lengths of its segments.

(Image from BHK)



The metric, cont’d

Definition
The distance between T and T ′ is the infimum of the lengths of
the piecewise linear path joining them.

Definition
Given T and T ′, there is a path connecting them that consists of a
straight line from T to the origin, and then from the origin to T ′.
This is called the cone path and it gives an upper bound on the
distance.

(Image from BHK)



Geodesics

Definition
A locally geodesic path p between trees T and T ′ is a path such
that, for some ε > 0, every subpath of p of length shorter than ε
realizes the shortest distance between its endpoints.

Problem
The shortest path is clearly a locally geodesic path, but in general
spaces the converse isn’t true. Equivalence of local geodesics and
shortest paths is a global property of the space.



Global Properties of Tree Space

I Although tree space is not a manifold, it is a metric space that
has the CAT(0)-property. In a CAT(0)-space, triangles with
geodesic sides ’bend inwards’ compared to Euclidean triangles.

I In a CAT(0) space, any two points are joined by a unique local
geodesic which realizes the distance between those points.

I To establish that tree space has this property, one applies very
general results of Gromov and Berestowski.



A few remarks about geodesics

I Any geodesic must be a straight line in each orthant through
which it passes. All the “action” happens when crossing from
one orthant to another (in other words, when some edges
shrink to length zero). [This is clear].

I If an edge e appears in a tree on the geodesic from T to T ′,
then either e is in T or e is in T ′. The shortest path doesn’t
wander through orthants involving edges that aren’t visible in
the initial trees. [This is not at all obvious and follows from
the general CAT(0) theory. Perhaps an elementary proof is
possible?]



Combinatorial Characterization of Geodesics

Proposition

Let T and T ′ be two trees with no edges in common, and Suppose
that p is the geodesic between them. Let E (T ) and E (T ′) be the
(interior) edges of T and T ′ respectively. Then there are partitions
{A1, . . . ,Ak} of E (T ) and {B1, . . . ,BK} of E (T ′) such that:

I for each i > j , Ai and Bj are compatible

I p passes successively through the orthants Oi , for
i = 0, . . . , k , where O0 is determined by E (T ) and Oi for
i = 1, . . . , k is determined by

B1 ∪ · · · ∪ Bi ∪ Ai+1 . . .Ak .

Informally: along p, one shrinks the set Aj of edges from T to zero
and then grows the set Bj of edges from zero to their final length
in T ′.



Definition
Let A be a subset of the set E (T ) of edges of a tree T . Set

‖A‖ = (
∑
e∈A
|e|2)1/2



Metric Condition for Geodesics

Proposition

Suppose T and T ′ are trees with no common edges, and that
A1, . . . ,Ak and B1, . . . ,Bk are partitions of E (T ) and E (T ′)
respectively such that satisfy the combinatorial condition. Suppose
further that

‖A1‖
‖B1‖

≤ ‖A2‖
‖B2‖

≤ · · · ‖Ak‖
‖Bk‖

. (1)

Then there is a path from T to T ′ of length

L =

(
k∑

i=1

(‖Ai‖+ ‖Bi‖)2
)1/2

This path crosses each of the orthants B1 ∪ Bi ∪ Ai+1 ∪ Ak in
succession and is a straight line in each such orthant.



Metric Condition (cont’d)

Consider a k-dimensional box with sides ‖Ai‖+ ‖Bi‖. The
diagonal of this box has length L. Starting at T :

I shrink the edge e ∈ Ai at the rate λe = −‖Ai‖+‖Bi‖
‖Ai‖L |e| then

grow the edges e ∈ Bi at the rate λ′e = ‖Ai‖+‖Bi‖
‖Bi‖L |e|.

I The edges in Ai reach length zero at the “time”

ti =
‖Ai‖

‖Ai‖+ ‖Bi‖
L

It takes an additional time

t ′i =
‖Bi‖

‖Ai‖+ ‖Bi‖
L

for the edges in Bi to grow to their full length.



Metric Condition (cont’d)

I The metric condition amounts to the assertion that

t1 ≤ t2 ≤ · · · ≤ tk .

This means that the edges with non-zero lengths at any time
form a compatible set and so the path does in fact stay in tree
space.

I The path is in fact a straight line in each orthant since the
coordinates change at constant rates.

I We have
j∑

i=1

∑
e∈Bi

(λ′e)2 +
k∑

i=j+1

∑
e∈Ai

λ2e = 1

so that this is a unit speed parameterization of the path and
therefore an isometric embedding of the diagonal of the box
into tree space.



Metric condition picture



Owens-Provan Characterization of Geodesics

Proposition

Suppose T and T ′ are trees with no edges in common and
A1, . . . ,Ak and B1, . . . ,Bk are partitions of E (T ) and E (T ′)
satisfying the combinatorial and metric conditions. Then the
corresponding path is the unique geodesic from T to T ′ if and
only if the partitions are primitive, meaning that there is no
partition C1,C2 and D1,D2 of someAi and Bi respectively such
that C2 is compatible with D1 and

‖C1‖
‖C2‖

≤ ‖D1‖
‖D2‖

.



Owens-Provan Characterization (cont’d)

The idea of the proof is to study what happens at the boundary of
orthants.

I If a partition exists, then one can take a “shortcut” by adding
a new orthant, so the original path isn’t the geodesic.

I If the path isn’t the geodesic, then it must be possible to take
a shortcut, which amounts to finding such a partition.



The Owens-Provan algorithm

Owens and Provan give a polynomial time algorithm to compute
the geodesic from T to T ′. The idea of the algorithm is:

I Reduce to the case that T and T ′ have no edges in common;
so assume this is true.

I Start with the cone path from T to T ′

I Given partitions A1, . . . ,Ak and B1, . . . ,Bk of the edges of T
and T ′ satisfying the combinatorial and metric conditions,
look for a partition of Ai and Bi . If you find one, refine the
partitions and repeat. If not, you have constructed the
geodesic.



Reduction to no common edges

Proposition (BHK)

Suppose that T and T ′ have an edge e in common. Let |e| and
|e|′ be the length of e in T and T ′ respectively. Bisect e in both
T and T ′ and cut each tree into two, yielding trees T0, T1, T ′0,
and T ′1 where the common edge is no longer internal. Then the
distance L from T to T ′ is

L =
(
d(T0,T

′
0)2 + d(T1,T

′
1)2 + (|e| − |e|′)2

) 1
2



Finding partitions

Given sets of edges A and B, we wish to find C1,C2 and D1,D2 so
that C2 and D1 are compatible and so that

‖C1‖
‖C2‖

≤ ‖D1‖
‖D2‖

.

I Construct a bipartite graph with left vertices corresponding to
elements of A and right vertices corresponding to elements of
B. Connect a vertex on the left to a vertex on the right
whenever the corresponding edges are incompatible.

I Assign weight |e|/‖A‖ to each vertex of A and weight
|e|/‖B‖ to each vertex of B.

I Our problem is to find an independent set N of vertices whose
total weight is greater than one. Then N ∩ A = C2 and
N ∩ B = D1.



Remark
An independent set of vertices is a set of vertices with no edges
joining them.

Remark
The total weight condition is:

‖C2‖2

‖A‖2
+
‖D1‖2

‖B‖2
> 1.

Writing ‖A‖2 = ‖C1‖2 + ‖C2‖2 and ‖B‖2 = ‖D1‖2 + ‖D2‖2 and
doing some algebra yields the desired condition

‖C1‖
‖C2‖

≤ ‖D1‖
‖D2‖

.



Example

C1 = {(a, b), (c , d)},C2 = {(e, f )}
D1 = {(b, d)},D2 = {(a, e), (c , f )}



Independent sets and Vertex Covers

Definition
A vertex cover in a bipartite graph is a set of vertices V such that
every edge meets V .

Lemma
C2 and D1 form a maximum weight independent set in the
incompatibility graph if and only if C1 and D2 form a minimum
weight vertex cover.

Proof.
This is clear: take an edge of the graph. At least one end of it
misses C2 ∪ D1, so it must meet either C1 or D2.



Cuts

Given a bipartite graph, construct a weighted directed graph by
adding a source vertex s and edges from s to the left side of the
graph, and a sink vertex t and edges from the right side of the
graph to t.

A cut is a subset of the edges of a graph that partitions the
vertices into two sets, one containing the source and the other
containing the sink, and such that every path from source to sink
crosses an element of the cut. We consider only cuts that cross the
’new’ edges of the graph, not the original edges.



Vertex Covers and Cuts

Lemma
Cuts, vertex covers, and independent sets are equivalent problems.

Proof.
Given a cut, let C2 be the set of vertices reachable from s and let
D1 be the set of vertices connected to t. Then C2 ∪ D1 are an
independent set and its complement C1 ∪ D2 is a vertex cover.
There can’t be an edge from C2 to D1 or there would be a path
from s to t. So C2 and D1 are independent, and therefore C1 ∪ D2

is a vertex cover.



Remark
Assign to the new edges of our graph the weight of their
non-source, non-sink vertices. Then the weight of a cut is the sum
of the weights of the included edges.

In bipartite graphs:

Finding a maximum

weight independent

set

Finding a minimum

weight vertex cover

Finding a minimum

weight cut

are equivalent problems.



Theorem
All of these graph-theoretic problems have a polynomial time
solution via the max-flow/min-weight algorithm.



The Owens-Provan Algorithm

I Reduce to the case that T and T ′ have no edges in common;
so assume this is true.

I Start with the cone path from T to T ′

I Given partitions A1, . . . ,Ak and B1, . . . ,Bk of the edges of T
and T ′ satisfying the combinatorial and metric conditions, for
each i = 1, . . . , k apply the max-flow/min-cut algorithm until
you find a non-trivial maximum weight independent set for
Ai ,Bi . If all maximum weight independent sets are trivial you
are done. Otherwise, replace Ai by C1,C2 and Bi by D1,D2

and repeat this step.

Since each step in the algorithm runs in polynomial time in E (T ),
and the loop can run at most E (T ) times, this algorithm runs in
time polynomial in E (T ).



It’s clear that D1 is compatible with C2,Ai+1, . . .Ak and that D2 is
compatible with Ai+1, . . . ,Ak so the refined partition satisfies the
combinatorial condition. The key element of the correctness of this
algorithm is checking that the metric condition holds when the
partition is refined. Since

‖C1‖
‖C2‖

≤ ‖D1‖
‖D2‖

is a consequence of the construction, we need to check that

‖Ai−1‖
‖Bi−1‖

≤ ‖C1‖
‖C2‖

and
‖D1‖
‖D2‖

≤ ‖Ai+1|
‖Bi+1‖

.

This is where we use the maximality of the weight of the
independent set.



This diagram from OP is the key.



The key diagram illustrates that C1 and C2 arise from Ai , which in
turn arose from an earlier partition U1 ∪ U2, which in turn arose
from an earlier partition X ; with similar structure involving D2 and
D2.
Now U2 and V1 are an independent set of maximal weight in X
and W . On the other hand U2 ∪ Ai−1 and V1\Bi−1 are also
independent sets. Therefore

‖U2‖2

‖X‖2
+
‖V1‖2

‖W ‖2
≥ ‖U2‖2

‖X‖2
+
‖Ai−1‖2

‖X‖2
+
‖V1‖2

‖W ‖2
− ‖Bi−1‖2

‖W ‖2

or
‖Ai−1‖
‖Bi−1‖

≤ ‖X‖
‖W ‖



Similarly, U2\C1 and V1 ∪ D2 are an independent set so again we
have

‖U2‖2

‖X‖2
+
‖V1‖2

‖W ‖2
≥ ‖U2‖2

‖X‖2
− ‖C1‖2

‖X‖2
+
‖V1‖2

‖W ‖2
+
‖D2‖2

‖W ‖2

or
‖X‖
‖W ‖

≤ ‖C1‖
‖D2‖

Looking to the right in the diagram yields a symmetric calculation
giving the other necessary inequality.

Conclusion
The Owens-Provan algorithm computes a geodesic between T and
T ′ in polynomial time.



Example

C1 = {(a, b), (c , d)},C2 = {(e, f )}
D1 = {(b, d)},D2 = {(a, e), (c , f )}

L = 3
√

2 +
√

10 = 7.4049


