From 9d98bdab973da301d4adb7f60021ce106a43fb0d Mon Sep 17 00:00:00 2001 From: "Ryan C. Cooper" Date: Tue, 21 Feb 2017 12:57:11 -0500 Subject: [PATCH] update HW4 --- HW4/README.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/HW4/README.md b/HW4/README.md index 3cacedc..ed5ca61 100644 --- a/HW4/README.md +++ b/HW4/README.md @@ -11,17 +11,17 @@ heading `# Homework #4` in your `README.md` file ![Collar-mass on an inclined rod](collar_mass.png) - The spring is unstretched when $x_{C}=0.5$. The potential energy due to gravity is: + The spring is unstretched when x_C=0.5 m. The potential energy due to gravity is: - $PE_{g}=m x_{C}g\sin\theta$ + PE_g=m x_C*g*sin(theta) where m=0.5 kg, and g is the acceleration due to gravity, and the potential energy due to the spring is: - $PE_{s}=1/2K (\Delta L)^{2}$ + PE_s=1/2*K *(DL)^2$ - where $\Delta L = 0.5 - \sqrt{0.5^{2}+(0.5-x_{C})^{2}}$ + where DL = 0.5 - sqrt(0.5^2+(0.5-x_C)^2) b. Use the `goldmin.m` function to solve for the minimum potential energy at xc when theta=0. *create an anonymous function with `@(x) collar_potential_energy(x,theta)` in