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SUMMARY

Decisions are often guided by generalizing from past
experiences. Fundamental questions remain regard-
ing the cognitive and neural mechanisms by which
generalization takes place. Prior data suggest that
generalization may stem from inference-based pro-
cesses at the time of generalization. By contrast,
generalization may emerge from mnemonic pro-
cesses occurring while premise events are encoded.
Here, participants engaged in a two-phase learning
and generalization task, wherein they learned a series
of overlapping associations and subsequently gen-
eralized what they learned to novel stimulus combi-
nations. Functional MRI revealed that successful
generalization was associated with coupled changes
in learning-phase activity in the hippocampus and
midbrain (ventral tegmental area/substantia nigra).
These findings provide evidence for generalization
based on integrative encoding, whereby overlapping
past events are integrated into a linked mnemonic
representation. Hippocampal-midbrain interactions
support the dynamic integration of experiences, pro-
viding a powerful mechanism for building arich asso-
ciative history that extends beyond individual events.

INTRODUCTION

Memory is essential to behavior, enabling organisms to draw on
past experience to guide choices and actions. Extensive evi-
dence suggests that the hippocampus encodes experiences
(events) into long-term memory as separated, discrete represen-
tations (Kirwan and Stark, 2007; Leutgeb et al., 2007; McNaugh-
ton and Nadel, 1989; Norman and O’Reilly, 2003; O’Reilly and
Rudy, 2001). Such discrete encoding provides a mechanism
for remembering specific details of single events. However, ex-
periences often overlap in their content, presenting opportunities
for generalizing across them. It has been proposed that effective
generalization may depend on integrating discrete experiences
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into a rich, cohesive representation (Eichenbaum, 2000; Gluck
and Myers, 1993). A fundamental question concerns whether,
and how, such integration takes place.

One approach to examining generalization is to train an organ-
ism on separate events that share common elements (e.g., A-B
and B-C) and then test whether the organism demonstrates
knowledge about the relation between the elements that were
not directly experienced together (e.g., A and C) (Dusek and Ei-
chenbaum, 1997; Eichenbaum, 2000; Greene et al., 2006; Heck-
ers et al., 2004; Preston et al., 2004). Extant data from this type of
paradigm indicate that animals and humans generalize, and that
this ability depends on the hippocampus (Dusek and Eichen-
baum, 1997; Eichenbaum, 2000; Greene et al., 2006; Heckers
et al., 2004; Preston et al., 2004). Specification of the hippocam-
pal mechanisms that enable such generalization is central to un-
derstanding how decisions are guided by past experience.

One possible mechanism by which knowledge may be gener-
alized across discrete experiences is through logical inference at
test (e.g., Dusek and Eichenbaum, 1997; Greene et al., 2006). In-
deed, generalization is often thought to depend on transitive or
associative inference (Greene et al., 2006; Heckers et al., 2004;
Preston et al., 2004). On this view, the hippocampus contributes
to generalization by supporting the novel and flexible expression
of memories on which inferences rest (Cohen and Eichenbaum,
1993; Eichenbaum, 2000; Preston et al., 2004). That is, the hip-
pocampus stores and enables flexible retrieval of discrete mem-
ories that afford an inference about the relation between multiple
elements, even when this relation is not directly encoded in
memory. Consistent with this view, functional imaging studies
in humans have demonstrated greater hippocampal activation
when subjects make memory judgments about pairs of items
(e.g., A—-C) whose relationship was mediated through an element
(i.e., B) common to two separate associations (i.e., A-B and B-C)
(Greene et al., 2006; Heckers et al., 2004; Preston et al., 2004).

While prior observations provide evidence for inference-based
generalization, here we report evidence for an alternative mech-
anism—integrative encoding —through which generalization can
emerge. By this view, the hippocampus contributes to the inte-
gration of distinct episodes into a linked network of mnemonic
associations. The dynamic construction of integrated memo-
ries—posited to occur as overlapping episodes are experi-
enced—enables direct retrieval of knowledge about the relation
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between multiple elements that, while not directly experienced,
are nevertheless encoded in memory (Eichenbaum, 2000). Thus,
at test, generalization is not a reconstructive inference-based
process based on flexible retrieval of multiple memories but
rather is a direct expression of knowledge encoded in memory
as a synthesis of information across multiple experiences.

Motivated by computational theories and neurophysiological
data that suggest that the hippocampus dynamically shifts be-
tween encoding and retrieval states (Hasselmo and McClelland,
1999; Hasselmo et al., 1995), we hypothesized that encountering
an event that has feature overlap with a previously encoded
event can trigger retrieval of memory for the past event, and
that this, in turn, can lead to encoding of the two discrete events
into an integrated representation. Such integrative encoding
would allow direct storage in memory of the relation between
two elements that were not experienced together. According
to this perspective, subsequent responses to generalization
probes can be based on the direct retrieval of a stored integrative
memory, such that generalization is essentially the same as re-
trieval of a previously experienced event, rather than a slower,
more effortful process of inference. Notably, this notion of alter-
nating encoding and retrieval as a mechanism for integrating
memories was proposed as early as 1923 by Richard Semon
(Schacter, 2001a). However, little is known about whether and
how such mnemonic integration occurs.

Neurochemical modulation is thought to be essential in driving
dynamic shifts between encoding and retrieval in the hippocam-
pus (Hasselmo et al., 1995). While previous work emphasizes
cholinergic modulation from the basal forebrain, here we pro-
pose that the midbrain dopamine system plays a key role in mod-
ulating hippocampal mechanisms necessary for crossepisode
integration. This perspective is guided by three observations.
First, the hippocampus is innervated by dopamine projections
from the ventral tegmental area (VTA) in the midbrain (Gasbarri
et al., 1994; Swanson, 1982). Second, dopamine release in the
hippocampus modulates hippocampal plasticity (Frey et al.,
1990; Morris et al., 2003; Otmakhova and Lisman, 1996); indeed,
both midbrain activation (Wittmann et al., 2005) and interaction
between hippocampus and midbrain (Adcock et al., 2006)
have been shown to facilitate encoding of individual episodes.
Third, midbrain dopamine neurons are most responsive under
circumstances in which predictions are violated (Lisman and
Grace, 2005; Schultz et al., 1997); we argue that prediction vio-
lation is precisely what happens when an organism encounters
an episode that contains elements that overlap with a previously
encoded episode (Kumaran and Maguire, 2006). That is, when
encountering an overlapping element, this overlap leads to
retrieval of prior episodic details that mismatch the details of
the present event. Collectively, these observations led us to pre-
dict that integrative encoding across experiences is supported
by a cooperative interaction between the hippocampus and
midbrain dopamine regions.

Notably, when considered from the perspective of the putative
hippocampal-VTA loop (Lisman and Grace, 2005), this functional
prediction about the relationship between midbrain activation
and learning is distinct from that of the established view of mid-
brain dopamine neurons in modulating corticostriatal “habit”
learning. This latter view rests on extensive findings demonstrat-

ing that midbrain dopamine neurons respond when reward pre-
dictions are violated (Schultz, 1998). Specifically, a large body of
research indicates that reinforcement learning depends on mid-
brain dopamine neurons and their striatal (caudate and putamen)
targets (Aron et al., 2004; Daw and Doya, 2006; Delgado et al.,
2000, 2005; Faure et al., 2005; Frank et al., 2004; Schultz et al.,
1997; Shohamy et al., 2004, 2006). This type of learning is
thought to be independent of the hippocampal declarative mem-
ory system (Gabrieli, 1998; Knowlton et al., 1996; Myers et al.,
2003; Shohamy et al., 2006, 2008; Yin and Knowlton, 2006)
and perhaps even antagonistic to it (Packard and McGaugh,
1996; Poldrack et al., 2001; Poldrack and Packard, 2003).

From the perspective of current theories of reinforcement
learning, midbrain dopamine regions would not be expected to
contribute to crossevent generalization, and midbrain activation
would not be expected to couple with that in the hippocampus.
However, if, as we hypothesize, midbrain dopamine regions
interact with the hippocampus to support generalization, then
midbrain activation is predicted to couple with that in the hippo-
campus and to correlate with generalization performance. Such
outcomes would add to a growing body of evidence indicating
a broader role for this system in learning and memory by modu-
lating the hippocampus, in addition to the striatum (Adcock et al.,
2006; Lisman and Grace, 2005; Wittmann et al., 2005).

To summarize, we hypothesized that (1) generalization stems
from integrative encoding that occurs while experiencing events
that partially overlap with previously encoded events, (2) that
such integrative encoding depends on both the hippocampus
and midbrain dopamine regions, and (3) that greater hippocam-
pal-midbrain engagement during integrative encoding enables
rapid behavioral generalization in the future.

To test these predictions, 24 participants were scanned with
functional magnetic resonance imaging (fMRI) while engaged
in an associative learning and generalization task (Figure 1; Collie
et al., 2002; Grice and Davis, 1960; Hall et al., 1993; Myers et al.,
2003). The design was conceptually similar to existing transitive
and associative inference paradigms (e.g., Greene et al., 2006;
Heckers et al., 2004; Preston et al., 2004), with several notewor-
thy differences. First, in the present study, rather than being
blocked (Greene et al., 2006; Heckers et al., 2004; Preston
et al., 2004), here the trained associations were intermixed,
much as occurs in everyday life where overlapping experiences
are temporally intermixed. By intermixing the presentation of as-
sociations with overlapping content multiple times, we sought to
allow more opportunity for integration during learning. Second,
while transitive inference paradigms typically entail hierarchically
organized stimuli (e.g., A> B, B> C, C > D, D > E; generalize to
B?D probe), which may encourage the articulation of a logical,
rational structure of elements at the time of test, here we used
a generalization paradigm that involved arbitrary, overlapping
associations between elements, which is more characteristic
of the overlap in elements that are encountered in daily episodic
experiences.

During the initial phase of the task, participants learned a series
of face-scene associations that were structured to include partial
overlap across associative pairs, providing an opportunity for in-
tegrative encoding. On each trial, participants learned to associ-
ate a face with a scene by choosing which of two scenes went
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Figure 1. Representative Events and Structure of the Task
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Phase 2: Test
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(A) Participants learned a series of individual face-scene associations based on feedback (36 individual associations in total). On each trial, the face-scene pair
was presented for 3 s, after which performance-dependent feedback was provided for 1 s. There were three learning event types—the individual associations
shared overlapping features, with two faces always associated with a common scene, and one of those faces also associated with a second scene. A scene that
was the incorrect choice for one face was the correct choice for another face, so that simple stimulus-response learning strategies could not support learning.
(B) After learning, participants underwent a test phase, where they received no feedback and where they were asked to respond to untrained face-scene
associations. These generalization trials were presented together with trials that tested knowledge for previously trained associations.

(C) The generalization trials can be correctly responded to by way of two different mechanisms: during test, retrieval of the previously trained individual associ-
ations may allow participants to draw inferences across them (left); alternatively, the untrained association may have been formed during learning due to retrieval
and integrative encoding that is triggered by the overlapping features across individual trained associations.

with the face and receiving feedback (Figure 1A). While each
face-scene association was learned individually, there was par-
tial overlap across events, such that pairs of faces were associ-
ated with a common scene (e.g., F1-S4; F>—S4). In addition to
learning the F1-S4 and F,-S; associations, participants were
concurrently trained on a second association for one of the faces
(i.e., F1—S,; Figure 1A). Thus, the initial learning phase consisted
of three different types of stimulus combinations that contained
partial overlap (F1-S1; Fo—Sq; F1-S5). To the extent that the over-
lap between F,-S; and F,-S; elicits crossevent integration
during learning, we expected that the additional learning of the
F4-S, association would lead F, to also become associated
with S, (Collie et al., 2002; Grice and Davis, 1960; Hall et al.,
1993; Myers et al., 2003).

Over the course of learning, participants were trained with 24
face-scene associations that followed this structure (F4 through
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Fo4; S1 through S,4). Trials were intermixed, each repeated eight
times, and distributed across two encoding scans—an initial
encoding scan provided an opportunity to learn the presented
associations (early learning), followed by a second encoding
scan that provided additional opportunities to strengthen these
associations and to integrate across them (late learning).
Following the two encoding scans, a test phase probed partic-
ipants’ ability to generalize. Specifically, generalization trials
tested whether participants would choose S, when presented F»
even though they had never encountered this pairing at study (Fig-
ure 1B). These generalization trials were tested together with trials
that probed retention of knowledge about the associations that
had been previously encountered (Fo—S4; F1-S1; F1—Sy; “trained”).
To maximize power for imaging analyses, each test-phase trial
was repeated six times. Feedback was not provided during this
phase, to ensure that no new learning occurred across test trials.
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RESULTS

Behavioral Performance

All participants were able to learn and retain the trained pairings.
During encoding, most of the learning of the trained pairings
occurred early in learning, during the initial encoding scan (with
accuracy improving from 57% correct to 80%); late in learning,
during the second encoding scan, accuracy further incremen-
tally improved (from 86% to 93%; see Supplemental Results
available online). At test, participants remained highly accurate
on the trained pairings (93% correct).

Mean performance on the generalization test probes was high
(81%) and consistent across the six repeated test presentations
(see Supplemental Results). Interestingly, generalization mark-
edly varied across individuals (range 38%-100%), indicating
that, on average, participants were able to exploit the overlap
in encountered associations but that they differed in their ability
to do so. The key question is: what representations and pro-
cesses support successful generalization (Figure 1C)? Is gener-
alization based on logical inference at test, during which retrieval
of the individually encoded associations is used to infer that F,
goes with S,? Or, does integrative encoding of overlapping
events take place during learning via hippocampal-midbrain
interactions, such that the untrained generalization associations
(i.e., Fo—S,) are encoded in memory and then retrieved at test, as
occurs for trained associations (e.g., F1—S,)? As described
below, our fMRI results suggest that successful generalization
is driven by crossepisode integration during learning, and not
by memory-based inference at test.

Generalization Performance Is Not Related

to Activation at Test

Given the literature on transitive and associative inference
(Greene et al., 2006; Heckers et al., 2004; Preston et al., 2004),
we first examined whether test-phase activation differed on gen-
eralization versus trained trials. Specifically, to the extent that
logical inference at test supports generalization, this predicts
(1) greater hippocampal activation at test during correct general-
ization relative to correct trained trials (Greene et al., 2006; Heck-
ers et al., 2004; Preston et al., 2004) and (2) that the magnitude of
hippocampal activation on generalization trials would correlate
with generalization performance. Analyses of the test-phase
data failed to support either of these predictions, providing no
evidence that hippocampal retrieval mechanisms were differen-
tially engaged on generalization versus trained probes (see Sup-
plemental Results). As such, these data are inconsistent with
generalization based on logical inference mechanism.

Activation in Hippocampus and Midbrain during
Learning Predicts Generalization

To assess whether integrative encoding occurs and supports
generalization, we examined the relationship between hippo-
campal and midbrain activation during learning and participants’
subsequent generalization performance. Because integration
across associations depends on having learned the individual
associations, we predicted that integration would occur later,
rather than earlier, in learning, and therefore that the ability to
generalize at test would be associated with increasing activation

over the course of learning in the hippocampus and midbrain.
Importantly, this prediction stands counter to extensive prior ev-
idence indicating that when encoding individual, nonoverlapping
associations, hippocampal activation markedly declines across
learning exposures (Kohler et al., 2005; Zeineh et al., 2003).
Moreover, this prediction may also stand counter to expecta-
tions about midbrain encoding activation that derive from the
reinforcement learning literature. Specifically, prior evidence
indicates that striatal activity declines across learning when
acquiring individual, nonoverlapping associations in a reinforce-
ment learning context (Delgado et al., 2005). Thus, while it is not
known how midbrain activation changes as a function of declar-
ative memory encoding over time, to the extent that midbrain ac-
tivation tracks striatal activation then one might expect a decline
in midbrain activation over the course of learning, which is the
opposite of our prediction.

As each generalization trial relates to a series of learning-
phase events, our encoding-phase analysis did not use the
“subsequent memory” approach (e.g., Paller and Wagner,
2002). Rather, to test the prediction that integrative encoding
across learning supports generalization, we conducted regres-
sion analyses to determine whether the increase in magnitude
of activation from early to late learning correlated with subse-
quent accuracy on the generalization probes.

Consistent with the integrative encoding hypothesis, this
regression analysis revealed that the magnitude of activation
increase from early to late learning in bilateral hippocampus
and in the midbrain (VTA/SN complex) correlated with subse-
quent accuracy on the generalization trials at test (Ps < 0.05, cor-
rected; Figures 2A and 2B); this was the case when analyzing the
midbrain data using either a 4 or 8 mm smoothing filter (Figure 3;
complete results from analyses of the data using a 4 mm
smoothing filter appear in the Supplemental Results). That is,
superior subsequent generalization was preceded by a greater
increase in hippocampal and midbrain activation from early to
late learning. This relationship between subsequent generaliza-
tion performance and increasing hippocampal and midbrain
activation across learning was also apparent when we median
split the 24 participants into “good” and “poor” generalization
groups (96% correct versus 66% correct, respectively; Figure 2C
and Figure 4A). Specifically, group X learning phase interactions
revealed a difference in the pattern of hippocampal (right hippo-
campus, F(1,22) = 4.31, p < 0.05; left hippocampus, F(1,22) =
3.25, p = 0.08) and midbrain (F(1,22) = 4.70, p < 0.05) activity
across learning in the two groups, with the “good” generalization
group (Ps < 0.001), but not the “poor” generalization group (Ps >
0.60), demonstrating a significant increase in activity from early
to late learning (Figure 2C).

Importantly, these subgroup differences in generalization
and in learning-phase hippocampal and midbrain activity were
present even when equating for differences in performance on
trained associations (Figure 4A and Supplemental Results).
Moreover, multiple subsidiary analyses revealed that the correla-
tion between learning-phase hippocampal and midbrain activity
with subsequent generalization was not due to differences in re-
tention of trained associations (see Supplemental Results). We
also found no evidence for any subjective differences in the
learning experience between those participants that generalized
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Figure 2. Hippocampal and Midbrain Activation during Learning Predicts Correct Responding on the Generalization Trials at Test

(A) Map-wise regression analyses revealed that the change in activation from early to late learning in left hippocampus (-28, —9, —17; 27 voxels), right
hippocampus (31, —5, —20; 22 voxels), and a bilateral midbrain complex (3, —18, —12; 50 voxels) correlated with % correct generalization performance at
test (p < 0.001, extent threshold 5 voxels; p < 0.05, small volume corrected for the hippocampus and midbrain).

(B) BOLD % signal change data extracted from these hippocampal and midbrain regions (inclusive of all above-threshold voxels within a 6-mm sphere surround-
ing the peak voxel) confirmed the strong correlation between learning-phase activation increases and generalization performance.

(C) When participants were median split based on generalization performance at test, an increase in hippocampal and midbrain activation from early to late
learning was observed in participants who generalized well (“good” group), but not in participants who generalized poorly (“poor” group).

Error bars + SEM.

well versus those that did not, based on self-report question-
naires administered after the study. Indeed, although self-
reports should be interpreted with caution, it is interesting to
note that when asked, only two participants —both poor general-
izers—reported any awareness of the appearance of novel pair-
ings during the test phase. Finally, and importantly, we note that
the correlations between subsequent generalization perfor-
mance and the learning-phase increase in hippocampal and
midbrain activation were not unduly driven by those participants
who showed maximal generalization performance (>95% cor-
rect generalization), as these correlations remained significant
even when excluding the best generalizers (n = 16; left hippo-
campus, r = 0.60; right hippocampus, r = 0.68; midbrain, r = 0.63;
Ps < 0.05, corrected).

Response Latencies Support the Integrative Encoding
Hypothesis

An additional key prediction of the integrative encoding account
is that, at test, performance on the generalization and trained
probes involves the same mechanism—retrieval of an encoded
association—even though the latter had been repeatedly en-
countered and retrieved during study whereas the former had
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never been experienced. Accordingly, this predicts that (1) re-
sponse latencies to generalization test probes would be in the
same range as the latencies to trained probes and that (2) the de-
gree of similarity between response latencies to generalization
and trained probes would relate to generalization performance.

Consistent with these predictions, regression analyses re-
vealed that the difference in response latencies between correct
trained and correct generalization trials at test was negatively
correlated with generalization performance (r = —0.69, p < 0.001).
Similarly, when median splitting the participants, a group X test
trial type interaction (F(1,22) = 31.32 p < 0.0001) revealed that
the “poor” generalization group showed significantly more slow-
ing on the generalization versus trained trials relative to the
“good” generalization group (Figure 4B). This effect was signifi-
cant even when restricting the test phase analysis to the first en-
counter with the generalization probes (F(1,22) = 4.61, p < 0.05).
In fact, among the six participants demonstrating the best gener-
alization performance (the top quartile), there was only a 39 ms
difference in mean response latency on generalization versus
trained probes—clearly insufficient time to permit mediated re-
trieval and logical inference — with half of these participants being
faster on generalization trials.
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Functional Interaction between Hippocampus

and Midbrain

Given the hypothesis that midbrain dopaminergic modulation of
the hippocampus is central for integrative encoding, we exam-
ined whether there was a functional interaction between these
regions during learning. To test this hypothesis, we extracted
the learning-phase change in activity from the midbrain region
that correlated with generalization (Figure 2 and Experimental
Procedures) and regressed this functionally relevant midbrain re-
sponse against activity elsewhere to determine whether any hip-
pocampal voxels showed changes in activity that correlated with
that in midbrain. Consistent with our hypothesis, the learning-
phase increase in midbrain activity was strongly correlated with
that in the hippocampus (Figure 5; Ps < 0.001 in left and right hip-
pocampus), suggesting a cooperative interaction between these
two regions during integrative encoding. Importantly, this coop-
erative interaction with the midbrain region was selective to the
hippocampus (see Supplemental Results), and it remained signif-
icant even when excluding the two participants demonstrating

Figure 3. Localization of Midbrain Activa-
tions, Displayed on a Canonical Ti-
Weighted Image (Axial Slice, Left; Sagittal
Slice, Right)

The midbrain complex consists of the substantia
nigra (SN) and the ventral tegmental area (VTA).
(A) SN extends lateral and posterior around the
oval red nuclei, as indicated by the black arrows.
VTA is medial to SN, and borders the interpedun-
cular cistern.

(B) Higher magnification of the generalization-
related midbrain region-of-interest described in
the main findings (data smoothed with an 8 mm fil-
ter; p < 0.001, extent threshold 5 voxels; p < 0.05,
small volume corrected for the hippocampus and
midbrain).

(C) Visualization of generalization-related midbrain
activations revealed when using a smaller (4 mm)
smoothing filter during functional data prepro-
cessing (p < 0.001, extent threshold 5 voxels; p <
0.05, small volume corrected for the hippocampus
and midbrain). Full reporting of the data smoothed
with a 4 mm filter appear in the Supplemental
Results.

the strongest and weakest change in
VTA/SN learning-phase activity (Figure 5).

Hippocampal and Midbrain
Contributions to Learning Different
Event Types

Finally, we asked whether specific types
of overlapping events differentially elicit
hippocampal and midbrain activation, by
examining how learning-phase activation
to the three different event types (F1-S;;
F1=S,; Fo—S+) differed as a function of gen-
eralization. Regression analyses revealed
that generalization was more tightly —but
not selectively —related to learning-phase
hippocampal and midbrain activation changes to the F>—S; trials
(Figure 6); this effect was also apparent when comparing the two
generalization subgroups, especially within midbrain (Figure 6).
Importantly, this effect is merely suggestive and should be inter-
preted with caution, as there was no significant interaction be-
tween trial types in either the hippocampus or the midbrain (see
Supplemental Results). Nonetheless, generalization might be
more tightly associated with changes in learning-phase activity
on F>—-S; events because these events are uniquely expected to
evoke retrieval of a chain of two previously encoded events. Spe-
cifically, Fo—S, trials may lead to retrieval of F1—S; trials (due to the
overlap of S4), which then may evoke retrieval of F1-S, (due to the
overlap of F4). Such retrieval would enable the encoding of these
multiple associations as an integrated representation (Figure 1C).

DISCUSSION

The present results provide novel evidence for an integrative en-
coding mechanism in which hippocampal-midbrain interactions
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Figure 4. Behavioral Performance at Test on
Trained and Generalization Trials for the
‘Good’ and ‘Poor’ Generalization Participants
(A) An interaction between group and test trial
type revealed a significantly greater difference be-
tween the two groups in performance on the gen-
eralization trials relative to the trained trials. Impor-
tantly, the “good” group showed no difference in
accuracy between trained and generalization
trials, whereas the “poor” group showed superior
performance on trained than on generalization
trials.

(B) This pattern was also evident in the speed of

OGood
EPoor

Generalization

responding. The “poor” group, relative to the “good” group, showed a marked difference in response latencies to trained versus generalization trials, consistent
with the hypothesis that in the “good” group the associations necessary to rapidly respond to generalization trials were constructed during learning.

Error bars + SEM.

giverise to learning that bridges across multiple separate events.
This mechanism enables rapid generalization that is based on
direct retrieval of an encoded association, rather than on an in-
ference-based process. According to this view, many instances
of “generalization” may in fact be direct expressions of stored,
integrated representations. To the extent that organisms can
bridge across multiple integrated representations, this provides
a powerful mechanism for building a rich associative history
that extends beyond individually experienced events.

Our findings advance understanding of hippocampal and mid-
brain function in several important ways. First, we demonstrate
that the hippocampus may contribute not only to the encoding
of individual experiences as separated, discrete representations,
but may also contribute to the integration of memories of over-
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Figure 5. Learning-Phase Activation Changes in Bilateral Hippo-
campus Demonstrated a Significant Correlation with Such Changes
in the Midbrain

This analysis regressed the difference in % signal change from early to late
learning in a seed region in the midbrain with voxels in the medial temporal
lobe (p < 0.001, extent threshold 5 voxels; small volume corrected, p < 0.05).
Extracting the change in integrated % signal change for all activated voxels in
left and right hippocampus (98 and 161 voxels, respectively) identified in this
regression confirmed the tight relationship with the change in integrated % sig-
nal change in the midbrain. Importantly, this relationship between hippocam-
pal and midbrain activation remained significant even when excluding the two
participants demonstrating the strongest and weakest change in midbrain
learning-phase activity (left hippocampus-midbrain r = 0.59; p < 0.005; right
hippocampus-midbrain, r = 0.75, p < 0.001).
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lapping events. This observation suggests a possible mecha-
nism for how the hippocampus may create a continuous link
across episodes that are experienced individually and at distinct
moments in time.

Second, our data reveal correlated activity between midbrain
dopamine regions and the hippocampus during learning, which
points to a functional role of midbrain regions in modulating hip-
pocampal-dependent crossevent integration. This finding may
have important implications for understanding the role of mid-
brain dopamine regions in memory, by providing a link between
theories of dopamine in expectation and prediction (e.g., Bayer
and Glimcher, 2005; Schultz et al., 1997) and theories of hippo-
campal contributions to declarative memory (Eichenbaum and
Cohen, 2001; Greene et al., 2006; Kumaran and Maguire,
2006; O’Reilly and Rudy, 2001; Squire, 1992).

Extensive data indicate a critical role for midbrain dopamine
neurons in reward prediction and learning (Aron et al., 2004;
Daw and Doya, 2006; Delgado et al., 2000, 2005; Faure et al.,
2005; Frank et al., 2004; Schultz, 1998; Schultz et al., 1997;
Shohamy et al., 2004, 2006). Such studies demonstrate that
midbrain dopamine neurons signal a reward-prediction error—
increasing firing when an unexpected reward occurs and de-
creasing firing when an expected reward fails to occur (Schultz,
1998). More recently, it has been suggested that midbrain
dopamine neurons may also play a critical role in modulating
hippocampal-dependent episodic memory (Adcock et al.,
2006; Lisman and Grace, 2005; Schott et al., 2005; Wittmann
et al., 2005). Midbrain dopamine neurons project not only to
the striatum but also to the hippocampus (Gasbarri et al.,
1994; Swanson, 1982), where dopamine has been shown to
modulate plasticity (Frey et al., 1990; Morris et al., 2003; Otma-
khova and Lisman, 1996).

The precise function of dopamine modulation in the hippocam-
pus remains unknown. However, it has been proposed that
a functional loop between the midbrain (VTA) and the hippocam-
pus serves to enhance episodic memory for novel events (Lisman
and Grace, 2005). This model builds upon the established role of
the hippocampus in novelty detection—a process that is thought
to involve comparing present events with memory representa-
tions of events in the past, and detecting any mismatch between
them (Kohler et al., 2005; Strange and Dolan, 2001; Yamaguchi
etal., 2004). When novelty is detected by the hippocampus, a sig-
nal is thought to project to the VTA, leading to dopamine release
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Figure 6. Hippocampal and Midbrain Activation to Different Event Types during Learning

The relationship between (A) hippocampal and (B) midbrain activation during learning and generalization performance at test was strongest for the F>—S learning
trials. Regression analyses (left) revealed that subsequent generalization correlated with learning-phase activation increases to Fo—S; trials in both bilateral hip-
pocampus (data shown for right hippocampus) and midbrain (Ps < .05, corrected); no other correlations survived correction for multiple comparisons. Similarly,
increased activation during learning of F,—S; events showed the strongest difference across “good” and “poor” generalization subgroups. The “good” (Ps <
0.05), but not the “poor” (Ps > 0.40), generalization group demonstrated a significant increase in bilateral hippocampal and midbrain activation from early to
late learning of Fo—S; trials. In the midbrain, this increase was selective to the Fo—-S; trials, whereas in the hippocampus, a qualitatively similar effect was observed

for the F1—S; and F4-S; trials (see Supplemental Results). Error bars + SEM.

and memory enhancement in the hippocampus (Lisman and
Grace, 2005).

The present data support this view by demonstrating a cooper-
ative relationship between the midbrain and the hippocampus,
with both regions showing a correlated increase in activation
over the course of learning, even as errors (and activation in
the striatum) decrease (see Supplemental Results for striatal
findings). Importantly, the present data extend this view in sev-
eral ways, indicating a broader role for this loop in learning and
memory.

First, our data suggest that a hippocampal-midbrain network
may provide a mechanism not only for the enhancement of
long-term memory for individual episodes, but also for crossepi-
sode integration. We propose that the underlying mechanism for
integrative encoding may be the detection of mismatch when an
organism encounters an episode that has partial overlap with
a previously experienced event. For example, when encounter-
ing an event (e.g., Fo—S4) that overlaps with a prior event (e.g.,
F,-S4), the presentation of the overlapping element (S;) may
elicit retrieval of the prior event’s features (e.g., F1). This reactiva-
tion of features from a prior event that differ from the features of
the present event (i.e., F; versus F,) may trigger a mismatch sig-
nal within the hippocampus that upregulates midbrain dopami-
nergic feedback onto the hippocampus (Lisman and Grace,
2005), the consequence of which is to increase the probability
of encoding the present and prior event features into an inte-
grated representation. By this view, midbrain regions are argued
to respond not only to violations of expectation about the value
of a predicted outcome (a reward prediction error) but also to
violations of expectation about the content of an episode (an ep-
isodic prediction error). As such, our data extend prior theories

focusing on a role for midbrain dopamine in reward prediction
(O’Doherty et al., 2003; Schultz, 1998; Schultz et al., 1997) and
stimulus-response learning (Faure et al., 2005; Graybiel, 1995;
Shohamy et al., 2006; Yin et al., 2004), and suggest a critical
contribution of midbrain mechanisms to other forms of learning.

Second, our findings suggest that it is not item (stimulus) nov-
elty per se that drives this hippocampal-midbrain interaction, but
associative novelty. That is, the present data demonstrate that
the hippocampus and midbrain do not show enhanced activa-
tion to novel relative to familiar items but rather to novel stimulus
combinations (see Supplemental Results), complementing prior
studies that demonstrate that the hippocampus responds pref-
erentially to associative, rather than item, novelty (Kohler et al.,
2005).

Midbrain activations have also been reported to respond to
novelty that is either associative (Schott et al., 2004) or item
based (Bunzeck and Duzel, 2006). More recent data suggest
that the striatum is preferentially sensitive to item-based percep-
tual novelty and may support a mechanism for novelty-based
choice (Wittmann et al., 2008). Here, we demonstrate that mid-
brain activation is correlated with the hippocampus, but not
the striatum, and that this correlation is directly related to subse-
quent successful generalization.

Our results additionally suggest that the neural and cognitive
processes supporting generalization are at least partially inde-
pendent of those supporting learning and retention of the trained
associations. Even when controlling for differences in learning
and retention of the trained associations among the “good”
and “poor” generalizers, these groups differed markedly in gen-
eralization performance. At the neural level, these groups also
differed in their pattern of hippocampal and midbrain activation
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across learning, even when factoring out variance associated
with performance on the trained associations (see Supplemental
Results). This dissociation complements prior patient studies
that demonstrate that generalization—but not feedback-based
learning—is impaired in individuals with damage to the hippo-
campus, Whereas feedback-based learning—but not generaliza-
tion—is impaired in individuals with disrupted striatal function
due to Parkinson’s disease (Myers et al., 2003; Shohamy et al.,
2006). Here, feedback-based learning indeed involved the stria-
tum (bilateral caudate; see Supplemental Results), but we found
no relation between striatal activity and generalization.

Previous fMRI studies of generalization using transitive and
associative inference paradigms revealed that hippocampal-
dependent inference processes at test support generalization
(e.g., Heckers et al., 2004; Preston et al., 2004). Our study dif-
fered in several ways. First, by using intermixed episodes, the
present design was more similar to the kind of intermixed overlap
in elements that one would experience in everyday life. Second,
the intermixed repetitions of each encountered association in the
present design may have fostered crossevent integration as
these associations were being learned. Indeed, prior studies of
transitive inference have found that inference-based judgments
at test only occur if the training follows a block design that “front-
loads” the nonoverlapping pairs prior to introducing those with
overlap (Titone et al., 2004). Thus, the present results are not
contradictory to the findings of inference-based generalization
reported in previous studies. Rather, they suggest an alternative
mechanism for generalization that may complement inference-
based processes. According to this view, generalization may
derive from inference-based processes at test or integrative
encoding during learning; the nature of the learning experience
is likely to be an important factor in determining the relative con-
tributions of each of these mechanisms to generalization.

It is also worth noting that our paradigm further differed from
transitive inference designs in the nature of the overlap between
the episodes. Specifically, rather than building on a hierarchical
structure between elements, the present paradigm used asso-
ciative overlap, or equivalencies, between partial elements of
an episode. It seems plausible that the kind of hierarchical orga-
nization typically used in transitive inference paradigms may lend
itself more to logical inferential processes. By contrast, converg-
ing evidence suggests that associative equivalencies between
elements tend to lead to generalization without explicit aware-
ness or recognition of the relationship between the elements
(see also Daw and Shohamy, 2008; Greene et al., 2006; Walther,
2002).

The present form of generalization may be thought of as a type
of false memory (Schacter, 2001b), in that participants have the
subjective sense of having already experienced the pairing of
two elements that in fact had never been encountered together.
Indeed, it has been suggested that false memories may emerge
through associative experiences during encoding, similar to the
integrative encoding mechanism proposed here. On this view,
“false memories” may in fact be associatively generated during
encoding, despite not being encountered directly; at test,
the generated association would then be misattributed as an
external (experienced) event rather than an internally generated
experience (Underwood, 1965). This interpretation is consistent
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with evidence that encoding mechanisms can predict later false
memory under some circumstances (Dennis et al., 2007; Garoff
et al., 2005).

In summary, the present data demonstrate that interactions
between the hippocampus and midbrain support a mechanism
by which organisms can integrate across discrete, but overlap-
ping experiences. By forming a thread that connects otherwise
separate experiences, integrative encoding permits organisms
to generalize across multiple past experiences to guide choices
in the present.

EXPERIMENTAL PROCEDURES

Participants

Data are reported from 24 healthy adults (13 females; ages 18-24 yrs); all were
right handed, native English speakers. Test phase imaging data were lost from
one participant due to corrupted files (learning phase behavioral and imaging
data and test phase behavioral data are reported for this participant). In addi-
tion, data were collected but excluded from three additional participants due
to their failure to show any evidence of learning (never exceeding chance levels
of responding throughout training). All participants received $20/hr for partic-
ipation, with the experiment lasting approximately 2 hr. Informed written
consent was obtained from all participants in accordance with procedures
approved by the institutional review board at Stanford University.

Procedure

The learning and generalization task was a modification of the “acquired
equivalence” paradigm (Collie et al., 2002; Grice and Davis, 1960; Hall et al.,
1993; Myers et al., 2003). The critical stages consisted of a learning phase,
during which participants used feedback to learn face-scene associations, fol-
lowed by a test phase, without any feedback, during which participants were
tested on previously learned associations (“trained”) and on generalization
probes (“generalization”) consisting of novel combinations of face-scene pair-
ings (Figure 1). To examine the potential role of stimulus novelty in modulating
learning and generalization, participants also underwent a pre-exposure
phase before learning, during which half of the to-be-learned stimuli were pre-
sented individually. fMRI data were collected during all phases. Here we report
the data from the learning and test phases, collapsed across the pre-exposure
manipulation because it did not differentially influence learning and generaliza-
tion responses (see Supplemental Results). After participating in the task,
participants were administered a brief post-test questionnaire to asses their
awareness of the equivalencies in the associations and of the appearance of
novel pairings at test.

In the pre-exposure phase, each trial consisted of a single stimulus (face or
scene) centrally presented for 1.25 s. Participants responded with a left or right
keypress to indicate whether the stimulus was a person or a place. In the
Learning phase, each trial consisted of the presentation of a face with two
scenes for 3 s, during which participants indicated by keypress which of the
two scenes was the correct associate for the face (Figure 1A). Performance-
dependent feedback (“correct,” “incorrect,” or “too late”) was provided after
stimulus presentation and response, and remained on the screen for 1 s. In the
test phase, the trial structure was identical to learning, except that no feedback
was provided following the response (Figure 1B).

For all phases, trials were intermixed with variable duration fixation null
events; the total time allotted for null events was equal to 1/3 of the scan
time. The duration and distribution of null events was optimized for estimation
of rapid event-related fMRI responses as calculated using Optseq (http://
surfer.nmr.mgh.harvard.edu/optseq/).

Materials

Stimuli consisted of 24 pictures of faces and 24 pictures of scenes. Faces and
scenes were structured in sets, such that two faces (F4, Fo) were paired with
two scenes (S4, Sy), resulting in four associations for each set: F1-S4, F1-S,,
Fo—S4, Fo=So. Three of these associations were trained during the learning
phase (F1-S4, F1-S,, Fo-S;). During Test, subjects were tested on the fourth
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(untrained) association (Fo—-S,), as well as on the previously trained associa-
tions (F1-S4, F1—S,, Fo—S+; Figure 1). The task consisted of 12 such stimulus
sets, resulting in 36 different training trials and 48 different test trials. Impor-
tantly, a scene that was the correct choice for a certain face was also pre-
sented as the incorrect choice for a different face, such that simple stimu-
lus-response learning strategies were not possible.

For counterbalancing purposes, the 12 sets were divided into 2 subsets of 6.
During pre-exposure, individual face and scene stimuli from one of the subsets
were presented 15 times each, in random order. Which subset was pre-
exposed was counterbalanced across subjects. During learning, each of the
36 face-scene associations was repeated 8 times in total, with the scenes
on each trial counterbalanced for left-right presentation. The 288 learning-
phase trials were divided into two training blocks and intermixed randomly
with the constraint that each training block contained an equivalent number
of presentations of each trial type. During test, each trained and untrained
(generalization) association was tested six times to provide increased power
for functional imaging analyses of this phase, with trained and untrained asso-
ciations intermixed and scenes counterbalanced for left-right presentation.
All stimulus presentation orders were constrained such that no association
appeared consecutively.

fMRI Data Acquisition

Whole-brain imaging was conducted on a 3.0T Signa MRI system (GE Medical
Systems). Structural images were collected using a T2-weighted flow-
compensated spin-echo pulse sequence (TR = 3 s; TE = 70 ms; 24 contiguous
5 mm thick slices parallel to the AC-PC plane). Functional images were col-
lected using a T2*-weighted two-dimensional gradient echo spiral-in/out pulse
sequence (TR = 1.5 s; TE = 30 ms; 1 interleave; flip angle = 70°; FOV = 20 cm;
64 x 64 voxels; Glover and Law, 2001).

The learning phase was scanned in two 14 min functional runs. The pre-
exposure (12 min) and test (15 min) phases were each scanned in a single func-
tional run. For each functional scan, eight discarded volumes were collected
prior to the first trial of the task. A bite bar was used to minimize head motion.

fMRI Data Analysis

Image preprocessing was performed using SPM2 (Wellcome Department for
Cognitive Neurology, London). Functional images were corrected for differ-
ences in slice acquisition timing and then corrected for head motion. Each
participant’s structural images were coregistered to their functional images
and segmented into gray matter, white matter, and cerebrospinal fluid. The
gray matter images were then stripped of any remaining skull and normalized
to a gray matter MNI template image. This normalized gray matter image was
used for normalization of the structural and functional images. Images were
resampled to 3 mm cubic voxels and smoothed with a Gaussian kernel
(8 mm full-width half-maximum).

Data were analyzed using SPM2, under the assumptions of the general lin-
ear model. Trials were modeled as an event, using a canonical hemodynamic
response function and its first-order temporal derivative. Each phase (pre-
exposure, learning, and test) was analyzed separately. During learning, the first
scan (“early learning”) and the second scan (“late learning”), as well as correct
and incorrect trials, were modeled separately. The resulting functions were en-
tered into a general linear model with motion parameters entered as a covari-
ate. Linear contrasts were used to obtain participant-specific estimates for
each effect. These estimates were then entered into a second-level analysis,
treating participant as arandom effect, using a one-sample t test against a con-
trast value of zero at each voxel. All contrasts were restricted to correct trials.

Because the outcomes from the main regression analysis (learning-phase
activity regressed with generalization performance) was of central importance,
effects within a priori regions of interest (ROIs) were small volume corrected
using anatomical masks for these regions (hippocampus and midbrain/VTA).
For the hippocampus, anatomical ROIs were drawn from a standard database
(anatomical automatic labeling; AAL). The midbrain ROl was created based on
previous reports of VTA activity in humans during a declarative memory en-
coding task (Adcock et al., 2006): the reported coordinates for maximal activity
in right and left VTA were entered as a seed region, and a 10 mm sphere was
built around this peak. The resulting ROls were summed and used as a single

mask during analyses. These ROls allowed for relatively conservative small
volume correction.

ROI analyses were conducted to investigate effects revealed by voxel-
based comparisons. ROlIs included all significant voxels within a 6 mm radius
of a maximum or, where noted, all significant voxels within a cluster. Deconvo-
lution of the signal within ROIs was performed using a finite impulse response
function implemented with MarsBar (http://marsbar.sourceforge.net), allowing
a comparison of the integrated percent signal changes (summed across
3.0-7.5 s posttrial onset) associated with conditions.

Crossregion Interactions

The functional interaction between midbrain and hippocampus was assessed
using a seed region covariate analysis (Poldrack et al., 2001). A seed region in
the midbrain was functionally defined based on the main regression analysis
revealing voxels that showed learning-related changes in activity that corre-
lated significantly with generalization performance. The learning-phase
change in activity in these midbrain voxels (the difference in integrated %
signal change from early to late learning) for each subject was then entered
as a regressor against the contrast of early versus late learning, revealing
any voxels that showed learning-phase changes that significantly correlated
with changes in the functionally defined seed region in the midbrain.

SUPPLEMENTAL DATA

The Supplemental Data include one figure and Supplemental Results and can
be found with this article online at http://www.neuron.org/supplemental/
S0896-6273(08)00805-2.
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