Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
CompMech04-LinearAlgebra/README.html
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
57 lines (57 sloc)
3.76 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang=""> | |
<head> | |
<meta charset="utf-8" /> | |
<meta name="generator" content="pandoc" /> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" /> | |
<title>README</title> | |
<style> | |
code{white-space: pre-wrap;} | |
span.smallcaps{font-variant: small-caps;} | |
span.underline{text-decoration: underline;} | |
div.column{display: inline-block; vertical-align: top; width: 50%;} | |
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;} | |
ul.task-list{list-style: none;} | |
</style> | |
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" type="text/javascript"></script> | |
<!--[if lt IE 9]> | |
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script> | |
<![endif]--> | |
</head> | |
<body> | |
<h1 id="computational-mechanics-4---linear-algebra">Computational Mechanics 4 - Linear Algebra</h1> | |
<p>Welcome to Computational Mechanics Module #4! In this module we will explore applied linear algebra for engineering problems and revisit the topic of linear regression with a new toolbox of linear algebra. Our main goal, is to transform large systems of equations into manageable engineering solutions.</p> | |
<p><a href="./notebooks/01_Linear-Algebra.ipynb">01_Linear-Algebra</a></p> | |
<ul> | |
<li>How to solve a linear algebra problem with <code>np.linalg.solve</code></li> | |
<li>Creating a linear system of equations</li> | |
<li>Identify constants in a linear system <span class="math inline">\(\mathbf{A}\)</span> and <span class="math inline">\(\mathbf{b}\)</span></li> | |
<li>Identify unknown variables in a linear system <span class="math inline">\(\mathbf{x}\)</span></li> | |
<li>Identify a <strong>singular</strong> or <strong>ill-conditioned</strong> matrix</li> | |
<li>Calculate the <strong>condition</strong> of a matrix</li> | |
<li>Estimate the error in the solution based upon the condition of a matrix</li> | |
</ul> | |
<p><a href="02_Gauss_elimination.ipynb">02_Gauss_elimination</a></p> | |
<ul> | |
<li>Graph 2D and 3D linear algebra problems to identify a solution (intersections</li> | |
<li>of lines and planes)</li> | |
<li>How to solve a linear algebra problem using <strong>Gaussian elimination</strong> (<code>GaussNaive</code>)</li> | |
<li>Store a matrix with an efficient structure <strong>LU decomposition</strong> where <span class="math inline">\(\mathbf{A=LU}\)</span></li> | |
<li>Solve for <span class="math inline">\(\mathbf{x}\)</span> using forward and backward substitution (<code>solveLU</code>)</li> | |
<li>Create the <strong>LU Decomposition</strong> using the Naive Gaussian elimination process (<code>LUNaive</code>)</li> | |
<li>Why partial <strong>pivoting</strong> is necessary in solving linear algebra problems</li> | |
<li>How to use the existing <code>scipy.linalg.lu</code> to create the <strong>PLU decomposition</strong></li> | |
<li>How to use the <strong>PLU</strong> efficient structure to solve our linear algebra problem (<code>solveLU</code>)</li> | |
</ul> | |
<p><a href="03_Linear-regression-algebra.ipynb">03_Linear-regression-algebra</a></p> | |
<ul> | |
<li>How to use the <em>general least squares regression</em> method for almost any function</li> | |
<li>How to calculate the coefficient of determination and correlation coefficient for a general least squares regression, <span class="math inline">\(r^2~ and~ r\)</span></li> | |
<li>How to plot and read a <strong>training-testing</strong> plot</li> | |
<li>How to divide data into <strong>training</strong> and <strong>testing</strong> data for analysis</li> | |
<li>Why we need to avoid <strong>overfitting</strong></li> | |
<li>How to construct general least squares regression using the dependent and independent data to form <span class="math inline">\(\mathbf{y}=\mathbf{Za}\)</span>.</li> | |
<li>How to construct a piecewise linear regression</li> | |
</ul> | |
</body> | |
</html> |