Skip to content
Permalink
e6faa831ea
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
257 lines (222 sloc) 6.59 KB
# 02_roots_and_optimization
ME3255 HW2
#Problem 2
###Part A
```MatLab
function [root,fx,ea,iter]=bisect(func,xl,xu,es,maxit,varargin)
% bisect: root location zeroes
% [root,fx,ea,iter]=bisect(func,xl,xu,es,maxit,p1,p2,...):
% uses bisection method to find the root of func
% input:
% func = name of function
% xl, xu = lower and upper guesses
% es = desired relative error (default = 0.0001%)
% maxit = maximum allowable iterations (default = 50)
% p1,p2,... = additional parameters used by func
% output:
% root = real root
% fx = function value at root
% ea = approximate relative error (%)
% iter = number of iterations
if nargin<3,error('at least 3 input arguments required'),end
test = func(xl,varargin{:})*func(xu,varargin{:});
if test>0,error('no sign change'),end
if nargin<4||isempty(es), es=0.0001;end
if nargin<5||isempty(maxit), maxit=50;end
iter = 0; xr = xl; ea = 100;
while (1)
xrold = xr;
xr = (xl + xu)/2;
iter = iter + 1;
if xr ~= 0,ea = abs((xr - xrold)/xr) * 100;end
test = func(xl,varargin{:})*func(xr,varargin{:});
if test < 0
xu = xr;
elseif test > 0
xl = xr;
else
ea = 0;
end
if ea <= es || iter >= maxit,break,end
end
root = xr; fx = func(xr, varargin{:});
```
```MatLab
function [root,fx,ea,iter]=falsepos(func,xl,xu,es,maxit,varargin)
% bisect: root location zeroes
% [root,fx,ea,iter]=bisect(func,xl,xu,es,maxit,p1,p2,...):
% uses bisection method to find the root of func
% input:
% func = name of function
% xl, xu = lower and upper guesses
% es = desired relative error (default = 0.0001%)
% maxit = maximum allowable iterations (default = 50)
% p1,p2,... = additional parameters used by func
% output:
% root = real root
% fx = function value at root
% ea = approximate relative error (%)
% iter = number of iterations
if nargin<3,error('at least 3 input arguments required'),end
test = func(xl,varargin{:})*func(xu,varargin{:});
if test>0,error('no sign change'),end
if nargin<4|isempty(es), es=0.0001;end
if nargin<5|isempty(maxit), maxit=50;end
iter = 0; xr = xl; ea = 100;
while (1)
xrold = xr;
xr = (xl + xu)/2;
% xr = (xl + xu)/2; % bisect method
xr=xu - (func(xu)*(xl-xu))/(func(xl)-func(xu)); % false position method
iter = iter + 1;
if xr ~= 0,ea = abs((xr - xrold)/xr) * 100;end
test = func(xl,varargin{:})*func(xr,varargin{:});
if test < 0
xu = xr;
elseif test > 0
xl = xr;
else
ea = 0;
end
if ea <= es | iter >= maxit,break,end
end
root = xr; fx = func(xr, varargin{:});
```
```MatLab
function [root,ea,iter]=mod_secant(func,dx,xr,es,maxit,varargin)
% newtraph: Modified secant root location zeroes
% [root,ea,iter]=mod_secant(func,dfunc,xr,es,maxit,p1,p2,...):
% uses modified secant method to find the root of func
% input:
% func = name of function
% dx = perturbation fraction
% xr = initial guess
% es = desired relative error (default = 0.0001%)
% maxit = maximum allowable iterations (default = 50)
% p1,p2,... = additional parameters used by function
% output:
% root = real root
% ea = approximate relative error (%)
% iter = number of iterations
if nargin<3,error('at least 3 input arguments required'),end
if nargin<4 || isempty(es),es=0.0001;end
if nargin<5 || isempty(maxit),maxit=50;end
iter = 0;
while (1)
xrold = xr;
dfunc=(func(xr+dx)-func(xr))./dx;
xr = xr - func(xr)/dfunc;
iter = iter + 1;
if xr ~= 0
ea = abs((xr - xrold)/xr) * 100;
end
if ea <= es || iter >= maxit, break, end
end
root = xr;
```
###Part B
| solver | initial guess(es) | ea | number of iterations|
| --- | --- | --- | --- |
|falsepos | 100,1000 | 9.6376e-06 | 202 |
|mod_secant | 100,1000 | 5.9066e-06 | 24 |
|bisect | 100,1000 | 4.1212e-06 | 8 |
###Part C
```MatLab
cat_cable = @(T) T/10.*cosh(10./T*30)+30-T/10-35;
[root,fx,ea,iter] = falsepos(cat_cable,100,1000,0.00001,10000);
[root1,fx1,ea1,iter1] = bisect(cat_cable,100,1000,0.00001,10000);
[root2,ea2,iter2] = mod_secant(cat_cable,100,1000,0.00001,10000);
%define T
T = root2;
%plotting the shape of the powerline
x = -10:0.1:50;
y = T/10.*cosh(10./T*x)+30-T/10;
%setDefaults
plot(x,y)
title('Final Powerline Shape')
xlabel('distance (m)')
ylabel('height (m)')
print('figure01','-dpng')
```
![Plot showing the final shape of the powerline](./figures/figure01.png)
#Problem 3
### Code
``` MatLab
%[root,ea,iter]=newtraph(func,dfunc,xr,es,maxit,varargin)
fun = @(x)(x-1)*exp(-(x-1)^2);
d_fun = @(x) exp(-(x - 1)^2) - exp(-(x - 1)^2)*(2*x - 2)*(x - 1);
root = zeros(1,5);
ea = zeros(1,5);
iter = zeros(1,5);
for y = 1:5
[root(y),ea(y),iter(y)]=newtraph(fun,d_fun,1.2,.0001,y);
end
table = [iter' root' ea'];
```
### Divergence of Newton-Raphson Method
| iteration | x_i | approx error |
| --- | --- | --- |
| 0 | 3 | n/a |
| 1 | 3.2857 | 8.6957 |
| 2 | 3.5276 | 6.8573 |
| 3 | 3.7422 | 5.7348 |
| 4 | 3.9375 | 4.9605 |
| 5 | 4.1182 | 4.3873 |
### Convergence of Newton-Raphson Method
| iteration | x_i | approx error |
| --- | --- | --- |
| 0 | 1.2 | n/a |
| 1 | 0.9826 | 22.1239 |
| 2 | 1.0000 | 1.7402 |
| 3 | 1.0000 | 0.0011 |
| 4 | 1.0000 | 0.0000 |
| 5 | 1.0000 | 0.0000 |
#Problem 4
```MatLab
epsilon = 0.039; % units are [kcal/mol]
epsilon = epsilon*6.9477e-21; % [J/atom]
epsilon = epsilon*1e18; % [aJ/J]
% episilon ends up being in terms of aJ
sigma = 2.934; % for Angstrom
sigma = sigma*0.10; % nm/Angstrom
%setting up LJ
lennard_jones = @(x,sigma,epsilon) 4*epsilon*((sigma./x).^12-(sigma./x).^6);
[x,E,ea,its] = goldmin(@(x) lennard_jones(x,sigma,epsilon),3.2,3.5)
figure(1)
parabolic(3.2,3.5)
epsilon = 0.039; % [kcal/mol]
epsilon = epsilon*6.9477e-21; % [J/atom]
epsilon = epsilon*1e18; % [aJ/J]
% epsilon ends up being in terms of aJ
sigma = 2.934; % Angstrom
sigma = sigma*0.10; % nm/Angstrom
%finding bond length in [um]
x=linspace(2.8,6,200)*0.10;
ex = lennard_jones(x,sigma,epsilon);
[xmin,emin] = goldmin(@(x) lennard_jones(x,sigma,epsilon),0.28,0.6)
figure(2)
plot(x,ex,xmin,emin,'o')
ylabel('Lennard Jones Potential [aJ/Atom]')
xlabel('Bond Length [nm]')
title('LJ Potential vs Bond Length');
e_total = @(dx,F) lennard_jones(xmin+dx,sigma,epsilon)-F.*dx;
N=30;
warning('off')
dx = zeros(1,N); % [in nm]
F_applied=linspace(0,0.0022,N); % [in nN]
for i=1:N
optmin=goldmin(@(dx) e_total(dx,F_applied(i)),-0.001,0.035);
dx(i)=optmin;
end
plot(dx,F_applied)
xlabel('dx [nm]')
ylabel('Force [nN]')
title('Force vs dx')
dx_full = linspace(0,0.06,N);
F = @(dx) 4*epsilon*6*(sigma^6./(xmin+dx).^7-2*sigma^12./(xmin+dx).^13)
plot(dx_full,F(dx_full),dx,F_applied)
[K,SSE_min] = fminsearch(@(K) sse_of_parabola(K,dx,F_applied),[1,1]);
plot(dx,F_applied,'o',dx,K(1)*dx+1/2*K(2)*dx.^2)
```
![Plot showing LJ vs Bond Length](./figures/figure02.png)
![Plot showing Force vs dx](./figures/figure03.png)