Skip to content
Permalink
4a19154ef7
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
93 lines (60 sloc) 3.87 KB
\documentclass{article}
\usepackage{graphicx,amsmath,amsthm,amssymb}
\usepackage{fullpage}
\usepackage{eucal}
\usepackage{graphicx}
\usepackage{color}
\usepackage{tikz}
\usepackage{algorithm,algorithmic}
\newcommand{\question}[1]{\vspace{10pt}\noindent $\mathbf{#1}$}
\newcommand{\R}{\mathbb{R}}
\newcommand{\vect}[2]{\bigl[\begin{smallmatrix}#1\\#2\end{smallmatrix}\bigr]}
\newcommand{\vectt}[3]{\bigl[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\bigr]}
\newcommand{\gap}{{~~~~~~~~~~~~~~~~~~~~~}}
\newcommand{\vor}{\mathrm{Vor}}
\newcommand{\CC}{\mathrm{conv}}
\title{Computational Geometry Homework 3}
\author{Yiyun Tan}
\begin{document}
\maketitle
\section*{Projective Duality}
\question{1}
Let $a,b\in\R^2$.
Consider the lifted points $\bar a = \vect{a}{\|a\|^2}$ and $\bar b = \vect{b}{\|b\|^2}$ in $\R^3$.
Prove that the projection of $\bar{a}^*\cap \bar{b}^*$ is the perpendicular bisector between $a$ and $b$.
\vspace{1em}
If you are feeling ambitious, prove that for $a,b\in\R^d$, the same holds, where the perpendicular bisector of $2$ points in $\R^d$ is a hyperplane.
\vspace{1em}
Proof: Firstly we think $a,b\in\R^2$.
Suppose $a$=($x_{1}$,$y_{1}$), $b$=($x_{2}$,$y_{2}$)
And $\bar a = \vect{a}{\|a\|^2}$ and $\bar b = \vect{b}{\|b\|^2}$ in $\R^3$
So $\bar a$=($x_{1}$,$y_{1}$,$x^{2}_{1}+y^{2}_{1}$), $\bar b$=($x_{2}$,$y_{2}$,$x^{2}_{2}+y^{2}_{2}$)
Then $\bar{a}^*$ is $z$=2$x_{1}$x+2$y_{1}$y-($x^{2}_{1}+y^{2}_{1}$), $\bar{b}^*$ is $z$=2$x_{2}$x+2$y_{2}$y-($x^{2}_{2}+y^{2}_{2}$)
So $\bar{a}^*\cap \bar{b}^*$ is 2$x_{1}$x+2$y_{1}$y-($x^{2}_{1}+y^{2}_{1}$) = 2$x_{2}$x+2$y_{2}$y-($x^{2}_{2}+y^{2}_{2}$)
Solve it we can get x=($x_{1}$+$y_{1}$)/2, y=($x_{2}$+$y_{2}$)/2
It is the perpendicular bisector between $a$ and $b$
\question{2}
Let $a,b,c\in \R^2$, not all collinear.
As in the previous question, we lift these points to $\bar a = \vect{a}{\|a\|^2}$, $\bar b = \vect{b}{\|b\|^2}$, and $\bar c = \vect{c}{\|c\|^2}$ in $\R^3$.
Let $h = \{\bar{x} = \vect{x}{x_z} \mid x_z = 2n^{\top}x - n_z\}$ for $n\in \R^2$ and $n_z\in \R$ be the plane passing thru $\bar{a}$, $\bar{b}$, and $\bar{c}$.
Prove that $n$ is the circumcenter of $a$, $b$, and $c$.
\vspace{1em}
\emph{Hint: dualize h, use incidence preservation, and recall that $2n^{\top} a - \|a\|^2 = \|n\|^2 - \|n-a\|^2$.}
\vspace{1em}
If you are feeling ambitious, consider the following high-dimensional version.
Let $a_0,\ldots a_d \in \R^d$ and the corresponding lifted points $a_i = \vect{a}{\|a\|^2}$ for $i=0\ldots d$.
Let $h = \{\bar{x} = \vect{x}{x_z} \mid x_z = 2n^{\top}x - n_z\}$ for $n\in \R^d$ and $n_z\in \R$ be the plane passing thru $\bar{a}$, $\bar{b}$, and $\bar{c}$.
Prove that $n$ is the circumcenter of $a_0,\ldots, a_d$.
\vspace{1em}
Proof: Firstly we think $a,b,c\in\R^2$.
Suppose $a$=($x_{1}$,$y_{1}$), $b$=($x_{2}$,$y_{2}$), $c$=($x_{3}$,$y_{3}$)
So $\bar a$=($x_{1}$,$y_{1}$,$x^{2}_{1}+y^{2}_{1}$), $\bar b$=($x_{2}$,$y_{2}$,$x^{2}_{2}+y^{2}_{2}$), $\bar c$=($x_{3}$,$y_{3}$,$x^{2}_{3}+y^{2}_{3}$)
And $h = \{\bar{x} = \vect{x}{x_z} \mid x_z = 2n^{\top}x - n_z\}$ is the plane passing thru $\bar{a}$, $\bar{b}$, and $\bar{c}$
Also we know $2n^{\top} a - \|a\|^2 = \|n\|^2 - \|n-a\|^2$
Let $a=x$ we have $2n^{\top} x = \|x\|^2 + \|n\|^2 - \|n-x\|^2$
And by dualizing $h$, we have the point ${h}^*= \vect{n^{\top}}{n_{z}}$
Use the conclusion in the previous question, we have the projection of $\bar{a}^*\cap \bar{b}^*$ is the perpendicular bisector between $a$ and $b$, the projection of $\bar{a}^*\cap \bar{c}^*$ is the perpendicular bisector between $a$ and $c$, and projection of $\bar{b}^*\cap \bar{c}^*$ is the perpendicular bisector between $b$ and $c$.
And $n$ also satisfies the above equations
So $n$ is the projection of $\bar{a}^*\cap \bar{b}^*\cap \bar{c}^*$
Q.E.D. $n$ is the circumcenter of $a$, $b$, and $c$.
\end{document}