Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time

02_roots_and_optimization

Answers to Homework 2

Problem 2

part a

cat_cable= @(T) T/10.*cosh(10./T*30)+30-T/10-35;
[root,fx,ea,iter]=falsepos(cat_cable,100,1000,.00001,10000);
[root1,fx1,ea1,iter1]=bisect(cat_cable,100,1000,.00001,10000);
[root2,ea2,iter2]=mod_secant(cat_cable,100,1000,.00001,10000);
T=root2;
x=-10:.1:50;
y=T/10.*cosh(10./T*x)+30-T/10;
setdefaults
plot(x,y)
title('Final Shape of Powerline')
xlabel('Distance in meters')
ylabel('Height in meters')
print('figure_1','-dpng')

part b

### Method Analysis Table
| solver | es | ea | iterations |
| --- | --- | --- | --- |
| falsepos | 100,1000 | 9.637e-06 | 202 |
| mod_secant | 100,1000 | 5.9066e-06 | 24 |
| bisect | 100,1000 | 4.1212e-06 | 8 |

part c The Final Shape of Powerline

Problem 3

part a

fun = @(x)(x-1)*exp(-(x-1)^2);
dfun = @(x) exp(-(x - 1)^2) - exp(-(x - 1)^2)*(2*x - 2)*(x - 1);
root = zeros(1,5);
ea = zeros(1,5);
iter = zeros(1,5);
for y = 1:5
    [root(y),ea(y),iter(y)]=newtraph(fun,dfun,3,.0001,y);
end
table01 = [iter' root' ea'];

for y = 1:5
    [root(y),ea(y),iter(y)]=newtraph(fun,dfun,1.2,.0001,y);
end
table02 = [iter' root' ea'];

part b

### divergence of Newton-Raphson method

| iteration | x_i | approx error |
| --- | --- | --- |
| 0 | 3 | n/a |
| 1 | 3.2857 | 8.6957 |
| 2 | 3.5276 | 6.8573 |
| 3 | 3.7422 | 5.7348 |
| 4 | 3.9375 | 4.9605 |
| 5 | 4.1182 | 4.3873 |

part c

### convergence of Newton-Raphson Method
| iteration | x_i | approx Error|
| --- | --- | --- |
| 0 | 1.2 | n/a |
| 1 | 0.9826 | 22.1239 |
| 2 | 1.0000 | 1.7402 |
| 3 | 1.0000 | 0.0011 |
| 4 | 1.0000 | 0.0000 |
| 5 | 1.0000 | 0.0000 |

Problem 4

epsilon = 0.039; % kcal/mol
epsilon = epsilon*6.9477e-21; % J/atom
epsilon = epsilon*1e18; % aJ/J
% final units for epsilon are aJ

sigma = 2.934; % Angstrom
sigma = sigma*0.10; % nm/Angstrom

lennard_jones= @(x,sigma,epsilon) 4*epsilon*((sigma./x).^12-(sigma./x).^6);
[x,E,ea,its] = goldmin(@(x) lennard_jones(x,sigma,epsilon),2.8,3.5)

figure(1)
parabolic(2.8,3.5)
print('figure_2','-dpng')

epsilon = 0.039; % kcal/mol
epsilon = epsilon*6.9477e-21; % J/atom
epsilon = epsilon*1e18; % aJ/J
% final units for epsilon are aJ

sigma = 2.934; % Angstrom
sigma = sigma*0.10; % nm/Angstrom
x=linspace(2.8,6,200)*0.10; % bond length in um
Ex = lennard_jones(x,sigma,epsilon);

[xmin,Emin] = goldmin(@(x) lennard_jones(x,sigma,epsilon),0.28,0.6)

figure(2)
plot(x,Ex,xmin,Emin,'o')
ylabel('Lennard Jones Potential (aJ/atom)')
xlabel('bond length (nm)')

Etotal = @(dx,F) lennard_jones(xmin+dx,sigma,epsilon)-F.*dx;

N=30;
warning('off')
dx = zeros(1,N); % [in nm]
F_applied=linspace(0,0.0022,N); % [in nN]
for i=1:N
    optmin=goldmin(@(dx) Etotal(dx,F_applied(i)),-0.001,0.035);
    dx(i)=optmin;
end

plot(dx,F_applied)
xlabel('dx (nm)')
ylabel('Force (nN)')

dx_full=linspace(0,0.06,N);
F= @(dx) 4*epsilon*6*(sigma^6./(xmin+dx).^7-2*sigma^12./(xmin+dx).^13)
plot(dx_full,F(dx_full),dx,F_applied)

[K,SSE_min]=fminsearch(@(K) sse_of_parabola(K,dx,F_applied),[1,1]);
fprintf('\nThe nonlinear spring constants are K1=%1.2f nN/nm and K2=%1.2f nN/nm^2\n',K)
fprintf('The minimum sum of squares error = %1.2e \n',SSE_min)

plot(dx,F_applied,'o',dx,K(1)*dx+1/2*K(2)*dx.^2)
print('figure_3','-dpng')

Output:The nonlinear spring constants are K1=0.16 nN/nm and K2=-5.86 nN/nm^2 The minimum sum of squares error = 4.95e-08 x = 2.8000 E =-1.4347e-09 ea = 9.2100e-05 its = 24 E4 = -0.0390 ans =-0.0390 xmin = 0.3293 Emin = -2.7096e-04 1 2