Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
% Default to the notebook output style
% Inherit from the specified cell style.
\documentclass[11pt]{article}
\usepackage[T1]{fontenc}
% Nicer default font (+ math font) than Computer Modern for most use cases
\usepackage{mathpazo}
% Basic figure setup, for now with no caption control since it's done
% automatically by Pandoc (which extracts ![](path) syntax from Markdown).
\usepackage{graphicx}
% We will generate all images so they have a width \maxwidth. This means
% that they will get their normal width if they fit onto the page, but
% are scaled down if they would overflow the margins.
\makeatletter
\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth
\else\Gin@nat@width\fi}
\makeatother
\let\Oldincludegraphics\includegraphics
% Set max figure width to be 80% of text width, for now hardcoded.
\renewcommand{\includegraphics}[1]{\Oldincludegraphics[width=.8\maxwidth]{#1}}
% Ensure that by default, figures have no caption (until we provide a
% proper Figure object with a Caption API and a way to capture that
% in the conversion process - todo).
\usepackage{caption}
\DeclareCaptionLabelFormat{nolabel}{}
\captionsetup{labelformat=nolabel}
\usepackage{adjustbox} % Used to constrain images to a maximum size
\usepackage{xcolor} % Allow colors to be defined
\usepackage{enumerate} % Needed for markdown enumerations to work
\usepackage{geometry} % Used to adjust the document margins
\usepackage{amsmath} % Equations
\usepackage{amssymb} % Equations
\usepackage{textcomp} % defines textquotesingle
% Hack from http://tex.stackexchange.com/a/47451/13684:
\AtBeginDocument{%
\def\PYZsq{\textquotesingle}% Upright quotes in Pygmentized code
}
\usepackage{upquote} % Upright quotes for verbatim code
\usepackage{eurosym} % defines \euro
\usepackage[mathletters]{ucs} % Extended unicode (utf-8) support
\usepackage[utf8x]{inputenc} % Allow utf-8 characters in the tex document
\usepackage{fancyvrb} % verbatim replacement that allows latex
\usepackage{grffile} % extends the file name processing of package graphics
% to support a larger range
% The hyperref package gives us a pdf with properly built
% internal navigation ('pdf bookmarks' for the table of contents,
% internal cross-reference links, web links for URLs, etc.)
\usepackage{hyperref}
\usepackage{longtable} % longtable support required by pandoc >1.10
\usepackage{booktabs} % table support for pandoc > 1.12.2
\usepackage[inline]{enumitem} % IRkernel/repr support (it uses the enumerate* environment)
\usepackage[normalem]{ulem} % ulem is needed to support strikethroughs (\sout)
% normalem makes italics be italics, not underlines
% Colors for the hyperref package
\definecolor{urlcolor}{rgb}{0,.145,.698}
\definecolor{linkcolor}{rgb}{.71,0.21,0.01}
\definecolor{citecolor}{rgb}{.12,.54,.11}
% ANSI colors
\definecolor{ansi-black}{HTML}{3E424D}
\definecolor{ansi-black-intense}{HTML}{282C36}
\definecolor{ansi-red}{HTML}{E75C58}
\definecolor{ansi-red-intense}{HTML}{B22B31}
\definecolor{ansi-green}{HTML}{00A250}
\definecolor{ansi-green-intense}{HTML}{007427}
\definecolor{ansi-yellow}{HTML}{DDB62B}
\definecolor{ansi-yellow-intense}{HTML}{B27D12}
\definecolor{ansi-blue}{HTML}{208FFB}
\definecolor{ansi-blue-intense}{HTML}{0065CA}
\definecolor{ansi-magenta}{HTML}{D160C4}
\definecolor{ansi-magenta-intense}{HTML}{A03196}
\definecolor{ansi-cyan}{HTML}{60C6C8}
\definecolor{ansi-cyan-intense}{HTML}{258F8F}
\definecolor{ansi-white}{HTML}{C5C1B4}
\definecolor{ansi-white-intense}{HTML}{A1A6B2}
% commands and environments needed by pandoc snippets
% extracted from the output of `pandoc -s`
\providecommand{\tightlist}{%
\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}}
% Add ',fontsize=\small' for more characters per line
\newenvironment{Shaded}{}{}
\newcommand{\KeywordTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{{#1}}}}
\newcommand{\DataTypeTok}[1]{\textcolor[rgb]{0.56,0.13,0.00}{{#1}}}
\newcommand{\DecValTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}}
\newcommand{\BaseNTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}}
\newcommand{\FloatTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}}
\newcommand{\CharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}}
\newcommand{\StringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}}
\newcommand{\CommentTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textit{{#1}}}}
\newcommand{\OtherTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{{#1}}}
\newcommand{\AlertTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{{#1}}}}
\newcommand{\FunctionTok}[1]{\textcolor[rgb]{0.02,0.16,0.49}{{#1}}}
\newcommand{\RegionMarkerTok}[1]{{#1}}
\newcommand{\ErrorTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{{#1}}}}
\newcommand{\NormalTok}[1]{{#1}}
% Additional commands for more recent versions of Pandoc
\newcommand{\ConstantTok}[1]{\textcolor[rgb]{0.53,0.00,0.00}{{#1}}}
\newcommand{\SpecialCharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}}
\newcommand{\VerbatimStringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}}
\newcommand{\SpecialStringTok}[1]{\textcolor[rgb]{0.73,0.40,0.53}{{#1}}}
\newcommand{\ImportTok}[1]{{#1}}
\newcommand{\DocumentationTok}[1]{\textcolor[rgb]{0.73,0.13,0.13}{\textit{{#1}}}}
\newcommand{\AnnotationTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}}
\newcommand{\CommentVarTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}}
\newcommand{\VariableTok}[1]{\textcolor[rgb]{0.10,0.09,0.49}{{#1}}}
\newcommand{\ControlFlowTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{{#1}}}}
\newcommand{\OperatorTok}[1]{\textcolor[rgb]{0.40,0.40,0.40}{{#1}}}
\newcommand{\BuiltInTok}[1]{{#1}}
\newcommand{\ExtensionTok}[1]{{#1}}
\newcommand{\PreprocessorTok}[1]{\textcolor[rgb]{0.74,0.48,0.00}{{#1}}}
\newcommand{\AttributeTok}[1]{\textcolor[rgb]{0.49,0.56,0.16}{{#1}}}
\newcommand{\InformationTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}}
\newcommand{\WarningTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}}
% Define a nice break command that doesn't care if a line doesn't already
% exist.
\def\br{\hspace*{\fill} \\* }
% Math Jax compatability definitions
\def\gt{>}
\def\lt{<}
% Document parameters
\title{lecture\_13}
% Pygments definitions
\makeatletter
\def\PY@reset{\let\PY@it=\relax \let\PY@bf=\relax%
\let\PY@ul=\relax \let\PY@tc=\relax%
\let\PY@bc=\relax \let\PY@ff=\relax}
\def\PY@tok#1{\csname PY@tok@#1\endcsname}
\def\PY@toks#1+{\ifx\relax#1\empty\else%
\PY@tok{#1}\expandafter\PY@toks\fi}
\def\PY@do#1{\PY@bc{\PY@tc{\PY@ul{%
\PY@it{\PY@bf{\PY@ff{#1}}}}}}}
\def\PY#1#2{\PY@reset\PY@toks#1+\relax+\PY@do{#2}}
\expandafter\def\csname PY@tok@gd\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.63,0.00,0.00}{##1}}}
\expandafter\def\csname PY@tok@gu\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.50,0.00,0.50}{##1}}}
\expandafter\def\csname PY@tok@gt\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.27,0.87}{##1}}}
\expandafter\def\csname PY@tok@gs\endcsname{\let\PY@bf=\textbf}
\expandafter\def\csname PY@tok@gr\endcsname{\def\PY@tc##1{\textcolor[rgb]{1.00,0.00,0.00}{##1}}}
\expandafter\def\csname PY@tok@cm\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\expandafter\def\csname PY@tok@vg\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@vi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@mh\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@cs\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\expandafter\def\csname PY@tok@ge\endcsname{\let\PY@it=\textit}
\expandafter\def\csname PY@tok@vc\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@il\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@go\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.53,0.53,0.53}{##1}}}
\expandafter\def\csname PY@tok@cp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.74,0.48,0.00}{##1}}}
\expandafter\def\csname PY@tok@gi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.63,0.00}{##1}}}
\expandafter\def\csname PY@tok@gh\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,0.50}{##1}}}
\expandafter\def\csname PY@tok@ni\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.60,0.60,0.60}{##1}}}
\expandafter\def\csname PY@tok@nl\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.63,0.63,0.00}{##1}}}
\expandafter\def\csname PY@tok@nn\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}}
\expandafter\def\csname PY@tok@no\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.53,0.00,0.00}{##1}}}
\expandafter\def\csname PY@tok@na\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.49,0.56,0.16}{##1}}}
\expandafter\def\csname PY@tok@nb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@nc\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}}
\expandafter\def\csname PY@tok@nd\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.67,0.13,1.00}{##1}}}
\expandafter\def\csname PY@tok@ne\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.82,0.25,0.23}{##1}}}
\expandafter\def\csname PY@tok@nf\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}}
\expandafter\def\csname PY@tok@si\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.53}{##1}}}
\expandafter\def\csname PY@tok@s2\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@nt\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@nv\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@s1\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@ch\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\expandafter\def\csname PY@tok@m\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@gp\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,0.50}{##1}}}
\expandafter\def\csname PY@tok@sh\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@ow\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.67,0.13,1.00}{##1}}}
\expandafter\def\csname PY@tok@sx\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@bp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@c1\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\expandafter\def\csname PY@tok@o\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@kc\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@c\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\expandafter\def\csname PY@tok@mf\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@err\endcsname{\def\PY@bc##1{\setlength{\fboxsep}{0pt}\fcolorbox[rgb]{1.00,0.00,0.00}{1,1,1}{\strut ##1}}}
\expandafter\def\csname PY@tok@mb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@ss\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@sr\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.53}{##1}}}
\expandafter\def\csname PY@tok@mo\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@kd\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@mi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@kn\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@cpf\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\expandafter\def\csname PY@tok@kr\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@s\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@kp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@w\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.73,0.73}{##1}}}
\expandafter\def\csname PY@tok@kt\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.69,0.00,0.25}{##1}}}
\expandafter\def\csname PY@tok@sc\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@sb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@k\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@se\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.13}{##1}}}
\expandafter\def\csname PY@tok@sd\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\def\PYZbs{\char`\\}
\def\PYZus{\char`\_}
\def\PYZob{\char`\{}
\def\PYZcb{\char`\}}
\def\PYZca{\char`\^}
\def\PYZam{\char`\&}
\def\PYZlt{\char`\<}
\def\PYZgt{\char`\>}
\def\PYZsh{\char`\#}
\def\PYZpc{\char`\%}
\def\PYZdl{\char`\$}
\def\PYZhy{\char`\-}
\def\PYZsq{\char`\'}
\def\PYZdq{\char`\"}
\def\PYZti{\char`\~}
% for compatibility with earlier versions
\def\PYZat{@}
\def\PYZlb{[}
\def\PYZrb{]}
\makeatother
% Exact colors from NB
\definecolor{incolor}{rgb}{0.0, 0.0, 0.5}
\definecolor{outcolor}{rgb}{0.545, 0.0, 0.0}
% Prevent overflowing lines due to hard-to-break entities
\sloppy
% Setup hyperref package
\hypersetup{
breaklinks=true, % so long urls are correctly broken across lines
colorlinks=true,
urlcolor=urlcolor,
linkcolor=linkcolor,
citecolor=citecolor,
}
% Slightly bigger margins than the latex defaults
\geometry{verbose,tmargin=1in,bmargin=1in,lmargin=1in,rmargin=1in}
\begin{document}
\maketitle
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}1}]:} \PY{c}{\PYZpc{}plot \PYZhy{}\PYZhy{}format svg}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}2}]:} \PY{n}{setdefaults}
\end{Verbatim}
\subsection{My question from last
class}\label{my-question-from-last-class}
\begin{figure}[htbp]
\centering
\includegraphics{efficient_soln.png}
\caption{q1}
\end{figure}
$A=\left[\begin{array}{ccc}
2 & -2 & 0\\
-1& 5 & 1 \\
3 &4 & 5 \end{array}\right]$
\begin{figure}[htbp]
\centering
\includegraphics{norm_A.png}
\caption{q2}
\end{figure}
\subsection{Your questions from last
class}\label{your-questions-from-last-class}
\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\item
Do we have to submit a link for HW \#4 somewhere or is uploading to
Github sufficient?
-no, your submission from HW 3 is sufficient
\item
How do I get the formulas/formatting in markdown files to show up on
github?
-no luck for markdown equations in github, this is an ongoing request
\item
Confused about the p=1 norm part and
\textbar{}\textbar{}A\textbar{}\textbar{}\_1
\item
When's the exam?
-next week (3/9)
\item
What do you recommend doing to get better at figuring out the
homeworks?
-time and experimenting (try going through the lecture examples,
verify my work)
\item
Could we have an hw or extra credit with a video lecture to learn some
simple python?
-Sounds great! how simple?
-\href{https://www.continuum.io/downloads}{Installing Python and
Jupyter Notebook (via Anaconda) - https://www.continuum.io/downloads}
-\href{https://anneurai.net/2015/11/12/matlab-based-ipython-notebooks/}{Running
Matlab kernel in Jupyter -
https://anneurai.net/2015/11/12/matlab-based-ipython-notebooks/}
-\href{https://anaconda.org/pypi/octave_kernel}{Running Octave kernel
in Jupyter - https://anaconda.org/pypi/octave\_kernel}
\end{enumerate}
\section{Markdown examples}\label{markdown-examples}
\texttt{"\ \textquotesingle{}} `
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{x=linspace(}\FloatTok{0}\NormalTok{,}\FloatTok{1}\NormalTok{);}
\NormalTok{y=x.^}\FloatTok{2}\NormalTok{;}
\NormalTok{plot(x,y)}
\NormalTok{for i = }\FloatTok{1}\NormalTok{:}\FloatTok{10}
\NormalTok{fprintf(}\StringTok{'markdown is pretty'}\NormalTok{)}
\NormalTok{end}
\end{Highlighting}
\end{Shaded}
\subsection{Condition of a matrix}\label{condition-of-a-matrix}
\subsubsection{\texorpdfstring{\emph{just checked in to see what
condition my condition was
in}}{just checked in to see what condition my condition was in}}\label{just-checked-in-to-see-what-condition-my-condition-was-in}
\subsubsection{Matrix norms}\label{matrix-norms}
The Euclidean norm of a vector is measure of the magnitude (in 3D this
would be: $|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$) in general the
equation is:
$||x||_{e}=\sqrt{\sum_{i=1}^{n}x_{i}^{2}}$
For a matrix, A, the same norm is called the Frobenius norm:
$||A||_{f}=\sqrt{\sum_{i=1}^{n}\sum_{j=1}^{m}A_{i,j}^{2}}$
In general we can calculate any $p$-norm where
$||A||_{p}=\sqrt{\sum_{i=1}^{n}\sum_{i=1}^{m}A_{i,j}^{p}}$
so the p=1, 1-norm is
$||A||_{1}=\sqrt{\sum_{i=1}^{n}\sum_{i=1}^{m}A_{i,j}^{1}}=\sum_{i=1}^{n}\sum_{i=1}^{m}|A_{i,j}|$
$||A||_{\infty}=\sqrt{\sum_{i=1}^{n}\sum_{i=1}^{m}A_{i,j}^{\infty}}=\max_{1\le i \le n}\sum_{j=1}^{m}|A_{i,j}|$
\subsubsection{Condition of Matrix}\label{condition-of-matrix}
The matrix condition is the product of
$Cond(A) = ||A||\cdot||A^{-1}||$
So each norm will have a different condition number, but the limit is
$Cond(A)\ge 1$
An estimate of the rounding error is based on the condition of A:
$\frac{||\Delta x||}{x} \le Cond(A) \frac{||\Delta A||}{||A||}$
So if the coefficients of A have accuracy to $10^{-t}$
and the condition of A, $Cond(A)=10^{c}$
then the solution for x can have rounding errors up to $10^{c-t}$
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}7}]:} \PY{n}{A}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{1}\PY{p}{,}\PY{l+m+mi}{1}\PY{o}{/}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{1}\PY{o}{/}\PY{l+m+mi}{3}\PY{p}{;}\PY{l+m+mi}{1}\PY{o}{/}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{1}\PY{o}{/}\PY{l+m+mi}{3}\PY{p}{,}\PY{l+m+mi}{1}\PY{o}{/}\PY{l+m+mi}{4}\PY{p}{;}\PY{l+m+mi}{1}\PY{o}{/}\PY{l+m+mi}{3}\PY{p}{,}\PY{l+m+mi}{1}\PY{o}{/}\PY{l+m+mi}{4}\PY{p}{,}\PY{l+m+mi}{1}\PY{o}{/}\PY{l+m+mi}{5}\PY{p}{]}
\PY{p}{[}\PY{n}{L}\PY{p}{,}\PY{n}{U}\PY{p}{]}\PY{p}{=}\PY{n}{LU\PYZus{}naive}\PY{p}{(}\PY{n}{A}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
A =
1.00000 0.50000 0.33333
0.50000 0.33333 0.25000
0.33333 0.25000 0.20000
L =
1.00000 0.00000 0.00000
0.50000 1.00000 0.00000
0.33333 1.00000 1.00000
U =
1.00000 0.50000 0.33333
0.00000 0.08333 0.08333
0.00000 -0.00000 0.00556
\end{Verbatim}
Then, $A^{-1}=(LU)^{-1}=U^{-1}L^{-1}$
$Ld_{1}=\left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right]$,
$Ux_{1}=d_{1}$ ...
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}8}]:} \PY{n}{invA}\PY{p}{=}\PY{n+nb}{zeros}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{,}\PY{l+m+mi}{3}\PY{p}{)}\PY{p}{;}
\PY{n}{d1}\PY{p}{=}\PY{n}{L}\PY{o}{\PYZbs{}}\PY{p}{[}\PY{l+m+mi}{1}\PY{p}{;}\PY{l+m+mi}{0}\PY{p}{;}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{;}
\PY{n}{d2}\PY{p}{=}\PY{n}{L}\PY{o}{\PYZbs{}}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{;}\PY{l+m+mi}{1}\PY{p}{;}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{;}
\PY{n}{d3}\PY{p}{=}\PY{n}{L}\PY{o}{\PYZbs{}}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{;}\PY{l+m+mi}{0}\PY{p}{;}\PY{l+m+mi}{1}\PY{p}{]}\PY{p}{;}
\PY{n}{invA}\PY{p}{(}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{)}\PY{p}{=}\PY{n}{U}\PY{o}{\PYZbs{}}\PY{n}{d1}\PY{p}{;} \PY{c}{\PYZpc{} shortcut invA(:,1)=A\PYZbs{}[1;0;0]}
\PY{n}{invA}\PY{p}{(}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{=}\PY{n}{U}\PY{o}{\PYZbs{}}\PY{n}{d2}\PY{p}{;}
\PY{n}{invA}\PY{p}{(}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{3}\PY{p}{)}\PY{p}{=}\PY{n}{U}\PY{o}{\PYZbs{}}\PY{n}{d3}
\PY{n}{invA}\PY{o}{*}\PY{n}{A}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
invA =
9.0000 -36.0000 30.0000
-36.0000 192.0000 -180.0000
30.0000 -180.0000 180.0000
ans =
1.0000e+00 3.5527e-15 2.9976e-15
-1.3249e-14 1.0000e+00 -9.1038e-15
8.5117e-15 7.1054e-15 1.0000e+00
\end{Verbatim}
Find the condition of A, $cond(A)$
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}9}]:} \PY{c}{\PYZpc{} Frobenius norm}
\PY{n}{normf\PYZus{}A} \PY{p}{=} \PY{n+nb}{sqrt}\PY{p}{(}\PY{n+nb}{sum}\PY{p}{(}\PY{n+nb}{sum}\PY{p}{(}\PY{n}{A}\PY{o}{.\PYZca{}}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{)}\PY{p}{)}
\PY{n}{normf\PYZus{}invA} \PY{p}{=} \PY{n+nb}{sqrt}\PY{p}{(}\PY{n+nb}{sum}\PY{p}{(}\PY{n+nb}{sum}\PY{p}{(}\PY{n}{invA}\PY{o}{.\PYZca{}}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{)}\PY{p}{)}
\PY{n}{cond\PYZus{}f\PYZus{}A} \PY{p}{=} \PY{n}{normf\PYZus{}A}\PY{o}{*}\PY{n}{normf\PYZus{}invA}
\PY{n+nb}{norm}\PY{p}{(}\PY{n}{A}\PY{p}{,}\PY{l+s}{\PYZsq{}}\PY{l+s}{fro\PYZsq{}}\PY{p}{)}
\PY{c}{\PYZpc{} p=1, column sum norm}
\PY{n}{norm1\PYZus{}A} \PY{p}{=} \PY{n+nb}{max}\PY{p}{(}\PY{n+nb}{sum}\PY{p}{(}\PY{n}{A}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{)}
\PY{n}{norm1\PYZus{}invA} \PY{p}{=} \PY{n+nb}{max}\PY{p}{(}\PY{n+nb}{sum}\PY{p}{(}\PY{n}{invA}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{)}
\PY{n+nb}{norm}\PY{p}{(}\PY{n}{A}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{)}
\PY{n}{cond\PYZus{}1\PYZus{}A}\PY{p}{=}\PY{n}{norm1\PYZus{}A}\PY{o}{*}\PY{n}{norm1\PYZus{}invA}
\PY{c}{\PYZpc{} p=inf, row sum norm}
\PY{n}{norminf\PYZus{}A} \PY{p}{=} \PY{n+nb}{max}\PY{p}{(}\PY{n+nb}{sum}\PY{p}{(}\PY{n}{A}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{)}\PY{p}{)}
\PY{n}{norminf\PYZus{}invA} \PY{p}{=} \PY{n+nb}{max}\PY{p}{(}\PY{n+nb}{sum}\PY{p}{(}\PY{n}{invA}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{)}\PY{p}{)}
\PY{n+nb}{norm}\PY{p}{(}\PY{n}{A}\PY{p}{,}\PY{n+nb}{inf}\PY{p}{)}
\PY{n}{cond\PYZus{}inf\PYZus{}A}\PY{p}{=}\PY{n}{norminf\PYZus{}A}\PY{o}{*}\PY{n}{norminf\PYZus{}invA}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
normf\_A = 1.4136
normf\_invA = 372.21
cond\_f\_A = 526.16
ans = 1.4136
norm1\_A = 1.8333
norm1\_invA = 30.000
ans = 1.8333
cond\_1\_A = 55.000
norminf\_A = 1.8333
norminf\_invA = 30.000
ans = 1.8333
cond\_inf\_A = 55.000
\end{Verbatim}
Consider the problem again from the intro to Linear Algebra, 4 masses
are connected in series to 4 springs with spring constants $K_{i}$.
What does a high condition number mean for this problem?
\begin{figure}[htbp]
\centering
\includegraphics{../lecture_09/mass_springs.png}
\caption{Springs-masses}
\end{figure}
The masses haves the following amounts, 1, 2, 3, and 4 kg for masses
1-4. Using a FBD for each mass:
$m_{1}g+k_{2}(x_{2}-x_{1})-k_{1}x_{1}=0$
$m_{2}g+k_{3}(x_{3}-x_{2})-k_{2}(x_{2}-x_{1})=0$
$m_{3}g+k_{4}(x_{4}-x_{3})-k_{3}(x_{3}-x_{2})=0$
$m_{4}g-k_{4}(x_{4}-x_{3})=0$
in matrix form:
$\left[ \begin{array}{cccc} k_{1}+k_{2} & -k_{2} & 0 & 0 \\ -k_{2} & k_{2}+k_{3} & -k_{3} & 0 \\ 0 & -k_{3} & k_{3}+k_{4} & -k_{4} \\ 0 & 0 & -k_{4} & k_{4} \end{array} \right] \left[ \begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{array} \right]= \left[ \begin{array}{c} m_{1}g \\ m_{2}g \\ m_{3}g \\ m_{4}g \end{array} \right]$
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}10}]:} \PY{n}{k1}\PY{p}{=}\PY{l+m+mi}{10}\PY{p}{;} \PY{c}{\PYZpc{} N/m}
\PY{n}{k2}\PY{p}{=}\PY{l+m+mi}{100000}\PY{p}{;}
\PY{n}{k3}\PY{p}{=}\PY{l+m+mi}{10}\PY{p}{;}
\PY{n}{k4}\PY{p}{=}\PY{l+m+mi}{1}\PY{p}{;}
\PY{n}{m1}\PY{p}{=}\PY{l+m+mi}{1}\PY{p}{;} \PY{c}{\PYZpc{} kg}
\PY{n}{m2}\PY{p}{=}\PY{l+m+mi}{2}\PY{p}{;}
\PY{n}{m3}\PY{p}{=}\PY{l+m+mi}{3}\PY{p}{;}
\PY{n}{m4}\PY{p}{=}\PY{l+m+mi}{4}\PY{p}{;}
\PY{n}{g}\PY{p}{=}\PY{l+m+mf}{9.81}\PY{p}{;} \PY{c}{\PYZpc{} m/s\PYZca{}2}
\PY{n}{K}\PY{p}{=}\PY{p}{[}\PY{n}{k1}\PY{o}{+}\PY{n}{k2} \PY{o}{\PYZhy{}}\PY{n}{k2} \PY{l+m+mi}{0} \PY{l+m+mi}{0}\PY{p}{;} \PY{o}{\PYZhy{}}\PY{n}{k2} \PY{n}{k2}\PY{o}{+}\PY{n}{k3} \PY{o}{\PYZhy{}}\PY{n}{k3} \PY{l+m+mi}{0}\PY{p}{;} \PY{l+m+mi}{0} \PY{o}{\PYZhy{}}\PY{n}{k3} \PY{n}{k3}\PY{o}{+}\PY{n}{k4} \PY{o}{\PYZhy{}}\PY{n}{k4}\PY{p}{;} \PY{l+m+mi}{0} \PY{l+m+mi}{0} \PY{o}{\PYZhy{}}\PY{n}{k4} \PY{n}{k4}\PY{p}{]}
\PY{n}{y}\PY{p}{=}\PY{p}{[}\PY{n}{m1}\PY{o}{*}\PY{n}{g}\PY{p}{;}\PY{n}{m2}\PY{o}{*}\PY{n}{g}\PY{p}{;}\PY{n}{m3}\PY{o}{*}\PY{n}{g}\PY{p}{;}\PY{n}{m4}\PY{o}{*}\PY{n}{g}\PY{p}{]}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
K =
100010 -100000 0 0
-100000 100010 -10 0
0 -10 11 -1
0 0 -1 1
y =
9.8100
19.6200
29.4300
39.2400
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}11}]:} \PY{n+nb}{cond}\PY{p}{(}\PY{n}{K}\PY{p}{,}\PY{n+nb}{inf}\PY{p}{)}
\PY{n+nb}{cond}\PY{p}{(}\PY{n}{K}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{)}
\PY{n+nb}{cond}\PY{p}{(}\PY{n}{K}\PY{p}{,}\PY{l+s}{\PYZsq{}}\PY{l+s}{fro\PYZsq{}}\PY{p}{)}
\PY{n+nb}{cond}\PY{p}{(}\PY{n}{K}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
ans = 3.2004e+05
ans = 3.2004e+05
ans = 2.5925e+05
ans = 2.5293e+05
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}26}]:} \PY{n+nb}{e}\PY{p}{=}\PY{n+nb}{eig}\PY{p}{(}\PY{n}{K}\PY{p}{)}
\PY{n+nb}{max}\PY{p}{(}\PY{n+nb}{e}\PY{p}{)}\PY{o}{/}\PY{n+nb}{min}\PY{p}{(}\PY{n+nb}{e}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
e =
7.9078e-01
3.5881e+00
1.7621e+01
2.0001e+05
ans = 2.5293e+05
\end{Verbatim}
\subsection{P=2 norm is ratio of biggest eigenvalue to smallest
eigenvalue!}\label{p2-norm-is-ratio-of-biggest-eigenvalue-to-smallest-eigenvalue}
no need to calculate the inv(K)
\section{Iterative Methods}\label{iterative-methods}
\subsection{Gauss-Seidel method}\label{gauss-seidel-method}
If we have an intial guess for each value of a vector $x$ that we are
trying to solve, then it is easy enough to solve for one component given
the others.
Take a 3$\times$3 matrix
$Ax=b$
$\left[ \begin{array}{ccc} 3 & -0.1 & -0.2 \\ 0.1 & 7 & -0.3 \\ 0.3 & -0.2 & 10 \end{array} \right] \left[ \begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \end{array} \right]= \left[ \begin{array}{c} 7.85 \\ -19.3 \\ 71.4\end{array} \right]$
$x_{1}=\frac{7.85+0.1x_{2}+0.2x_{3}}{3}$
$x_{2}=\frac{-19.3-0.1x_{1}+0.3x_{3}}{7}$
$x_{3}=\frac{71.4+0.1x_{1}+0.2x_{2}}{10}$
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}12}]:} \PY{n}{A}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{3} \PY{o}{\PYZhy{}}\PY{l+m+mf}{0.1} \PY{o}{\PYZhy{}}\PY{l+m+mf}{0.2}\PY{p}{;}\PY{l+m+mf}{0.1} \PY{l+m+mi}{7} \PY{o}{\PYZhy{}}\PY{l+m+mf}{0.3}\PY{p}{;}\PY{l+m+mf}{0.3} \PY{o}{\PYZhy{}}\PY{l+m+mf}{0.2} \PY{l+m+mi}{10}\PY{p}{]}
\PY{n}{b}\PY{p}{=}\PY{p}{[}\PY{l+m+mf}{7.85}\PY{p}{;}\PY{o}{\PYZhy{}}\PY{l+m+mf}{19.3}\PY{p}{;}\PY{l+m+mf}{71.4}\PY{p}{]}
\PY{n}{x}\PY{p}{=}\PY{n}{A}\PY{o}{\PYZbs{}}\PY{n}{b}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
A =
3.00000 -0.10000 -0.20000
0.10000 7.00000 -0.30000
0.30000 -0.20000 10.00000
b =
7.8500
-19.3000
71.4000
x =
3.0000
-2.5000
7.0000
\end{Verbatim}
\subsubsection{Gauss-Seidel Iterative
approach}\label{gauss-seidel-iterative-approach}
As a first guess, we can use $x_{1}=x_{2}=x_{3}=0$
$x_{1}=\frac{7.85+0.1(0)+0.3(0)}{3}=2.6167$
$x_{2}=\frac{-19.3-0.1(2.6167)+0.3(0)}{7}=-2.7945$
$x_{3}=\frac{71.4+0.1(2.6167)+0.2(-2.7945)}{10}=7.0056$
Then, we update the guess:
$x_{1}=\frac{7.85+0.1(-2.7945)+0.3(7.0056)}{3}=2.9906$
$x_{2}=\frac{-19.3-0.1(2.9906)+0.3(7.0056)}{7}=-2.4996$
$x_{3}=\frac{71.4+0.1(2.9906)+0.2(-2.4966)}{10}=7.00029$
The results are conveerging to the solution we found with
\texttt{\textbackslash{}} of $x_{1}=3,~x_{2}=-2.5,~x_{3}=7$
We could also use an iterative method that solves for all of the
x-components in one step:
\subsubsection{Jacobi method}\label{jacobi-method}
$x_{1}^{i}=\frac{7.85+0.1x_{2}^{i-1}+0.3x_{3}^{i-1}}{3}$
$x_{2}^{i}=\frac{-19.3-0.1x_{1}^{i-1}+0.3x_{3}^{i-1}}{7}$
$x_{3}^{i}=\frac{71.4+0.1x_{1}^{i-1}+0.2x_{2}^{i-1}}{10}$
Here the solution is a matrix multiplication and vector addition
$\left[ \begin{array}{c} x_{1}^{i} \\ x_{2}^{i} \\ x_{3}^{i} \end{array} \right]= \left[ \begin{array}{c} 7.85/3 \\ -19.3/7 \\ 71.4/10\end{array} \right]- \left[ \begin{array}{ccc} 0 & 0.1/3 & 0.2/3 \\ 0.1/7 & 0 & -0.3/7 \\ 0.3/10 & -0.2/10 & 0 \end{array} \right] \left[ \begin{array}{c} x_{1}^{i-1} \\ x_{2}^{i-1} \\ x_{3}^{i-1} \end{array} \right]$
\begin{longtable}[c]{@{}llll@{}}
\toprule
\begin{minipage}[b]{0.10\columnwidth}\raggedright\strut
x\_\{j\}
\strut\end{minipage} &
\begin{minipage}[b]{0.36\columnwidth}\raggedright\strut
Jacobi method
\strut\end{minipage} &
\begin{minipage}[b]{0.05\columnwidth}\raggedright\strut
vs
\strut\end{minipage} &
\begin{minipage}[b]{0.37\columnwidth}\raggedright\strut
Gauss-Seidel
\strut\end{minipage}\tabularnewline
\midrule
\endhead
\begin{minipage}[t]{0.10\columnwidth}\raggedright\strut
$x_{1}^{i}=$
\strut\end{minipage} &
\begin{minipage}[t]{0.36\columnwidth}\raggedright\strut
$\frac{7.85+0.1x_{2}^{i-1}+0.3x_{3}^{i-1}}{3}$
\strut\end{minipage} &
\begin{minipage}[t]{0.05\columnwidth}\raggedright\strut
\strut\end{minipage} &
\begin{minipage}[t]{0.37\columnwidth}\raggedright\strut
$\frac{7.85+0.1x_{2}^{i-1}+0.3x_{3}^{i-1}}{3}$
\strut\end{minipage}\tabularnewline
\begin{minipage}[t]{0.10\columnwidth}\raggedright\strut
$x_{2}^{i}=$
\strut\end{minipage} &
\begin{minipage}[t]{0.36\columnwidth}\raggedright\strut
$\frac{-19.3-0.1x_{1}^{i-1}+0.3x_{3}^{i-1}}{7}$
\strut\end{minipage} &
\begin{minipage}[t]{0.05\columnwidth}\raggedright\strut
\strut\end{minipage} &
\begin{minipage}[t]{0.37\columnwidth}\raggedright\strut
$\frac{-19.3-0.1x_{1}^{i}+0.3x_{3}^{i-1}}{7}$
\strut\end{minipage}\tabularnewline
\begin{minipage}[t]{0.10\columnwidth}\raggedright\strut
$x_{3}^{i}=$
\strut\end{minipage} &
\begin{minipage}[t]{0.36\columnwidth}\raggedright\strut
$\frac{71.4+0.1x_{1}^{i-1}+0.2x_{2}^{i-1}}{10}$
\strut\end{minipage} &
\begin{minipage}[t]{0.05\columnwidth}\raggedright\strut
\strut\end{minipage} &
\begin{minipage}[t]{0.37\columnwidth}\raggedright\strut
$\frac{71.4+0.1x_{1}^{i}+0.2x_{2}^{i}}{10}$
\strut\end{minipage}\tabularnewline
\bottomrule
\end{longtable}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}14}]:} \PY{n}{ba}\PY{p}{=}\PY{n}{b}\PY{o}{./}\PY{n+nb}{diag}\PY{p}{(}\PY{n}{A}\PY{p}{)} \PY{c}{\PYZpc{} or ba=b./[A(1,1);A(2,2);A(3,3)]}
\PY{n}{sA}\PY{p}{=}\PY{n}{A}\PY{o}{\PYZhy{}}\PY{n+nb}{diag}\PY{p}{(}\PY{n+nb}{diag}\PY{p}{(}\PY{n}{A}\PY{p}{)}\PY{p}{)} \PY{c}{\PYZpc{} A with zeros on diagonal}
\PY{n}{sA}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{p}{=}\PY{n}{sA}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{o}{/}\PY{n}{A}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{)}\PY{p}{;}
\PY{n}{sA}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{p}{=}\PY{n}{sA}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{o}{/}\PY{n}{A}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{;}
\PY{n}{sA}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{p}{=}\PY{n}{sA}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{o}{/}\PY{n}{A}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{,}\PY{l+m+mi}{3}\PY{p}{)}
\PY{n}{x0}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{;}\PY{l+m+mi}{0}\PY{p}{;}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{;}
\PY{n}{x1}\PY{p}{=}\PY{n}{ba}\PY{o}{\PYZhy{}}\PY{n}{sA}\PY{o}{*}\PY{n}{x0}
\PY{n}{x2}\PY{p}{=}\PY{n}{ba}\PY{o}{\PYZhy{}}\PY{n}{sA}\PY{o}{*}\PY{n}{x1}
\PY{n}{x3}\PY{p}{=}\PY{n}{ba}\PY{o}{\PYZhy{}}\PY{n}{sA}\PY{o}{*}\PY{n}{x2}
\PY{n+nb}{fprintf}\PY{p}{(}\PY{l+s}{\PYZsq{}}\PY{l+s}{solution is converging to [3,\PYZhy{}2.5,7]]\PYZbs{}n\PYZsq{}}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
ba =
2.6167
-2.7571
7.1400
sA =
0.00000 -0.10000 -0.20000
0.10000 0.00000 -0.30000
0.30000 -0.20000 0.00000
sA =
0.000000 -0.033333 -0.066667
0.014286 0.000000 -0.042857
0.030000 -0.020000 0.000000
x1 =
2.6167
-2.7571
7.1400
x2 =
3.0008
-2.4885
7.0064
x3 =
3.0008
-2.4997
7.0002
solution is converging to [3,-2.5,7]]
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}16}]:} \PY{n+nb}{diag}\PY{p}{(}\PY{n}{A}\PY{p}{)}
\PY{n+nb}{diag}\PY{p}{(}\PY{n+nb}{diag}\PY{p}{(}\PY{n}{A}\PY{p}{)}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
ans =
3
7
10
ans =
Diagonal Matrix
3 0 0
0 7 0
0 0 10
\end{Verbatim}
This method works if problem is diagonally dominant,
$|a_{ii}|>\sum_{j=1,j\ne i}^{n}|a_{ij}|$
If this condition is true, then Jacobi or Gauss-Seidel should converge
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}15}]:} \PY{n}{A}\PY{p}{=}\PY{p}{[}\PY{l+m+mf}{0.1}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{,}\PY{l+m+mi}{3}\PY{p}{;}\PY{l+m+mi}{1}\PY{p}{,}\PY{l+m+mf}{0.2}\PY{p}{,}\PY{l+m+mi}{3}\PY{p}{;}\PY{l+m+mi}{5}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mf}{0.3}\PY{p}{]}
\PY{n}{b}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{12}\PY{p}{;}\PY{l+m+mi}{2}\PY{p}{;}\PY{l+m+mi}{4}\PY{p}{]}
\PY{n}{A}\PY{o}{\PYZbs{}}\PY{n}{b}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
A =
0.10000 1.00000 3.00000
1.00000 0.20000 3.00000
5.00000 2.00000 0.30000
b =
12
2
4
ans =
-2.9393
9.1933
1.0336
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}16}]:} \PY{n}{ba}\PY{p}{=}\PY{n}{b}\PY{o}{./}\PY{n+nb}{diag}\PY{p}{(}\PY{n}{A}\PY{p}{)} \PY{c}{\PYZpc{} or ba=b./[A(1,1);A(2,2);A(3,3)]}
\PY{n}{sA}\PY{p}{=}\PY{n}{A}\PY{o}{\PYZhy{}}\PY{n+nb}{diag}\PY{p}{(}\PY{n+nb}{diag}\PY{p}{(}\PY{n}{A}\PY{p}{)}\PY{p}{)} \PY{c}{\PYZpc{} A with zeros on diagonal}
\PY{n}{sA}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{p}{=}\PY{n}{sA}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{o}{/}\PY{n}{A}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{)}\PY{p}{;}
\PY{n}{sA}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{p}{=}\PY{n}{sA}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{o}{/}\PY{n}{A}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{;}
\PY{n}{sA}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{p}{=}\PY{n}{sA}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{,}\PY{p}{:}\PY{p}{)}\PY{o}{/}\PY{n}{A}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{,}\PY{l+m+mi}{3}\PY{p}{)}
\PY{n}{x0}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{;}\PY{l+m+mi}{0}\PY{p}{;}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{;}
\PY{n}{x1}\PY{p}{=}\PY{n}{ba}\PY{o}{\PYZhy{}}\PY{n}{sA}\PY{o}{*}\PY{n}{x0}
\PY{n}{x2}\PY{p}{=}\PY{n}{ba}\PY{o}{\PYZhy{}}\PY{n}{sA}\PY{o}{*}\PY{n}{x1}
\PY{n}{x3}\PY{p}{=}\PY{n}{ba}\PY{o}{\PYZhy{}}\PY{n}{sA}\PY{o}{*}\PY{n}{x2}
\PY{n+nb}{fprintf}\PY{p}{(}\PY{l+s}{\PYZsq{}}\PY{l+s}{solution is not converging to [\PYZhy{}2.93,9.19,1.03]\PYZbs{}n\PYZsq{}}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
ba =
120.000
10.000
13.333
sA =
0 1 3
1 0 3
5 2 0
sA =
0.00000 10.00000 30.00000
5.00000 0.00000 15.00000
16.66667 6.66667 0.00000
x1 =
120.000
10.000
13.333
x2 =
-380.00
-790.00
-2053.33
x3 =
6.9620e+04
3.2710e+04
1.1613e+04
solution is not converging to [-2.93,9.19,1.03]
\end{Verbatim}
\subsection{Gauss-Seidel with
Relaxation}\label{gauss-seidel-with-relaxation}
In order to force the solution to converge faster, we can introduce a
relaxation term $\lambda$.
where the new x values are weighted between the old and new:
$x^{i}=\lambda x^{i}+(1-\lambda)x^{i-1}$
after solving for x, lambda weights the current approximation with the
previous approximation for the updated x
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}17}]:} \PY{c}{\PYZpc{} rearrange A and b}
\PY{n}{A}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{3} \PY{o}{\PYZhy{}}\PY{l+m+mf}{0.1} \PY{o}{\PYZhy{}}\PY{l+m+mf}{0.2}\PY{p}{;}\PY{l+m+mf}{0.1} \PY{l+m+mi}{7} \PY{o}{\PYZhy{}}\PY{l+m+mf}{0.3}\PY{p}{;}\PY{l+m+mf}{0.3} \PY{o}{\PYZhy{}}\PY{l+m+mf}{0.2} \PY{l+m+mi}{10}\PY{p}{]}
\PY{n}{b}\PY{p}{=}\PY{p}{[}\PY{l+m+mf}{7.85}\PY{p}{;}\PY{o}{\PYZhy{}}\PY{l+m+mf}{19.3}\PY{p}{;}\PY{l+m+mf}{71.4}\PY{p}{]}
\PY{n}{iters}\PY{p}{=}\PY{n+nb}{zeros}\PY{p}{(}\PY{l+m+mi}{100}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{)}\PY{p}{;}
\PY{k}{for} \PY{n}{i}\PY{p}{=}\PY{l+m+mi}{1}\PY{p}{:}\PY{l+m+mi}{100}
\PY{n}{lambda}\PY{p}{=}\PY{l+m+mi}{2}\PY{o}{/}\PY{l+m+mi}{100}\PY{o}{*}\PY{n}{i}\PY{p}{;}
\PY{p}{[}\PY{n}{x}\PY{p}{,}\PY{n}{ea}\PY{p}{,}\PY{n}{iters}\PY{p}{(}\PY{n}{i}\PY{p}{)}\PY{p}{]}\PY{p}{=}\PY{n}{Jacobi\PYZus{}rel}\PY{p}{(}\PY{n}{A}\PY{p}{,}\PY{n}{b}\PY{p}{,}\PY{n}{lambda}\PY{p}{)}\PY{p}{;}
\PY{k}{end}
\PY{n+nb}{plot}\PY{p}{(}\PY{p}{[}\PY{l+m+mi}{1}\PY{p}{:}\PY{l+m+mi}{100}\PY{p}{]}\PY{o}{*}\PY{l+m+mi}{2}\PY{o}{/}\PY{l+m+mi}{100}\PY{p}{,}\PY{n}{iters}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
A =
3.00000 -0.10000 -0.20000
0.10000 7.00000 -0.30000
0.30000 -0.20000 10.00000
b =
7.8500
-19.3000
71.4000
\end{Verbatim}
\begin{center}
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{lecture_13_files/lecture_13_24_1.pdf}
\end{center}
{ \hspace*{\fill} \\}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}107}]:} \PY{n}{l}\PY{p}{=}\PY{n}{fminbnd}\PY{p}{(}\PY{p}{@}\PY{p}{(}\PY{n}{l}\PY{p}{)} \PY{n}{lambda\PYZus{}fcn}\PY{p}{(}\PY{n}{A}\PY{p}{,}\PY{n}{b}\PY{p}{,}\PY{n}{l}\PY{p}{)}\PY{p}{,}\PY{l+m+mf}{0.5}\PY{p}{,}\PY{l+m+mf}{1.5}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
l = 0.99158
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}108}]:} \PY{n}{A}\PY{o}{\PYZbs{}}\PY{n}{b}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
ans =
3.0000
-2.5000
7.0000
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}109}]:} \PY{p}{[}\PY{n}{x}\PY{p}{,}\PY{n}{ea}\PY{p}{,}\PY{n}{iter}\PY{p}{]}\PY{p}{=}\PY{n}{Jacobi\PYZus{}rel}\PY{p}{(}\PY{n}{A}\PY{p}{,}\PY{n}{b}\PY{p}{,}\PY{n}{l}\PY{p}{,}\PY{l+m+mf}{0.000001}\PY{p}{)}
\PY{p}{[}\PY{n}{x}\PY{p}{,}\PY{n}{ea}\PY{p}{,}\PY{n}{iter}\PY{p}{]}\PY{p}{=}\PY{n}{Jacobi\PYZus{}rel}\PY{p}{(}\PY{n}{A}\PY{p}{,}\PY{n}{b}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{,}\PY{l+m+mf}{0.000001}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
x =
3.0000
-2.5000
7.0000
ea =
1.8289e-07
2.1984e-08
2.3864e-08
iter = 8
x =
3.0000
-2.5000
7.0000
ea =
1.9130e-08
7.6449e-08
3.3378e-08
iter = 8
\end{Verbatim}
\subsection{Nonlinear Systems}\label{nonlinear-systems}
Consider two simultaneous nonlinear equations with two unknowns:
$x_{1}^{2}+x_{1}x_{2}=10$
$x_{2}+3x_{1}x_{2}^{2}=57$
Graphically, we are looking for the solution:
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}19}]:} \PY{n}{x11}\PY{p}{=}\PY{n+nb}{linspace}\PY{p}{(}\PY{l+m+mf}{0.5}\PY{p}{,}\PY{l+m+mi}{3}\PY{p}{)}\PY{p}{;}
\PY{n}{x12}\PY{p}{=}\PY{p}{(}\PY{l+m+mi}{10}\PY{o}{\PYZhy{}}\PY{n}{x11}\PY{o}{.\PYZca{}}\PY{l+m+mi}{2}\PY{p}{)}\PY{o}{./}\PY{n}{x11}\PY{p}{;}
\PY{n}{x22}\PY{p}{=}\PY{n+nb}{linspace}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{8}\PY{p}{)}\PY{p}{;}
\PY{n}{x21}\PY{p}{=}\PY{p}{(}\PY{l+m+mi}{57}\PY{o}{\PYZhy{}}\PY{n}{x22}\PY{p}{)}\PY{o}{.*}\PY{n}{x22}\PY{o}{.\PYZca{}}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{o}{/}\PY{l+m+mi}{3}\PY{p}{;}
\PY{n+nb}{plot}\PY{p}{(}\PY{n}{x11}\PY{p}{,}\PY{n}{x12}\PY{p}{,}\PY{n}{x21}\PY{p}{,}\PY{n}{x22}\PY{p}{)}
\PY{c}{\PYZpc{} Solution at x\PYZus{}1=2, x\PYZus{}2=3}
\PY{n+nb}{hold} \PY{n}{on}\PY{p}{;}
\PY{n+nb}{plot}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{3}\PY{p}{,}\PY{l+s}{\PYZsq{}}\PY{l+s}{o\PYZsq{}}\PY{p}{)}
\PY{n+nb}{xlabel}\PY{p}{(}\PY{l+s}{\PYZsq{}}\PY{l+s}{x\PYZus{}1\PYZsq{}}\PY{p}{)}
\PY{n+nb}{ylabel}\PY{p}{(}\PY{l+s}{\PYZsq{}}\PY{l+s}{x\PYZus{}2\PYZsq{}}\PY{p}{)}
\end{Verbatim}
\begin{center}
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{lecture_13_files/lecture_13_29_0.pdf}
\end{center}
{ \hspace*{\fill} \\}
\subsection{Newton-Raphson part II}\label{newton-raphson-part-ii}
Remember the first order approximation for the next point in a function
is:
$f(x_{i+1})=f(x_{i})+(x_{i+1}-x_{i})f'(x_{i})$
then, $f(x_{i+1})=0$ so we are left with:
$x_{i+1}=x_{i}-\frac{f(x_{i})}{f'(x_{i})}$
We can use the same formula, but now we have multiple dimensions so we
need to determine the Jacobian
$[J]=\left[ \begin{array}{cccc} \frac{\partial f_{1,i}}{\partial x_{1}} & \frac{\partial f_{1,i}}{\partial x_{2}} & \cdots & \frac{\partial f_{1,i}}{\partial x_{n}} \\ \frac{\partial f_{2,i}}{\partial x_{1}} & \frac{\partial f_{2,i}}{\partial x_{2}} & \cdots & \frac{\partial f_{2,i}}{\partial x_{n}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_{n,i}}{\partial x_{1}} & \frac{\partial f_{n,i}}{\partial x_{2}} & \cdots & \frac{\partial f_{n,i}}{\partial x_{n}} \\ \end{array} \right]$
$\left[ \begin{array}{c} f_{1,i+1} \\ f_{2,i+1} \\ \vdots \\ f_{n,i+1}\end{array} \right]= \left[ \begin{array}{c} f_{1,i} \\ f_{2,i} \\ \vdots \\ f_{n,i}\end{array} \right]+ \left[ \begin{array}{cccc} \frac{\partial f_{1,i}}{\partial x_{1}} & \frac{\partial f_{1,i}}{\partial x_{2}} & \cdots & \frac{\partial f_{1,i}}{\partial x_{n}} \\ \frac{\partial f_{2,i}}{\partial x_{1}} & \frac{\partial f_{2,i}}{\partial x_{2}} & \cdots & \frac{\partial f_{2,i}}{\partial x_{n}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_{n,i}}{\partial x_{1}} & \frac{\partial f_{n,i}}{\partial x_{2}} & \cdots & \frac{\partial f_{n,i}}{\partial x_{n}} \\ \end{array} \right] \left( \left[ \begin{array}{c} x_{i+1} \\ x_{i+1} \\ \vdots \\ x_{i+1}\end{array} \right]- \left[ \begin{array}{c} x_{1,i} \\ x_{2,i} \\ \vdots \\ x_{n,i}\end{array} \right]\right)$
\subsubsection{Solution is again in the form
Ax=b}\label{solution-is-again-in-the-form-axb}
$[J]([x_{i+1}]-[x_{i}])=-[f]$
so
$[x_{i+1}]= [x_{i}]-[J]^{-1}[f]$
\subsection{Example of Jacobian
calculation}\label{example-of-jacobian-calculation}
\subsubsection{Nonlinear springs supporting two masses in
series}\label{nonlinear-springs-supporting-two-masses-in-series}
Two springs are connected to two masses, with $m_1$=1 kg and
$m_{2}$=2 kg. The springs are identical, but they have nonlinear
spring constants, of $k_1$=100 N/m and $k_2$=-10 N/m
We want to solve for the final position of the masses ($x_1$ and
$x_2$)
$m_{1}g+k_{1}(x_{2}-x_{1})+k_{2}(x_{2}-x_{1})^{2}+k_{1}x_{1}+k_{2}x_{1}^{2}=0$
$m_{2}g-k_{1}(x_{2}-x_{1})-k_{2}(x_2-x_1)^{2}=0$
$J(1,1)=\frac{\partial f_{1}}{\partial x_{1}}=-k_{1}-2k_{2}(x_{2}-x_{1})+k_{1}+2k_{2}x_{1}$
$J(1,2)=\frac{\partial f_1}{\partial x_{2}}=k_{1}+2k_{2}(x_{2}-x_{1})$
$J(2,1)=\frac{\partial f_2}{\partial x_{1}}=k_{1}+2k_{2}(x_{2}-x_{1})$
$J(2,2)=\frac{\partial f_2}{\partial x_{2}}=-k_{1}-2k_{2}(x_{2}-x_{1})$
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor} }]:} \PY{n}{m1}\PY{p}{=}\PY{l+m+mi}{1}\PY{p}{;} \PY{c}{\PYZpc{} kg }
\PY{n}{m2}\PY{p}{=}\PY{l+m+mi}{2}\PY{p}{;} \PY{c}{\PYZpc{} kg}
\PY{n}{k1}\PY{p}{=}\PY{l+m+mi}{100}\PY{p}{;} \PY{c}{\PYZpc{} N/m}
\PY{n}{k2}\PY{p}{=}\PY{o}{\PYZhy{}}\PY{l+m+mi}{10}\PY{p}{;} \PY{c}{\PYZpc{} N/m\PYZca{}2}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}20}]:} \PY{k}{function}\PY{+w}{ }[f,J]\PY{p}{=}\PY{n+nf}{mass\PYZus{}spring}\PY{p}{(}x\PY{p}{)}
\PY{+w}{ }\PY{c}{\PYZpc{} Function to calculate function values f1 and f2 as well as Jacobian }
\PY{c}{\PYZpc{} for 2 masses and 2 identical nonlinear springs}
\PY{n}{m1}\PY{p}{=}\PY{l+m+mi}{1}\PY{p}{;} \PY{c}{\PYZpc{} kg }
\PY{n}{m2}\PY{p}{=}\PY{l+m+mi}{2}\PY{p}{;} \PY{c}{\PYZpc{} kg}
\PY{n}{k1}\PY{p}{=}\PY{l+m+mi}{100}\PY{p}{;} \PY{c}{\PYZpc{} N/m}
\PY{n}{k2}\PY{p}{=}\PY{o}{\PYZhy{}}\PY{l+m+mi}{10}\PY{p}{;} \PY{c}{\PYZpc{} N/m\PYZca{}2}
\PY{n}{g}\PY{p}{=}\PY{l+m+mf}{9.81}\PY{p}{;} \PY{c}{\PYZpc{} m/s\PYZca{}2}
\PY{n}{x1}\PY{p}{=}\PY{n}{x}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{)}\PY{p}{;}
\PY{n}{x2}\PY{p}{=}\PY{n}{x}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{;}
\PY{n}{J}\PY{p}{=}\PY{p}{[}\PY{o}{\PYZhy{}}\PY{n}{k1}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{o}{*}\PY{n}{k2}\PY{o}{*}\PY{p}{(}\PY{n}{x2}\PY{o}{\PYZhy{}}\PY{n}{x1}\PY{p}{)}\PY{o}{\PYZhy{}}\PY{n}{k1}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{o}{*}\PY{n}{k2}\PY{o}{*}\PY{n}{x1}\PY{p}{,}\PY{n}{k1}\PY{o}{+}\PY{l+m+mi}{2}\PY{o}{*}\PY{n}{k2}\PY{o}{*}\PY{p}{(}\PY{n}{x2}\PY{o}{\PYZhy{}}\PY{n}{x1}\PY{p}{)}\PY{p}{;}
\PY{n}{k1}\PY{o}{+}\PY{l+m+mi}{2}\PY{o}{*}\PY{n}{k2}\PY{o}{*}\PY{p}{(}\PY{n}{x2}\PY{o}{\PYZhy{}}\PY{n}{x1}\PY{p}{)}\PY{p}{,}\PY{o}{\PYZhy{}}\PY{n}{k1}\PY{o}{\PYZhy{}}\PY{l+m+mi}{2}\PY{o}{*}\PY{n}{k2}\PY{o}{*}\PY{p}{(}\PY{n}{x2}\PY{o}{\PYZhy{}}\PY{n}{x1}\PY{p}{)}\PY{p}{]}\PY{p}{;}
\PY{n}{f}\PY{p}{=}\PY{p}{[}\PY{n}{m1}\PY{o}{*}\PY{n}{g}\PY{o}{+}\PY{n}{k1}\PY{o}{*}\PY{p}{(}\PY{n}{x2}\PY{o}{\PYZhy{}}\PY{n}{x1}\PY{p}{)}\PY{o}{+}\PY{n}{k2}\PY{o}{*}\PY{p}{(}\PY{n}{x2}\PY{o}{\PYZhy{}}\PY{n}{x1}\PY{p}{)}\PY{o}{.\PYZca{}}\PY{l+m+mi}{2}\PY{o}{\PYZhy{}}\PY{n}{k1}\PY{o}{*}\PY{n}{x1}\PY{o}{\PYZhy{}}\PY{n}{k2}\PY{o}{*}\PY{n}{x1}\PYZca{}\PY{l+m+mi}{2}\PY{p}{;}
\PY{n}{m2}\PY{o}{*}\PY{n}{g}\PY{o}{\PYZhy{}}\PY{n}{k1}\PY{o}{*}\PY{p}{(}\PY{n}{x2}\PY{o}{\PYZhy{}}\PY{n}{x1}\PY{p}{)}\PY{o}{\PYZhy{}}\PY{n}{k2}\PY{o}{*}\PY{p}{(}\PY{n}{x2}\PY{o}{\PYZhy{}}\PY{n}{x1}\PY{p}{)}\PY{o}{.\PYZca{}}\PY{l+m+mi}{2}\PY{p}{]}\PY{p}{;}
\PY{k}{end}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}21}]:} \PY{p}{[}\PY{n}{f}\PY{p}{,}\PY{n}{J}\PY{p}{]}\PY{p}{=}\PY{n}{mass\PYZus{}spring}\PY{p}{(}\PY{p}{[}\PY{l+m+mi}{1}\PY{p}{,}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
f =
-190.19
129.62
J =
-200 120
120 -120
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}22}]:} \PY{n}{x0}\PY{p}{=}\PY{p}{[}\PY{l+m+mi}{3}\PY{p}{;}\PY{l+m+mi}{2}\PY{p}{]}\PY{p}{;}
\PY{p}{[}\PY{n}{f0}\PY{p}{,}\PY{n}{J0}\PY{p}{]}\PY{p}{=}\PY{n}{mass\PYZus{}spring}\PY{p}{(}\PY{n}{x0}\PY{p}{)}\PY{p}{;}
\PY{n}{x1}\PY{p}{=}\PY{n}{x0}\PY{o}{\PYZhy{}}\PY{n}{J0}\PY{o}{\PYZbs{}}\PY{n}{f0}
\PY{n}{ea}\PY{p}{=}\PY{p}{(}\PY{n}{x1}\PY{o}{\PYZhy{}}\PY{n}{x0}\PY{p}{)}\PY{o}{./}\PY{n}{x1}
\PY{p}{[}\PY{n}{f1}\PY{p}{,}\PY{n}{J1}\PY{p}{]}\PY{p}{=}\PY{n}{mass\PYZus{}spring}\PY{p}{(}\PY{n}{x1}\PY{p}{)}\PY{p}{;}
\PY{n}{x2}\PY{p}{=}\PY{n}{x1}\PY{o}{\PYZhy{}}\PY{n}{J1}\PY{o}{\PYZbs{}}\PY{n}{f1}
\PY{n}{ea}\PY{p}{=}\PY{p}{(}\PY{n}{x2}\PY{o}{\PYZhy{}}\PY{n}{x1}\PY{p}{)}\PY{o}{./}\PY{n}{x2}
\PY{p}{[}\PY{n}{f2}\PY{p}{,}\PY{n}{J2}\PY{p}{]}\PY{p}{=}\PY{n}{mass\PYZus{}spring}\PY{p}{(}\PY{n}{x2}\PY{p}{)}\PY{p}{;}
\PY{n}{x3}\PY{p}{=}\PY{n}{x2}\PY{o}{\PYZhy{}}\PY{n}{J2}\PY{o}{\PYZbs{}}\PY{n}{f2}
\PY{n}{ea}\PY{p}{=}\PY{p}{(}\PY{n}{x3}\PY{o}{\PYZhy{}}\PY{n}{x2}\PY{p}{)}\PY{o}{./}\PY{n}{x3}
\PY{n}{x}\PY{p}{=}\PY{n}{x3}
\PY{k}{for} \PY{n}{i}\PY{p}{=}\PY{l+m+mi}{1}\PY{p}{:}\PY{l+m+mi}{3}
\PY{n}{xold}\PY{p}{=}\PY{n}{x}\PY{p}{;}
\PY{p}{[}\PY{n}{f}\PY{p}{,}\PY{n}{J}\PY{p}{]}\PY{p}{=}\PY{n}{mass\PYZus{}spring}\PY{p}{(}\PY{n}{x}\PY{p}{)}\PY{p}{;}
\PY{n}{x}\PY{p}{=}\PY{n}{x}\PY{o}{\PYZhy{}}\PY{n}{J}\PY{o}{\PYZbs{}}\PY{n}{f}\PY{p}{;}
\PY{n}{ea}\PY{p}{=}\PY{p}{(}\PY{n}{x}\PY{o}{\PYZhy{}}\PY{n}{xold}\PY{p}{)}\PY{o}{./}\PY{n}{x}
\PY{k}{end}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
x1 =
-1.5142
-1.4341
ea =
2.9812
2.3946
x2 =
0.049894
0.248638
ea =
31.3492
6.7678
x3 =
0.29701
0.49722
ea =
0.83201
0.49995
x =
0.29701
0.49722
ea =
0.021392
0.012890
ea =
1.4786e-05
8.9091e-06
ea =
7.0642e-12
4.2565e-12
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}23}]:} \PY{n}{x}
\PY{n}{X0}\PY{p}{=}\PY{n+nb}{fsolve}\PY{p}{(}\PY{p}{@}\PY{p}{(}\PY{n}{x}\PY{p}{)} \PY{n}{mass\PYZus{}spring}\PY{p}{(}\PY{n}{x}\PY{p}{)}\PY{p}{,}\PY{p}{[}\PY{l+m+mi}{3}\PY{p}{;}\PY{l+m+mi}{5}\PY{p}{]}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
x =
0.30351
0.50372
X0 =
0.30351
0.50372
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}26}]:} \PY{p}{[}\PY{n}{X}\PY{p}{,}\PY{n}{Y}\PY{p}{]}\PY{p}{=}\PY{n+nb}{meshgrid}\PY{p}{(}\PY{n+nb}{linspace}\PY{p}{(}\PY{l+m+mi}{0}\PY{p}{,}\PY{l+m+mi}{10}\PY{p}{,}\PY{l+m+mi}{20}\PY{p}{)}\PY{p}{,}\PY{n+nb}{linspace}\PY{p}{(}\PY{l+m+mi}{0}\PY{p}{,}\PY{l+m+mi}{10}\PY{p}{,}\PY{l+m+mi}{20}\PY{p}{)}\PY{p}{)}\PY{p}{;}
\PY{p}{[}\PY{n}{N}\PY{p}{,}\PY{n}{M}\PY{p}{]}\PY{p}{=}\PY{n+nb}{size}\PY{p}{(}\PY{n}{X}\PY{p}{)}\PY{p}{;}
\PY{n}{F}\PY{p}{=}\PY{n+nb}{zeros}\PY{p}{(}\PY{n+nb}{size}\PY{p}{(}\PY{n}{X}\PY{p}{)}\PY{p}{)}\PY{p}{;}
\PY{k}{for} \PY{n}{i}\PY{p}{=}\PY{l+m+mi}{1}\PY{p}{:}\PY{n}{N}
\PY{k}{for} \PY{n}{j}\PY{p}{=}\PY{l+m+mi}{1}\PY{p}{:}\PY{n}{M}
\PY{p}{[}\PY{n}{f}\PY{p}{,}\PY{o}{\PYZti{}}\PY{p}{]}\PY{p}{=}\PY{n}{mass\PYZus{}spring}\PY{p}{(}\PY{p}{[}\PY{n}{X}\PY{p}{(}\PY{n}{i}\PY{p}{,}\PY{n}{j}\PY{p}{)}\PY{p}{,}\PY{n}{Y}\PY{p}{(}\PY{n}{i}\PY{p}{,}\PY{n}{j}\PY{p}{)}\PY{p}{]}\PY{p}{)}\PY{p}{;}
\PY{n}{F1}\PY{p}{(}\PY{n}{i}\PY{p}{,}\PY{n}{j}\PY{p}{)}\PY{p}{=}\PY{n}{f}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{)}\PY{p}{;}
\PY{n}{F2}\PY{p}{(}\PY{n}{i}\PY{p}{,}\PY{n}{j}\PY{p}{)}\PY{p}{=}\PY{n}{f}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{;}
\PY{k}{end}
\PY{k}{end}
\PY{n+nb}{mesh}\PY{p}{(}\PY{n}{X}\PY{p}{,}\PY{n}{Y}\PY{p}{,}\PY{n}{F1}\PY{p}{)}
\PY{n+nb}{xlabel}\PY{p}{(}\PY{l+s}{\PYZsq{}}\PY{l+s}{x\PYZus{}1\PYZsq{}}\PY{p}{)}
\PY{n+nb}{ylabel}\PY{p}{(}\PY{l+s}{\PYZsq{}}\PY{l+s}{x\PYZus{}2\PYZsq{}}\PY{p}{)}
\PY{n+nb}{colorbar}\PY{p}{(}\PY{p}{)}
\PY{n+nb}{figure}\PY{p}{(}\PY{p}{)}
\PY{n+nb}{mesh}\PY{p}{(}\PY{n}{X}\PY{p}{,}\PY{n}{Y}\PY{p}{,}\PY{n}{F2}\PY{p}{)}
\PY{n+nb}{xlabel}\PY{p}{(}\PY{l+s}{\PYZsq{}}\PY{l+s}{x\PYZus{}1\PYZsq{}}\PY{p}{)}
\PY{n+nb}{ylabel}\PY{p}{(}\PY{l+s}{\PYZsq{}}\PY{l+s}{x\PYZus{}2\PYZsq{}}\PY{p}{)}
\PY{n+nb}{colorbar}\PY{p}{(}\PY{p}{)}
\end{Verbatim}
\begin{center}
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{lecture_13_files/lecture_13_36_0.pdf}
\end{center}
{ \hspace*{\fill} \\}
\begin{center}
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{lecture_13_files/lecture_13_36_1.pdf}
\end{center}
{ \hspace*{\fill} \\}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor} }]:}
\end{Verbatim}
% Add a bibliography block to the postdoc
\end{document}