diff --git a/ME3263_lab-00.ipynb b/ME3263_lab-00.ipynb new file mode 100644 index 0000000..eaaa6ef --- /dev/null +++ b/ME3263_lab-00.ipynb @@ -0,0 +1,116 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# ME 3263\n", + "## Laboratory # 0\n", + "## Introduction to the Student t-test" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We use statistics to draw conclusions from limited data. No measurement is exact. Every measurement you make has two types of uncertainties, *systematic* and *random*. *Systematic* uncertainties come from faults in your assumptions or equipment. \n", + "*Random* uncertainties are associated with unpredictable (or unforeseen at the\n", + "time) experimental conditions. These can also be due to simplifications of your\n", + "model. Here are some examples for caliper measurements:\n", + "\n", + "In theory, all uncertainies could be accounted for by factoring in all physics\n", + "in your readings. In reality, there is a diminishing return on investment\n", + "for this practice. So we use some statistical insights to draw conclusions. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Mean and standard deviation\n", + "\n", + "If the same measurement is taken multiple times, then there should be some average value, the mean, $\\mu$. If there is an average value, then that means there is also a measure of deviation from the average value, standard deviation, $\\sigma$. The definitions for mean and standard deviation are as such\n", + "\n", + "$\\mu = \\sum_{i=1}^{N}\\frac{x_{i}}{N}$\n", + "\n", + "and\n", + "\n", + "$\\sigma^2 = \\frac{\\sum_{i=1}^{N}(x_{i}-\\mu)^2}{N}$,\n", + "\n", + "where $x_i$ is the $i^th$ measurement in a dataset called $x$ and $N$ is the number of data points. \n", + "\n", + "If you know the mean and standard deviation of a normally distributed data set, then you can predict the probability a given measurement will occur. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VdW9//H3l4QEQoAACYMJIYxiGGQIAedapUW9Sp1BRQQEtVXbawdtbWur1WtttS1VW6iigAJqbZVrsQ44oCiQIHOYQhgSxoRAQELIcNbvj6T8cmMkBzjJPsPn9TznyRlWzvmunJNPdvZeey1zziEiIuGlmdcFiIhI4CncRUTCkMJdRCQMKdxFRMKQwl1EJAwp3EVEwpDCXUQkDCncRUTCkMJdRCQMRXv1womJiS4tLc2rlxcRCUnLly8vcs4lNdTOs3BPS0sjOzvbq5cXEQlJZrbdn3baLSMiEoYU7iIiYUjhLiIShhTuIiJhSOEuIhKGGgx3M5thZvvMbO3XPG5mNtXMcs1stZkNCXyZIiJyMvzZcn8RGHWCxy8DetdcpgB/Of2yRETkdDQY7s65RUDxCZqMBma5akuABDPrEqgCRUTChc/nePRfOeQXlzb6awVin3sykF/rdkHNfV9hZlPMLNvMsgsLCwPw0iIioWPqB5v52ydb+WRzUaO/ViDC3eq5r95Vt51z051zGc65jKSkBs+eFREJGx9u3MefFm7mmsHJjM3s2uivF4hwLwBqV5oC7ArA84qIhIX84lJ+MG8lZ3ZqzaNXD8Csvm3iwApEuM8Hbq0ZNTMCKHHO7Q7A84qIhLyyiiruenk5PueYNm4oLWOimuR1G5w4zMzmAt8AEs2sAHgIaA7gnPsrsAC4HMgFSoEJjVWsiEioeejNdazdeYjnbs2gW4dWTfa6DYa7c25sA4874HsBq0hEJEy8krWDV7Lz+d7FPbk0vVOTvrbOUBURaQRrCkr4xZvrOL9XIveNPLPJX1/hLiISYAdLy7nr5eUktoph6tjBRDVr/AOodXm2WIeISDiq8jnumbuCfYeO8eqd59C+VYwndSjcRUQC6Ml3N/LJ5iL+55oBDOqa4Fkd2i0jIhIgb6/ZzbMfbWFsZipjM1M9rUXhLiISAJv3HuZHr61icGoCv7oq3etyFO4iIqfrUFkFU2Yvp2VMNH+5eSix0U1zotKJKNxFRE6Dz+f473kryS8u5dmbh9C5bQuvSwIU7iIip2XqB5tZuGEfv/ivdDK7t/e6nOMU7iIip2jh+r388f3NXDMkmVvP6eZ1Of+Hwl1E5BTk7jvM9+etpH9yGx5ropkeT4bCXUTkJJUcrWDyrOW0aN6MaeMyaNHc+wOodekkJhGRk1Dlc9w7dwUFB0qZM3kEyQktvS6pXgp3EZGT8MQ7G/h4UyGPXt2fYWnBcwC1Lu2WERHx05srdzLt4zxuHp7KzcOD6wBqXQp3ERE/rCko4Sd/X01mWnseurKf1+U0SOEuItKAwsPHmDI7mw6tYnj2liHERAd/dGqfu4jICRyrrOK7Ly/nQGk5f7/zXBLjY70uyS8KdxGRr+Gc4+f/XEvWtgNMHTuY/sltvS7Jb8H/v4WIiEee/3Qrry0v4N5v9uKqs8/wupyTonAXEanHhxv38diC9Yzq15kfXNrH63JOmsJdRKSO3H2HuXfOCvp2bsNTN55NMw/WQD1dCncRkVoOHCln0sxsYptH8bfxGcTFhOahSYW7iEiNiiof3335C3YfLGPauKFBO7WAP0LzT5KISIA55/jV/HV8nrefJ68/m6Hd2nld0mnRlruICPDiZ9t4eekO7rioB9cOTfG6nNOmcBeRiPfBhr088lYO30rvxP3f7ut1OQGhcBeRiLZ+9yHumbOC9DPa8Mcxg0JyZEx9FO4iErH2HS5j0otZxLeI5rlbh4XsyJj6hE9PREROQllFFZNnLedAaQWv3XkOndu28LqkgPJry93MRpnZRjPLNbMH6nk81cw+NLMVZrbazC4PfKkiIoHh8zl++OoqVhcc5E9jBoXUnDH+ajDczSwKeAa4DEgHxppZep1mPwdedc4NBsYAzwa6UBGRQHnqvU38a81ufnpZX77Vr7PX5TQKf7bcM4Fc51yec64cmAeMrtPGAW1qrrcFdgWuRBGRwHktO5+nP8xlzLCuTL6gh9flNBp/9rknA/m1bhcAw+u0+RXwrpndA7QCLg1IdSIiAbQ4t4if/mMN5/dK5JHv9McsPEbG1MefLff6eu/q3B4LvOicSwEuB2ab2Vee28ymmFm2mWUXFhaefLUiIqdo457D3Dl7OT2T4nn2liE0jwrvwYL+9K4A6Frrdgpf3e0yCXgVwDn3OdACSKz7RM656c65DOdcRlJS0qlVLCJykvYdKmPii1m0jIlixoRhtGnR3OuSGp0/4Z4F9Daz7mYWQ/UB0/l12uwALgEws7OoDndtmouI544cq2TizCwOlJYz47ZhIT0Z2MloMNydc5XA3cA7wHqqR8WsM7OHzeyqmmY/BCab2SpgLnCbc67urhsRkSZV5XPcO3cFObsO8fRNobVM3uny6yQm59wCYEGd+35Z63oOcF5gSxMROXXOOX79v+tYuGEfj4zuxzf7dvK6pCYV3kcURCRiPffJVmZ9vp0pF/Zg3DlpXpfT5BTuIhJ25q/axaML1nPFgC48MCo8Znk8WQp3EQkrn20p4oevriSze3uevCE01z8NBIW7iISNDXsOcces5aR1aMXfxmXQonmU1yV5RuEuImFh18Gj3DYji7jYKGZOzKRtXPiPZT8RhbuIhLySoxXc9sIyjhyr5MUJmZwRIWPZT0TzuYtISDtWWcWUWdlsLTrCzAmZnNWlTcPfFAEU7iISsqp8jvteWcXSrcX8acwgzu31lVlPIpZ2y4hISPrPSUr/WrObBy8/i9GDkr0uKago3EUkJP35g1xmfb6dOy7sweQLw3de9lOlcBeRkPPy0u089d4mrhmSzP0RepJSQxTuIhJS/r12N794Yy3f7NuR3147MGJPUmqIwl1EQsaSvP3cO28lg7om8MxN4b/gxunQT0ZEQsK6XSVMnplNavs4Ztw2jJYxkXv2qT8U7iIS9LYVHWH8jCziW0Qza2ImCXExXpcU9BTuIhLU9pSUcfNzS/E5x+xJOvvUXwp3EQlaxUfKueX5pZQcrWDmhEx6dWztdUkhQ2eoikhQ+vJYJRNeWMaO4lJmTcxkQErkLJEXCNpyF5GgU1ZRxeSZ2azddYhnbxrCiB4dvC4p5CjcRSSoVFb5uGfuCj7P28/vrx/IpemRtfZpoCjcRSRo+HyOn7y+mvdy9vLrq/px9eAUr0sKWQp3EQkKzjkemr+Of3yxk/tG9mH8uWlelxTSFO4i4jnnHI+/vYHZS6onArvnm728LinkKdxFxHNTF+YybVEe40Z044HL+mKm+WJOl8JdRDz1t0V5/OH9TVw3NIVfX9VPwR4gCncR8czsJdt5dMF6rhjYRTM8BpjCXUQ88fryAn7xxlou6duRP9wwiCgFe0Ap3EWkyb21ehc//vsqzuvVgWduHkJMtKIo0PQTFZEm9e+1u/n+vJUM7daOv92aQYvmmrq3MSjcRaTJvJezl7vnrODslLa8MCGTuBhNb9VYFO4i0iQ+3LCP7768nH7JbXlxYibxsQr2xuRXuJvZKDPbaGa5ZvbA17S5wcxyzGydmc0JbJkiEsoWbSrkjpeWc2bn1syamEmbFs29LinsNfin08yigGeAkUABkGVm851zObXa9AZ+CpznnDtgZh0bq2ARCS2Lc4uYPCubnknxvDRpOG1bKtibgj9b7plArnMuzzlXDswDRtdpMxl4xjl3AMA5ty+wZYpIKPp8y34mzcwirUMrXr59uJbHa0L+hHsykF/rdkHNfbX1AfqY2WIzW2Jmo+p7IjObYmbZZpZdWFh4ahWLSEj4bEsRE1/MIqVdHC/dPpz2rRTsTcmfcK/vzAJX53Y00Bv4BjAWeM7MEr7yTc5Nd85lOOcykpKSTrZWEQkRn+X+J9hbMnfyCJJax3pdUsTxJ9wLgK61bqcAu+pp86ZzrsI5txXYSHXYi0iEWZxbxMSZWaS2j2PuFAW7V/wJ9yygt5l1N7MYYAwwv06bN4CLAcwskerdNHmBLFREgt+nm6u32Lu1b8WcySNIjFewe6XBcHfOVQJ3A+8A64FXnXPrzOxhM7uqptk7wH4zywE+BH7snNvfWEWLSPD5ZHMhk2Zm0T2xFXMmD1ewe8ycq7v7vGlkZGS47OxsT15bRAJr0aZCJs/Krgn2ETp42ojMbLlzLqOhdjpDVUROy8L1e7l9ZjY9kuIV7EFE4S4ip+ztNbu5Y/Zy+nZpzdzJGu4YTDS5g4ickjdX7uS+V1cxqGsCL0wYpikFgoy23EXkpL2anc8PXlnJsLR2mismSGnLXUROyktLtvPzN9ZyQe9Epo/LoGWM5mMPRgp3EfHb859u5ZG3crikb0eeuXmIFtoIYgp3EWmQc46pC3P5w/ubGNWvM1PHDtbSeEFO4S4iJ+Sc49F/ree5T7dyzZBknrh2INFRCvZgp3AXka9V5XM8+M81zMvKZ/w53Xjoyn40a1bfXIISbBTuIlKv8kof9726krdW7+aeb/bivpF9MFOwhwqFu4h8RVlFFXe9tJwPNxbys8v7MuXCnl6XJCdJ4S4i/8ehsgomz8xm2bZiHrt6ADcNT/W6JDkFCncROa7w8DHGz1jGpr2H+eONgxg9qO6iaxIqFO4iAsCO/aWMm7GUfYeO8dz4DL5xpta5D2UKdxEhZ9chxr+wjIoqH3MmD2dwajuvS5LTpHAXiXBL8/Zz+8xs4ltEM+f2c+jdqbXXJUkAKNxFIti76/Zw99wVpLRryexJw0lOaOl1SRIgCneRCDVv2Q5+9s81DEhuywsTMjUXe5hRuItEGOccf3h/M1MXbubCPkn85eYhtIpVFIQbvaMiEaSiyseD/1zDq9kFXD80hceuGUBzzRMTlhTuIhHiyLFKvjfnCz7aWMi93+zFf2s6gbCmcBeJAIWHjzHxxSzW7SrRWacRQuEuEua2Fh1h/Ixl7DtcxvRxGVya3snrkqQJKNxFwtiyrcVMmZ1NMzPmTh6hk5MiiMJdJEy9uXInP35tNSntW/LCbcPo1qGV1yVJE1K4i4QZ5xxPf5DLk+9tYnj39kwbN5SEOI1hjzQKd5EwUl7p46f/WMPrXxRwzeBk/ufaAcRGaxHrSKRwFwkTJaUV3PnScj7P288PLu3N9y/praGOEUzhLhIGthUdYeLMLPKLS3nqhrO5ZkiK1yWJxxTuIiHusy1F3PXSFzQzmD1pOCN6dPC6JAkCfp13bGajzGyjmeWa2QMnaHedmTkzywhciSLydeYs3cGtzy8jqXUsb3zvPAW7HNfglruZRQHPACOBAiDLzOY753LqtGsN3AssbYxCReT/q6zy8eiC9byweBsX9UnizzcNpk2L5l6XJUHEny33TCDXOZfnnCsH5gGj62n3CPAEUBbA+kSkjkNlFdw+K5sXFm9j4nndeX58hoJdvsKfcE8G8mvdLqi57zgzGwx0dc69FcDaRKSOrUVHuObZz/h0cxGPXT2AX16ZTrRmdZR6+HNAtb6xVO74g2bNgD8AtzX4RGZTgCkAqamauEjkZHy0cR/3zl1BVDNj1qRMzu2Z6HVJEsT8+ZNfAHStdTsF2FXrdmugP/CRmW0DRgDz6zuo6pyb7pzLcM5lJCUlnXrVIhHEOcdfP97CxBezSG4Xx/y7z1ewS4P82XLPAnqbWXdgJzAGuOk/DzrnSoDjnzQz+wj4kXMuO7ClikSeo+VV3P/6auav2sV/DezCE9cNJC5GI5ilYQ1+SpxzlWZ2N/AOEAXMcM6tM7OHgWzn3PzGLlIkEhUcKOWO2cvJ2X2In4w6k7su6qkzTsVvfm0COOcWAAvq3PfLr2n7jdMvSySyfZZbxN1zV1BR5WPG+GFc3Lej1yVJiNH/dyJBxDnHtEV5PPHvDfRIimfauKH0TIr3uiwJQQp3kSBxuKyCH722infW7eWKgV144tqBtIrVr6icGn1yRILApr2HuXP2crYXl/LzK85i0vndtX9dTovCXcRj/7tqF/e/vpq4mGjm3D6c4ZofRgJA4S7ikfJKH48tWM+Ln21jaLd2PHvzEDq1aeF1WRImFO4iHsgvLuXuOV+wqqCECeel8dPLziImWtMISOAo3EWa2Hs5e/nhqytxDv56yxBG9e/idUkShhTuIk2kosrH797ZyPRFefRPbsMzNw2hW4dWXpclYUrhLtIEdh08yj1zV7B8+wHGjejGg1ecRYvmWrhaGo/CXaSRvbNuD/e/vpqKSh9/HjuYK88+w+uSJAIo3EUaSVlFFY/+az2zl2xnQHJbpo4dTPdE7YaRpqFwF2kEm/ce5p65K9iw5zCTL+jOj7/dV6NhpEkp3EUCyDnH3GX5PPzWOlrFRPPChGFcfKYm/ZKmp3AXCZADR8p58I01LFizh/N7JfLUjWfTsbVOShJvKNxFAuCTzYX86LVVFB8p5/5Rfbnjwh40a6a5YcQ7CneR01BWUcUT/97IjMVb6dUxnufHD6N/cluvyxJRuIucqpxdh/jBKyvYtPdLbjs3jQcu66ux6xI0FO4iJ6nK53j+0zx+/84m2sY158UJw/iGDppKkFG4i5yEbUVH+NFrq8jefoBv9+vE/1wzkPatYrwuS+QrFO4ifvD5HLOXbOfxtzcQHWU8dcPZXD04WQtqSNBSuIs0IL+4lPtfX81nW/ZzUZ8kfnvtQDq31RBHCW4Kd5Gv4ZxjXlY+v3krB4DHrxnAjcO6amtdQoLCXaQe+cWl/PQfa/g0t4hzenTgiesG0rV9nNdlifhN4S5SS5XPMfOzbfzunY1ENTMe+U5/bs5M1QlJEnIU7iI1Nu89zE9eX82KHQe5+MwkHr16AGcktPS6LJFTonCXiFde6eOvH2/h6Q9yaRUbxR9vHMToQWdo37qENIW7RLSsbcX87B9r2LzvS648+wweujKdxPhYr8sSOW0Kd4lIB0vLefztDczLyic5oSXPj8/gkrM6eV2WSMAo3CWiOOd4Y+VOfvPWeg4erWDKhT34waW9iYvRr4KEF32iJWLkFX7JL95cy+Lc/QzqmsDsqweQfkYbr8sSaRQKdwl7peWV/PmDXJ77JI8WzaP4zXf6c5OGN0qY8yvczWwU8CcgCnjOOfd4ncfvA24HKoFCYKJzbnuAaxU5Kc45FqzZw2/+lcPukjKuHZLC/ZedqdWRJCI0GO5mFgU8A4wECoAsM5vvnMup1WwFkOGcKzWzu4AngBsbo2ARf+TuO8xD89exOHc/6V3a8Oexg8lIa+91WSJNxp8t90wg1zmXB2Bm84DRwPFwd859WKv9EuCWQBYp4q9DZRU8/UEuMz7dSlxMFA+P7sdNmalERzXzujSRJuVPuCcD+bVuFwDDT9B+EvB2fQ+Y2RRgCkBqaqqfJYo0rLLKxyvZ+Tz17iaKS8u5fmgKPxnVV2PWJWL5E+71HXVy9TY0uwXIAC6q73Hn3HRgOkBGRka9zyFyshbnFvHIWzls2HOYzLT2zLwyXeuYSsTzJ9wLgK61bqcAu+o2MrNLgQeBi5xzxwJTnsjXyyv8kscWbOD99Xvp2r4lf7l5CKP6d9a0ASL4F+5ZQG8z6w7sBMYAN9VuYGaDgWnAKOfcvoBXKVJL0ZfHmLpwM3OW7qBF8yjuH9WXCeelaXFqkVoaDHfnXKWZ3Q28Q/VQyBnOuXVm9jCQ7ZybD/wOiAdeq9lq2uGcu6oR65YIdORYJc99spXpi7ZQVuljzLCufP/S3hraKFIPv8a5O+cWAAvq3PfLWtcvDXBdIsdVVPl4JSufP76/maIvjzGqX2d+POpMeibFe12aSNDSGaoStHw+x4K1u3nqvU3kFR4ho1s7po0bwtBuGq8u0hCFuwQd5xwL1+/jyfc2sX73IXp3jGf6uKGMTO+kg6UiflK4S9BwzrE4dz+/f3cjK/MP0q1DHH+8cRBXnn0GUZoHRuSkKNwlKCzN289T721i6dZizmjbgsevGcC1Q1NorjNLRU6Jwl0845zjsy37+dPCzSzbWkxifCy/ujKdscNTiY3WsEaR06FwlybnnOPjTYVMXbiZL3YcpFObWB66Mp2xmakaqy4SIAp3aTI+n+P99Xt5+sNcVheUkJzQkke+05/rh6Yo1EUCTOEuje5YZRVvrtjFtEVb2FJ4hNT2cfz22gFcPTiFmGjtUxdpDAp3aTSHyyqYu2wHz3+6lb2HjpHepQ1Txw7m8v6dNQWvSCNTuEvA7S45yszPtvPy0u0cLqvk3J4d+N11Z3NB70SNUxdpIgp3CZgvdhxgxqdbeXvtHpxzjOrfmTsv6snAlASvSxOJOAp3OS0VVT7eXruHGZ9uZWX+QVrHRjPxvDRuPSeNru3jvC5PJGIp3OWU7D1Uxrxl+cxdtoM9h8pI6xDHr6/qx7VDU4iP1cdKxGv6LRS//eeko5eWbOfdnL1U+RwX9E7k0av7c/GZHWmmKQJEgobCXRp04Eg5/1ixk5eXbiev8AgJcc2ZdH53bspMJS2xldfliUg9FO5SryqfY3FuEa9k5/Peur2UV/kYnJrAk9efzRUDu+ikI5Egp3CX/yO/uJTXlhfw9+x8dpWUkRDXnJuGp3JDRlfSz2jjdXki4ieFu1BytIK31+zmnyt2snRrMWZwQe8kfnbFWYxM76RJvERCkMI9Qh2rrOLDDft4Y8UuPtiwj/IqHz0SW3HfyD5cOzSF5ISWXpcoIqdB4R5BKqp8LM4tYsGa3fx77R4OlVWSGB/LLSO68Z3BZzAgua3OIBUJEwr3MFde6WPxliIWrN7Nuzl7KTlaQXxsNN9K78Towcmc17OD5nkRCUMK9zB05Fgln2wu4r2cvbyXU72F3jo2mpHpnbhsQBcu6J2o0S4iYU7hHib2lJTx/vq9vL9+L59t2U95pY82LaK5NL0TVwzowvm9E3VgVCSCKNxDVEWVjxU7DrJoUyEfbypkzc4SAFLbxzFuRDcuPasTGWnttAapSIRSuIeQ/OJSFm0u5OONhXy+ZT+Hj1US1cwY1DWBn4w6k5FndaJXx3gdFBURhXsw211ylCV5+/l8y34+z9tPfvFRAJITWvJfZ3fhwt5JnNsrkbYtm3tcqYgEG4V7kHDOsX1/Kcu3HyBrWzFL8vazbX8pAG1aRDO8RwcmnNudC/sk0jNJW+cicmIKd48cLa9izc4Slm8/wPLtB1ix4wD7j5QD0LpFNMO7d+CWEd04p2cH+nZuQ5RmXBSRk6BwbwKl5ZXk7DrEmp0lrNlZwrqdh9i87zA+V/14j8RWXNy3I0NS2zG0Wzt6d4zX9LkicloU7gFU5XPsKC5l457DbNp7mI17D7Nxz2HyCr88HuSJ8bEMSG7Dt/p1YmBKAkNSE+gQH+tt4SISdvwKdzMbBfwJiAKec849XufxWGAWMBTYD9zonNsW2FKDx8HScvKKjrCt5pJXdIStRUfI3fclxyp9AJhB13Zx9OnUmssHdGFAclsGJLelU5tY7S8XkUbXYLibWRTwDDASKACyzGy+cy6nVrNJwAHnXC8zGwP8FrixMQpubJVVPoqPlLPnUBk7Dxxl58Hqy66arwUHjnKwtOJ4+2YGKe3iSEtsxbk9O9CnU2vO7NyaXh3jiYvRP0Yi4g1/0icTyHXO5QGY2TxgNFA73EcDv6q5/nfgaTMz55wLYK1+c85xrNLH0fIqSiuqOFpexaGyCkqOVnDoaPXXg6XVX4uPlFP05TEKD1dfikvLqVt1XEwUyQktOSOhJQNTEuiR2Iq0Dq1IS2xFavs4YqJ1opCIBBd/wj0ZyK91uwAY/nVtnHOVZlYCdACKAlFkba9m5TNt0RZ8Dip9Pny+6n3dlT5Hlc9HWYWPoxVVfj1XXEwU7VvFkBgfS9f2cQzp1o6k+FgSW8fSsXUsyQktSWnXkrYtm2tXioiEFH/Cvb5Uq7tF7k8bzGwKMAUgNTXVj5f+qnatYo4PDTx+MSMqqvpry5goWjSPIi4mipbNqy+xzZvRpmVz2ta6tGnRXFvcIhK2/An3AqBrrdspwK6vaVNgZtFAW6C47hM556YD0wEyMjJOaZfNyPROjEzvdCrfKiISMfzZdM0CeptZdzOLAcYA8+u0mQ+Mr7l+HfCBV/vbRUTEjy33mn3odwPvUD0UcoZzbp2ZPQxkO+fmA88Ds80sl+ot9jGNWbSIiJyYX2P1nHMLgAV17vtlretlwPWBLU1ERE6VjiiKiIQhhbuISBhSuIuIhCGFu4hIGFK4i4iEIfNqOLqZFQLbT/HbE2mEqQ2CnPocGdTnyHA6fe7mnEtqqJFn4X46zCzbOZfhdR1NSX2ODOpzZGiKPmu3jIhIGFK4i4iEoVAN9+leF+AB9TkyqM+RodH7HJL73EVE5MRCdctdREROIKjD3cxGmdlGM8s1swfqeTzWzF6peXypmaU1fZWB5Uef7zOzHDNbbWYLzaybF3UGUkN9rtXuOjNzZhbyIyv86bOZ3VDzXq8zszlNXWOg+fHZTjWzD81sRc3n+3Iv6gwUM5thZvvMbO3XPG5mNrXm57HazIYEtADnXFBeqJ5eeAvQA4gBVgHpddp8F/hrzfUxwCte190Efb4YiKu5flck9LmmXWtgEbAEyPC67iZ4n3sDK4B2Nbc7el13E/R5OnBXzfV0YJvXdZ9mny8EhgBrv+bxy4G3qV7JbgSwNJCvH8xb7scX5nbOlQP/WZi7ttHAzJrrfwcusdBe7LTBPjvnPnTOldbcXEL1ylihzJ/3GeAR4AmgrCmLayT+9Hky8Ixz7gCAc25fE9cYaP702QFtaq635asrvoUU59wi6lmRrpbRwCxXbQmQYGZdAvX6wRzu9S3Mnfx1bZxzlcB/FuYOVf70ubZJVP/lD2UN9tnMBgNdnXNvNWVhjcif97kP0MfMFpvZEjMb1WTVNQ5/+vwr4BYzK6B6/Yh7mqY0z5zs7/tJ8WuxDo8EbGHuEOJ3f8zsFiADuKhRK2p8J+yzmTUD/gDc1lQFNQF/3udoqnfNfIPq/84+MbP+zrmDjVxbY/Gnz2OBF51zT5rZOVSv7tZZlrkFAAABbklEQVTfOedr/PI80aj5Fcxb7iezMDcnWpg7hPjTZ8zsUuBB4Crn3LEmqq2xNNTn1kB/4CMz20b1vsn5IX5Q1d/P9pvOuQrn3FZgI9VhH6r86fMk4FUA59znQAuq52AJV379vp+qYA73SFyYu8E+1+yimEZ1sIf6flhooM/OuRLnXKJzLs05l0b1cYarnHPZ3pQbEP58tt+g+uA5ZpZI9W6avCatMrD86fMO4BIAMzuL6nAvbNIqm9Z84NaaUTMjgBLn3O6APbvXR5QbONp8ObCJ6qPsD9bc9zDVv9xQ/ea/BuQCy4AeXtfcBH1+H9gLrKy5zPe65sbuc522HxHio2X8fJ8NeArIAdYAY7yuuQn6nA4spnokzUrgW17XfJr9nQvsBiqo3kqfBNwJ3FnrPX6m5uexJtCfa52hKiIShoJ5t4yIiJwihbuISBhSuIuIhCGFu4hIGFK4i4iEIYW7iEgYUriLiIQhhbuISBj6f7mVGMyQphsvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x=np.linspace(0,1)\n", + "y=x**2\n", + "plt.plot(x,y)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}