Skip to content

update #14

Merged
merged 2 commits into from
Apr 27, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions final_project/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ b. Use a Monte Carlo model to determine the mean and standard deviation for the
maximum deflection $\delta x$ if b and h are normally distributed random variables
with 0.1 % standard deviations at q=50 N/m.

3. Now use the central difference approximation to set up a system of equations for the
2. Now use the central difference approximation to set up a system of equations for the
beam for q(x)=cst, P=0, and $\omega=0$. Use the boundary conditions with a numerical
differentiation to determine the valuea of the end points

Expand All @@ -71,7 +71,7 @@ differentiation to determine the valuea of the end points
e. Comment on the results from the analytical and numerical approaches (if you used
functions then provide help files, if you used scripts, then describe the steps used)

4. Now set up the system of equations using a central difference method if P>0 and
3. Now set up the system of equations using a central difference method if P>0 and
$\omega=0$

a. set up the system of equations for 6 segments as a function of q and P
Expand All @@ -83,7 +83,7 @@ $\omega=0$
d. solve a-c for q=1,10,20,30,50 and plot the numerical results of q vs $\delta x$ for
P=0, 100, 200, 300 (4 lines, labeled as P=0,P=100,...)

5. Now set up an eigenvalue problem to solve for the natural frequencies of the simply
4. Now set up an eigenvalue problem to solve for the natural frequencies of the simply
supported beam if P=0 and q=0.

a. set up the system of equations for 6 segments
Expand All @@ -96,7 +96,7 @@ supported beam if P=0 and q=0.

e. Plot the shape of the beam for the first 3 natural frequencies

6. (Bonus 5pt) Create a function to return the system of equations for the eigenvalue
5. (Bonus 5pt) Create a function to return the system of equations for the eigenvalue
problem as a function of P, if P>0. Then, plot the lowest natural frequency vs the applied
load P.

Expand Down
Binary file modified final_project/final_project.pdf
Binary file not shown.
4 changes: 3 additions & 1 deletion lecture_24/lecture_24.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,9 @@
"\n",
"- On the final project, to get the GitHub bonus, do you have to solve the issue? Or do the points go to the one who opens the issue?\n",
"\n",
"- can we go over the final project"
"- can we go over the final project\n",
"\n",
"Tues - more background and help"
]
},
{
Expand Down
Binary file added lecture_24/octave-workspace
Binary file not shown.
Binary file added lecture_25/final_notes.pdf
Binary file not shown.
Binary file added lecture_25/lecture_25.pdf
Binary file not shown.
6 changes: 6 additions & 0 deletions lecture_26/.ipynb_checkpoints/lecture_26-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 2
}
233 changes: 233 additions & 0 deletions lecture_26/compiled_data.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,233 @@
7.8,62,1
12.3,61,1
5.2,35,1
12.4,44,1
5.2,294,1
3.3,73,2
1.4,30,2
11,10,2
6.3,39,3
6.9,60,3
6.3,100,3
7.8,249,3
3.3,282,3
7,96,4
3.9,186,4
2.95,166,4
8.6,262,4
2.5,355,4
20,155,5
18.5,225,5
14,45,5
8.5,340,5
5.25,95,5
10,20,5
6.5,62,5
8.75,36,5
3,190,5
4.5,280,5
2.25,62,6
3.9,312,6
9.3,36,6
1.9,154,6
7.3,115,6
4.75,298,6
4.6,306,7
2.3,282,7
10.1,138,7
3.3,180,7
8.5,242,7
5,10,8
2.5,350,8
11,30,8
4,272,8
17,38,8
3.75,85,9
4.5,102,9
1.36,118,9
0.78,157,9
3.41,198,9
3,27,10
1,88,10
2,20,10
2.5,155,10
4.5,281,10
1.5,75,10
6.32,70,10
2.85,135,10
3.71,250,10
5.45,60,10
6.1,95,10
5.5,92,11
15,266,11
12.5,14,11
7,120,11
4,132,11
9,30,12
5,90,12
6,350,12
8,330,12
5,60,12
3.81,140,12
6.35,116,12
0.635,88,12
7.62,12,12
1.27,180,12
4.2,292,13
0.8,165,13
2.5,0,13
6,43,13
6.65,317,13
1,0,13
2.9,50,13
7.4,302,13
16.6,246,13
2.4,234,13
0.8,100,14
3.6,62,14
3.5,260,14
4.4,168,14
5.7,178,14
3.6,143,14
1.75,37,14
1.95,62,14
2.27,48,14
4.26,69,14
4,182,15
5.8,100,15
8.3,45,15
10.2,30,15
4,278,15
3.81,120,16
7.62,77,16
1.59,212,16
3.73,265,16
4.84,259,16
3.45,243,16
2.1,186,16
4.6,24,16
0.7,343,16
1.7,211,16
12.4,33,17
13.9,103,17
4.5,307,17
6.7,313,17
11.4,328,17
3,240,18
4,330,18
2,90,18
3.5,315,18
1,15,18
4.6,98,19
3.8,326,19
3.4,184,19
4,48,19
2.6,83,19
2.75,88,20
1.33,93,20
1.5,12,20
3,280,20
0.5,24,20
1.2,130,21
2.6,122,21
0.8,296,21
1.4,100,21
1.2,290,21
3,90,22
2,30,22
10,90,22
3,15,22
7,90,22
3.3,170,23
8.8,95,23
8.1,71,23
7.7,48,23
9.6,301,23
3,70,24
1.2,10,24
2.1,15,24
6,260,24
0.7,30,24
12.5,10,25
11,35,25
7,320,25
7.5,292,25
3.5,134,25
1,4,26
2,3.9,26
3,5.25,26
4,3.2,26
5,3,26
4.5,27,27
1.1,80,27
2.6,155,27
1.9,200,27
2.8,325,27
4.3,15,28
7,145,28
3.5,80,28
9,210,28
5.2,175,28
1,54,29
3.5,128,29
4.5,140,29
2,54,29
11,274,29
3.175,98,30
1.5875,30,30
3.175,282,30
5.08,318,30
10.795,316,30
11.2,19,31
14.5,232,31
12.3,271,31
16.9,120,31
9,177,31
7.4,276,32
11.5,321,32
1.5,36,32
7.5,22,32
10.1,66,32
1.75,10,33
2.5,123,33
2,64,33
1.8,271,33
4,308,33
4.5,39,34
3.25,68,34
2.5,282,34
1.25,108,34
2,122,34
3.97,18,35
8.29,196,35
15.52,232,35
4.79,93,35
6.43,153,35
7.5,74,36
10.75,86,36
3.5,96,36
6.25,172,36
5.5,38,36
3.25,192,37
4.5,88,37
5,336,37
4,176,37
2.5,194,37
1.5,73,38
1.33,265,38
2.15,92,38
3.5,130,38
0.9,65,38
3.75,-2,39
1.66,89,39
5.43,76,39
4.12,54,39
6.87,63,39
10,85,40
9,30,40
7,180,40
4.3,22,40
5.8,281,40
2.9,1,40
3.31,29,40
1.5,10,40
Loading