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Over the past 25 years, the broad field of epigenetics and, over the past decade in particular, the emerging
field of neuroepigenetics have begun to have tremendous impact in the areas of learned behavior, neurotox-
icology, CNS development, cognition, addiction, and psychopathology. However, epigenetics is such a new
field that in most of these areas the impact is more in the category of fascinating implications as opposed to
established facts. In this brief commentary, I will attempt to address and delineate some of the open ques-
tions and areas of opportunity that discoveries in epigenetics are providing to the discipline of neuroscience.
Introduction
Only infrequently do scientific discoveries force the recasting of

a centuries-long philosophical debate. However, over the last

25 years, and indeed largely over the last decade, the emerging

field of neuroepigenetics has necessitated the reformulation of

the fundamental existential question of nature versus nurture

(Sweatt, 2009). Based on recent discoveries in the broad field

of epigenetics, it no longer makes sense to debate nature versus

nurture. There is no longer a mechanistic dichotomy between

nature and nurture (or genes and environmental experience, as

is the more modern phrasing). Rather, it is now clear that

there is a dynamic interplay between genes and experience, a

clearly delineated and biochemically driven mechanistic inter-

face between nature and nurture. That mechanistic interface is

epigenetics.

The term epigenetics derives from Waddington’s coining of

the term ‘‘epigenesis’’ to capture his logical deduction that dur-

ing organismal development, a layer of mechanisms must surely

exist that resides above (epi) the level of the genes, which control

their output in order to specify cell fate determination. In terms of

the underlying biochemistry, there are two main epigenetic

mechanisms, DNA methylation and regulation of chromatin

structure via histone modifications (although see Table 1). These

mechanisms have mostly been explored in the context of organ-

ismal development. However, it is now clear that experience, be

it environmental toxins, maternal behavior, psychological or

physical stress, learning, drug exposure, or psychotrauma, leads

to active regulation of the chemical and three-dimensional struc-

ture of DNA in the nervous system, i.e., that experience regulates

epigenetic mechanisms in the CNS (Borrelli et al., 2008; Cham-

pagne and Curley, 2009; Day and Sweatt, 2010; Dulac, 2010;

Renthal and Nestler, 2008). These epigenomic changes lead to

alterations in gene readout (and who knows what else?) in cells

in the nervous system that trigger lasting, and in some cases

perpetual, changes in neural function.

The field of epigenetics has undergone an exponential expan-

sion as of late. A quick check of the PubMed publication data-

base reveals that about 98% of all the research published in

the broad area of epigenetics was published within the last

15 years. The search term epigenetics returns 1 publication in

1989, i.e., the year after Neuron was established. Last year

(2012) over 1,500 papers were published on epigenetics, an
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orders-of-magnitude increase over the 25 year time span that

is the focus of this special Neuron anniversary issue. Interesting

comparison searches for neuroscientists are memory, synapse,

and long-term potentiation, to place these numbers in context

(see Figure 1).

The Biochemical Mechanisms of Epigenetics
I will not go into detail concerning the basic molecular and

biochemical mechanisms that comprise the established epige-

netic toolkit, because those mechanisms have been reviewed

extensively in a number of other prior publications (Allis et al.,

2007;Campos and Reinberg, 2009; Lee et al., 2010; Levenson

and Sweatt, 2006; Turner, 2007), and the topic is too broad to

address in a short perspective article. However, in Table 1 I

have listed the major (known and emerging) players in the arena

of neuroepigenetics in order to introduce terms and provide

some basic background. I also will briefly describe the major

epigenetic molecular mechanisms listed in Table 1 in the

following few paragraphs in order to help make the rest of this

perspective piece comprehensible to those readers new to the

epigenetics milieu. Thus, I will introduce a few terms that one

needs to be familiar with before I launch into discussion of the

‘‘open questions in epigenetics’’ section that is the main thrust

of this perspective piece. Please keep in mind that in only a

few paragraphs I will be sparsely summarizing and broadly

oversimplifying the results of literally thousands of recent publi-

cations; for amore comprehensive treatment, please see the ref-

erences by Allis et al. (2008) and Sweatt et al. (2013).

It is worth noting that all of these modifications I will describe

have the basic biochemical characteristics of both regulating

gene function (transcription) without altering the DNA sequence

directly and of being (at least theoretically) capable of self-regen-

eration and self-perpetuation—in other words, of having the

capacity to trigger a persisting change in gene function, even

in the face of subsequent cell division or even organismal procre-

ation. The biochemical capacity of a specific chemical reaction

to trigger self-perpetuation is the defining characteristic of a pro-

cess involved in cellular information storage, aswas initially com-

mented upon in the neuroscience context by Francis Crick and

John Lisman almost 30 years ago (Crick, 1984; Lisman, 1985).

Epigenetic mechanisms also possess this defining characteristic

(Holliday, 1999).
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Table 1. Major Biochemical Mechanisms in Neuroepigenetics

Covalent modification of DNA

DNA cytosine methylation

active cytosine demethylation

hydroxymethylcytosine formation

methylcytosine oxidation (5-formylcytosine, 5-carboxylcytosine)

Histone posttranslational modifications

lysine acetylation

lysine (mono/di/tri) and arginine (mono/di) methylation

serine/threonine phosphorylation

monoubiquitination

poly ADP-ribosylation

ATP-dependent chromatin remodeling (SWI-SNF)

Histone subunit exchange

H2A.Z

H3.3

RE1-silencing transcription factor (REST)/REST corepressor

(CoREST)/Sin3A system

Noncoding RNAs

piRNAs

microRNAs

small interfering RNAs (siRNAs)

small nuclear RNAs (snRNAs)

Line 1 retrotransposition

Prion protein-based mechanisms
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The Epigenetic Toolkit
Covalent chemical modification of DNA, specifically cytosine

50-methylation, has been referred to as the prima donna of

epigenetics because it is an extremely powerful regulator of

gene transcription (Santos et al., 2005). As a first approxima-

tion, DNA methylation is the proximal molecular mechanism

that triggers, and perpetuates over the full lifespan, the com-

plete gene silencing in cells that is part and parcel of cell fate

determination and perpetuation (Bird, 2002). DNA cytosine

methylation is a core mechanism for silencing all the nonneuro-

nal genes in all the cells in the body that are not neurons, for

example. DNA cytosine methylation is the core driver of the

epigenesis mechanism that Waddington postulated to exist

(Holliday, 2006). In the existing literature, DNA cytosine methyl-

ation is described as occurring preferentially at cytosine-gua-

nine dinucleotide sequences in DNA (so-called CpG sites) and

is said to lead to attenuation of gene transcription. These gen-

eralizations are largely true, but based on recent discoveries it

is clear that cytosine methylation also occurs at non-CpG sites

and that cytosine methylation can also be associated with tran-

scriptional activation. This is the ambiguous nature of newly

emerging fields.

Besides DNA cytosine methylation, other chemical modifica-

tions of cytosine in DNA have also been documented to exist,

including 5-hydroxymethylcytosine (hmC) formation andmethyl-

cytosine oxidation to generate 5-formylcytosine and 5-carboxyl-

cytosine. The functional role(s) of these novel modifications are
not fully established, and this is a hot area of investigation in

the field at present.

A central dogma of the epigenetics field has been that once

DNA methylation patterns are established upon the genome in

terminally differentiated cells, thosemodifications are permanent

and essentially immutable. This view is aligned with the original

conception of epigenesis by Waddington, wherein he reasoned

that such mechanisms are necessary to perpetuate cellular

phenotype over an entire lifespan (Holliday, 2006). However, of

late it has become clear that so-called active cytosine demethy-

lation also occurs, wherein a previously methylated cytosine can

undergo a net reconversion back to the unmethylated state. This

mechanism (while likely rare in the overall context of the entire

genome and epigenome) appears to be particularly prominent

in two places: in the mature nervous system and in the fertilized

zygote undergoing generation of totipotent embryonic stem cells

(in other words, in the twomost highly plastic tissues in the body).

We will return to this idea later in the open questions section.

Histone posttranslational modifications are the second major

category of epigenetic biochemical mechanisms in cells, and

this area has a broad and rich literature (Jenuwein and Allis,

2001). Histone posttranslational modifications that have func-

tional consequences on gene readout are multitudinous,

including lysine acetylation, lysine mono/di/tri-methylation, argi-

nine mono/di-methylation, serine/threonine phosphorylation,

histone monoubiquitination, and histone poly ADP-ribosylation.

In the nucleus, histone proteins exist largely as octameric

complexes, which make up the core of the chromatin particle

around which most DNA is wrapped, forming a three-dimen-

sional histone/DNA complex that is itself a powerful regulator

of transcriptional efficacy. Histone posttranslational modifica-

tions regulate this structure in order to modulate transcriptional

readout of the associated gene.

Individual isoforms of histonemonomers can also be swapped

in and out of the octamer, a regulatory mechanism referred to as

histone subunit exchange. The histone H2A.Z and H3.3 iso-

forms, among others, are prominent participants in these subunit

exchange mechanisms and also regulate transcriptional efficacy

in a manner reminiscent of histone posttranslational modifica-

tions. Subunit exchange and posttranslational modifications

trigger either increases or decreases in transcription, depending

upon the particular modification, the particular histone isoform

involved, and even the context of other histone modifications

in which the modification resides. This attribute of these mecha-

nisms has given rise to the concept of a histone code, wherein

histone modifications are interpreted in situ as a combinatorial

code regulating gene transcription rates at specific loci across

the genome (Jenuwein and Allis, 2001; Borrelli et al., 2008, Lee

et al., 2010; Strahl and Allis, 2000; Wang et al., 2008). The impli-

cations of this sort of molecular/cellular information processing

within neurons is only beginning to be considered and addressed

at present (Wood et al., 2006).

A variety of other epigenetic molecular mechanisms are also in

play in neurons; however, I will only be able to touch on these

briefly due to space limitations.

ATP-dependent chromatin remodeling, which involves the

switch/sucrose nonfermentable (SWI-SNF) biochemical regula-

tory system, can regulate the affinity of the histone octamer
Neuron 80, October 30, 2013 ª2013 Elsevier Inc. 625



Figure 1. Yearly Publications for the PubMed Search Terms ‘‘Epigenetics,’’ ‘‘Long Term Potentiation,’’ ‘‘Synapse,’’ and ‘‘Neuron’’ for the
Years 1970–2013
Yearly data were generated using the Pubmed website, and their metrics were replotted for this figure. Please note that the numbers for the final year of these
graphs (2013) are projections based on the numbers of publications in each category as of September 25, 2013.
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core particle for its associated DNA and, in an energy-dependent

fashion, promote gene transcription by loosening the chromatin

3-dimensional structure. This mechanism has specifically been

implicated in human cognitive function based on genetic studies

of intellectual disabilities (Ronan et al., 2013).

The RE1-silencing transcription factor (REST)/REST core-

pressor (CoREST)/Sin3A system is a well-established player in

neuronal/nonneuronal cell fate determination and indeed is likely

the best-understood epigenetic mechanism in play related to

neuronal function (Ballas and Mandel, 2005). This is a core

mechanism that silences nonneuronal genes in non-neurons

and, conversely, allows the broad segment of the genome that

is specifically necessary for neuronal function to be selectively

expressed in nerve cells.

A wide variety of noncoding RNAs have either been shown to

be or hypothesized to be involved in regulating cell function in the

nervous system, including piRNAs, microRNAs, small interfering

RNAs (siRNAs), and small nuclear RNAs (snRNAs) (Sun et al.,

2013; Tardito et al., 2013). These mechanisms have in common

the exquisite capacity for nucleotide sequence-specific effects,

allowing them to affect the function of particular genes with high

specificity. This is a burgeoning area for all of biology, including

(most recently) neurobiology.

Other relevant mechanisms include LINE 1 (long interspersed

nuclear element 1, aka L1) retrotransposition, in which the L1

class of repeat sequences can recombine and reinsert them-

selves into the genome using a copy-and-paste mechanism.

Through this mechanism, L1 elements can dramatically affect

gene transcription, and indeed the elements themselves are

capable of self-regeneration. Thus, they qualify as epigenetic

mechanisms based on these unifying criteria. However, L1

element recombination does not fit the classical definition
626 Neuron 80, October 30, 2013 ª2013 Elsevier Inc.
of an epigenetic mechanism by virtue of the fact that they

modify gene transcription by changing the genomic nucleotide

sequence. Regardless of this, L1 retrotransposition in neurons

has largely been semantically regarded as an epigenetic mech-

anism in the CNS due to its striking functional similarity to other

epigenetic biochemical mechanisms. One compelling current

model for L1 function in neurons is that the mechanism drives

cellular heterogeneity at the genomic and functional level

through insertional mutagenesis (Muotri and Gage, 2006). The

broad context is that this allows individual neurons to achieve

genomic diversity and distinction from their siblings, broadening

the spectrum of cellular phenotypes driven by the single avail-

able genome in any particular neuronal subtype.

Finally, a provocative mechanism that has been proposed to

be important in sustaining long-term function changes in neu-

rons is a prion protein-basedmechanism. Prion proteins function

in yeast as nongenic heritable elements that potently regulate

cellular function and phenotype. These prion protein elements

are heritable, self-regenerating, and alter gene function, placing

them clearly in the epigenetic realm of biochemical processes.

Recent studies in theAplysiamodel system for studying synaptic

plasticity and memory have implicated a prion-protein-like

mechanism as being a long-term controller of synaptic efficacy,

specifically acting through the Aplysia cytoplasmic polyadenyla-

tion element-binding protein (ApCPEB; Bailey et al., 2004; Si

et al., 2004). This represents a particularly intriguing candidate

for a novel epigenetic mechanism operating to regulate neuronal

function.

The Emerging Subdiscipline of Neuroepigenetics
Over the last decade, there has been a great expansion of the

number of research papers and reviews published concerning



Table 2. Areas Where Epigenetic Mechanisms Have Been

Implicated in Human Nervous System Function

Function or Disorder Mechanism(s) Implicated

learning and memory histone modifications, DNA

methylation, piRNAs, miRNAs

maternal nurturing histone modifications, DNA

methylation

adult neurogenesis histone modifications, DNA

methylation

stress responses histone modifications, DNA

methylation

Alzheimer’s disease histone modifications, DNA

methylation

Rett syndrome MeCP2 methylcytosine binding

fragile X mental retardation DNA methylation, miRNAs

schizophrenia DNA and histone methylation,

miRNAs

Rubinstein-Taybi syndrome histone acetyltransferase

deficiency

Angelman syndrome genomic imprinting (DNA

methylation)

depression and/or suicide DNA methylation

bipolar disorder histone modifications, DNA

methylation, miRNAs

addiction and reward behavior histone modifications, DNA

methylation, miRNAs

PTSD histone modifications, DNA

methylation

ATR-X syndrome (a-thalassemia

mental retardation)

SNF2 chromatin remodeling, H3.3

cognitive aging histone modifications, DNA

methylation

Coffin-Lowry syndrome histone phosphorylation

Kleefstra syndrome histone methylation

epilepsy histone modifications, DNA

methylation, miRNAs

autism histone and DNA methylation?

miRNAs?
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epigenetic mechanisms in the nervous system, especially as

related to adult CNS function. These burgeoning neuroscience

discoveries have necessitated a redefinition of epigenetics, at

least in regard to epigenetic mechanisms in adult neurons.

As mentioned already, epigenetic mechanisms were originally

defined as heritable either in a procreative organismal sense or

at the cellular level across cell division. However, the discovery

that those biochemical mechanisms listed in Table 1 are oper-

ating in adult neuronal function forces a reassessment; because

adult neurons are nondividing cells, obviously nothing happening

in them is heritable in the traditional sense. An epigenetic molec-

ular mark in an adult neuron can be long-lasting, permanent, and

self-regenerating but cannot be inherited by a daughter cell since

the neuron does not divide. This sets the roles of epigenetic

mechanisms in adult neurons apart from their roles in develop-

mental biology, such as perpetuation of cell fate determination,

heritability, genomic imprinting, etc. For this reason, along with

other unique attributes of the role of epigenetic molecular mech-

anisms in adult CNS function, Jeremy Day and I have proposed

adopting the term neuroepigenetic to help capture this distinc-

tion (Day and Sweatt, 2010). Regardless of that specific set of

semantic conventions, it also seems clear that the term neuroe-

pigenetic is emerging due to the discoveries of a wide variety of

roles for epigenetic molecular mechanisms in the CNS regarding

acquired behaviors, CNS disorders, neural plasticity, neurotox-

icity, and drug addiction (Table 2). Thus, we have the emerging

subdiscipline now being called neuroepigenetics.

A Daunting Dozen for the Emerging Subdiscipline of
Neuroepigenetics
For the remainder of this commentary, I will present my perspec-

tive concerning several open questions in neuroepigenetics at

present and for the next decade or so. I have tried to orient my

thoughts toward capturing some of the most challenging, but

vitally important, avenues of pursuit open to the field. I fully

realize that this is an incomplete list and that others working in

the area, such as Eric Nestler, Ted Abel, Li-Huei Tsai, Michael

Meaney, and Schahram Akbarian, would come up with different

lists (Sweatt et al., 2013). My hope in presenting the following

brief thoughts is that they might catalyze debate, discussion,

and further experimentation concerning the informational voids

that are outlined.

With this in mind, here are my own personal ‘‘daunting dozen’’

hot questions in neuroepigenetics.

1. Are Epigenomic Marks a Piece of the Engram?

Epigenetic molecular mechanisms certainly are a component of

developmental information storage, playing critical roles in cell

fate determination and lifelong perpetuation of cellular pheno-

type in both dividing and nondividing cells. This is the scientific

context in which epigenetic mechanisms were originally pro-

posed to exist and in which they were discovered at the molec-

ular level. A broader question is whether epigenetic mechanisms

might be a more universal mechanism for cellular information

storage, operating to subserve plastic change in the adult CNS

and learned behavior at the organismal level.

The ability to form memories about both negative and positive

biological and emotional events is critical for human adaptive

behavior and decision making. Recent studies from a number
of laboratories has demonstrated a role for active DNA methyl-

ation and demethylation in regulating learning and memory for-

mation in the mammalian CNS (see Day and Sweatt, 2011 for a

review). Our understanding of this basic process is beginning

to have a far-reaching impact across disciplines, shedding new

light on scientific research into learning, memory, addiction,

stress disorders, and decision making. Thus, in recent years,

epigenetic modifications of DNA and chromatin have been iden-

tified as essential mediators of memory formation through the

regulation of gene expression (Sultan and Day, 2011), with

methylation of cytosines at CpG dinucleotides playing a critical

role in memory consolidation and stabilization over time (Feng

et al., 2010a; Lubin et al., 2008; Miller et al., 2010; Miller and

Sweatt, 2007; Monsey et al., 2011). However, a question in the

field that has been only sparsely investigated is whether epige-

netic mechanisms are necessary for ongoing storage of memory

(Miller et al., 2010; Lesburguères et al., 2011); in other words, are
Neuron 80, October 30, 2013 ª2013 Elsevier Inc. 627
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epigenetic mechanisms a cog in the machinery of the engram?

Answering this question will have important implications

regarding both the long-standing question of the molecular

biology of the engram and whether there are universally shared

biochemical mechanisms for cellular information storage.

2. HowDoCell-wide Epigenomic Changes Interfacewith

Synapse-Specific Mechanisms of Neural Plasticity?

One of the most intriguing aspects of epigenetic mechanisms is

that they typically operate to drive cell-wide changes in gene

expression. Given the emerging role of epigenetic mechanisms

in learning and memory, this raises an apparent conundrum:

how do cell-wide changes in the neuron that are driven by

nuclear epigenomic marks fit into the well-established necessity

for synapse-specific plasticity as a mediator of memory? One

possibility is that they interdigitate with molecular species such

as synaptic tags in order to participate in synapse-specific

changes (Day and Sweatt, 2010). However, an intriguing alterna-

tive possibility is that epigenetic changes play to their strengths

and are purposely utilized for driving cell-wide functional

changes. Thus, a speculative notion is that the neuronal epige-

nome may be preferentially involved in non-Hebbian plasticity.

For example, epigenetic molecular mechanisms may be particu-

larly relevant to various forms of metaplasticity, operating to

establish a set point for biasing the entire cell toward or against

being susceptible to synapse-specific plasticity mechanisms

such as long-term potentiation. Similarly, the neuronal or glial

epigenome might be allocated to controlling intrinsic properties

that are themselves cell wide, such as excitability and activity-

dependent synaptic scaling. Conceptually, the epigenome, hav-

ing the capacity to control the entire genomic output and sense

pancellular signalingmechanism,might be the ideal control point

for achieving coordinated orchestration of the readout of a

plethora of ion channels, receptors, and trafficking mechanisms

in order to achieve homeostatic plasticity.

3. How Is DNA Methylation Actively Regulated in

Neurons?

While early studies identified 5-methylcytosine as a stable tran-

scriptional silencer based on its role in tissue-specific gene

expression, X chromosome inactivation, and gene imprinting

(Bonasio et al., 2010; Feng et al., 2010b), new evidence of rapid

and reversible changes in DNA methylation at memory-associ-

ated genes implies the presence of both active DNAmethylation

and active DNA demethylation processes in response to

neuronal activity (see Miller and Sweatt, 2007; Lubin et al.,

2008 for examples). The upstream signaling mechanisms that

control both activity-dependent inducible increases in methyl-

ation and active cytosine demethylation in the nervous system

are completely mysterious at present. Those signaling mecha-

nisms regulating histone modifications are better understood,

but our understanding of even those pathways may be best

described as a working sketch (Bonasio et al., 2010). Thus, an

important area for further research is investigating how things

like action potential firing, membrane depolarization, and neuro-

transmitter and hormone receptor activation signal the epige-

nome to change. By extension, an open question in all of

epigenetics is how histone modifications interact with the cyto-

sine methylation apparatus in order to trigger and perpetuate

changes in epigenomic structure.
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The recent discovery of novel oxidative modifications of meth-

ylcytosine in the nervous system is quite exciting, and these find-

ings further enrich the picture concerning how DNA methylation

is regulated in the nervous system. Hydroxymethylcytosine is

emerging as the active demethylation mark that targets a spe-

cific 50-methyl group on cytosine for net removal by a complex

base excision repair mechanism (Guo et al., 2011a; 2011b).

Moreover, as was already mentioned, hmC is of highest abun-

dance in the fertilized zygote and the adult CNS, tissues that

might be thought of as hyperplastic relative to other cell types

in mammals, further implicating this chemical species as a

potential plasticity mechanism for the epigenome.

Consistent with the idea that hmC is involved as a specific

mechanism for active cytosine demethylation, recent studies

identified the ten-eleven translocation (Tet) family of proteins in

active DNA demethylation (Ito et al., 2010; Kriaucionis and

Heintz, 2009; Tahiliani et al., 2009). Specifically, Tet1, Tet2,

and Tet3 enzymes regulate the oxidation of 5mC to 5-hydroxy-

methyl cytosine (5hmC) (Ito et al., 2010; Kriaucionis and Heintz,

2009; Tahiliani et al., 2009), which is deaminated to 5-hydroxyur-

acil (5hmU) (Guo et al., 2011b; Popp et al., 2010; Zhu, 2009) to

create a 5hmU:G mismatch that is recognized and removed by

one of several glycosylases. This abasic site is then repaired

by the base excision repair (BER) machinery, resulting in overall

demethylation of a specific cytsosine. Further Tet-mediated

oxidation of 5hmC to 5-formylcytosine (5fC) and 5-carboxylcyto-

sine (5caC) can also occur prior to glycosylase excision and BER

(Ito et al., 2011).

Recent studies specifically investigating the role of TET1 oxi-

dase in the nervous system provided direct evidence for this

model of TET oxidase control of active DNA demethylation in

the CNS and indeed of a role for this pathway in memory forma-

tion and storage (Kaas et al., 2013; Rudenko et al., 2013). Overall,

these results mark a substantial advance and reveal new infor-

mation about how plasticity of neuroepigenetic marks regulates

activity-dependent processes within the central nervous system.

4. How Is One Specific Cytosine from a 3 Billion-

Nucleotide Cellular Genome Specified for Chemical

Modification?

This is one of the biggest open questions in all of epigenetics, not

just neuroepigenetics, and applies equally to both methylation

and demethylation. It is clear on its face that mechanisms for

identifying genomic sites for selective epigenetic modification

must exist; the epigenome has specificity and structure, with

specific individual genes, exons, promoter regions, gene bodies,

alleles, and even specific cytosines being methylated or deme-

thylated. Moreover, these modifications can occur at both CpG

sites and non-CpG sites, so even the previously held minimal

methylation consensus sequence of a C-G dinucleotide no

longer holds. But there is no current mechanistic explanation

for how this specificity of cytosine methylation can happen.

I, and many others in the field, speculate, based on first princi-

ples, that the mechanisms must be directed to specific loci in

some fashion based on nucleotide sequence—it seems to be

the only component of the system with adequate informational

content. In this regard, noncoding RNAs serving as a targeting

template is one appealing mechanism. Indeed, the recent land-

mark finding from the Kandel lab regarding piRNAs directing
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activity-dependent site-specific DNAmethylation in Aplysia sen-

sory neurons may be a key insight (Rajasethupathy et al., 2012;

Landry et al., 2013). However, it is unclear if those mechanisms

operate in the mammalian CNS at present, and this is a hypoth-

esis that warrants vigorous investigation.

5. What Roles Do Epigenetic Mechanisms Play in

Complex Human Diseases of the Nervous System?

As illustrated in the list in Table 2, this is an extremely broad

question, and obviously I cannot discuss it in detail in a brief

commentary such as this. However, I will note that epigenetic

mechanisms may be particularly relevant to multifactorial dis-

eases with low genetic penetrance, such as schizophrenia and

depression (Petronis, 2010). Thus, epigenomically based mech-

anisms for these disorders may help fill a void where, historically,

genomic analyses have not led to clearly identifiable causes. In

addition, disorders that are triggered by just one or only a few

experiences, but that are henceforth enduring, also seem likely

candidates to be epigenetically mediated. In this line of thinking,

disorders such as drug addiction, posttraumatic stress disorder

(PTSD), epilepsy, and schizophreniamight selectively involve the

cooptation of epigenetic mechanisms used for development and

learned behavior to subserve behaviorally disadvantageous, but

obdurate, behavioral change.

6. Will Epigenetically Targeted Drugs Allow the

Development of Novel Neurotherapeutics?

This is the corollary to the preceding question—if epigenetic

mechanisms are broadly involved in CNS disorders, might

epigenetic targets as a category be broadly applicable to drug

development? This is a very active area of investigation at pre-

sent, with drug discovery efforts ongoing in the areas of cognitive

enhancers for learning disabilities, Alzheimer’s disease, neuro-

degenerative disorders, schizophrenia, depression, addiction,

generalized stress disorders, and PTSD (Kazantsev and Thomp-

son, 2008; Fischer et al., 2007; Anier et al., 2010; Kilgore et al.,

2010; Peleg et al., 2010; Renthal and Nestler, 2008; Szyf, 2009,

Monsey et al., 2011; Oliveira et al., 2012).

7. Are Acquired Epigenetic Marks Transmitted Across

Generations?

Some aspects of this question are among the most contentious

areas in the epigenetics field at present. Broadly speaking,

epigenetic transgenerational effects come in two flavors. The

first type is not transgenerational in the heritable sense, but

rather is experience dependent. For example, Michael Meaney’s

group, his collaborators, and scientific descendants have

demonstrated that maternal nurturing behavior regarding

newborn pups triggers DNA methylation changes in CNS gluco-

corticoid receptors of offspring that persist into the adult and

effect behavioral change (Champagne and Curley, 2009;Weaver

et al., 2004, 2005). Discovery of these experience-dependent

changes in the epigenome is the prototype for the first category

of transgenerational effects, and such experience-driven epige-

nomic changes in the CNS have been documented to occur with

a number of both positive and negative environmental effects in

offspring. Thus, several examples of the persisting CNS epige-

nomic effects on offspring of parental behavior and environ-

mental insult have survived the rigors and skepticism of peer

review (Champagne and Curley, 2009; Roth et al., 2009). At the

most basic level, these studies demonstrate that early life expe-
riences can trigger lifelong persisting epigenomic changes in the

brain of an individual, an observation that has clear implications

for how epigenetic mechanisms might contribute to CNS health

and pathogenesis over the lifespan.

The second flavor of transgenerational effect is the idea that

experience-driven epigenetic changes in an animal might lead

to heritable DNA methylation changes that are propagated

through the germline through many or all subsequent genera-

tions. This neo-Lamarckian scenario is a truly frightening possi-

bility, with interesting implications for topics such as free will, and

is being hotly debated even as a possibility at present. A pre-

sumed evolutionary role for these types of mechanisms is ‘‘soft

inheritance,’’ wherein environmental experience/exposure could

trigger heritable epigenomic changes that improve survival

over a few generations but are ultimately reversible because

they are based upon epigenomic changes (epimutations) and

not upon directly altering the offspring’s DNA nucleotide

sequence. There are several tantalizing and fascinating indica-

tions of experience-dependent heritable changes in the CNS

epigenome in the literature at this point, involving maternal

behavior, paternal behavior, diet, exposure to drugs of abuse,

and endocrine disruption (Bohacek et al., 2013). Definitively

determining whether experience-driven, acquired epigenetic

changes can propagate through the germline and effect behav-

ioral change in subsequent generations is one of themost impor-

tant areas of contemporary neuroepigenetics research, in my

opinion. Proof of the existence of such mechanisms has the

potential to fundamentally change our outlook on evolutionary

biology, psychobiology, and neurophilosophy.

8. What Is the Role of DNA Recombination in CNS

Development and Function?

In the background section above, I included a brief description of

LINE 1 retrotransposition in neurons, in which the L1 class of

repeat sequences recombine and reinsert themselves into the

genome. As I already alluded to, strictly speaking this is not an

epigenetic mechanism because it involves a change in nucleo-

tide sequence. However, this area has been adopted by neuro-

epigeneticists because the mechanistic and functional roles

are so similar to epigenetic mechanisms, and this mechanism

fits quite well into the current novelty and mysteriousness of

epigenetic mechanisms in the nervous system.

The existence of this mechanism in neurons in the CNS implies

the existence of a biochemical system that is capable of produc-

ing genomic diversity at the level of individual neurons, which in

principle would be a potent force for generating idiosyncratic ge-

notypes (presumably useful) for specific neurons or subgroups of

neurons. The laboratory of Rusty Gage has led the way in estab-

lishing the existence of this mechanism in the CNS (Muotri and

Gage, 2006). Testing the functional roles of this type of genomic

diversity, both in the workings of the individual cell and in the

context of organismal behavior, may result in paradigm-shifting

models for control of neuronal function. Regardless of the pre-

cise functional model for the effects of these transposable

genetic elements in neurons, the existence of the requisite

molecular machinery in the CNS is clear. Documentation of the

phenomenon of genomic plasticity in the brain is iconoclastic

in its own right, potentially akin to the discovery of DNA recom-

bination as a driver for antibody diversity in the immune system.
Neuron 80, October 30, 2013 ª2013 Elsevier Inc. 629



Neuron

Perspective
9. What New Roles for Epigenetic Mechanisms in Neural

Development Await Discovery?

Epigenetic mechanisms were, of course, first hypothesized to

exist and then discovered to exist in the field of developmental

biology (Ng and Gurdon, 2008; Tate et al., 1996; Feng et al.,

2010b). Thus, our understanding of the developmental roles of

epigenetic mechanisms is the most mature area of this relatively

young field. Epigenetic mechanisms are a core process driving

cell fate determination and especially cell fate perpetuation.

However, by no means does this imply that novel developmental

epigenetic regulators are not out there to be found, nor that

distinct developmental uses of known mechanism cannot exist.

This represents a rich field for additional research, especially, in

my opinion, as relates to noncoding RNAs and their role in CNS

development.

Moreover, the existing developmental models of epigenomic

effects are largely based in the broad concept that epigenetic

marks are essentially immutable once laid down, in order to

perpetuate cellular phenotype over time. The new understanding

of dynamic regulation of DNA methylation in the nervous system

forces a rethinking of the basic tenet of epigenetics. What new

mechanisms are there to be found in terms of active regulation

of the epigenome during neuronal, glial, and nervous system

development, especially regarding the effects of neural activity

and behavioral experience as it shapes the developing nervous

system? Furthermore, the plastic nature of the neural epigenome

has immense implications for neurodevelopmental disorders

that were previously assumed to be irreversible, given that cells

in the CNSmight be subject to epigenetic reprogramming later in

life (Ehninger et al., 2008, Weeber and Sweatt, 2002, Jiang et al.,

1998).

Finally, a particularly intriguing area regarding this overall

question is the phenomenon of genetic imprinting, wherein the

paternal ormaternal allele of a gene can be epigenetically tagged

to modify its function. Allelic imprinting can go so far as to

completely silence one allele of a given gene in a cell type or brain

region. It has been proposed that imprinting mechanisms may

bias one allele to be preferentially used at one developmental

stage, essentially preserving an epigenetically fresh copy of the

same gene for distinct epigenetic regulation somewhere down

the timeline (Day and Sweatt, 2011; Gregg et al., 2010a;

2010b). Testing this idea awaits further investigation.

10. How Can a Single Cell Have Both a Stable

Developmental Epigenome and a Dynamically

Regulated One as Well?

The discussion in point 9 leads us to the next question, because

on its face it seems that there must be unique mechanistic chal-

lenges to utilizing the biochemical machinery that allows

dynamic activity-dependent modification of the epigenome in a

terminally differentiated and nondividing cell such as a neuron

(Feng et al., 2010b). Thus, active regulation of epigenetic marks

in a neuron must exist simultaneously alongside the stable

epigenetic marks that perpetuate neuronal phenotype over

the lifespan. How can a single genome be subject to both

perpetual and immutable epigenetic marking at the same time

it is subject to dynamic regulation in response to experience?

This thought experiment tells us that some set of mechanisms

must compartmentalize the developmental epigenome from
630 Neuron 80, October 30, 2013 ª2013 Elsevier Inc.
the dynamic epigenome. These mechanisms are completely

mysterious at present.

11. What Is the Extent of Involvement of Protein-Based

Epigenetic Mechanisms in Nervous System Regulation?

As described in the introductory section, epigenetic mecha-

nisms are so powerful because they can self-perpetuate over

time. Indeed, this peculiar aspect of epigenetics is why Francis

Crick first proposed DNA methylation as a component of mem-

ory storage in the nervous system in a personal correspondence

to the editor at Nature (Crick, 1984). However, as described

above, self-perpetuating epigenetic mechanisms are not limited

to DNA modifications—prion-like mechanisms, histone subunit

exchange, and histone methylation all have the demonstrated,

or at least hypothetical, capacity for self-regeneration in the

face of protein turnover. Presumably, other self-reinforcing

protein-based mechanisms await discovery, and their potential

roles in neuronal information storage are tantalizing.

12. Can we Really Understand the CNS Epigenome?

My final question for this perspective piece is whether, as scien-

tists, we will ever be able to fully comprehend the mechanistic

roles of neuroepigenetic mechanisms in any sort of compelling,

understandable, and satisfying fashion. It might be a reality

that the neuroepigenetic mechanisms operating in the CNS are

so complex that they defy comprehensive explanation and

understanding. I certainly hope this is not the case! But as a

closing comment, I would like to explain my fear in this regard.

Explaining how neuroepigenetic mechanisms serve as the

interface between genes and experience, or nature and nurture

as I mentioned to start this essay, is certainly going to be a big

data endeavor. It is already clear that tracking epigenetic

changes in the CNS over the lifespan is going to be a huge bio-

informatics challenge (Lister et al., 2013). The biomedical poster

child for big data thus far has been sequencing the human

genome, aswell as the genomes of other species. This is the pro-

totype for how we think about large-scale bioinformatics initia-

tives in biology: sequencing and annotating the 3 billion or so

nucleotides comprising a mammalian genome. However, the

genome in all its complexity is simply the basic first layer of infra-

structure upon which epigenetic mechanisms operate. A single

mammalian organism has a single genome, but that same organ-

ism has hundreds of cellular phenotypes, each of which has its

own distinct epigenome. Each cellular epigenome itself com-

prises a hundred or so distinct epigenetic marks (Table 1) that

can potentially be read out in a complex combinatorial fashion,

that can potentially have functional consequences specifically

localized to any one of the 3 billion or so individual nucleotides

in the cell. So, conceptually, one can multiply 3 billion nucleo-

tides (the genome) times 100 potential epigenetic marks that

may or may not be there at each nucleotide, each epigenetic

mark of which exists in some background epigenome specifying

cell type and which may be read out in a combinatorial fashion

depending upon nearby epigenetic modifications (Scharf and

Imhof, 2011; D’Alessio and Szyf, 2006). The potential combina-

torial complexity of this system is indeed daunting. Deciphering

how the epigenome regulates the functional properties of neu-

rons and glia in the brain is clearly going to be an immense bio-

informatics challenge. The workings of the epigenomic code in

the CNS will certainly be refractory to succinct and simple
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explanation. However, it is already clear that parsing that code

will be required for any comprehensive model of how experience

shapes function in the brain.
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