diff --git a/final_project/README.md b/final_project/README.md index cee3ee3..7a7b0ac 100644 --- a/final_project/README.md +++ b/final_project/README.md @@ -56,7 +56,7 @@ b. Use a Monte Carlo model to determine the mean and standard deviation for the maximum deflection $\delta x$ if b and h are normally distributed random variables with 0.1 % standard deviations at q=50 N/m. -3. Now use the central difference approximation to set up a system of equations for the +2. Now use the central difference approximation to set up a system of equations for the beam for q(x)=cst, P=0, and $\omega=0$. Use the boundary conditions with a numerical differentiation to determine the valuea of the end points @@ -71,7 +71,7 @@ differentiation to determine the valuea of the end points e. Comment on the results from the analytical and numerical approaches (if you used functions then provide help files, if you used scripts, then describe the steps used) -4. Now set up the system of equations using a central difference method if P>0 and +3. Now set up the system of equations using a central difference method if P>0 and $\omega=0$ a. set up the system of equations for 6 segments as a function of q and P @@ -83,7 +83,7 @@ $\omega=0$ d. solve a-c for q=1,10,20,30,50 and plot the numerical results of q vs $\delta x$ for P=0, 100, 200, 300 (4 lines, labeled as P=0,P=100,...) -5. Now set up an eigenvalue problem to solve for the natural frequencies of the simply +4. Now set up an eigenvalue problem to solve for the natural frequencies of the simply supported beam if P=0 and q=0. a. set up the system of equations for 6 segments @@ -96,7 +96,7 @@ supported beam if P=0 and q=0. e. Plot the shape of the beam for the first 3 natural frequencies -6. (Bonus 5pt) Create a function to return the system of equations for the eigenvalue +5. (Bonus 5pt) Create a function to return the system of equations for the eigenvalue problem as a function of P, if P>0. Then, plot the lowest natural frequency vs the applied load P. diff --git a/final_project/final_project.pdf b/final_project/final_project.pdf index 3df5f1f..7c6fa9e 100644 Binary files a/final_project/final_project.pdf and b/final_project/final_project.pdf differ diff --git a/lecture_24/lecture_24.ipynb b/lecture_24/lecture_24.ipynb index 9ecde82..66b8be6 100644 --- a/lecture_24/lecture_24.ipynb +++ b/lecture_24/lecture_24.ipynb @@ -23,7 +23,9 @@ "\n", "- On the final project, to get the GitHub bonus, do you have to solve the issue? Or do the points go to the one who opens the issue?\n", "\n", - "- can we go over the final project" + "- can we go over the final project\n", + "\n", + "Tues - more background and help" ] }, { diff --git a/lecture_24/octave-workspace b/lecture_24/octave-workspace new file mode 100644 index 0000000..8c437bb Binary files /dev/null and b/lecture_24/octave-workspace differ diff --git a/lecture_25/final_notes.pdf b/lecture_25/final_notes.pdf new file mode 100755 index 0000000..ab5c0df Binary files /dev/null and b/lecture_25/final_notes.pdf differ diff --git a/lecture_25/lecture_25.pdf b/lecture_25/lecture_25.pdf new file mode 100755 index 0000000..8141f37 Binary files /dev/null and b/lecture_25/lecture_25.pdf differ diff --git a/lecture_26/.ipynb_checkpoints/lecture_26-checkpoint.ipynb b/lecture_26/.ipynb_checkpoints/lecture_26-checkpoint.ipynb new file mode 100644 index 0000000..2fd6442 --- /dev/null +++ b/lecture_26/.ipynb_checkpoints/lecture_26-checkpoint.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lecture_26/compiled_data.csv b/lecture_26/compiled_data.csv new file mode 100644 index 0000000..ea6a99a --- /dev/null +++ b/lecture_26/compiled_data.csv @@ -0,0 +1,233 @@ +7.8,62,1 +12.3,61,1 +5.2,35,1 +12.4,44,1 +5.2,294,1 +3.3,73,2 +1.4,30,2 +11,10,2 +6.3,39,3 +6.9,60,3 +6.3,100,3 +7.8,249,3 +3.3,282,3 +7,96,4 +3.9,186,4 +2.95,166,4 +8.6,262,4 +2.5,355,4 +20,155,5 +18.5,225,5 +14,45,5 +8.5,340,5 +5.25,95,5 +10,20,5 +6.5,62,5 +8.75,36,5 +3,190,5 +4.5,280,5 +2.25,62,6 +3.9,312,6 +9.3,36,6 +1.9,154,6 +7.3,115,6 +4.75,298,6 +4.6,306,7 +2.3,282,7 +10.1,138,7 +3.3,180,7 +8.5,242,7 +5,10,8 +2.5,350,8 +11,30,8 +4,272,8 +17,38,8 +3.75,85,9 +4.5,102,9 +1.36,118,9 +0.78,157,9 +3.41,198,9 +3,27,10 +1,88,10 +2,20,10 +2.5,155,10 +4.5,281,10 +1.5,75,10 +6.32,70,10 +2.85,135,10 +3.71,250,10 +5.45,60,10 +6.1,95,10 +5.5,92,11 +15,266,11 +12.5,14,11 +7,120,11 +4,132,11 +9,30,12 +5,90,12 +6,350,12 +8,330,12 +5,60,12 +3.81,140,12 +6.35,116,12 +0.635,88,12 +7.62,12,12 +1.27,180,12 +4.2,292,13 +0.8,165,13 +2.5,0,13 +6,43,13 +6.65,317,13 +1,0,13 +2.9,50,13 +7.4,302,13 +16.6,246,13 +2.4,234,13 +0.8,100,14 +3.6,62,14 +3.5,260,14 +4.4,168,14 +5.7,178,14 +3.6,143,14 +1.75,37,14 +1.95,62,14 +2.27,48,14 +4.26,69,14 +4,182,15 +5.8,100,15 +8.3,45,15 +10.2,30,15 +4,278,15 +3.81,120,16 +7.62,77,16 +1.59,212,16 +3.73,265,16 +4.84,259,16 +3.45,243,16 +2.1,186,16 +4.6,24,16 +0.7,343,16 +1.7,211,16 +12.4,33,17 +13.9,103,17 +4.5,307,17 +6.7,313,17 +11.4,328,17 +3,240,18 +4,330,18 +2,90,18 +3.5,315,18 +1,15,18 +4.6,98,19 +3.8,326,19 +3.4,184,19 +4,48,19 +2.6,83,19 +2.75,88,20 +1.33,93,20 +1.5,12,20 +3,280,20 +0.5,24,20 +1.2,130,21 +2.6,122,21 +0.8,296,21 +1.4,100,21 +1.2,290,21 +3,90,22 +2,30,22 +10,90,22 +3,15,22 +7,90,22 +3.3,170,23 +8.8,95,23 +8.1,71,23 +7.7,48,23 +9.6,301,23 +3,70,24 +1.2,10,24 +2.1,15,24 +6,260,24 +0.7,30,24 +12.5,10,25 +11,35,25 +7,320,25 +7.5,292,25 +3.5,134,25 +1,4,26 +2,3.9,26 +3,5.25,26 +4,3.2,26 +5,3,26 +4.5,27,27 +1.1,80,27 +2.6,155,27 +1.9,200,27 +2.8,325,27 +4.3,15,28 +7,145,28 +3.5,80,28 +9,210,28 +5.2,175,28 +1,54,29 +3.5,128,29 +4.5,140,29 +2,54,29 +11,274,29 +3.175,98,30 +1.5875,30,30 +3.175,282,30 +5.08,318,30 +10.795,316,30 +11.2,19,31 +14.5,232,31 +12.3,271,31 +16.9,120,31 +9,177,31 +7.4,276,32 +11.5,321,32 +1.5,36,32 +7.5,22,32 +10.1,66,32 +1.75,10,33 +2.5,123,33 +2,64,33 +1.8,271,33 +4,308,33 +4.5,39,34 +3.25,68,34 +2.5,282,34 +1.25,108,34 +2,122,34 +3.97,18,35 +8.29,196,35 +15.52,232,35 +4.79,93,35 +6.43,153,35 +7.5,74,36 +10.75,86,36 +3.5,96,36 +6.25,172,36 +5.5,38,36 +3.25,192,37 +4.5,88,37 +5,336,37 +4,176,37 +2.5,194,37 +1.5,73,38 +1.33,265,38 +2.15,92,38 +3.5,130,38 +0.9,65,38 +3.75,-2,39 +1.66,89,39 +5.43,76,39 +4.12,54,39 +6.87,63,39 +10,85,40 +9,30,40 +7,180,40 +4.3,22,40 +5.8,281,40 +2.9,1,40 +3.31,29,40 +1.5,10,40 diff --git a/lecture_26/lecture_26.ipynb b/lecture_26/lecture_26.ipynb new file mode 100644 index 0000000..dc43ec3 --- /dev/null +++ b/lecture_26/lecture_26.ipynb @@ -0,0 +1,1060 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%plot --format svg" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "setdefaults" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Monte Carlo Dart Challenge\n", + "\n", + "![Dart Challenge Figure](../HW2/projectile.png)\n", + "\n", + "In homework 2, you created `projectile.m`, that calculated the height of a dart based upon initial velocity and angle. \n", + "\n", + "For extra credit, we compiled data from 40 students. \n", + "\n", + "Now, we want to calculate the control that these students had over their dart-throwing. \n", + "\n", + "This is called an *inverse problem*. Given, a mean and standard deviation of velocity and angle, we can calculate the mean and standard deviation of the final dart height with a Monte-Carlo model, but we want to determine a reasonable estimate for the mean and standard deviation of these two parameters. \n", + "\n", + "This is an open-ended design problem, so you can choose to fix or vary the parameters at your own discretion. In HW3, we used 15 m/s as an initial velocity. This is a good starting point, but is it fixed? Its up to you to decide. \n", + "\n", + "You can use the Matlab/Octave command `hist` to plot the data and the Monte Carlo model results. And you can compare statistics with `mean` and `std`\n", + "\n", + "State your assumptions and provide documentation for your functions and scripts. \n", + "\n", + "### The goal of this challenge comes down to 3 parts:\n", + "\n", + "1. Determine a range of values for initial velocity and angle (intuition or analysis)\n", + "\n", + "2. Describe initial velocity and angle with random variables (normal distribution? completely random?)\n", + "\n", + "3. Show that your random variables produce the same ditribution of dart locations as our throwers\n", + "\n", + "### Submit your repository via the Google Form:\n", + "[https://goo.gl/forms/MwdfNWgj9UlHnRV83](https://goo.gl/forms/MwdfNWgj9UlHnRV83)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ans = 40\r\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t-20\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-15\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-10\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t10\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t15\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-20\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-15\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-10\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t10\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t15\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\t\n", + "\t\ty position (cm)\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\tx position (cm)\n", + "\t\n", + "\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_3a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_4a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_5a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_6a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_7a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_8a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_9a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_10a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_11a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_12a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_13a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_14a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_15a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_16a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_17a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_18a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_19a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_20a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_21a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_22a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_23a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_24a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_25a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_26a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_27a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_28a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_29a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_30a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_31a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_32a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_33a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_34a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_35a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_36a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_37a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_38a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_39a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\tgnuplot_plot_40a\n", + "\n", + "\t \n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "darts=dlmread('compiled_data.csv',',');\n", + "x_darts=darts(:,1).*cosd(darts(:,2));\n", + "y_darts=darts(:,1).*sind(darts(:,2));\n", + "\n", + "colormap(colorcube(length(darts(:,3))))\n", + "max(darts(:,3))\n", + "scatter(x_darts, y_darts, [], darts(:,3))\n", + "xlabel('x position (cm)')\n", + "ylabel('y position (cm)')" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "Gnuplot\n", + "Produced by GNUPLOT 5.0 patchlevel 3 \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\t\n", + "\t \n", + "\t \n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t20\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t40\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t60\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t80\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t100\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-20\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-15\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-10\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t-5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t0\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t5\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t10\n", + "\t\n", + "\n", + "\n", + "\t\t\n", + "\t\t15\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\tgnuplot_plot_1a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_2a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_3a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_4a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_5a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_6a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_7a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_8a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_9a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_10a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_11a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_12a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_13a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_14a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_15a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_16a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_17a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_18a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_19a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_20a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\tgnuplot_plot_21a\n", + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hist(y_darts)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Octave", + "language": "octave", + "name": "octave" + }, + "language_info": { + "file_extension": ".m", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "octave", + "version": "0.19.14" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lecture_26/octave-workspace b/lecture_26/octave-workspace new file mode 100644 index 0000000..8c437bb Binary files /dev/null and b/lecture_26/octave-workspace differ diff --git a/myode.m b/myode.m new file mode 100644 index 0000000..cedefb6 --- /dev/null +++ b/myode.m @@ -0,0 +1,7 @@ +function dudt = myode(t,u) + x=u(1); + y=u(2); + dudt=zeros(2,1); + dudt(1)=0.1*x+0.3*x*y; + dudt(2)=0.1*x*y-2*y; +end \ No newline at end of file