Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
T21-XIST/comparing_to_other_XIST_systems.R
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
204 lines (187 sloc)
9.55 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## --------------------------- | |
## | |
## Purpose of script: | |
## | |
## Author: Prakhar Bansal | |
## | |
## Date Created: 2021-09-09 | |
## | |
## Copyright (c) Prakhar Bansal, 2021 | |
## Email: pbansal@uchc.edu | |
## | |
## --------------------------- | |
## | |
## Notes: | |
## | |
## | |
## --------------------------- | |
## set working directory | |
setwd(dirname(unlist(rstudioapi::getSourceEditorContext()['path']))) | |
## --------------------------- | |
## load up the packages we will need: (uncomment as required) | |
require(tidyverse); theme_set(theme_classic() + theme(plot.title=element_text(hjust=0.5))) | |
require(ggsci) | |
## --------------------------- | |
# lawrence lab neurons | |
lawrence_neural_counts_df <- read_csv("external_tables/GSE125837_monolayer_rawcounts.txt.gz", | |
col_names = c( | |
"index", "gene_name","diff10.day21.c5a.d14dox", | |
"diff10.day21.c5a.d0dox","diff10.day21.c5a.nd", | |
"diff10.day28.c5a.d14dox","diff10.day28.c5a.d21dox", | |
"diff10.day28.c5a.d0dox","diff10.day28.c5a_nd", | |
"diff10.day28.dis.nd","diff10.day28.par.d0dox", | |
"diff10.day28.par.nd","diff6.day28.par.d0dox", | |
"diff6.day28.par.nd","diff7.day21.c5a.d14dox", | |
"diff7.day21.c5a.d0dox","diff7.day21.c5a.nd", | |
"diff7.day28.c5a.d14dox","diff7.day28.c5a.d21dox", | |
"diff7.day28.c5a.d0dox","diff7.day28.c5a.nd", | |
"diff7.day28.dis.nd","diff8.day21.c5a.d14dox", | |
"diff8.day21.c5a.d0dox","diff8.day21.c5a.nd", | |
"diff8.day28.c5a.d14dox","diff8.day28.c5a.d21dox", | |
"diff8.day28.c5a.d0dox","diff8.day28.c5a.nd", | |
"diff8.day28.dis.nd","diff8.day28.par.d0dox", | |
"diff8.day28.par.nd"), | |
skip = 1) |> | |
dplyr::select(-index) | |
lawrence_neural_samples_df <- read_csv("external_tables/lawrence_neural_sample_info.csv") | |
library(DESeq2) | |
dds_all <- DESeqDataSetFromMatrix( | |
as.data.frame(lawrence_neural_counts_df), | |
colData = lawrence_neural_samples_df |> dplyr::relocate(sample_name, .before = 1), | |
design = ~ dox_status + genotype, | |
tidy = T | |
) | |
dds_all <- estimateSizeFactors(dds_all) | |
nc <- counts(dds_all, normalized=TRUE) | |
# only keep genes with more than 5 counts in at least 10% of samples | |
filter <- rowSums(nc >= 5) >= floor(ncol(nc)/10) | |
dds_all <- dds_all[filter,] | |
dds_all <- DESeq(dds_all) | |
dds_all <- dds_all[which(mcols(dds_all)$betaConv),] | |
lawrence_neural_vst_df <- assay(vst(dds_all)) |> | |
as.data.frame() |> | |
rownames_to_column(var="gene_name") | |
write_csv(lawrence_neural_vst_df, "tables/lawrence_neural_vst_df.csv.gz") | |
library(biomaRt) | |
mart <- useEnsembl(biomart = "ensembl", | |
GRCh = 37, | |
dataset = "hsapiens_gene_ensembl") | |
G_list <- getBM(filters= "hgnc_symbol", | |
attributes= c("ensembl_gene_id_version", | |
"hgnc_symbol", | |
"chromosome_name", | |
"start_position", | |
"end_position", | |
"strand", | |
"description", | |
"wikigene_name", | |
"gene_biotype"), | |
values=lawrence_neural_counts_df$gene_name, | |
mart= mart) | |
gene_info_df <- as.data.frame(G_list) |> | |
group_by(hgnc_symbol) |> | |
filter(row_number()==1) |> | |
ungroup() | |
chr21_rownorm_lawrence_neural_foldchange <- lawrence_neural_vst_df |> | |
left_join(gene_info_df |> | |
dplyr::select(hgnc_symbol, chromosome_name, start_position), by=c("gene_name"="hgnc_symbol")) |> | |
pivot_longer(cols = -c("gene_name", "chromosome_name", "start_position"), | |
names_to = "sample_name", | |
values_to = "vst_count") |> | |
mutate(sample_name=case_when(sample_name == "diff10.day28.c5a_nd" ~ "diff10.day28.c5a.nd", | |
T ~ sample_name)) |> | |
left_join(lawrence_neural_samples_df |> | |
dplyr::select(sample_name, | |
dox_status, | |
genotype, | |
effective_genotype), | |
by=c("sample_name")) |> | |
filter(chromosome_name == "21") |> | |
group_by(gene_name) |> | |
summarise(d21_mean = mean(vst_count[`genotype` == "D21"]), | |
t21_mean = mean(vst_count[`genotype` == "T21"]), | |
ct21_mean = mean(vst_count[`genotype` == "T21" | (`genotype` == "T21+XIST" & dox_status == "nd")]), | |
dox_count = mean(vst_count[`genotype` == "T21+XIST" & dox_status != "nd"]), | |
nodox_count = mean(vst_count[`genotype` == "T21+XIST" & dox_status == "nd"]), | |
fold_change_xist = dox_count - ct21_mean, | |
fold_change_d21=d21_mean - ct21_mean) |> | |
ungroup() #|> | |
#top_frac(.5, abs(fold_change_d21)) | |
output_dir <- "outputs/2024-02-17 21-39-53.641348 timepoint+dox_status+effective_genotype" | |
neural_output_dir <- (read_csv(paste0(output_dir, "/params.csv.gz")) |> | |
filter(parameter == "neural_output_dir") |> | |
pull(value))[1] | |
sample_sheet_df <- read_csv(paste0(output_dir, "/tables/sample_sheet_df.csv.gz")) | |
batch_corrected_vsd <- read_csv(paste0(output_dir, "/tables/vsd_salmon_df.csv.gz")) | |
neural_sample_sheet_df <- read_csv(paste0(neural_output_dir, "/tables/sample_sheet_df.csv.gz")) | |
neural_vsd_df <- read_csv(paste0(neural_output_dir, "/tables/vsd_salmon_df.csv.gz")) | |
gene_info_df <- read_csv("tables/gene_info_df.csv.gz") | |
our_chr21_rownorm_vsd <- batch_corrected_vsd |> | |
pivot_longer(cols = -ensembl_id, names_to = "sample_id", values_to = "vst_count") |> | |
left_join(gene_info_df, by=c("ensembl_id"="ensembl_gene_id_version")) |> | |
left_join(sample_sheet_df, by=c("sample_id")) |> | |
filter(chromosome_name == "21" & | |
hgnc_symbol %in% chr21_rownorm_lawrence_neural_foldchange$gene_name) |> | |
group_by(hgnc_symbol) |> | |
summarise(dox_mean= mean(vst_count[(genotype == "T21XIST") & (dox_status == "yes")]), | |
nodox_mean=mean(vst_count[(genotype == "T21XIST") &( dox_status == "no")]), | |
withdrawal_mean=mean(vst_count[(genotype == "T21XIST") & (dox_status == "withdrawal")]), | |
dwd_mean=mean(vst_count[(genotype == "T21XIST") & (dox_status != "no")]), | |
d21_mean=mean(vst_count[(genotype == "D21")]), | |
t21_mean=mean(vst_count[(genotype == "T21")]), | |
ct21_mean=mean(vst_count[(genotype == "T21") | (genotype == "T21XIST" & dox_status == "no")]), | |
fold_change_xist=dwd_mean-ct21_mean, | |
fold_change_wd=withdrawal_mean-nodox_mean, | |
fold_change_d21=d21_mean - ct21_mean) #|> | |
# top_frac(.5, abs(fold_change_d21)) | |
our_neural_chr21_rownorm_vsd <- neural_vsd_df |> | |
pivot_longer(cols = -ensembl_id, names_to = "sample_id", values_to = "vst_count") |> | |
left_join(gene_info_df, by=c("ensembl_id"="ensembl_gene_id_version")) |> | |
left_join(neural_sample_sheet_df, by=c("sample_id")) |> | |
filter(chromosome_name == "21" & | |
hgnc_symbol %in% chr21_rownorm_lawrence_neural_foldchange$gene_name) |> | |
group_by(hgnc_symbol) |> | |
summarise(dwd_mean= mean(vst_count[(genotype == "T21XIST") & (dox_status != "no")]), | |
# withdrawal_mean=mean(vst_count[(genotype == "T21XIST") & (dox_status == "wd")]), | |
d21_mean=mean(vst_count[(genotype == "D21")]), | |
t21_mean=mean(vst_count[(genotype == "T21")]), | |
ct21_mean=mean(vst_count[(genotype == "T21") | (genotype == "T21XIST" & dox_status == "no")]), | |
fold_change_xist=dwd_mean-ct21_mean, | |
# fold_change_wd=withdrawal_mean-t21_mean, | |
fold_change_d21=d21_mean - ct21_mean) #|> | |
# top_frac(.5, abs(fold_change_d21)) | |
comparison_df <- chr21_rownorm_lawrence_neural_foldchange |> | |
dplyr::select(hgnc_symbol=gene_name, fold_change_xist, fold_change_d21) |> | |
pivot_longer(cols = -hgnc_symbol, | |
names_to = "comparison", | |
values_to = "vst_diff") |> | |
mutate(study="Czermiński et al. Neural") |> | |
rbind( | |
our_chr21_rownorm_vsd |> | |
dplyr::select(hgnc_symbol, fold_change_xist, fold_change_d21) |> | |
pivot_longer(cols = -hgnc_symbol, | |
names_to = "comparison", | |
values_to = "vst_diff") |> | |
mutate(study="This Study iPSCs") | |
) |> | |
rbind( | |
our_neural_chr21_rownorm_vsd |> | |
dplyr::select(hgnc_symbol, fold_change_xist, fold_change_d21) |> | |
pivot_longer(cols = -hgnc_symbol, | |
names_to = "comparison", | |
values_to = "vst_diff") |> | |
mutate(study="This Study Neural") | |
) | |
ggplot(comparison_df, aes(x=vst_diff, color=comparison)) + | |
geom_density() + | |
scale_color_aaas(limits=c("fold_change_d21", "fold_change_xist"), labels=c("D21 vs. T21", "T21XIST vs T21")) + | |
facet_grid(rows = vars(study), scales = "free") + | |
geom_vline(xintercept = log2(2/3), linetype=2, size=.3) + | |
geom_vline(xintercept = 0, size=.5) + | |
coord_cartesian(xlim = c(-1,1)) + | |
labs(title="Dosage Restoration Systems", | |
x="VST Difference to T21", | |
color="Comparison") + | |
theme(legend.position = c(.75, .85), | |
legend.background = element_rect(color="black")) | |
ggsave("output_figs/2024-02-17 21-39-53.641348 timepoint+dox_status+effective_genotype/system_comparison_same_genes.pdf", width=3.5, height=3.1) |