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Some personal thoughts on administration: Likes

I Opportunity to be a force for good

I Work with a diverse group of people (intellectual diversity
within the unversity; skilled non-academics; more normal
gender diversity)

I Challenging (in fact, often intractable) problems

I Teamwork

I Use different skills than in research (interpersonal skills and
empathy; communication)



Dislikes

I Less control over your time

I Constant need to manage up and down

I Stress

I Frustration



Thoughts on academia

I Academic careers are long. Some people get stuck and get
unhappy, then make everyone around them unhappy. Math
particularly impermeable.

I Academic institutions are far too tolerant of bad behavior;
people work around it and manage it.

I Lack of diversity and failure to make progress on it taints the
enterprise. Deep problems and no progress on them.



Jackson Labs

I Founded in 1929 in Bar Harbor, Maine.

I World center for mouse genetics. Supplier of laboratory mice
to the world – 3M per year shipped world wide.

I Mouse genome database contains enormous amount of
information on mice and their genetic profiles.

I 26 Nobel Prizes associated with JAX.

I New CT facility has 350 employees focused on precision
medicine and cancer.

I About 90 million in NIH funding and 256M per year in mouse
business.



JAX, cont’d

I 30 faculty: 10:1 staff to faculty ratio. Huge IT infrastrcture,
imaging and sequencing base staffed by Ph.D.’s.

I LOTS of jobs. Very diverse group of postdocs and research
scientists including biologists, physicsts, computer scientists
and some mathematicians.

I Very different than a university because they are GROWING
and HIRING all the time.

I JAX, or places like it, worth thinking about for math Ph.D.’s
if they want to do science as an alternative to NSA or Finance
jobs outside academia.



1. Diagnosis and the Human Phenotype Ontology

A human mendelian disease is a disorder that is attributable to a
mutation in a single gene. Such diseases are inherited according to
the classical laws of mendelian genetics. Sickle cell anemia, caused
by the change of a single nucleotide on chromosome 11, is an
example of such a disease.

The website Online Mendelian Inheritance in Man summarizes
information about “Mendelian Diseases” It identifies over 5000
conditions for which the cause is a change in a single gene. Of the
over 30000 genes in humans, 3500 genes have known mutations
that cause disease.

Many of these diseases cause a constellation of abnormalities
making them difficult to diagnose.

http://www.omim.org


The Human Phenotype Ontology (HPO) is a directed acyclic
graph HPO nodes are ’symptoms.’ More specific symptoms are
child nodes of more general ones. The ontology is carefully curated
to reflect standard medical terminology.

The HPO was initially constructed by Peter Robinson and his
group at Charite hospital in Berlin. Robinson is now at JAX.



A disease d is characterized by a finite set of symptoms (nodes of
the HPO) and therefore by its spanning subtree HPO(d) ⊂ HPO.

Angleman’s Disease



A doctor examining a patient identifies a list of symptoms S ,
which in turn determine a spanning subtree HPO(S).

Problem
Given a symptom subtree HPO(S), find a set of diseases (subtrees
HPO(D)), scored by some type of likelihood measure, that are
consistent with the symptoms.

Complications:

I Doctor may give more general version of a symptom, rather
than the most specific one.

I Doctor may miss some symptoms, or they may be rare even
among people with a disease.

I Doctor may add unrelated symptoms.



Semantic Similarity

In 1995 Resnick proposed a similarity measure for ontologies based
on the “information content” of a node.

I Given a node (symptom) m, let A(m) be the set of diseases
that are associated with that node – meaning some
descendant of that node is a specific symptom of the disease.

I Assign weights to the edges of the DAG by setting the weight
of n→ m to be log |A(m)| − log |A(n)|.

I The information content IC (n) of a node n is the sum of the
weights of the edges from the node to the root (along any
path).



The Resnick similarity between two sub-DAG’s X and Y is
(H(X ,Y ) + H(Y ,X ))/2 where

H(X ,Y ) =
1

|X |
∑
x∈X

max
y∈Y

IC (z(x , y))

where z is the common ancestor of x and y with the greatest IC .

A new method to measure the semantic similarity from query
phenotypic abnormalities to diseases based on the human
phenotype ontology, in BMC Bioinformatics 2018, lists six other
’distance measures’ between subtrees of a DAG, and adds a new
one. There are many others.



More sophisticated models under development:

1. incorporate information about the relative frequencies of
symptoms in patients with the disease

2. attempt to incorporate information about genetic variants into
the diagnosis.

Common validation technique is to test against simulated data.

Problem
Formally characterize the differences, strengths, weaknesses of
these different approaches.



2. Analysis of single cell RNA experiment data
Two seconds on human molecular genetics.



RNA-seq

I In ’Bulk RNA sequencing’ (RNA-seq) researchers take a
sample of a particular tissue type, sequence the RNA in the
sample by cutting it up into pieces and aligning the pieces
against a reference genome.

I They count the fragments of RNA that line up against a
particular gene and use that as a measure of the relative
activation level of that particular gene AVERAGED OVER
THE CELLS IN THE SAMPLE.

I Typical experiments:
I Take cells before and after treatment with a drug and look to

see if the expression profile has changed.
I Compare expression profile of normal and cancer cells and look

for genes that are amplified or repressed in cancer; these might
suggest biochemical pathways for drug targeting.



I Typical experiment might have 3 or 4 controls, 3 or 4
treatment cases, and 30000 genes. So for Bulk RNA
sequencing the problem is to identify which of those 30000
genes differ between the controls and treatment cases.

I Although this technology is perhaps only 10 years old, it is
now standard and there are established techniques for this.



Single Cell RNA-Seq
In single cell RNA-seq, individual cells are captured to obtain a cell
by cell expression profile.

I Cells are caught in droplets and RNA in each droplet gets a
unique sequence identifying the droplet attached; plus each
RNA molecule gets a unique sequence identifying the
molecule.

I Then these pieces are amplified (replicated many times). The
resulting ’library’ gets sequenced.

I In this way one can count the number of RNA molecules from
each gene in each cell.

I Some nice, elementary use of error correcting codes takes
place here.’



10x Genomics droplet high-throughput single cell platform



Single Cell Data

The output from a single cell experiment is an N × K sparse
integer matrix. Here N, the number of cells, could range from a
few hundred to a few million, and K , the number of genes, is on
the order of 30000. The (i , j)-th entry of the matrix is the
activation level of gene j in cell i .

Goals for these experiments are:

I Obtain fine structure among classes of cells based on their
expression profiles.

I Understand developmental history and reconstruct
development.

I Understand tumor heterogeneity and its relationship to
chemotherapy response (*)

I Many other things....



Outline of Analysis

1. Clean up the data by throwing out cells with few detected
genes and genes that hardly ever show up.

2. Normalize the data by cell to account for the different levels
of sequencing success.

3. Do a first round of dimensionality reduction by identifying
genes that show a lot of variance

4. Use a second round of dimensionality reduction to two or
three dimensions (PCA, tSNE, or UMAP)

5. Cluster the results

6. Look at the gene profiles of each cluster to try to find genetic
markers for each cluster.

7. Figure out the biological implications.



Immune cell types in blood from Massively parallel digital
transcriptional profiling of single cells by Zheng, et. al., Nature

Comm. 8, 2017.



Challenges with scRNA data

Sparsity

There is considerable activity in the literature over some basic
questions about how to analyze single cell data. Much of this
comes from the sparsity of the data.

1. How to distinguish between genes that have low (or zero)
expression and genes that show up with zero expression for
technical reasons?

2. How to properly normalize the data by cell when there is so
much variation in the total count per cell?

3. How to identify subpopulations within the data when the
subpopulations could be distinguished by differential
expression of only a very small number of the 30000 genes
being profiled?



More questions:

1. What is the proper statistical model for this data? I count
more than 10 proposals that have been published in different
studies.

2. How sensitive are the common dimensionality reduction
algorithms used for clustering to the different choices one
makes for normalization and to the possible dropout of some
values?

3. How to integrate this data with ’bulk’ sequencing data or
other types of data.



Very recent: random matrix theory applied to single cell
data

The paper Quasi-universality in single-cell sequencing data, by
Aparicio, Bordyuh, Blumberg, and Rabadan, looks at the spectra
of matrices arising from single cell experiments through the lens of
random matrix theory.

One formulates a ’null hypothesis’ that the matrix of data is
random, and and can identify a signal by identifying the the extent
that the eigenvalue distribution of the correlation matrix differs
from the universal distribution that one expect.

The sparsity of the data matrices is an obstacle to this and needs
to be accounted for.



More on random matrices and single cell data

From the paper cited above.



Structure of single cell data from random matrix
perspective

From the paper cited above.



Some thoughts about graduate education in math

Goal is to train successful research mathematicians, but students
need to protect their economic mobility as a hedge against
exploitation. Not clear what long-term future of academic jobs will
be.

I (Not a radical idea) Insist on knowledge of programming.

I Include some statistics in the core curriculum for
mathematicians.

I Find a way to include group projects in the curriculum.

I Math in general is pretty good about time-to-degree but in
academia in general students have to get through fast.


