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A widely used technique for coordinate-based meta-analysis of neuroimaging data is activation likelihood es-
timation (ALE), which determines the convergence of foci reported from different experiments. ALE analysis
involves modelling these foci as probability distributions whose width is based on empirical estimates of the
spatial uncertainty due to the between-subject and between-template variability of neuroimaging data. ALE
results are assessed against a null-distribution of random spatial association between experiments, resulting
in random-effects inference. In the present revision of this algorithm, we address two remaining drawbacks
of the previous algorithm. First, the assessment of spatial association between experiments was based on a
highly time-consuming permutation test, which nevertheless entailed the danger of underestimating the
right tail of the null-distribution. In this report, we outline how this previous approach may be replaced by
a faster and more precise analytical method. Second, the previously applied correction procedure, i.e. control-
ling the false discovery rate (FDR), is supplemented by new approaches for correcting the family-wise error
rate and the cluster-level significance. The different alternatives for drawing inference on meta-analytic re-
sults are evaluated on an exemplary dataset on face perception as well as discussed with respect to their
methodological limitations and advantages. In summary, we thus replaced the previous permutation algo-
rithm with a faster and more rigorous analytical solution for the null-distribution and comprehensively ad-
dress the issue of multiple-comparison corrections. The proposed revision of the ALE-algorithm should
provide an improved tool for conducting coordinate-based meta-analyses on functional imaging data.
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Introduction

Over the last decades, neuroimaging research has produced a vast
amount of data localising the neural effects of cognitive and sensory
processes in the brain of both healthy and diseased populations. In
spite of their power to delineate the functional organisation of the
human brain, however, neuroimaging also carries several limitations.
The most important among these are the rather small sample sizes in-
vestigated, the consequently low reliability (Raemaekers et al., 2007)
and the inherent subtraction logic which is only sensitive to differ-
ences between conditions (Price et al., 2005). Consequently, pooling
data from different experiments, which investigate similar questions
but employ variations of the experimental design, has become an im-
portant task. Such meta-analyses allow the identification of brain re-
gions' locations that show a consistent response across experiments,
collectively involving hundreds of subjects and numerous implemen-
tations of a particular paradigm (Laird et al., 2009a, 2009b).
Community-wide standards of spatial normalisation and the report-
ing of peak activation locations in stereotaxic coordinates allow re-
searchers to compare results across experiments when the primary
data are unavailable or difficult to obtain (Poldrack et al., 2008).

Activation likelihood estimation (ALE; Laird et al., 2005; Turkel-
taub et al., 2002) is probably the most common algorithm for coordi-
nate-based meta-analyses (informative review see Wager et al.,
2007b). The ALE algorithm is readily available to the neuroimaging
community in form of the GingerALE desktop application (http://
brainmap.org/ale). This approach treats activation foci reported in
neuroimaging studies not as single points but as spatial probability
distributions centred at the given coordinates. ALE maps are then
obtained by computing the union of activation probabilities for each
voxel. As in other algorithms for quantitative meta-analysis, the differ-
entiation between true convergence of foci and random clustering
(i.e., noise) is tested by a permutation procedure (Nichols and Haya-
saka, 2003). Recently, we have proposed a revised algorithm for ALE
analysis (Eickhoff et al., 2009), which models the spatial uncertainty
– and thus probability distribution – of each focus using an estimation
of the inter-subject and inter-laboratory variability typically observed
in neuroimaging experiments, rather than using a pre-specified full-
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width half maximum (FWHM) for all experiments as originally pro-
posed. In addition, it limits the meta-analysis to an anatomically con-
strained space specified by a grey matter mask and includes a new
method of inference that calculates the above-chance clustering be-
tween experiments (i.e., random-effects analysis), rather than be-
tween foci (i.e., fixed-effects analysis).

An alternative approach to coordinate-based meta-analysis is ker-
nel density analysis (KDA (Wager and Smith, 2003)). Both algo-
rithms (KDE and ALE) are based on the idea of delineating those
locations in the brain where the coordinates reported for a particular
paradigm or comparison show an above-chance convergence. How-
ever, whereas ALE investigates where the location probabilities
reflecting the spatial uncertainty associated with the foci of each ex-
periment overlap in different voxels, KDE tests how many foci are
reported close to any individual voxel. Recently, an algorithm for
random-effects (RDFX) inference on KDE (termed multi-level kernel
density estimation, MKDE) has been proposed (Wager et al., 2007b)
which rests on a similar concept as the new random effects approach
for ALE meta-analyses (Eickhoff et al., 2009). Both are based on sum-
marising all foci reported for any given study in a single image [the
“modelled activation” (MA) map in ALE and “comparison indicator
maps” (CIM) in MKDE]. These are then combined across studies,
and inference is subsequently sought on those voxels where MA
maps (ALE) or CIMs (MKDE) overlap stronger as would be expected
if there were a random spatial arrangement, i.e., no correspondence
between studies.

The null-distributions for this inference on spatially continuous
statistical maps computed by non-linear operations are estimated in
both algorithms by using permutation procedures. More precisely,
MDKE randomly redistributes the cluster centres throughout the
grey matter of the brain, performs the same analysis as computed
for the real data and uses the ensuing peak heights to derive FWE cor-
rected voxel-level thresholds. This approach to statistical inference in
voxel-wise meta-analysis data has the major advantage that the esti-
mated null-distribution will reflect the spatial continuity of the statis-
tical field of interest without requiring an exact parameterisation of
the (non-linear) nature of its properties. That is, algorithms based
on random relocation of foci within each experiment, generation of
summary images per experiment and quantification of the conver-
gence across these may empirically provide a good estimation on
the distribution of statistical features of interest such as cluster size
above a given threshold or maximum peak height (Wager et al.,
2007b). Here we use this approach to derive a null-distribution of
these two measures against which the results of the performed ALE
analysis can then be compared for providing FWE or cluster-level cor-
rected statistical inference.

A new approach to coordinate-based meta-analysis has very re-
cently been proposed as signed difference map analysis (SDM;
Radua et al., 2010; Radua and Mataix-Cols, 2009). SDM sums the
voxel-wise activation probabilities of foci modelled as 3D Gaussian
distributions like ALE, instead of counting closely activating experi-
ments like MKDE. As opposed to ALE and MKDE, SDM emphasises
foci that were derived from conservatively corrected analyses. Similar
to MKDE, it avoids too high probability values through neighbouring
foci in a same experiment by limiting maximum values. This feature
has also very recently been introduced to ALE (Turkeltaub et al., in
press) and was incorporated in the present work. Another novel fea-
ture of SDM consists in holding positive and negative values in a same
map which prevents spurious overlap between those two categories
of localization information rarely occurring in ALE. Analogous to
MKDE and unrevised ALE implementations, significant convergence
is distinguished from noise by computing a whole-brain null-distri-
bution using a permutation procedure. Finally, SDM corrects results
by FDR, unlike contemporary variants of ALE and MKDE. Taken to-
gether, ALE, MKDE and SDM all represent suitable methods for coor-
dinate-based meta-analysis.
In the present report, we will address two remaining drawbacks of
the widely used ALE algorithm. First, the null-distribution for statisti-
cal inference, reflecting a random spatial association between exper-
iments is currently based on a permutation procedure. This approach,
which has been part of all meta-analysis algorithms proposed up to
now, however, has two disadvantages. First, drawing a sufficient esti-
mate of the null-distribution may be rather time-consuming, given
that a large number of permutations are required to sufficiently re-
flect the possible associations between experiments. If the test is un-
derpowered, however, experimental ALE-values may exceed those
observed under the null-distribution, indicating an insufficient esti-
mation of its upper tail. Second, statistical inference on the ensuing
p- or Z-maps is currently based on either uncorrected thresholds or
correction for multiple comparisons using the false discovery rate
(FDR) approach (Genovese et al., 2002). Whilst using uncorrected
thresholds provides no protection against false positives in a situation
of multiple comparisons, FDR is likewise not the optimal approach. It
has rather been noted that in cases where the underlying signal is
continuous (such as in neuroimaging meta-analyses), controlling
the false discovery rate is not equivalent to controlling the false dis-
covery rate of activations (Chumbley and Friston, 2009). FDR cor-
rected inference is therefore not appropriate for inferences on the
topological features (regions of activation) of a statistical map as de-
rived from ALE meta-analysis. Finally, in order to avoid spurious clus-
ters consisting of only a few voxels, both of these procedures are
commonly combined with an (arbitrary) extent threshold, suppres-
sing clusters that are smaller than, e.g., 50 contiguous supra-thresh-
old voxels. However, this subjective approach neither corresponds
to statistical testing nor allows inference on the significance of re-
gional activations. To overcome these limitations and to provide a
more valid framework for ALE meta-analyses, we here present an an-
alytical approach for deriving the null-distribution reflecting a ran-
dom spatial association between experiments and propose
algorithms for family-wise error correction and cluster-level infer-
ence on ALE data.

Materials and methods

Revised approach for computing the null-distribution

Objective
Activation likelihood estimation (ALE) meta-analysis aims at de-

termining above-chance convergence of activation probabilities be-
tween experiments (i.e., not between foci). To this end, ALE seeks to
refute the null-hypothesis that the foci of experiments are spread uni-
formly throughout the brain. More specifically, ALE delineates where
in the brain the convergence across all included imaging studies is
higher than it would be expected if results were independently dis-
tributed (Eickhoff et al., 2009). All foci reported for a given experi-
ment are modelled as Gaussian probability distributions whose
width is based on an empirically derived modal of spatial uncertainty
associated with neuroimaging foci (Eickhoff et al., 2009). For each
voxel within a broadly defined grey matter shell [N10% probability
for grey matter, based on the ICBM tissue probability maps (Evans
et al., 1994)] the information provided by the individual foci is then
merged by taking the voxel-wise union of their probability values.
Hereby, one “modelled activation” (MA) map is computed by merg-
ing all the activation foci's probability distributions reported in a
given experiment. TheMAmaps then contain for each voxel the prob-
ability of an activation being located at exactly that position. The MA
can hence be conceptualised as a summary of the results reported in
that experiment taking into account the spatial uncertainty associat-
ed with the reported coordinates. ALE scores are then calculated on
a voxel-by-voxel basis by taking the union of these individual MA
maps. The possibility of multiple foci from a single experiment jointly
influencing the MA value of a single voxel, i.e., within-experiment
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effects, is controlled as recently proposed (Turkeltaub et al., in press).
Here, voxel-wise MA values are computed by taking the maximum
probability associated with any one focus reported by the given ex-
periment. This always corresponds to the probability of the focus
with the shortest distance to the voxel in question.

Spatial inference onmeta-analysis aims at identifying those voxels
where the convergence across experiments (i.e., MA-maps) is higher
than expected if the results were independently distributed. Impor-
tantly, this independence under the null-distribution only pertains
to the relationship between experiments. In contrast, the spatial rela-
tionship between the foci reported for any given experiment is con-
sidered a given property captured in the MA-map. This distinction
entails the difference between fixed-effects (convergence between
foci as in earlier meta-analysis algorithms) to random-effects (con-
vergence between experiments) inference. It is important to note
that our statistical approach tests random-effects rather than fixed-
effects. Only the former allows generalisation of the results beyond
the analysed experiments rather than only to experiments considered
in the analysis (Penny and Holmes, 2003; Wager et al., 2007b).
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Fig. 1. Overview on the histogram integration procedure used for computing the null-distrib
the modelled activation maps of two experiments included in the exemplary face processi
these two experiments. The lower panel shows the histogram resulting from the integration
for observing the different ALE scores (x-axis) when combining voxels from the two mode
Previous algorithm
To enable spatial inference on these ALE scores, random conver-

gence (i.e., noise) needs to be distinguished from locations of true con-
vergence between experiments. Therefore, an empirical null-distribution
is computed non-parametrically by a permutation procedure. This step
is analogous to other methods for coordinate-based meta-analysis, in-
cluding multilevel kernel density analysis (MKDA; Wager et al.,
2007b) and signed differential mapping (SDM; Radua et al., 2010). In
practice, this approach consists of picking a random voxel within the
grey-matter mask from the MA map of experiment 1, then picking a
(independently sampled) random grey matter voxel from the MA
map of experiment 2, experiment 3, etc. until 1 voxel was selected
from eachMAmap. The union of the respective activation probabilities,
which were sampled from random, spatially independent locations, is
then computed in the samemanner as done for the meta-analysis itself
in order to yield an ALE score under the null-hypothesis of spatial inde-
pendence. This ALE score is recorded and the procedure iterated by
selecting a new set of random locations and computing another ALE
score under the null-distribution.
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Analytical solution — concept
The key idea behind the proposed solution is to abandon the per-

mutation procedure in favour of a non-linear histogram integration,
which could be described as a weighted convolution (cf. Hope,
1968). To this end, the computational unit of the revised algorithm
is not distinct voxels but distinct MA-values. That is, rather than con-
sidering each voxel individually, all voxels showing the same MA-
value in a particular experiment are joined into and represented as
a single histogram-bin. The entire histogram thus holds the occur-
rences of all possible MA-values (including those that are zero (voxels
not in the vicinity of any reported focus)) in form of bins, summaris-
ing the MA-map without its spatial information. These histograms are
then successively merged throughout the different experiments con-
sidered in the meta-analysis to derive the null-distribution of ALE-
values under spatial independence.

This approach takes advantage of the fact that the number of
unique MA-values in each map is considerably smaller than the num-
ber of voxels, i.e., that many voxels show the same MA-value. This
property is illustrated by an assessment of the MA-maps resulting
from more than 5500 experiments contained in the BrainMap data-
base (www.brainmap.org; Fox and Lancaster, 2002; Laird et al.,
2005). Our assessment of the BrainMap results archive showed that
on average 93.6% of all voxels in the MA-maps had a value of zero.
That is, across all experiments, only 6.4% of the grey-matter voxels
have a non-zero probability of an activation being located at that po-
sition. Moreover, this analysis also revealed that the median number
of unique values in the MA-maps derived from these 5500 experi-
ments was only 586. These numbers indicate the substantial advan-
tage in terms of parsimony achieved by pooling MA-values into
histogram-bins for further analysis rather than considering each
voxel individually. The proposed algorithm thus represents a special
case of a permutation test, where each the pool of values that may
be drawn from each individual experiment may be represented parsi-
moniously by the probabilities for the (limited number of) different
values. This allows to analytically compute rather than to empirically
collect the probabilities of possible outcomes in the permutation test.

Analytical solution — algorithm
In order to compute the null-distribution of ALE values under spa-

tial independence, each MA-map was first converted into a histogram
of observed values (Fig. 1, top). The bin width of these histograms
was set to 0.00001 (unit being MA-values, i.e., activation probabili-
ties). Each histogram was then normalised to a sum of one, rendering
the histogram-values probabilities of observing the MA-value corre-
sponding to this particular bin in the respective MA-map. The histo-
gram of the null distribution was initialised to correspond to a flat
prior with all probabilities being zero. In order to derive final histo-
gram of ALE-values under the null-hypothesis, the histograms corre-
sponding to the MA-maps of the individual experiments were then
successively combined. That is, initially, an ALE-histogram was com-
puted by integrating the histograms of the first two experiments (cf.
below, Fig. 1). The resulting ALE-histogram is then merged with the
normalised histogram representing the MA-values of experiment
three. Again, the output histogram is initialised to contain only
zeros and the filled as described below. The histogram resulting
from the successive integration of the histograms representing the
MA-maps of the first three experiments is combined in the same fash-
ion with the one of experiment four and so on. As this integration ful-
fils associativity like any multiplication, the order of which the MA
maps are combined is irrelevant to this calculation. Once all experi-
ments are considered, the final ALE-histogram representing the
null-hypothesis for statistical inference is derived.

In this context, it is important to note MA- and ALE-values are
conceptually identical, as both represent the probability of an activa-
tion being present at a given voxel. This equivalence is highlighted by
the fact that the probability information of the individual foci
reported in a particular experiment is combined into an MA-map in
exactly the same fashion (computing the voxel-wise union of proba-
bilities), as MA-maps from different experiments are combined into
an ALE-map. The difference in nomenclature thus purely reflects the
difference between data pertaining to a single experiment (MA-
values) and data computed by the combination of information from
different individual experiments (ALE-values).

Analytical solution — implementation
As noted above, all bins of the output-histogram were initialised

to a have a probability of zero. The integration algorithm used for
combining two MA- or ALE-histograms (here denoted a and b) into
a joint (output) histogram c involves cycling through all non-zero
bins of both histograms. Each pair of bins is then combined according
to the following algorithm. Let bj be the current bin, i.e., MA- or ALE-
value, of the first histogram and pj

a the corresponding probability.
Likewise, bk denotes the current bin, i.e., MA- or ALE-value, of the sec-
ond histogram and pk

b the corresponding probability.
The ALE-value l that would be observed in the resulting ALE-map c

when voxels drawn from these two bins, bj and bk, are combined is
given by the union of these, i.e., l=1−[(1−bj)∗(1−bk)], whilst its
corresponding bin in the output-histogram is bl (Fig. 1, middle). The
probability pl of these two bins being conjointly present in a random
association, e.g., when drawing voxels at random from both maps, is
given by pj

a∗pkb. This probability pl can be conceptualised as the prob-
ability of drawing by chance a voxel from MA- or ALE-map a that has
a value of bj, and simultaneously drawing a voxel from MA- or ALE-
map b that has a value of bk. As a final step, the probability pl

c for
the bin bl in the output-histogram is incremented by the observed
probability, i.e., plc=pl

c+pl (Fig. 1, bottom). This process is continued
until all non-zero bins of both input-histograms (representing the re-
sult of the previous integration and the next MA-map, respectively)
have been combined with each other. The resulting output-
histogram now represents the probabilistic distribution of ALE-
values resulting from a random combination of the ALE- or MA-
maps represented by the two input-histograms, initially derived
from two experiments' sets of activation foci.

Revised approach for multiple-comparison corrected inference

Voxel-level inference
In spite of the severe multiple-comparison problem, uncorrected

voxel-level inference has long been common in functional neuroim-
aging (Genovese et al., 2002; Holmes et al., 1996) and is also
employed in quantitative meta-analyses since its very beginnings
(Laird et al., 2005; Turkeltaub et al., 2002). Inference is performed
on the experimental ALE-map computed by taking the voxel-wise,
i.e., spatially contingent, union of the MA-maps representing the
assessed experiments. Here, the p-value associated with a particular
experimental ALE-score is given by the probability of observing this
or a more extreme value under the null-hypothesis of spatial inde-
pendence. In previous implementations based on random sampling
techniques, it was provided by the proportion of randomly drawn
ALE-scores being at least equal to the experimental ALE-score. In
the current algorithm, it is equivalent to the right-sided integral of
the null-distribution computed as described above. In other words,
computing the p-value of a particular ALE-score involves identifying
the corresponding bin in the final histogram reflecting the analytical
null-distribution and summing all probability values from this bin to
the bin corresponding to the maximum ALE-score observed under
the null-distribution (which is equivalent to the union of the highest
value observed in each MA-map).

False-discovery rate correction for multiple comparisons
Correction for multiple comparisons using the false discovery rate

(FDR) procedure has been used for both fMRI activation data

http://www.brainmap.org
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(Genovese et al., 2002) and meta-analyses thereof (Laird et al., 2005).
The key idea behind FDR correction is to choose a threshold in such a
manner that on average no more than a pre-specified proportion of
test statistics declared significant can be expected to be false posi-
tives. As noted in the Introduction, the use of FDR correction has
been questioned in the context of (spatially smooth) functional imag-
ing data. Nevertheless, since FDR is widely used in neuroimaging and
has been used previously for inference on ALE meta-analyses, its ap-
plication with the revised version of the algorithm has been included
for comparison. Importantly, the statistical (p-value) threshold need-
ed to control the false-discovery rate at a particular level solely de-
pends on the number of parallel tests, i.e., analysed voxels, and the
distribution of statistical values observed for these. This implies that
FDR correction is readily feasible for meta-analyses performed using
the analytical null-distribution detailed above and benefit from the
more precise estimation of p-values for higher ALE-scores.

Family-wise error rate correction for multiple comparisons
In the context of neuroimaging data, correcting for the family-

wise error rate (FWE) in statistical inference is usually achieved by
referring to Gaussian random field theory. These approaches consider
a statistical parametric map to be a lattice approximation to an under-
lying continuous process. Once the smoothness of the underlying
field has been estimated, corrected inference becomes possible.
Here, a FWE corrected inference at pb0.05 corresponds to choosing
a threshold which is exceeded in no more than 5% of random statisti-
cal fields of the same size and smoothness as the assessed image. In
fMRI and PET analyses, the smoothness of the underlying Gaussian
field is conventionally estimated by assessing the residuals of the sta-
tistical model under the assumption of normally distributed error. In
meta-analyses, however, there is no equivalent to the residuals of a
general linear model. Moreover, in spite of the fact that activation
foci are modelled by Gaussians, a Gaussian distribution of the statisti-
cal field cannot be assumed due to the non-linear operation of com-
puting the ALE-scores. A parametric computation of family-wise
error corrected thresholds via Gaussian random field theory for infer-
ence on ALE meta-analyses is hence not feasible.

Nevertheless, given that the number of voxels and the entire null-
distribution of the statistical field is known, family-wise error cor-
rected thresholds can be computed without reference to the behav-
iour of random fields. It should be reiterated, that a threshold t0 is
considered to correct for multiple comparisons in a set of N (number
of voxels) test statistics by controlling the family-wise error rate at
αFWE, if under the null-distribution the proportion of random sets
containing N test statistics that feature at least one element above
αo is less or equal to αFWE. In other words, the threshold αo should
be chosen such that the chance of observing a statistic above αo in a
set of N realisations of the null-distribution is less than αFWE.

In practice, an upper bound on αo can be derived from the follow-
ing approach, which is based on the null-distribution histogram c
computed as defined above. This approach yields an upper bound
rather than the precise value since the calculation below is based on
the assumption of independent realisations of the null-distribution
across voxels. However, ALE-scores are spatially correlated; the effec-
tive number of observations and the corrected threshold should
therefore be lower than this upper bound derived from the assump-
tion of independence. For a particular ALE threshold αo, correspond-
ing to the bin bαo, the chance of observing this value or a more extreme
one under the null-distribution is given by Pα0

=∑ i= bt0

max(b)pi
c,

i.e., the sum of the probability for this bin and those for all bins cor-
responding to higher ALE-scores. In turn, the probability of observing
at least one ALE-score equal or higher than t0 in a set of N random
independent realisations is given by 1−(1−Pt0)

N. The choice of a
family-wise error corrected threshold therefore comes down to
identifying the smallest αo such that 1−(1−∑ i= bt0

max(b)pi
c)N is

less or equal to αFWE.
Note that in contrast to random field based approaches, this cor-
rection does not consider the signal to be continuous but rather as-
sumes N (number of voxels) independent realisations of the null-
distribution. Due to the continuous nature of the data, however, the
true number of independent realisations will be substantially lower,
reducing the number of multiple comparisons and thus the exponent
in the formula stated above. The threshold computed by the approach
outlined here can hence be considered the upper bound and hence a
conservative estimate to a family-wise error correction of ALE meta-
analysis data.

As an alternative to this conservative analytical approach to FWE
thresholding, family-wise error corrected thresholds can also be de-
rived from Monte-Carlo analysis as described in detail below in the
section “Cluster-level inference — implementation”. The basic idea
behind this approach is to simulate random datasets, i.e., “experi-
ments”, with the same characteristics as the real data, compute ALE-
scores for these random experiments record the highest ALE-score
and iterate the process several times. The FWE corrected threshold
for the actual ALE analysis is then given by the ALE-score, which is
only exceeded in 5% of the ALE maps based on random data.

Cluster-level inference — concept
The idea behind cluster-level inference on neuroimaging data is to

perform topological inference on the statistical maps to be assessed. It
addresses a problem that is unique to inference on images such as
brain activation maps, in which the underlying signal is continuous,
i.e., does not have a compact support. Here inference is strictly only
possible on topological features of this image, such as clusters above
an ad-hoc threshold. Cluster-level inference does therefore not con-
sider the height of a particular voxel or peak, but rather the spatial ex-
tent of the super-threshold clusters treated as single topological
entity. In this context, it is important to appreciate that cluster-level
inference stand in stark contrast to FDR and voxel-level FDR correc-
tion as described above by operating on sets of voxels rather than in-
dividual voxels (cf. Chumbley and Friston, 2009).

In fMRI and PET analyses, cluster-level inference is, like FWE cor-
rection, conventionally based on the theory of Gaussian random
fields. As outlined above, however, the application of corrections de-
rived from random field theory is impeded in the context of ALE
meta-analyses for two reasons. First, ALE analyses do not offer the
possibility to estimate the smoothness of an underlying random
field based on normally distributed residuals and, secondly, a Gauss-
ian distribution of the statistical field cannot be assumed due to the
non-linear operation of computing the ALE-scores. Moreover, whilst
FWE correction pertains only to the probability of observing an
above-threshold voxel in a random realisation of the statistical field,
cluster-level inference necessarily needs to be based on the expected
extent of the signal and must therefore consider the non-compact
support of the signal, i.e., spatial dependence. In summary, cluster
level inference on ALE results can currently neither be based on para-
metric approaches from random field theory nor on limit-estimates
derived under assumptions of spatial independence. Inspired by the
recent introduction of cluster-level inference into KDA (Wager et al.,
2007a, 2007b), we here propose a Monte-Carlo based approach to
cluster-level inference in ALE resembling previous non-parametric
approaches to voxel-level inference on ALE data.

Cluster-level inference — implementation
As stated above, the objective of cluster-level inference pertains to

a topological feature of the image, more precisely the size of the clus-
ters in the excursion set above a cluster-forming threshold. In theory,
this threshold can be arbitrarily chosen, though conventionally, an
uncorrected voxel-wise threshold of pb0.001 has been most preva-
lent in both fMRI and meta-analyses. We will hence use this level as
cluster-forming threshold throughout the exemplary analysis whilst
noting that any other uncorrected voxel-wise thresholds would also



Table 1
Overview of the studies considered in the exemplary meta-analysis.

Paper Modality Exp. Foci Subjects Contrast

Benuzzi et al. (2007) fMRI 1 14 24 Neutral facesNparts of neutral faces
Bird et al. (2006) fMRI 1 5 16 FacesNcontrol
Bonner-Jackson et al. (2005) fMRI 1 5 26 FacesNwords
Braver et al. (2001) fMRI 1 4 28 FacesNwords
Britton et al. (2006) fMRI 1 6 12 Socio-emotional facesNneutral faces
Dapretto et al. (2006) fMRI 1 14 10 Emotional facesNbaseline
Dolcos and McCarthy (2006) fMRI 1 16 15 FacesNscrambled faces
Denslow et al. (2005) PET 1 10 9 Facial identityNspatial position
Hasson et al. (2002) fMRI 1 4 13 FacesN letter strings/buildings
Holt et al. (2006) fMRI 1 6 16 Neutral facesNbaseline
Kesler-West et al. (2001) fMRI 1 17 21 Neutral facesNscrambled faces
Kranz and Ishai (2006) fMRI 1 21 40 FacesNscrambled faces
Kringelbach and Rolls (2003) fMRI 1 4 9 Emotional facesNneutral faces
Paller et al. (2003) fMRI 1 1 10 FacesNscrambled faces
Pierce et al. (2004) fMRI 2 25/9 9 Familiar facesNbaseline
Platek et al. (2006) fMRI 1 6 12 Familiar facesNstrange faces

FacesNscrambled faces
Vuilleumier et al. (2001) fMRI 1 3 12 FacesNhouses
Wild et al. (2003) fMRI 1 10 10 FacesNbaseline
Williams et al. (2005) fMRI 1 3 13 FacesNhouses

Overview of the individual experiments included in the meta-analysis used to exemplify the revision of the activation likelihood estimation (ALE) algorithm. More than one number
is given in the column “Reported foci” if multiple experiments from the same article have been analysed.

Face perception meta-analysis

Foci

ALE

Fig. 2. A real dataset was analysed in order to exemplify the new algorithms. This data-
set consisted of 19 papers reporting 20 individual experiments (305 subjects) and a
total of 183 activation foci on the brain activity evoked by visually presented faces.
The figure shows the distribution of individual foci (upper row) as well as the (un-
thresholded) ALE map (lower row) for the exemplary dataset.
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be perfectly valid. The first step of cluster-level inference is to thresh-
old the statistical image of uncorrected voxel-wise p-values by the
cluster-forming threshold. Whilst this procedure is equivalent to con-
ventional uncorrected thresholding, the important subsequent step
compares the size of the supra-threshold clusters against a null-
distribution of cluster sizes. The p-value associated with each cluster
in this procedure is then given by the proportion of clusters arising
from random data, which have the same or a larger size as the cluster
under investigation. That is, if a cluster is large enough to be only
exceeded in size by 1 out of 100 clusters formed by thresholding ALE
analyses on random data with the same cluster-forming threshold as
used in the true analysis, its p-valuewill be 0.01. Discarding all clusters
that have a p-value of, e.g., less than 0.05, then provides an unbiased
estimator for the previously arbitrarily defined extent-threshold.

In order to estimate a null-distribution of cluster sizes given a partic-
ular cluster-forming threshold, we propose the following random-
simulation algorithm. First, a set of random experiments is simulated
using the same characteristics as present in the real data. That is, for
every experiment included in the meta-analysis, there is a matching
random “experiment” having the same smoothness, i.e., containing
the same number of subjects and number of foci. The coordinates of
these foci, however, were randomly (and independently across experi-
ments) allocated to any greymatter voxel inMNI space. ALE analysis on
this set of random, simulated experiments is then performed in the
same fashion as described above for the real data. The statistical map
derived from this analysis is thresholded using the same cluster-
forming threshold as employed for the actual inference. The size of
each cluster above this threshold is recorded, as is the maximum ALE-
score observed (for FWE corrected thresholding). Then, a new set of
random experiments is generated and the process is iterated several
times. In the current analysis, we used 1000 repetitions, which can be
computed in less than 1 h. Additionally, we also computed a more
extensive null-distribution based on 10,000 repetitions to evaluate the
dependence of the derived results on the number of repetitions.

Example data

The modified ALE approach is illustrated by a meta-analysis on the
brain activity evoked by visually presented faces. Using the BrainMap
database (www.brainmap.org), 19 papers reporting 20 individual ex-
periments (305 subjects) and a total of 183 activation foci were
obtained (Table 1, cf. Fig. 2). For comparison, meta-analysis on these
reported activations was also carried out using the previous version
of the random-effects ALE algorithm (Eickhoff et al., 2009) using
106–1012 random samples to establish the null-distribution. For com-
parison, the results were thresholded at pb0.001 (uncorrected) and
at a corrected threshold of pb0.05 computed using the false discovery
rate (FDR) (Genovese et al., 2002; Laird et al., 2005), the family-wise
error rate (FWE) and the cluster-level inference described above.

Results

Revised approach for computing the null-distribution

The analytical null-distributions for inference on both datasets
were compared to those derived from the random sampling algo-
rithm described by Eickhoff et al. (2009). For the latter approach we
used between 106 and 1012 random samples. One of the most dra-
matic differences pertained to the computation time needed to com-
pute the null-distribution. For the face perception dataset, 106

samples were computed in about a minute, 108 samples in about
30 min and 1010 samples about 24h whilst 1012 samples took about
3 months to compute on a Intel Core 2 Duo T9300 2.5 GHz computer
with 4 GB or RAM. Note that the computation time doesn't scale

http://www.brainmap.org
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Fig. 3. Quantitative assessment of the differences between computing the null-distribution by the earlier permutation procedure and the proposed analytical solution. Histograms
show the null-distribution of ALE scores for the face processing dataset under the assumption of spatial independence between experiments as estimated by the permutation pro-
cedure using between 106 to 1012 iterations and computed by the histogram integration (rightmost). It can be noted that as the number of samples increases, the right tail of the
randomisation-based null-distributions becomes successively larger, reflecting the notion that large ALE-scores will only be observed when sampling higher and thus rarer MA-
values in multiple maps. Importantly, notwithstanding the extremely time-consuming computation, even 1012 repetitions of the sampling process fall considerably short of the
analytical solution in estimating the p-values of higher ALE-scores.
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linearly due to the smaller relative contribution of reading/writing
processes in the higher repetitions. In contrast, the analytical null-
distribution was computed in about 10 s.

Comparison of randomization-based and analytical null-distributions
A synopsis of the null-distributions (cumulative density functions)

for the two analysed datasets yielded by the randomisation approach
and the analytical solution, respectively, is displayed in Fig. 3. It can
be noted that the right tail of the randomisation-based null-
distributions becomes successively larger as the number of samples
increases. This behaviour is associated with lower probabilities for
the maximum ALE-scores covered by the null-distribution. Together
they reflect the notion that large ALE-scores will only be observed
when sampling, by chance, higher and this rarer MA-values in multi-
ple maps. Importantly, notwithstanding the extremely time-
consuming computation, even 1012 repetitions of the sampling pro-
cess fall considerably short of the analytical solution in estimating
the p-values of higher ALE-scores.

This apparently insufficient sampling of the right tail of the null-
distribution is reflected by the pronounced difference in the maximum
ALE-score covered by the different null-distributions. In the sampling
approach, its value is equivalent to the highest ALE-score observed in
any of the random drawings. In the analytically computed null-
distribution, however, it is equivalent to the union of the highest MA-
value in the MAP-map of each individual experiment. For the face per-
ception dataset, the highest ALE-scores observed in the randomisation
procedure were 0.024 (106 samples), 0.026 (108 samples), 0.034
(1010 samples) and 0.037 (1012 samples). On the other hand, the high-
est ALE-score observed in the “real” analysis of the face perception data-
set was 0.035. Consequently, a null-distribution based on more than
1010 samples was required to provide an adequate coverage of higher
ALE-scores by right tail of the null-distribution. Only such complete cov-
erage, however, can avoid situations where the parametric p-value
(fraction of equal or larger random samples) is exactly zero. In contrast
to the randomisation procedure, the analytical solution provided a
smooth estimation of the null-distribution up to a maximum of 0.208,
i.e., well above the highest ALE-score observed experimentally.

Stability of uncorrected thresholds
As detailed above, there are considerable differences in the right

tails of the null-distributions. In the region of lower ALE-scores, how-
ever, all null-distribution show an almost identical shape. A bit
surprisingly, this holds true even for that one based on only 106 sam-
ples, which corresponds to no more than 5 complete volumes (given
that the grey matter mask consists of ~200,000 2×2×2 mm3 voxels).
This observation is in good agreement with the results of inference on
the face perception at a threshold of pb0.001 (uncorrected). As illus-
trated (Fig. 4), the supra-threshold clusters are almost completely in-
variant to the method for computing the null-distribution (sampling
vs. analytical) or the number of random ALE-scores sampled. That is,
although lower numbers of repetitions generated an incomplete sam-
pling of the right tail of the null-distribution and resulted in a high
proportion of voxels exceeding the maximum random sample (i.e.,
had a p-value of zero), the uncorrected thresholds were almost
identical.

Finally, the comparison between the results yielded by inference
on ALE-analyses using the previous and the revised version of the al-
gorithm at the same threshold (pb0.001) also provides a valuable
cross-validation of both approaches. In spite of the considerable con-
ceptual differences between them, randomisation-based and analyti-
cal inference at a conventional uncorrected threshold produce nearly
identical results. This stability indicates a good robustness of infer-
ence on ALE data, and furthermore provides added validity to the an-
alytical solution to the computation of the null-distribution.

Effect of histogram bin-size
In the above description of the new algorithm for deriving the

null-distribution, we proposed a bin-size for the histograms of
0.00001 (units: MA- or ALE-values). In order to assess the depen-
dence of the results on the bin-size, i.e., resolution, used when com-
puting the histograms of the individual MA-maps and, eventually,
the null-distribution on the ALE-scores, we repeated the analyses
with several different bin-sizes ranging from 0.001 to 0.000001. It
can be observed (Fig. 5), that the choice of the bin-width did not
have any noticeable effect on either the resulting histogram or the re-
sults of the statistical inference. Likewise, the increase in computation
time caused by a finer bin-size of the histograms was only minimal, as
even at the highest resolution the full null-distribution was computed
in about a minute. The proposed algorithm may therefore be consid-
ered very robust across a wide range of bin-widths. We nevertheless
chose to keep the resolution at 0.00001, as there is no evident advan-
tage of wider bins but the (theoretical, though never observed) po-
tential for additive rounding errors in very large meta-analyses
involving hundreds of experiments.



610  samples 55  (5%) above perm. max./937

810  samples in 38  (4%) above perm. max./933

1010  samples in 5 (1%) above perm. max./931 

1210  samples no voxels above perm. max.

Analytical solution no voxels above perm. max.

Face perception data

Fig. 4. Results of voxel-wise inference on the face processing dataset at pb0.001 uncor-
rected. The rows correspond to the use of null-distributions derived from different
amount of samples of the null-distribution (cf. Fig. 3). For comparison the lowest row
shows the result of uncorrected thresholding at pb0.001 using the analytical solution.
It can be seen that the results of the uncorrected inference are remarkably stable across
the different approaches for deriving the null-distribution. However, as indicated
above the individual images, virtually all of the results derived from the random sam-
pling null-distributions show voxels featuring a p-value of 0, corresponding to ALE
scores that are higher than any score observed in the sampling procedure.
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Revised approach for multiple-comparison corrected inference

FWE corrected thresholding
When performing inference on a continuous statistical map a

threshold αo is considered to correct for multiple comparisons at a
voxel-level FWE of αFWE if under the null-distribution the proportion
of random analyses that feature at least one element above αo is less
or equal to αFWE. In the context of ALE analyses, this means that αo

should be chosen such that in a complete dataset obtained under
the null-distribution, the probability of observing a single ALE score
above αo is less than αFWE. Here, we proposed two approaches to de-
rive these voxel-level FWE corrected thresholds, either analytically by
reference to the computed null-distribution or by Monte-Carlo analy-
sis, i.e., permutation testing. It has to be noted, that the former ap-
proach is based on the assumption of independence between voxels
and should hence provide a conservative upper bound on the cor-
rected threshold αo.

For the face perception dataset this upper bound as computed
from the analytical null-distribution corresponded to an ALE-
threshold of 0.0216 to control the FWE rate at pb0.05. The FWE cor-
rected thresholds derived from a Monte-Carlo analysis were based
on recording the maximum ALE-score for each of ALE-maps reflect-
ing a random relocation of activation foci within each experiment
(cf. Fig. 6) and correspond to the ALE-score that was exceeded in
only a fraction of all realisations corresponding to αFWE. As expected
from the theoretical considerations, the FWE thresholds obtained
from this randomisation-approach were lower than the bounds
given by the analytical solution. The ALE-threshold needed to control
the voxel-level FWE at pb0.05 in the face dataset was 0.0196 when
based on 1000 repetitions whilst 10,000 repetitions yielded a
threshold of 0.0198. The randomisation-based FWE thresholds
seem to be highly stable even after only 1000 repetitions of random
relocation, which can be computed in about 2–5 min (depending on
the number of experiments in the analysis) by the approach outlined
above.

Cluster-level thresholding by randomization
Due to the unavailability of random field models for the topology

of ALE maps, cluster level thresholds were derived from the same
permutation-approach as used for the randomisation-based voxel-
level FWE thresholding. As noted above, cluster-level thresholding
is equivalent to first applying a (uncorrected) cluster-forming thresh-
old to the ALE-analysis. Subsequently, it is assessed how likely clus-
ters of the obtained size may have arisen by chance, i.e., when
applying the same cluster-forming threshold to random data. The
cluster-level corrected threshold corresponding to pb0.05 is equiva-
lent to the cluster size, which is reached or surpassed by only 5% of
the clusters observed when applying the cluster-forming threshold
to the ALE-maps, reflecting a random relocation of activation foci
within each experiment. For the face dataset, 1000 repetitions of
this randomisation approach yielded a cluster-level threshold of
45 voxels when the cluster-forming (uncorrected) threshold was
pb0.001 (Fig. 6). Exactly the same cluster-level threshold of 45 voxels
was also found when the null-distribution of cluster-sizes was based
on 10,000 ALE-analyses of randomly relocated foci with the same
properties as the actual data. Like the voxel-level FWE thresholds,
also the cluster-level thresholds seem to be reliably estimated after
1000 repetitions of the random relocation.

Comparison of thresholding approaches
In order to compare the results yielded by the different methods

for dealing with the problem of multiple comparisons when perform-
ing inference on ALE maps, we applied each of them to the dataset on
face processing. In particular, we thresholded the ALE maps derived
from these meta-analyses at i) pb0.001 (uncorrected); ii) pb0.05
(FDR corrected); iii) pb0.05 (voxel-level FWE corrected); iv)
pb0.05 (cluster-level inference using pb0.001 at voxel-level as
cluster-forming threshold).

As illustrated (Fig. 7), the uncorrected voxel-level inference
yielded the most extensive activation, with regard to activated vol-
ume as well as to the number of clusters, in the two performed
meta-analyses. In particular, in both datasets, the number of clusters
is about three times that obtained from any other approach. In con-
trast, FDR and especially FWE thresholding resulted in the most con-
servative delineation of activation, yielding both fewer and smaller
significant clusters. Finally, cluster-level thresholding takes an
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distribution on the ALE-scores, we repeated the analyses with several different bin-sizes ranging from 0.001 to 0.000001. As shown here for the face processing dataset, it can be
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intermediate position. On the one hand, the number of significant
clusters in the face processing dataset is smaller as compared to the
uncorrected results. On the other hand, the total size of the ensuing
activations is close to that yielded by uncorrected thresholding and
substantially exceeds the very restricted results obtained from FDR
or FWE thresholding. This is also reflected in the median size of the
individual clusters, which are considerably larger when using
cluster-level thresholding as compared to the very small foci yielded
by the FDR and FWE approaches.

Evidently, the number of true activations is unknown in the face
processing dataset. There was, however, a good correspondence of
FWE, FDR and cluster-level thresholding and a much higher number
of activation clusters obtained by the uncorrected inference. These
observations therefore also points to a low specificity of uncorrected
inference on ALE data. Between FWE, FDR and cluster-level
thresholding, all approaches revealed correspondence in the bilateral
posterior fusiform gyrus and the right amygdala. Using FDR and
cluster-level thresholding, additional foci of convergence became sig-
nificant in the amygdala, MT/V5 and inferior frontal gyrus (just ante-
rior to BA 45) on the left side. Thresholding for cluster-level
significance revealed additional activation in the right anterior fusi-
form gyrus.

Discussion

Here we outlined a revision of the activation likelihood estimation
(ALE) algorithm for coordinate-based meta-analyses of neuroimaging
experiments that address two potential shortcomings of the current
implementation of this approach. These pertain to how the null-
distribution reflecting the expected ALE values under the assumption
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Fig. 6. Illustration of the approach for computing cluster-level and voxel-wise FWE thresholds based on randomization. The top row illustrates 6 ALE maps based on independent
random relocation of cluster foci for each experiment of the face processing dataset (keeping the number of foci and FWHM identical to the real data) after applying an uncorrected
threshold of pb0.001. The middle row illustrates the maximum ALE scores observed in the noise datasets obtained from 1000 (left) or 10,000 (right) iterations of the random re-
location procedure. The ALE-threshold needed to control the voxel-level FWE at pb0.05 in the face dataset was almost identical between both cases (1000 repetitions: 0.0196,
10,000 repetitions 0.0198). The bottom row illustrates the distribution of cluster sizes in the excursion set (above pb0.001 uncorrected) following 1000 (left) or 10,000 (right) it-
erations of the random relocation procedure. In both cases the cluster-level threshold needed to correct at pb0.05 corresponded to a cluster extent of at least 45 voxels.
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of spatial independence is computed and to the methods for correct-
ing the statistical inference for multiple comparisons. In summary, we
demonstrated in an analytical fashion that histogram integration al-
lows a faster and more complete estimation of the null-distribution
than achievable with permutation testing, and that cluster-level cor-
rection for multiple comparisons provides higher sensitivity than
FDR or FWE thresholding whilst still providing stringent protection
against false positives.
Revised approach for computing the null-distribution

Classically, all approaches for coordinate-based meta-analysis
have based the statistical inference on randomisation procedures.
For example, the original ALE algorithm derived a null-distribution
of ALE scores through random relocation of all foci analysed in the
current study throughout the brain (Turkeltaub et al., 2002). In addi-
tion to ALE analyses, meta-analyses using kernel density analysis
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Fig. 7. This figure illustrates the results of thresholding the face processing meta-analysis using the four different approaches for dealing with multiple comparisons when perform-
ing inference on ALE maps. Within the display for each of the two datasets, the applied methods are (in clockwise order starting at the top left): i) pb0.001 (uncorrected); ii)
pb0.05 (FDR corrected); iii) pb0.05 (voxel-level FWE corrected using randomisation analysis); iv) pb0.05 (cluster-level corrected inference using pb0.001 uncorrected at
voxel-level as the cluster-forming threshold).

2359S.B. Eickhoff et al. / NeuroImage 59 (2012) 2349–2361
(KDA; Wager and Smith, 2003) or random-effects multilevel KDA
(Wager et al., 2007b) are also based on the statistical inference of
the convergence of reported foci on empirically estimated null-
distributions. In the current MKDA algorithm, this permutation pro-
cedure involves a random relocation of cluster foci throughout the
grey matter and estimating the convergence across those simulated
studies as a reference for thresholding the real data. Finally, the
random-effects approach to ALE meta-analysis (Eickhoff et al.,
2009) also applies a permutation procedure for statistical inference.
In contrast to the above-mentioned approaches, however, random-
effects inference in ALE was not based on random relocation of foci
but rather random sampling of the modelled activation map for
each study. That is, this algorithm employed a null-distribution of
spatial independence across studies rather than a null-distribution
of random cluster location. Following the assumption of spatial inde-
pendence is the notion that the permutation procedure does not have
to accommodate spatial correlations. Rather, the null-distribution
should reflect for each ALE score the probability of obtaining this
value through a random combination of the modelled activation
maps. As outlined here and validated against different numbers of it-
erations in the permutation procedure, the ensuing null-distribution
can be computed analytically. This is achieved by successive integra-
tion of the conceptually equivalent “modelled activation” or ALE his-
tograms and integration of the probabilities across the possible
combinations in order to derive a complete null-distribution of ALE
scores under spatial independence. Comparative analysis demon-
strated that this approach yields results that are highly comparable
to those derived from the permutation approach. However, the com-
putational time taken by the analytical solution is more bearable than
in previously suggested random drawing procedures. Moreover, the
new approach also allows the computation of the entire right tail of
the distribution up to the probability for the ALE score that would re-
sult from taking the union of the maximum MA value for each exper-
iment. The revised algorithm hence excludes the occurrence of
situations where experimental values exceed those covered by the
null-distribution and would hence have to be assigned a p-value of
exactly zero.

Correcting for multiple comparisons

When performing coordinate-based meta-analysis convergence of
activation foci reported in the literature is assessed individually at
each voxel of the reference space. That is, an ALE score is computed
for each voxel and then compared against a null-distribution of ALE-
scores that would be expected given the currently analysed set of ex-
periments but a random spatial association between these. At a reso-
lution of 2×2×2 mm3 the applied grey matter mask results in
approximately 200,000 individual tests that are performed in parallel.
This situation of massive univariate inference poses a considerable
multiple comparison problem, similar to the situation faced in gener-
al linear model analysis of neuroimaging data (Kiebel and Holmes,
2003).

The statistical inference must account for the presence of parallel
tests, i.e., a correction for multiple comparisons has to be performed.
However, ALE analyses possess several properties, which potentially
invalidate the application of established multiple-comparison correc-
tions. On the one hand, ALE data does not have compact support but
rather consists of spatially correlated observations. This invalidates
the assumptions necessary for FDR procedures, which were designed
for families of discrete, i.e., independent, tests (Benjamini and Hoch-
berg, 1995) and hence are not applicable for continuous signals. As
recently outlined by Chumbley and Friston (2009), approaches that
are aimed at controlling the voxel-wise false discovery rate should
consequently be inadequate in controlling the false positives among
topological features, i.e., clusters. That is, although FDR corrections
seem to yield reasonable results and have enjoyed considerable pop-
ularity in both neuroimaging (Genovese et al., 2002) and meta-
analyses (Laird et al., 2005), their interpretation in a sense of “clusters
of observed activations” leads to a problematic underestimation of
the false discovery rate (Chumbley and Friston, 2009).

Cluster-level thresholding by randomization

The problems associated with applying approaches intended for
discrete data on neuroimaging results have prompted the develop-
ment of methods based on random field theory that allow topological
inference on the statistical maps (Worsley et al., 1996). The key idea
of these approaches is to consider the data a lattice approximation
to an underlying continuous process and peruse topological inference
based on random field properties. That is, one is not making an infer-
ence about a voxel, but a topological feature attributed to a region or
cluster, i.e., a connected excursion set above a certain a-priori (clus-
ter-forming) threshold (Worsley, 2003; Worsley et al., 1996). Using
these methods, cluster-level correction becomes feasible, which
allow controlling the family-wise error rate at cluster-level. Here in-
ference is based on first setting a cluster-forming threshold and
then computing for each cluster the probability for finding a set of
connected voxels in the excursion set of the same size as the cluster
given the underlying random statistical field. In other words,
cluster-level thresholding aims at excluding those regions, which
are small enough to be found above threshold by chance if no true
signal was present in the data (Chumbley and Friston, 2009).

Importantly, in random field theory, the extent-threshold needed
to correct the inference at cluster-level only depends on the type of
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the statistical field (F/T/Chi2), the size of the search volume and the
smoothness of the field. In the assessment of fMRI and PET data, the
latter is estimated from the spatial derivative of the residual field,
i.e., by the smoothness of the noise term in the general linear model
(Worsley, 2003; Worsley et al., 1996). In contrast to fMRI and PET ex-
periments, however, ALE analyses do not yield a parametric residual
field from which the smoothness of the underlying random field can
be computed. Moreover, given the non-linear nature of ALE, classical
concepts from random field theory should not hold in the case of in-
ference on ALE analyses as the distribution of ALE scores does not fol-
low classical formulations for random fields based on F-/T- or Chi2-
statistics.

Given these limitations prohibiting the application of random field
theory, we here propose to derive empirical thresholds for cluster-
level correction based on a randomisation procedure. The main ad-
vantage of this approach is its potential to provide a reliable estima-
tion of the null-distribution of topological features of the excursion
set without necessitating assumptions on the nature of the statistical
field or its analytical description. The datasets derived from the ran-
dom relocation of coordinates are based on the same number of indi-
vidual foci as well as the same size of the FWHM as the original data
and are processed by the same algorithm for the computation of ALE
maps and uncorrected thresholding. This approach should reflect the
topology of the statistical field in the absence of true convergence,
allowing the estimation of null-distributions for cluster-sizes in the
excursion set as well maximum ALE scores, which can be applied
for multiple-comparison corrected thresholding of the real data.

In this context, it is interesting to note that whilst the current re-
vision replaces the previously applied permutation procedure for
the estimation of voxel-level significance, it introduces a randomisa-
tion approach for correcting the inference for multiple comparisons.
Whilst this may sound illogical at first, these two changes are close-
ly dependent on each other. By deriving the null-distribution of
ALE-scores (and hence uncorrected thresholds) analytically, the
computation of thresholded ALE maps from a set of (real or ran-
domly relocated) foci becomes expedient enough to allow for the
simulation of noise datasets within a reasonable time. That is,
cluster-level and voxel-wise FWE thresholding of ALE datasets de-
pend on a randomisation procedure which only becomes feasible
through the replacement of permutation based approaches for de-
riving uncorrected voxel-wise p-values by a considerably faster an-
alytical solution.

Apart from the integration of fMRI and PET data, ALE (Nickl-
Jockschat et al., in press-a,b; Schroeter et al., 2007) and SDM (Radua
and Mataix-Cols, 2009; Radua et al., 2010) have also been repeatedly
used to summarise findings from voxel-based morphometry (VBM)
studies. Given that VBM studies report grey matter differences in
the form of peak coordinates, cluster-level correction may analogous-
ly be applied on ALE of VBM data. It is, however, a topic of debate
whether cluster-based inference is at all conceptually appropriate
for VBM data (Ashburner and Friston, 2000).

Cluster-level inference in coordinate-based meta-analyses

Some potentially important conceptual caveats of cluster-level in-
ference on any coordinate-based meta-analysis, including ALE, should
not go unnoted. First, above-threshold cluster size increases when
more studies report foci near each other, yet it decreases when the
correspondence between those foci improves as their Gaussians will
overlap more tightly. Counter-intuitively, a better convergence (clos-
er proximity) of foci from different experiments may thus leads to a
reduction in cluster-size. Moreover, the width of the Gaussians,
modelling the uncertainty of each focus, is inversely related to (the
square root of) the sample size of the original experiment. Conse-
quently, convergence between experiments with fewer subjects
may lead to more extensive, and hence significant, clusters than the
same convergence between an equivalent number of experiment
with large sample sizes. Finally, even though the modification pre-
sented by Turkeltaub et al. (in press) corrects for the effects of
within-experiment clustering on the MA values of each voxel, the ex-
tent of high values in the ensuing MA, and hence ensuing ALE maps,
may still be influenced by the amount of closely co-localised, i.e.,
clustered, foci in a particular experiment. Consequently, cluster
extent thresholding may seem to reintroduce the recently
addressed effects of within-experiment clustering of foci.

Taken together, these reflections might converge to the notion
that cluster-extent thresholding may allow voxels with relatively
low probabilities of representing true convergence between experi-
ments to become significant if they are distributed enough by virtue
of less tight correspondence, smaller sample sizes or within-
experiment clustering of foci. However, the relevance of such clusters
in which most, if not all, voxels feature only moderately high ALE
values and hence significance, evidently has to be questioned.

Indeed, it should be noted that most of these theoretical concerns
may not be practically relevant in standard ALE analyses, especially
when performed with sufficiently high cluster-forming thresholds.
First, although in the case of close proximity between foci from differ-
ent experiments the overall extent of the cluster will be lower than in
the case of more disperse foci, the former scenario will in turn yield a
larger area of high ALE values given the better overlap of higher prob-
ability values close to the centres of the respective Gaussians. If the
cluster-forming threshold is sufficiently high, closer proximity be-
tween foci from different experiments should thus yield larger not
smaller above-threshold clusters. Second, whilst experiments featur-
ing a lower number of subjects and hence potentially larger clusters,
it should be noted that the ALE values throughout these clusters
will be lower given the lower probability values due to wider Gauss-
ians. Overlap between experiments featuring low numbers of sub-
jects will thus only become extendedly above-threshold if either
there is a convergence across a higher number of experiments
(which should be biologically relevant) or a low cluster-forming
threshold has been used (which should increase the likelihood of ob-
serving larger spurious clusters). Third, clustering of foci within a par-
ticular experiment may indeed increase the size of above-threshold
clusters if other experiments also show activation within the same
general region. On the other hand, however, a high number of foci
and hence higher values in the MA map will also affect the null-
distribution for inference on the ensuing ALE map and generally re-
duce significance of the respective ALE values.

If not used with extremely liberal cluster-forming thresholds,
extent-thresholding may therefore represent a rational and unbiased
way of setting a cluster threshold after an appropriate voxel-level
threshold has been applied. Moreover, cluster-level thresholding
seems to provide a better balance between sensitivity and specificity
than the highly conservative voxel-level FWE correction, as illustrat-
ed by the presented exemplary analysis. In summary, cluster-level in-
ference may thus represent a compromise between uncorrected
thresholding with additional arbitrary extent-filters and voxel-level
corrected inference. In light of the above considerations, however,
an exhaustive assessment of the behaviour of cluster-level corrected
thresholds under different levels of correspondence (proximity) be-
tween peaks of different experiments, different amount of within-
experiment clustering of peaks, different sample sizes and different
cluster-forming thresholds is highly warranted, yet far beyond the
scope of the present paper.

Conclusions

The present revision of the activation likelihood estimation (ALE)
algorithm was aimed at improving two aspects of this method. First,
we showed how an analytical solution based on histogram permuta-
tion might provide a faster and more precise approach to computing
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the null-distribution of ALE scores under the assumption of spatial in-
dependence. Second, we outlined a framework for correcting for mul-
tiple comparison correction in the inference on ALE data, which
accommodates the spatially contiguous nature of the underlying sig-
nal. As this framework has to deal with non-linear data, it is necessar-
ily dependent of a permutation test. The application of such a
permutation could only be facilitated by the fast analytical solution
for computing the distribution of ALE-values for all permutations.
We conclude that cluster-level thresholding is the most appropriate
replacement for thresholding approaches based on uncorrected infer-
ence or FDR correction. In light of these advances, the revised ALE al-
gorithm will provide an improved tool for conducting coordinate-
based meta-analyses on functional imaging data, which in turn
should influence the growing importance of summarising the multi-
tude of results obtained by neuroimaging research.
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