Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
compmech-project02/02_Analyze-data_project-Copy1.ipynb
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
317 lines (317 sloc)
56.9 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Computational Mechanics Project #02 - Create specifications for a projectile robot\n", | |
"\n", | |
"On the first day of class, we threw $2\"\\times~2\"$ dampened paper (spitballs) at a target on the whiteboard. Now, we are going to analyze the accuracy of the class with some cool Python tools and design a robot that has the same accuracy and precision as the class, but we will have the robot move farther away from the target and use a simpler projectile i.e. a tennis ball so we don't need to worry about knuckle-ball physics. \n", | |
"\n", | |
"The goal of this project is to determine the precision of necessary components for a robot that can reproduce the class throwing distibution. We have generated pseudo random numbers using `numpy.random`, but the class target practice is an example of truly random distributions. If we repeated the exercise, there is a vanishingly small probability that we would hit the same points on the target, and there are no deterministic models that could take into account all of the factors that affected each hit on the board. \n", | |
"\n", | |
"<img src=\"../images/robot_design.png\" style=\"height: 250px;\"/>\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now, we ask ourselves some questions:\n", | |
"\n", | |
"1. How do we quantify the class accuracy and precision?\n", | |
"\n", | |
"2. If we design a robot, what design components can we control?\n", | |
"\n", | |
"3. How can we relate the controlled components to the class accuracy, and specify the component precision?\n", | |
"\n", | |
"The first question, we have some experience from our work in [02_Seeing_Stats](../notebooks/02_Seeing_Stats.ipynb). We can define the mean, standard deviation, measure the first, second, and third quartiles, etc. \n", | |
"\n", | |
"The second question is a physical question. We cannot control the placement of the robot or the target those are chosen for us. We cannot control temperature, mechanical vibrations, etc. We *can* control the desired initial velocity. The initial velocity will have some speed and direction, and both will be subject to random noise. Once the speed and direction are set, the location on the target is determined by kinematic equations for an object in freefall, as such\n", | |
"\n", | |
"$x_{impact} = \\frac{v_x}{v_y}d + x(0)~~~~~~~~~~~~~~~~~~~~(1.a)$\n", | |
"\n", | |
"$z_{impact} = d\\left(\\frac{v_z(0)}{v_y}-\\frac{g}{2v_y^2}d\\right)+ z(0)~~~~~(1.b)$.\n", | |
"\n", | |
"Where the location of impact is at a $y$-distance of $d$ at a point on the target with coordinates $(x_{impact},~z_{impact})$, and the initial velocity is $\\bar{v}=v_x\\hat{i}+v_y\\hat{j}+v_z(0)\\hat{k}$, the object is released at an initial location $\\bar{r}(0)=x(0)\\hat{i}+0\\hat{j}+z(0)\\hat{k}$, and the only acceleration is due to gravity, $\\bar{a}=-g\\hat{k}$. Equation (1) becomes much easier to evaluate if we assume that $v_x=0$, resulting in an evalution of the accuracy of the height of the impact, $z_{impact}$, as such\n", | |
"\n", | |
"$x_{impact} = x(0)~~~~~~~~~~~~~~~~~~~~(2.a)$\n", | |
"\n", | |
"$z_{impact} = \\frac{d}{\\cos{\\theta}}\\left(\\sin{\\theta}-\\frac{g}{2v_0^2\\cos{\\theta}}d\\right)+ z(0)~~~~~(2.b)$.\n", | |
"\n", | |
"Where $\\theta$ is the angle of the initial velocity and $v_0$ is the initial speed. Equation (2) restricts the analysis to height accuracy. You can incorporate the 2D impact analysis if you finish the 1D analysis. " | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The third question, is how we can relate equation (2) to the measured points of impact? For this, we can use Monte Carlo methods *(There are other methods, but Monte Carlo is one of the most straight-forward)*. Our Monte Carlo approach is as such, if we have a desired initial speed, $v_0$, and desired angle, $\\theta$, we can propagate the uncertainty of our actual speeds and angles into the $z_{impact}$ locations. Then, we can choose distributions in speed and angles that match the distributions in $z_{impact}$ locations. Here are the steps:\n", | |
"\n", | |
"1. Generate random $\\theta_i$ and $v_{0~i}$ variables\n", | |
"\n", | |
"2. Plug into eqn 2 for random $z_{impact~i}$ locations\n", | |
"\n", | |
"3. Compare to our measured $z_{impact}$ location statistics\n", | |
"\n", | |
"4. Repeat 1-3 until the predicted uncertainty matches the desired uncertainty, we can use a number of comparison metrics:\n", | |
" \n", | |
" - standard deviation\n", | |
" \n", | |
" - first, second, and third quartiles\n", | |
" \n", | |
" - visually, with box plots and histograms" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Project Deliverables\n", | |
"\n", | |
"1. Statistical analysis of class accuracy and precision (x- and z-locations) data is in the csv file [../data/target_data.csv](../data/target_data.csv) _Note: if you want to see how I turned the images into data check out the jupyter notebook [process_target_practice](./process_target_practice.ipynb)\n", | |
"\n", | |
"2. A Monte Carlo model to generate impact heights based upon uncertainty in $\\theta_0$ and $v_0$. \n", | |
"\n", | |
"3. The precision required to recreate the class accuracy and precision with a robot. \n", | |
"**You must show some validation of your work**\n", | |
"\n", | |
"4. [BONUS] Repeat 2-3 taking into account the variation in $x_{impact}$ due to misalignment. \n", | |
"\n", | |
"Given constants and constraints:\n", | |
"\n", | |
"- $d=$3 m, distance to target\n", | |
"\n", | |
"- $g=$9.81 m/s$^2$, acceleration due to gravity\n", | |
"\n", | |
"- $z(0)=$0.3 m, the initial height is 0.3 m above the bull's eye\n", | |
"\n", | |
"- 4 m/s$<v_0<$12 m/s, the initial velocity is always higher than 9 mph and less than 27 mph" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 159, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import matplotlib.pyplot as plt\n", | |
"import numpy as np\n", | |
"import pandas as pd\n", | |
"\n", | |
"#Import rcParams to set font styles\n", | |
"from matplotlib import rcParams\n", | |
"\n", | |
"#Set font style and size \n", | |
"rcParams['font.family'] = 'sans'\n", | |
"rcParams['font.size'] = 16\n", | |
"rcParams['lines.linewidth'] = 3\n", | |
"target_data = pd.read_csv('../data/target_data.csv')\n", | |
"z_position =target_data[' y position (m)']\n", | |
"x_position = target_data[' x position (m)']" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def robot_z(angle_mean,angle_range,v_mean,v_range,n=100):\n", | |
" theta_initial =np.random.normal(angle_mean,angle_range, n)\n", | |
" velocity_initial =np.random.normal(v_mean,v_range,n)\n", | |
" z_impact = np.divide(3,np.cos(theta_initial))*(np.sin(theta_initial)-(3*9.81/2)*np.divide(1,np.cos(theta_initial))*np.divide(1,(velocity_initial**2)))+0.3\n", | |
" return z_impact\n", | |
" " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 174, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"The standard deviation of the robot data is 0.24591461927939534 The mean of the robot data is -0.054250907725259874\n", | |
"The standard deviation of the class data is 0.2548611138551949 The mean of the class data -0.047397370492807414\n", | |
"Velocity = .25+/- 0.01 and Theta = 6.6 +/- 0.7\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAD9CAYAAAC2l2x5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXgUVd728e9PDCEQCEQQQZYgKILKZhgW0YRVBYRReQAfQZARGGccF1wQFSXKI4jLoM6A8jAaFxwQEWURcHBYVKKAKIivL+oLQVG2mATCIpDkvH900pOlA52kQ5Li/lxXX02qTlWdqg53Tp+qOmXOOURExHvOKu8KiIhI2VDAi4h4lAJeRMSjFPAiIh6lgBcR8aizy7sCuerWretiYmLKuxoiIpXKF198keKcqxdoXoUJ+JiYGDZu3Fje1RARqVTMbGdR89RFIyLiUQp4ERGPUsCLiHiUAl5ExKMU8CIiHqWAFxHxqApzmWQwjh07RmpqKhkZGWRlZZV3dUTKRNWqValbty5RUVHlXRWp5CpNwB87dowff/yROnXqEBMTQ1hYGGZW3tUSCSnnHEePHmXXrl2Eh4dTrVq18q6SVGKVposmNTWVOnXqULduXapWrapwF08yM6pXr07dunXZv39/eVdHKrlK04LPyMhAQxlIRbdlV3pI1uOystm+Yy9X/n1LkWWSp/YLybaCEfPg0tO2rdO5X15XaVrwWVlZhIWFlXc1RE6Ps6pQo2ql+e8pFVSl+g1St4ycKcwM/bZLaVWqgBcRkeCdMuDNbJCZLTCznWZ21My2mdkUM6tZoFwdM5ttZilmdtjMVprZZWVXdREROZlgTrLeB/wIPATsAtoDk4DuZtbVOZdtvr6TRUAz4C9AGjABWGVm7Zxzu8qi8rlO5wmgQEp6UigxMZFbb73V/3NYWBiNGzdmyJAhPProoyW6RG7kyJGsXLmSXbtCc8gTExPJzs5m1KhRpywbHx/PmjVrTlrm1VdfZeTIkUXOz9sNV6VKFRo3bkx8fDxPPPEEjRo1CrrewZg0aRIJCQk45wBIT09n+vTpDBgwgA4dOuQrGx8fD8Dq1atDWgeRshRMwF/nnMt7vdYaM0sFXgPigX8DA4BuQA/n3CoAM0sCdgAPAHeGstJeM3/+fBo1akRGRgYLFy5kypQpZGRk8OKLL5Z31UhMTCQzMzOogJ8xYwYHDx4sNP3EiRPcfPPNHDx4kKuuuuqU6xk5ciRjx44lMzOTr776iscee4x169bx1VdfERERUaL9COS2227jmmuu8f+cnp5OQkICjRo1KhTwM2bMCNl2RU6XUwZ8gXDPtSHn/fyc9wHAL7nhnrPcATNbDAxEAX9S7dq1o0WLFgD07t2b77//nn/84x88//zznHVW5TlN0rp164DT7777bn766ScWLFjABRdccMr1nH/++XTu3BmAbt26UbNmTUaOHMmyZcu44YYbQlbfRo0aBf2toKh9E6nISpoecTnv3+a8XwJsDVDuG6CJmUWWcDtnpA4dOnD06FFSUlLyTV+/fj29evUiMjKSGjVq0LNnT9avXx9wHevWraNjx45Uq1aNmJiYgN8GTrW+3C6XTz/91HdVh5m/qyJY77zzDs8//zx33313icO5Y8eOAPzwww/+acuXL6dLly5EREQQFRXF73//e7Zt25ZvuRUrVtC1a1eioqKIjIykZcuWPP744/75kyZN8ncJJScn06xZMwBGjx7t39/ExETAdywK7vu2bdu4/vrrqV27NhEREXTu3JlPV63MV2bmc1Np27gOO3f8P+4YMZjOLRtxTefLeGn6NLKzs0t0PESCVeyAN7PzgceBlc653GfsRePrdy8oNee9Tsmqd2ZKTk4mKiqKc845xz9ty5YtxMXFkZaWRmJiIq+//joHDx4kLi6OzZs351v+4MGDDBkyhBEjRvDee+8RHx/PnXfe6Q+rYNc3Y8YM2rdvT5s2bUhKSiIpKalYXRXfffcdo0aNonPnzkybNq3Ex2PHjh0A1K5dG/CFe79+/YiMjGTevHnMnDmTrVu30q1bN37++WcAtm/fzoABA2jWrBnz5s1j0aJFjBs3jsOHDwfcRoMGDXj33XcBmDBhgn9/+/ULfH7ll19+oVu3bmzevJm//e1vvP3229SuXZs7Rg7hk1X/KlT+ntuG0bHrVUyf/Sbdr+7HzGensGj+P0t8TESCUaw7WXNa4u8DmcCteWcBLtAip1jfGGAMQJMmTYpTFU/JysoiMzPT3we/YMECpk+fTpUqVfxlHn/8ccLDw/noo4/8Qde7d29iYmJISEjwhxP47vqdNWsWQ4cOBeCaa67h559/5rHHHmPEiBGYWVDra926NbVq1SIzM9PfZRKsI0eOMGjQIKpWrcrbb79drJvUnHNkZmb6++Dvu+8+qlevTv/+/QF45JFHuOCCC1i2bBlnn+37Fe7SpQsXXXQRzz77LM899xybNm3i+PHjzJw5k1q1agHQo0ePIrcZHh5O+/btAbjgggtOub/PPfccaWlpJCUl+bvX+vbtS/OLLubFaZPp1r13vvK3jLmD3w+5GYDOV8az/tO1LHt/gX+aSFkIugVvZtXwXSlzAXB1gStjUvG14gvKbbkHat3jnJvlnIt1zsXWqxfwoeBnhIsvvpiwsDCio6P5wx/+wNixY7njjjvylVm7di39+/f3hzFArVq1GDBgQKErV6pUqcKNN96Yb9rQoUP58ccf/S3c4qyvJG6//Xa2bt3KG2+8QePGjYu17JNPPklYWBgRERF06dKFsLAwPvjgAxo2bMjhw4fZtGkTQ4YM8Yc7QLNmzbjiiiv8dW/Xrh1hYWEMHTqUd955h3379pV6n/Jau3YtnTt39oc7+I77tQNvZNs3X3MoI//J5it79sn3c4uWrdjzS5leXCYSXMCbWRiwAPgd0Nc593WBIt/g64cvqDXwo3PuUKlq6XELFy5kw4YNfPDBB/Tq1YsZM2bw+uuv5yuTmppKgwYNCi173nnnkZaW/+9nnTp1CrWY69evD+AP+OKsr7hmzZrF66+/zoQJE7j22muLvfyoUaPYsGEDX375JSkpKf7uJIC0tDScc0XWPTXV1yvYokULVqxYQXZ2NsOHD+e8886jU6dOIfnjBUUfv3PqnYtzjoMH8o9JE1U7fy9l1arhHD/2W0jqIlKUYG50OguYA/QEBjrnPgtQbBFwvpnF5VmuFnBdzjw5iUsvvZTY2FiuvfZalixZwkUXXcT999+fr784OjqaPXv2FFp2z549REfn//KUlpbGiRMn8k3bu3cv4LtCpbjrK45NmzZx5513EhcXl++EZnE0aNCA2NhY2rVrl+88BPj+eJlZkXXPW7579+4sX76c9PR0Vq5cSVhYGP369St08rokijp+v+7fh5kVCnSR8hBMC/7vwH8BzwCHzaxznlfuNWaLgCTgTTMbamZX50wzoORn185A4eHhPP300+zbty/fCc24uDiWLl1KRkaGf1pGRgaLFy/2t25zZWVlsWDBgnzT5s6dS5MmTfwBH+z6wsPDOXr0aFB1T09PZ9CgQdSuXZu5c+fmO4cQKjVq1ODyyy9n/vz5+R76snPnTtatW1foWIBvH3r06MEDDzzA4cOH/SdtA5UDgtrfuLg4PvvsM5KTk/3TsrKyWLF4IRdf2oYakTWLXljkNAnmJGvud+yHc155JQCTcu5m7Y/vj8AMoBq+wO/unPspVJU9UwwYMICOHTvyzDPPcMcddxAREcHEiRNZsmQJPXv2ZPz48ZgZTz31FEeOHOHRRx/Nt3zNmjV54IEHSElJ4cILL+Sf//wnK1euJDEx0X9ZYLDra926NTNmzGDevHk0b96cmjVr0rJly4D1vuWWW9ixYwdPPvkkycnJ+cIvV3GuPS/KE088Qb9+/ejfvz9/+tOfOHToEI899hhRUVHce++9ALz00kusXbuWvn370rhxY1JSUpgyZQoNGzbk0ksvDbje+vXrc8455zB37lzatGlDjRo1aNasWaFvEQD33HMPiYmJ9O7dm4SEBGrVqsWMGTPYuf0H/pY4r1T7JxIqwdzoFBPMipxzqcConNdp5cXxoydPnszVV1/NSy+9xD333EObNm1YvXo1Dz/8MCNGjMA5R+fOnVmzZg1t27bNt2ytWrWYO3cud911F19//TX169fn+eefZ8SIEf4ywa5v/PjxbNu2jdtuu41Dhw4RFxdX5O36ixcvBuChhx4qcr8ee+wxJk2aVPIDg++qoKVLl5KQkMDgwYOpWrUq8fHxTJs2jYYNGwLQtm1bli1bxoQJE9i3bx/R0dF069aNOXPmFHk37FlnncXs2bN56KGH6NWrF5mZmUUOrdCwYUM++eQTxo8fz+23386xY8do164df0ucxxXde5Vq/0RCxXLH4ShvsbGxbuPGjUXO//bbb2nVqtVprJFI8YXqgR8Ae3/czuhFu4ucrwd+CICZfeGciw00r/LcBy8iIsWigBcR8SgFvIiIRyngRUQ8SgEvIuJRCngREY9SwIuIeJQCXkTEoxTwIiIepYAXEfGoYj3RqcKaFFXO2z9QqsWTkpL461//yieffEJKSgo1a9akQ4cODBs2jGHDhlGlShUSExO59dZb2bFjBzExMaGpdynExMSwc+fOk5ZZtWpVkc9wzfsMVICwsDBiYmLo168fjz76KHXqhHa43ZEjR7J69Wr/AGjJyckkJiZyyy23FHoQeExMDPHx8fkecShSGXkj4Cux6dOnM27cOHr06MFTTz1F06ZNSUtL48MPP+T222+ndu3aDBw4sLyrWcjChQs5duxYoekHDhxg8ODB1K5du9AgaIFMmDCBAQMGcOzYMT799FMmT57Ml19+yapVq/wjX4bCxIkTueuuu/w/Jycnk5CQQLdu3QoF/MKFC/2P+avITuf4MFI5KeDL0dq1axk3bhx33HEHL7zwQr55AwcOPOlDostb7vNLC7rhhhs4evQoH374YVCt8LzPP42Li+PEiRNMmjSJL7/8kg4dOoSsvs2bNw+6bFH7JlLZqA++HE2dOpXo6GimTQv8TJTmzZvTpk2bIpefO3cuPXr0oF69ekRGRtK+fXtee+21QuWef/55WrVqRUREBHXq1CE2NpaFCxf6569YsYKuXbsSFRVFZGQkLVu2LNHTmJ555hkWLlzI008/TadOnYq9PEDHjh0B+OGHH/zT3nzzTdq2bUu1atWoW7cuw4cPZ/fu/KMsvvXWW7Rv357IyEiioqK47LLLePnll/3zR44c6e/aWr16Nd27dwd8Dxo3M8zMPwxyTExMoSGC169fT69evYiMjKRGjRr07NmT9evX5yszcuRIene8hG+3bmHkDdfS6cKGXHfl5bz9xislOhYipaWALydZWVmsXr2aPn36UK1atRKtY/v27QwaNIg5c+bw3nvvcd1113Hbbbfx0ksv+cvMmTOHe++9l5tuuokPPviAOXPmMGjQIP+zS7dv386AAQNo1qwZ8+bNY9GiRSX65vDJJ58wYcIEbrzxxnxdIcWV+7Sl3IeBz5o1i+HDh9OqVSveffddpk6dyooVK4iLi+PQoUP+bQ8bNoy4uDjee+895s+fz+jRo0lPDzx0b4cOHfj73/8OwAsvvEBSUhJJSUlFfmPIfSZsWloaiYmJvP766xw8eJC4uDg2b96cr+zhQxlM+Mto+t0wmOn/mMMlbdvzPw/dy/p1H5f4mIiUlLpoyklKSgpHjx6ladOmJV5H3gdrZGdnEx8fz+7du5k5cyZ//OMfAd8J3DZt2uR7SlPfvn39/960aRPHjx9n5syZ/n7nHj16FKsee/fuZciQIcTExPDKK8VrrWZnZ5OZmcnx48f9ffANGjTgyiuvJCsri4kTJxIfH8/cuXP9y1x88cVceeWVvPLKK9x555189tln1K5dm+nTp/vL9OnTp8ht1qpVi9atWwPQqlUrfxdRUR5//HHCw8P56KOP/H94evfuTUxMDAkJCbz77rv+socPZfDQ/8zhd12vBODyTl1JWruK5e8v8E8TOV3Ugq/Evv/+e2666SbOP/98wsLCCAsLY/bs2Wzbts1fpmPHjnz11Vf85S9/YeXKlRw5ciTfOtq1a0dYWBhDhw7lnXfeYd++fcWqQ1ZWFjfddBOpqanMnz+/2Ccnx44dS1hYGDVq1KBPnz60aNGC5cuXExERwbZt29i3bx8333xzvmW6detG06ZNWbNmjX8f09LSGDZsGEuWLCmy5V5Sa9eupX///v5wB98fiQEDBvjrkKtaRPV8QV41PJwmzZqz++ddIa2TSDAU8OXknHPOISIi4pSXGhbl0KFD9O7dm82bNzN16lQ+/vhjNmzYwKhRo/Jd3XLLLbcwc+ZMPv/8c66++mqio6O54YYb/JcLtmjRghUrVpCdnc3w4cM577zz6NSpU6HgKsrEiRNZtWoVL7zwAu3atSv2fjzyyCNs2LCBLVu2kJ6ezscff+w/75DbjdSgQYNCy5133nn++XFxccyfP5+ffvqJ66+/nnr16tGrVy+2bNlS7PoEkpqaWmQd0tLS8k2rFVW7ULmqVaty/NhvIamLSHEo4MvJ2WefTXx8PP/6178CXm54KklJSezcudPfR921a1diY2PJzMzMV87MGDt2LOvXryclJYXXXnuN9evXM2TIEH+Z7t27s3z5ctLT01m5ciVhYWH069ePlJSUk9Zh6dKlTJ06lWHDhjF69Ohi7wNA06ZNiY2N5bLLLiMqKv/9DNHR0QDs2bOn0HJ79uzJ9zDsQYMGsWbNGtLS0li4cCG7d+/mmmuuITs7u0T1KliPouqQW0eRikgBX44efPBBfv31V+6///6A83fs2FFkKzS3qyUsLMw/LS0tjffff7/I7dWpU4chQ4YwePBgtm7dWmh+eHg4PXr04IEHHuDw4cP+E56BJCcn+09+5j2pG0otW7akfv36+frfAdatW8fOnTuJi4srtExkZCT9+/dn7Nix7N69m19//TXgusPDwwE4evToKesRFxfH0qVLycjI8E/LyMhg8eLFAesgUlHoJGs5uuqqq3juuecYN24c3377LSNHjqRJkyakpaXx0UcfMXv2bN56662Al0p27dqVWrVq8ec//5mEhAQOHz7M5MmTqVu3LgcO/OfO2jFjxlCzZk26dOnCueeey3fffccbb7zhPwn50ksvsXbtWvr27Uvjxo1JSUlhypQpNGzYkEsvvTRgvY8fP86gQYNIT0/n2Wef5euvvw5Yrnnz5tSrV6/Ex6dKlSo8/vjjjB071n9X788//8zDDz/MhRdeyK233grAo48+yt69e+nevTsNGzZk165d/i6jorZ/0UUXcfbZZ/PKK68QHR1NeHg4LVu2pGbNmoXKTpw4kSVLltCzZ0/Gjx+PmfHUU09x5MiRfCevRSoabwR8KYcKKE933303v/vd7/jrX//Kfffd5x+qIDY2lpdffpnrrrsu4HL16tVj4cKF3HvvvQwaNIiGDRty1113kZqaSkJCgr/cFVdcwauvvsobb7zBgQMHaNiwIcOGDfOXadu2LcuWLWPChAns27eP6OhounXrxpw5c4iIiAi47V9++YUvvvgCgFGjRhW5b6+++mqh68mLa8yYMVSvXp2nn36agQMHEhkZSd++fZk2bRqRkZEAdOrUiRdeeIF77rmH1NRUzj33XPr06cMTTzwBwJZd6aQdPs6JrGy27Mo9AVuFB5+YxqsznycuLo6srCxmv72Yjl26cSIrm7TDx/9TNroJ//v2Yv42bTLDbxmBc442HWKZ/fYS7Jym/nJph4+Xal9FQs2cc+VdBwBiY2Pdxo0bi5z/7bff0qpVq9NYI/GK/4R65bL3x+2MXrT71AU9Jnlqv/KuQqViZl8452IDzVMfvIiIRyngRUQ8SgEvIuJRCngREY+qVAFfUU4Ii5Q15xwO/b5L6VSagK9atWpQN6WIeELmcdJ/K/1duHJmqzQBX7duXXbt2kVqaionTpxQa148yTmHO3GMfXt389aWynl5p1QcleZGp6ioKMLDw9m/fz+//vproTFXRIqyN63yfPNzONJ/y+atLel8tUc3TknpVJqAB6hWrRqNGzcu72pIJXOtnl0qZ6hK00UjIiLFo4AXEfEoBbyIiEcp4EVEPCqogDezRmb2opklmdkRM3NmFlOgTEzO9ECvws8xExGRMhXsVTQtgMHAF8DHQNGPrIcpwKIC0zICFRQRkbITbMCvdc7VBzCz2zh5wG93zn1W6pqJiEipBNVF45zTPdMiIpVMWZxknWJmmWZ2wMwWmdllZbANERE5hVAG/DHgZWAs0B24D7gMWGdmAZ+1Z2ZjzGyjmW3cv39/CKsiIiIhC3jn3G7n3B+dc+865z52zv0vcBXggIeLWGaWcy7WORdbr169UFVFREQo4+vgnXM/AZ8AHctyOyIiUtjpuNHJQE8uEBE53co04M2sCXAF8HlZbkdERAoLerhgMxuU88/Lc96vNbP9wH7n3BozexbfH4wkYD/QEpgAZANPhq7KIiISjOKMBz+/wM8zct7XAPHAN8DtwEigJpAC/BtIcM5tK1UtRUSk2IIOeOecnWL+K8Arpa6RiIiEhEaTFBHxKAW8iIhHVapnsopUJsnV/rvM1h3z21tltm7xDrXgRUQ8SgEvIuJRCngREY9SwIuIeJQCXkTEoxTwIiIepYAXEfEoBbyIiEcp4EVEPEoBLyLiUQp4ERGPUsCLiHiUAl5ExKMU8CIiHqWAFxHxKAW8iIhHKeBFRDxKAS8i4lEKeBERj1LAi4h4lAJeRMSjFPAiIh6lgBcR8SgFvIiIRyngRUQ8SgEvIuJRCngREY9SwIuIeJQCXkTEoxTwIiIepYAXEfEoBbyIiEcp4EVEPCqogDezRmb2opklmdkRM3NmFhOgXB0zm21mKWZ22MxWmtlloa60iIicWrAt+BbAYCAN+DhQATMzYBFwDfAX4EYgDFhlZo1KX1URESmOYAN+rXOuvnOuLzC/iDIDgG7AcOfcP51zy3OmnQU8UPqqiohIcQQV8M657CCKDQB+cc6tyrPcAWAxMLBk1RMRkZIK5UnWS4CtAaZ/AzQxs8gQbktERE4hlAEfja+PvqDUnPc6BWeY2Rgz22hmG/fv3x/CqoiISCgD3gBXxPSAnHOznHOxzrnYevXqhbAqIiISyoBPxdeKLyi35R6odS8iImUklAH/Db5++IJaAz865w6FcFsiInIKoQz4RcD5ZhaXO8HMagHX5cwTEZHT6OxgC5rZoJx/Xp7zfq2Z7Qf2O+fW4AvxJOBNM7sfX5fMBHx98NNCV2UREQlG0AFP4RucZuS8rwHinXPZZtYfeCZnXjV8gd/dOfdTqWsqIiLFEnTAO+eKvBomT5lUYFTOS0REypFGkxQR8SgFvIiIRyngRUQ8SgEvIuJRCngREY9SwIuIeJQCXkTEoxTwIiIepYAXEfEoBbyIiEcp4EVEPEoBLyLiUcUZTVLEU5Kr/Xd5V0GkTKkFLyLiUQp4ERGPUsCLiHiUAl5ExKMU8CIiHqWAFxHxKAW8iIhHKeBFRDxKAS8i4lG6k1XKRcyDS4MqF4q7TZOrlXoVchoF+7sRCslT+522bZUHteBFRDxKAS8i4lEKeBERj1LAi4h4lAJeRMSjFPAiIh6lgBcR8SgFvIiIRyngRUQ8Sneyikg+Zfms2pjf3iqzdUMJ6j6pOGUPFG/dFYBa8CIiHqWAFxHxKAW8iIhHhTTgzSzezFyAV3ootyMiIqdWVidZ7wQ25Pk5s4y2IyIiRSirgP/WOfdZGa1bRESCoD54ERGPKquAn2NmWWb2q5m9ZWZNymg7IiJShFB30RwAngXWAAeB9sBDQJKZtXfO7ctb2MzGAGMAmjTR3wCRYJXlzUjiHSENeOfcl8CXeSatMbO1wHp8J14fKVB+FjALIDY21oWyLiIiZ7oy74N3zm0CvgM6lvW2RETkP07XSVYD1EIXETmNyjzgzSwWuAj4vKy3JSIi/xHSPngzmwPsADYB6fhOsk4AfgZeDOW2RETk5EJ9Fc1W4CbgL0B1YA/wLvCYcy4lxNsSEZGTCPVVNFOAKaFcp4iIlIzuZBUR8SgFvIiIR+mRfRVczINLy7sKIlJJqQUvIuJRCngREY9SwIuIeJQCXkTEoxTwIiIepYAXEfEoBbyIiEcp4EVEPEoBLyLiUbqTVUpNzwcVqZjUghcR8SgFvIiIRyngRUQ8SgEvIuJRCngREY9SwIuIeJQCXkTEoxTwIiIepYAXEfEo3cl6htDdplIR6Pfw9FILXkTEoxTwIiIepYAXEfEoBbyIiEcp4EVEPEoBLyLiUQp4ERGPUsCLiHiUAl5ExKM8cydrzINLT9u2kqf2O23bEpEKYlJUGa77QJmsVi14ERGPUsCLiHiUAl5ExKMU8CIiHhXSgDezxmb2jpkdMLODZvaumTUJ5TZERCQ4IQt4M6sO/Bu4GBgBDAcuBFaZWY1QbUdERIITysskRwMXAC2dcz8AmNkW4HtgLPBcCLclIiKnEMoumgHAZ7nhDuCc2wF8CgwM4XZERCQIoQz4S4CtAaZ/A7QO4XZERCQIoeyiiQbSAkxPBeoEWsDMxgBjcn48ZGbbilh3XSCl1DUMEXuqvGtQfBba1VWoz0P0eVQwxf88Ekr1P7RpUTNCPVSBCzCtyJo752YBs061UjPb6JyLLU3FJHT0eVQs+jwqlor0eYSyiyYNXyu+oDoEbtmLiEgZCmXAf4OvH76g1sD/CeF2REQkCKEM+EVAZzO7IHeCmcUAV+TMK41TduPIaaXPo2LR51GxVJjPw5wL1G1eghX5bmbaDBwFHsHXH/8EUBNo45w7FJINiYhIUELWgnfOHQZ6AN8BbwBzgB1AD4W7iMjpF7IWvIiIVCwVbjRJMxtnZovNbLeZOTObVMzlf29mX5rZb2a208weMbMqZVRdzzOzs8xsgpkl5xzTzWZ2Y5DLJuZ8hgVf08u63l5QmsH7zKyamT2d8//oqJklmdlVZV1nLyvl5xHo/4Ezs3ZlWeeK+Mi+0cBB4D3gj8VZ0MyuBhYA/wDGAe2BJ/GdBxgf2mqeMZ4A7gMeBr4AhgLzzay/c+6DIJbfj28Yi7x2h7aK3pNn8L5j+Abvc7amTE4AAAQlSURBVMBkfIP3tcnpEj2ZfwD9gPuB7cCfgRVm1sU591XZ1dybQvB5ACQCLxeY9l0o61mIc65CvYCzct7PxncQJxVj2S+BNQWmPQocB84r732rbC/gXHy/0AkFpn8EbAli+URgV3nvR2V8AXcBWUCLPNOaAZnAuFMs2zbn/86teaadDWwDFpX3vlXGV2k+j5yyDph8uutd4bponHPZJVnOzBoD7YA3C8x6AwgDri1l1c5EVwNVKXxM3wQuM7Nmp79KZ4zSDN43ADgBzMuzbCYwF7jazMJDX13Pq5SDKVa4gC+F3Jus8g14lvMhHEEDnpXEJfha8D8UmP5Nznswx/RcM0sxs0wz+87MxuucSFBKM3jfJcAO59yRAMtWBVqUvnpnnFAMpni7mR0zsyNm9m8zuzJ01QusIvbBl1TuMAmBhkUoahgFObloIN3lfMfMIzXP/JP5Cl+//TdANeB6YAq+B8HcFsJ6elGxB+8Lctnc+VI8pfk8wPetdwnwC77Bwe4H/m1mvZ1zq0NVyYLKNODNrBfwryCKrnHOxZd2cznvxRrw7ExSgs/DKMXxdM4VvFrmAzM7BNxtZk85574PZj1nsJIe+1J9blKk0vxfGJ7nx4/N7H183wgmA91CULeAyroFvw5oFUS5gl8lS+JkrZPaeeafyYr7eaQCdczMCrTi6+SZX1z/BO4GYvE97UsCK83gfalAoMv3SvO5nelCOpiicy7DzJYCfyhtxU6mTAM+pw/w/5blNvLI7Re+BEjKnZgzHk51NOBZST6Pb4BwoDn5++Fz+xxLckxP9k1L/qM0g/d9A1xvZtUL9MO3xndFWcFzKnJqZTGYYlHftELGMydZnXM/4hsL5+YCs4bhu6Jg2WmvVOW3HF8gBDqmW3NOYBfXf+P7pd5Qyrp5XWkG71uE78qx/8qz7NnAEOBD59yxUFf2DBDSwRTNrBa++xQ+D1H9Aivv60sDXC8aCwwCBuMLgrdzfh4EVM9T7iPghwLL9gWy8d1MEA/cA/wGPF3e+1VZX8DUnGM4LueYzsw5xtcVKJfv88B3Imkt8CegD3Ad8ErOsjPLe78q+guoga+l/TW+y/AG4GvAbAciCxznTODRAsvPxdd1cBvQE3gn53PsUN77Vhlfpfk88N0o+L/4Gjfx+G6U+hpf4+nKMq13eR+4AAcyMSfYA71i8pRbDSQHWP6GnAN/DPgR341OVcp7vyrrC6iCb3TQnTnHdAswKEC5fJ8Hvv7K93KW+w3fKKObgDvIuZlNr1Me+yb47sw+CGTkHM+YAmViCHBDIBABPAfsyTn+nwPx5b1PlflV0s8jp3HzKb7H+J0AfsXX6v9dWddZg42JiHiUZ/rgRUQkPwW8iIhHKeBFRDxKAS8i4lEKeBERj1LAi4h4lAJeRMSjFPAiIh71/wFMa13sRu6JTwAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"#plt.hist(robot_z(3,1,12,3))\n", | |
"z_array = robot_z(.25,0.01,6.6,0.7)\n", | |
"plt.hist(z_array, label = 'Robot Z Position')\n", | |
"plt.hist(z_position, label = 'Class Z Position')\n", | |
"plt.legend();\n", | |
"z_std = np.std(z_array)\n", | |
"z_mean = np.mean(z_array)\n", | |
"data_std = np.std(z_position)\n", | |
"data_mean = np.mean(z_position)\n", | |
"print('The standard deviation of the robot data is',z_std,'The mean of the robot data is', z_mean)\n", | |
"print('The standard deviation of the class data is',data_std, 'The mean of the class data', data_mean)\n", | |
"print('Velocity = .25+/- 0.01 and Theta = 6.6 +/- 0.7')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 175, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD9CAYAAACiLjDdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAARbklEQVR4nO3df7BcZX3H8ffHoFBs0USidBwhUBkNRMU2Vjum9Ued0VoL/mhFEIttBEcr/qrWwTiKAlbHVnSsnQFkpINOtLVYRKnaQlCjogSrDiGiOOBPVDBR5Dfot3+cvbrZ7H2yN9xz783N+zVz5uY+5zxnv5vZ3c8953n2nFQVkiRN517zXYAkaWEzKCRJTQaFJKnJoJAkNRkUkqSmvea7gD7sv//+tWLFivkuQ5J2K1dcccWNVbV8tH1RBsWKFSvYtGnTfJchSbuVJN8Z1+6pJ0lSk0EhSWoyKCRJTQaFJKnJoJAkNRkUkqQmg0KS1GRQSJKaFuUX7iQtLklm3Md77cweg0LSgjfdh34SA2EOeOpJktTUa1AkeUiSjyT5eZKbkpyf5MAJ+9Y0yxF91ixJ2l5vp56S7AtcAtwBHA8UcBqwIckjq+qWCXZzLnDmSNs3Z7NOSVJbn2MUJwCHAA+rqmsAknwd+BbwYuCdE+zjB1V1WX8lSpJ2ps9TT0cCl02FBEBVXQt8Hjiqx8eVJM2iPoPicODKMe2bgcMm3MdLktyR5NYklyT549krT5I0iT6DYhmwbUz7VmDpBP0/ALwUeApwIvAA4JIkT5ytAiVJO9f39yjGTXCe6JszVfWCoV8/l+QCuiOU04A1O+w0OZEuUDjwwIkmVkmSJtDnEcU2uqOKUUsZf6TRVFW/AD4BPGaa9WdV1eqqWr18+Q63fJUk7aI+g2Iz3TjFqMOAq3Zxn2H8UYokqSd9BsXHgMclOWSqIckK4PGDdTOSZD/gz4EvzVJ9kqQJ9BkUZwPXARckOSrJkcAFwPcY+hJdkoOS3J3kjUNtr0lydpJjkzwxyfF002oPAN7QY82SpBG9DWZX1S1JngycAZxHd9roYuCVVXXz0KYBlrB9aF0NPGuw3A+4iS4o1lbVl/uqWZK0o15nPVXVd4Hn7GSb6xiZCVVVFwIX9leZJGlSXj1WktRkUEiSmgwKSVKTQSFJajIoJElNBoUkqanviwJqN5FMdK3GHXhje2nxMygEtD/wkxgI0h7MU0+SpCaDQpLUZFBIkpoMCklSk0EhSWoyKCRJTQaFJKnJoJAkNRkUkqQmg0KS1GRQSJKaDApJUpNBIUlqMigkSU0GhSSpyaCQJDUZFJKkJoNCktRkUEiSmgwKSVKTQSFJajIoJElNBoUkqcmgkCQ1GRSSpCaDQpLUZFBIkpoMCklSk0EhSWoyKCRJTQaFJKnJoJAkNRkUkhaEZcuWkWRGCzDjPsuWLZvnZ7r72Wu+C9DcWrZsGdu2bZtxv6k35SSWLl3K1q1bZ/wY2rNt27aNqur9cWbyWlbHoNjDzMWb0TeitLh46kmS1GRQSJKaDApJUpNBIUlqMigkSU0GhSSpyaCQJDUZFJKkJoNCktTUa1AkeUiSjyT5eZKbkpyf5MAJ++6T5B1Jrk9yW5IvJvmTPuuVJO2ot6BIsi9wCfBw4HjgBcChwIYk951gF+cAJwBvBJ4BXA98KskR/VQsSRqnz2s9nQAcAjysqq4BSPJ14FvAi4F3TtcxyaOAY4G/rar3D9o+A2wG3gIc2WPdkqQhfZ56OhK4bCokAKrqWuDzwFET9L0L+PBQ37uBDwFPTbL37JcrSRqnz6A4HLhyTPtm4LAJ+l5bVbeO6Xsf4KH3vDxJ0iT6DIplwLgbH2wFlt6DvlPrJUlzoO/pseNufDDJzQoy075JTkyyKcmmG264YdL6JEk70WdQbGP8X/5LGX+0MGxro+/U+u1U1VlVtbqqVi9fvnxGhUqSptdnUGymG2sYdRhw1QR9Dx5MsR3teydwzY5dJEl96DMoPgY8LskhUw1JVgCPH6zbWd97A3811Hcv4Gjg01V1x2wXK0kar8/vUZwNvAy4IMkb6MYcTgW+B5w5tVGSg4BvA2+pqrcAVNVXk3wYeFeSewPXAi8BDgae32PNi169aT845X79P4akRaO3oKiqW5I8GTgDOI9uIPpi4JVVdfPQpgGWsOPRzd8ApwOnAfcHvgY8raq+0lfNe4K8+Saqxs0TmMXHSKhTen0ISXOozyMKquq7wHN2ss11jJnNVFW3Aa8eLJKkeeLVYyVJTQaFJKmp11NPkjSpuZho8evH0YwYFJIWhLmYaAFOttgVnnqSJDUZFJKkJoNCktRkUEiSmgwKSVKTQSFJajIoJElNBoUkqcmgkCQ1GRSSpCaDQpLUZFBIkpoMCklSk0EhSWoyKCRJTd6PYg+U7HCL8lm1dOnSXvcvaW4ZFHuYXbkxTJI5uaGMpIXJoJC0YPR9tAse8e4Kg0LSguDR7sLlYLYkqcmgkCQ1GRSSpCaDQpLUZFBIkpoMCklSk0EhSWoyKCRJTQaFJKnJoJAkNRkUkqQmg0KS1GRQSJKaDApJUpNBIUlqMigkSU0GhSSpyaCQJDUZFJKkJoNCktRkUEiSmgwKSVKTQSFJajIoJElNBoUkqcmgkCQ1GRSSpCaDQpLUZFBIkpp6C4ok90pycpLrktye5GtJnjNh33OT1JjlXX3VK0kab68e930q8BpgHXAF8DzgP5I8o6oumqD/DcCRI23Xz26JkqSd6SUokjyQLiTeVlX/NGjekOShwNuASYLizqq6rI/6JEmT6+vU01OB+wAfGGn/APCIJAf39LiSpFnWV1AcDtwBXDPSvnnw87AJ9vHAJDcmuTvJN5O8LsmSWa1SkrRTfY1RLAN+VlU10r51aH3LV+nGNTYD+wDPAv4ROBR40SzWKUnaiYmCIslTgP+ZYNPPVNUTgQCjIcGgfaeqanR200VJbgZemeTtVfWtMTWeCJwIcOCBB07yMJKkCUx6RPEFYOUE2906+LkVWJokI0cVS4fWz9R64JXAamCHoKiqs4CzAFavXj0upCRJu2CioKiqW4FvzGC/m4G9gd9j+3GKqbGJq2awrylTRyOGgCTNob4Gsz8J3Ak8f6T9OODKqrp2F/Z5LF1IXH4Pa5MkzUAvg9lV9ZMkZwAnJ/kF8BXgaODJwFHD2ya5GDioqh46+P0g4DzgQ3RHI3vTDWa/EDizqr7dR82SpPH6/Gb2OuBm4BXAAcDVwHOr6sKR7ZaM1PELujGM1wEPojuK2AK8HPjXHuuVJI3RW1BU1S+B0wZLa7snjvy+FXhmX3VJkmbGq8dKkpoMCklSk0EhSWoyKCRJTQaFJKmpz+mxkjQrkukvEzfduh2vSapdZVBIWvD80J9fnnqSJDUZFJKkJoNCktTkGIWA9mBha73njqXFz6AQ4Ae+pOl56kmS1GRQSJKaDApJUpNBIUlqMigkSU0GhSSpyaCQJDUZFJKkJoNCktRkUEiSmgwKSVKTQSFJajIoJElNBoUkqcmgkCQ1GRSSpCaDQpLUZFBIkpoMCklSk0EhSWoyKCRJTQaFJKnJoJAkNRkUkqQmg0KS1GRQSJKaDApJUpNBIUlqMigkSU0GhSSpyaCQJDUZFJKkJoNCktRkUEiSmgwKSVKTQSFJajIoJElNBoWmtX79elatWsWSJUtYtWoV69evn++SJM2Dvea7AC1M69evZ926dZxzzjmsWbOGjRs3snbtWgCOOeaYea5O0lxKVc13DbNu9erVtWnTpvkuY7e2atUq3vOe9/CkJz3p120bNmzgpJNO4sorr5zHyiT1JckVVbV6tL23U09JXp3kwiTXJ6kkp8yw/zOT/F+S25N8J8kbkizpqVyN2LJlC2vWrNmubc2aNWzZsmWeKpI0X/ocozgBeCDwXzPtmOSpwH8ClwN/BrwbeAPw1tksUNNbuXIlGzdu3K5t48aNrFy5cp4qkjRf+gyKw6vqscBJu9D3bcDGqjqxqjZU1TvpQuJVSQ6Y1So11rp161i7di0bNmzgrrvuYsOGDaxdu5Z169bNd2mS5lhvg9lV9atd6ZfkIcARwIkjq84D3kx3hPH+e1addmZqwPqkk05iy5YtrFy5ktNPP92BbGkPtBBnPR0++LndiGlVXZvkVuCwuS9pz3TMMccYDJIW5Pcolg1+bhuzbtvQ+u0kOTHJpiSbbrjhht6Kk6Q9zURBkeQpg5lLO1sunYWaMvg5bt5uxrR1G1edVVWrq2r18uXLZ6EMSRJMfurpC8Ak011uvQe1TNk6+DnuyOH+Q+slSXNgoqCoqluBb/Rcy5TNg5+HA1+cakyyAtgXuGqO6pAksQDHKKrqu8DXgOePrDoOuAv47zkvSpL2YL3NekqyGljBb8LosCR/Ofj3RYOjFJJcDBxUVQ8d6v564ONJzgTWA4+m+8Ldu6vqRzt77CuuuOLGJN+ZnWciYH/gxvkuQhrD1+bsOmhcY2/XekpyLnD8NKsPrqrrBttdCqyoqhUj/Z8NvAl4OPBj4H3A6VX1y14K1rSSbBp3/RdpvvnanBuL8qKAml2+GbVQ+dqcGwtujEKStLAYFJrEWfNdgDQNX5tzwFNPkqQmjygkSU0GhSSpyaDQDgbX7TptlvZ1/ySnJPn92dif9gxJLp2la8dpFhgU6tv96b4PY1BIuymDYg+RZO/5rkHS7smgWIQGp3oqyaokn0pyM/Dv6bwqydVJ7kxyfZJ/SbLf+N1kXZLvJ7ktyWeTHDG6QWt/gws5XjvY/Oyhy9G/sMenr91Ekkcl+WiSnw5eY1cnOXmabfdJckaSK5PcnORHSS5M8vCR7Q5I8m9JfpjkjsFr8uNJHjhYv1eSU5N8O8ntSW5MsjHJmrl4zrurhXiHO82eC4BzgLcDvwJOB04G3gtcSHe3wFOBRyV5wsjta/8a+C7wMmBv4C3AxUkOraqpS7039wdcDzwbOB/4R+Bjg37f7uXZareR5A+BS4FrgFcB3wcOBR45TZe9gd8BTqN7XS0DXgpcluThQ9eAO4/uekWvBb4HPAj4U7orTwO8bvB464CvAvsBq5nmhmgaqCqXRbYAp9Dd+OkVQ23LgNuBc0e2PW6w7ZFDbUV3obX7DrWtoLt676kz2d+gXwEvmu//F5eFswCfpfsg33ea9ZcClzb6L6H78P8F8Kqh9puBlzf6fRw4f76f/+62eOppcfvo0L8fR/dX2QdGtvkQcDfwhJH2i6rqlqlfqruI42XAH+3i/iQAkuwLPB74YA2uIj1hv+cm+VKSn9G9xm4Bfht42NBmlwOvTfKKJI9IMnpXzMuBpyc5PcmaJPe5Z89mz2BQLG7XD/172Zg2qupu4KfseOj94zH7+zHw4F3cnzRlKd1nz/cn7ZDkL4APA1uAY4HHAo8BbgD2Gdr0aLpTnP8AfB34QZI3Jpn6rHsr3Sy8I4HPAT9N8v4k+9+jZ7TIGRSL2/D1WabGFQ4Y3iDJXsAD6D7chz1ozP4eBPxgF/cnTdlGN2b24J1tOOR5wDVV9cKquqiqvkx3g7Pt/iCpqp9U1d9V1YPpblFwLvBm4MWD9XdV1dur6hHA79KNVzyHbpxN0zAo9hyXAXfQveGGHU03qeEzI+1PT3LfqV8GM5gex29uTzvp/u4Y/PytXS9di8ngdNNG4Lgkk74u9qU73TTsBXRjFdM9ztVV9Xq6YFo1Zv2Pqup9wP+OW6/fcNbTHqKqtiZ5J3BykluAi4CVdLNINgKfGOlyG/DpJO+gG4t4M3ATcMYM9/djuqOL5yX5Ot155WuryiOOPdtr6P6Y+GKSf6Y7DXUIcERVnTRm+08Cz0xyBt2A9B8ALwd+NrVBkvvRfeh/EPgG3eSLo+hOdX16sM0FdEciX6ELkEcDTwPOnP2nuIjM92i6y+wv/GbW014j7aE71L4auJNufOG9wH4j2xXd1NfX072Bb6c7n3vELu7vmcBVdG/cAl443/9HLvO/0H1IX0j3YX8b3Yf76wbrLmVo1hPd2Y/TgB8Ct9KFzKOB6xjMvKP7g+ZMYDPd7Keb6Aavjx3az9/THQ3/dPCYVw/eL/ee7/+Phbx4mXFJUpNjFJKkJoNCktRkUEiSmgwKSVKTQSFJajIoJElNBoUkqcmgkCQ1/T+ZzS+Rd2OfTQAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.boxplot([z_array,z_position],labels=['robot','class']);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The histogram above shows the data for the robot and class. As seen by the histogram, box plot, standard deviation and mean for the robot and class data, the predicted uncertainty converges to within 0.01 of the desired uncertainty. " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 182, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def robot_z2(angle_mean,angle_range,v_mean,v_range,v_x, v_std,n=100):\n", | |
" theta_initial =np.random.normal(angle_mean,angle_range, n)\n", | |
" velocity_initial =np.random.normal(v_mean,v_range,n)\n", | |
" vz = velocity_initial*np.sin(theta_initial)\n", | |
" vy = velocity_initial*np.cos(theta_initial)\n", | |
" vx = np.random.normal(v_x,v_std, n)\n", | |
" x_position = 3*(vx/vy)\n", | |
" z_impact = 3*(vz/vy - (9.81*3)/(2*vy**2)) + 0.3\n", | |
" return z_impact, x_position" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 183, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"0.19989195463361606 -0.04084152690047909\n", | |
"0.2548611138551949 -0.047397370492807414\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAECCAYAAAD0JMwBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3de3wU1f3/8ddHCSEQEgggErmEiyKoCDQoIJpwVQHBC18uFgSpQm2tVbwVFQXqV8Bb1bag/CwFFQVRQRQFi0JQiQKCWP3yRf1qQBSEkAQiIJpwfn/sst1NNmSTbBIY38/HYx9LzpyZc87M8tnZM2fOmHMOERHxnpOquwIiIlI5FOBFRDxKAV5ExKMU4EVEPEoBXkTEoxTgRUQ8qtQAb2ZDzOxlM9tmZofMbKuZTTOzukF5UszMlfCqV7lNEBGRcKy0cfBm9gGwHXgV2AF0AiYD/wt0d84dMbMU4GtgGrC0yCbWO+cKo1prEREpVY0I8lzmnNsT9HeGmeUA84B04J2gZV855z6IYv1ERKScSu2iKRLcj1rvfz8tutUREZFoieQMPpw0//uWIunTzOxJ4ACQAdztnPt3JBts2LChS0lJKWd1RER+mT766KNs51yjcMvKHODN7DRgKrDSObfBn3wYeAp4C9gDnAncBaw1s/Occ0W/CIpJSUlhw4YNpWUTEZEgZratxGVlmWzMzOKB1UAycJ5zbscx8jYDPgOWOudGlpBnHDAOoHnz5r/atq3EeoqISBhm9pFzLjXcsojHwZtZLXwjZFoBFx8ruAM4574B3gO6HCPPbOdcqnMutVGjsL8wRESknCLqojGzGOBl4DygT6T96oABmo9YRKQaRHKj00nAfKA3MDjSYZBm1hy4APiwQjUUEZFyieQM/u/AfwH/DRwws65By3Y453aY2SP4viwy8V1kbQtMBI4AD0S3yiIiEolI+uAv9b/fjS+AB7+u8y/7DOiBbyTNv/Dd6fo+cL5zbmsU6ysiIhEq9QzeOZcSQZ45wJxoVEikNIcPHyYnJ4f8/HwKCzULhnhTzZo1adiwIYmJieXeRnlvdBKpFocPH2b79u3Ur1+flJQUYmJiMLPqrpZIVDnnOHToEDt27CA2NpZatWqVazuaLlhOKDk5OdSvX5+GDRtSs2ZNBXfxJDOjdu3aNGzYkD17ws0WExmdwcsJJT8/n0intPhkR17lVsavQ1PNiC2Vo27duuzdu7fc6+sMXk4ohYWFxMTEVHc1RKpEjRo1KCgoKPf6CvBywlG3jPxSVPSzrgAvIuJRCvAi1Wzu3LmYWeBVs2ZNWrduzV133cWPP/5Yrm2OGTOGpk2bRrWOc+ZENhI6PT09pD3hXnPnzj3mNoLz1qhRg5YtW3LttdeyY8cxp8Aql8mTJ4ecKefl5TF58mQ2btxYLG96ejrp6elRr0Nl0UVW8YyUPy2r1vKzpg+o0PqLFi2iadOm5Ofns3jxYqZNm0Z+fj5//etfo1TD8ps7dy4FBQWMHTu21LwzZ85k//79xdJ//vlnfv3rX7N//34uuuiiUrczZswYxo8fT0FBAR9//DH33Xcfa9eu5eOPPyYuLq5c7Qjnuuuu45JLLgn8nZeXx5QpU2jatCmdO3cOyTtz5syolVsVFOBFjhMdO3akTZs2APTt25cvvviCf/zjHzz++OOcdNKJ82O7ffv2YdNvvvlmvvnmG15++WVatWpV6nZOO+00unb1zYzSo0cP6taty5gxY3jzzTe58soro1bfpk2bRvxrp6S2Ha9OnE+NyC9M586dOXToENnZ2SHp69ato0+fPsTHx1OnTh169+7NunXrwm5j7dq1dOnShVq1apGSkhL210Bp20tPTycjI4P3338/0G1S1m6Kl156iccff5ybb7653MG5SxffzONffvllIG358uV069aNuLg4EhMTufzyy9m6NXR2lBUrVtC9e3cSExOJj4+nbdu2TJ06NbA8uIsmKyuLli1bAnD99dcX61IK10WzdetWrrjiCurVq0dcXBxdu3Zl+fLlIXmOlvHFF18wYMAA4uPjadGiBVOnTuXIkSPl2h+RUIAXOU5lZWWRmJhIgwYNAmmffPIJaWlp5ObmMnfuXJ555hn2799PWloamzdvDll///79DBs2jNGjR7NkyRLS09O56aabQvq/I9nezJkz6dSpEx06dCAzM5PMzMwydVV8/vnnjB07lq5du/Lggw+We398/fXXANSr57vvYPny5YFguXDhQmbNmsWnn35Kjx49+PbbbwH46quvGDRoEC1btmThwoUsXbqUCRMmcODAgbBlNGnShFdeeQWAiRMnBto7YED47rfvvvuOHj16sHnzZv72t7/x4osvUq9ePQYMGMCbb75ZLP8VV1xBr169WLJkCZdffjn33Xcf8+bNK/c+KY26aESOE4WFhRQUFAT64F9++WUee+wxTj755ECeqVOnEhsby9tvvx0IdH379iUlJYUpU6YEghP4bgqbPXs2w4cPB+CSSy7h22+/5b777mP06NGYWUTba9++PQkJCRQUFAS6TCJ18OBBhgwZQs2aNXnxxRfLdA+Dc46CgoJAH/xtt91G7dq1GThwIAD33HMPrVq14s0336RGDV8o69atG2eccQaPPPIIjz76KBs3buSnn35i1qxZJCQkANCrV68Sy4yNjaVTp04AtGrVqtT2Pvroo+Tm5pKZmRnoXuvfvz/t27fn7rvv5tJLLw3Jf+utt3LttdcC0KdPH9555x1eeOGFQFq06Qxe5Dhx5plnEhMTQ1JSEr/5zW8YP348N954Y0ieNWvWMHDgwEAwBkhISGDQoEFkZGSE5D355JO56qqrQtKGDx/O9u3bA2e4Zdleedxwww18+umnPPvsszRr1qxM6z7wwAPExMQQFxdHt27diImJ4Y033iA5OZkDBw6wceNGhg0bFgjuAC1btuSCCy4I1L1jx47ExMQwfPhwXnrpJXbv3l3hNgVbs2YNXbt2DQR38O33ESNG8PHHHxe72Fz0l8DZZ5/N9u3bo1qnYArwIseJxYsXs379et544w369OnDzJkzeeaZZ0Ly5OTk0KRJk2LrnnrqqeTm5oak1a9fv9gZc+PGjQECAb4s2yur2bNn88wzzzBx4sRiZ7KRGDt2LOvXr2fTpk1kZ2cHupMAcnNzcc6VWPecnBwA2rRpw4oVKzhy5AijRo3i1FNP5fzzz4/Klxcce/8554rtw6SkpJC/Y2Njyz0UNhIK8CLHibPPPpvU1FQuvfRSXn/9dc444wxuv/32kP7ipKQkdu3aVWzdXbt2FQseubm5/PzzzyFp33//PeAboVLW7ZXFxo0buemmm0hLSwu5oFkWTZo0ITU1lY4dO4ZchwDfl5eZlVj34Pw9e/Zk+fLl5OXlsXLlSmJiYhgwYECxi9flcaz9Z2YV2ofRoAAvchyKjY3loYceYvfu3SEXNNPS0li2bBn5+fmBtPz8fF577bXA2e1RhYWFvPzyyyFpCxYsoHnz5oEAH+n2YmNjOXToUER1z8vLY8iQIdSrV48FCxaEXEOIljp16vCrX/2KRYsWhTwTYNu2baxdu7bYvgBfG3r16sUdd9zBgQMHAhdtw+UDImpvWloaH3zwAVlZWYG0wsJCFi5cSKdOnahbt24ZWxZdusgqcpwaNGgQXbp04eGHH+bGG28kLi6OSZMm8frrr9O7d2/uvPNOzIwZM2Zw8OBB7r333pD169atyx133EF2djann346L7zwAitXrgzcOQtEvL327dszc+ZMFi5cSOvWralbty5t27YNW+9rrrmGr7/+mgceeICsrKyQ4HdUWcael+TPf/4zAwYMYODAgfzud7/jhx9+4L777iMxMZFbb70VgCeffJI1a9bQv39/mjVrRnZ2NtOmTSM5OZmzzz477HYbN25MgwYNWLBgAR06dKBOnTq0bNmy2K8IgFtuuYW5c+fSt29fpkyZQkJCAjNnzuTzzz9n2bLqvfEOdAYvcly7//772b17N08++SQAHTp0YPXq1SQkJDB69GhGjRpFfHw8GRkZnHvuuSHrJiQksGDBAubNm8fgwYNZtWoVjz/+OKNHjw7kiXR7d955J7179+a6666jS5cujB8/vsQ6v/baawDcdddddOvWLezr6aefrvC+ueSSS1i2bBl5eXkMHTqU3/72t7Rr14733nuP5ORkAM4991wOHDjAxIkT6devHzfeeCMtW7bknXfeKfFu2JNOOomnn36a3Nxc+vTpQ5cuXQJtKio5OZn33nuPs846ixtuuIEhQ4aQk5PDsmXLQu6OrS7mnKvuOgCQmprqNmzYUN3VkOPcli1baNeuXUR5NR+8eEFpn3kz+8g5lxpumc7gRUQ8SgFeRMSjFOBFRDxKAV5ExKMU4EVEPEoBXkTEoxTgRUQ8SgFeRMSjFOBFRDxKAV5ExKMU4EWOE5mZmQwdOpTk5GRq1qxJgwYN6Nu3L/PmzQvMmHh0orBwE3hVh5SUlMBzS0t6rV69usT1s7KyQvLWrFmTM844g1tuuaXC89GHM2bMGFJSUkLKnzx5Ml999VXYto0ZMybqdahKpc4maWZDgBFAKnAKsB14BXjAOZcflK8+8BBwORAHZAK3OOf+XQn1FilucmLInx2qvPx95V71scceY8KECfTq1YsZM2bQokULcnNzeeutt7jhhhuoV68egwcPjmJlo2Px4sUcPny4WPq+ffsYOnQo9erVKzYJWjgTJ05k0KBBHD58mPfff5/777+fTZs2sWrVqsDMl9EwadIk/vjHPwb+zsrKYsqUKfTo0YNWrVqF5F28eHHgMX8nqkimC74NX1C/C9gBdAImAz3NrLtz7oj5jsBSoCXwByAXmAisMrOOzrkdlVF5ES9Ys2YNEyZM4MYbb+SJJ54IWTZ48OBjPiS6uh19fmlRV155JYcOHeKtt96ifv36pW4n+PmnaWlp/Pzzz0yePJlNmzbRuXPnqNW3devWEectqW0nkki6aC5zzg11zs13zmU45x4DbgLOB9L9eQYBPYBRzrkXnHPL/WknAXdUQr1FPGP69OkkJSXx4IMPhl3eunVrOnQo+ffIggUL6NWrF40aNSI+Pp5OnToxb968Yvkef/xx2rVrR1xcHPXr1yc1NZXFixcHlq9YsYLu3buTmJhIfHw8bdu2LdfTmB5++GEWL17MQw89xPnnn1/m9QG6dOkCwJdffhlIe+655zj33HOpVasWDRs2ZNSoUezcuTNkveeff55OnToRHx9PYmIi55xzDk899VRgeXAXzerVq+nZsyfge9B40S6lcF0069ato0+fPsTHx1OnTh169+7NunXrQvKMGTOGpk2bsmnTJi688EJq167N6aefHpjyuSqVGuCdc3vCJK/3v5/mfx8EfOecWxW03j7gNeD4+10pcpwoLCxk9erV9OvXj1q1apVrG1999RVDhgxh/vz5LFmyhMsuu4zrrrsuJKDMnz+fW2+9lREjRvDGG28wf/78wNzlR7cxaNAgWrZsycKFC1m6dGm5fjm89957TJw4kauuuiqkK6Ssjj5t6ejDwGfPns2oUaNo164dr7zyCtOnT2fFihWkpaXxww8/BMoeOXIkaWlpLFmyhEWLFnH99deTlxd+2ujOnTvz97//HYAnnniCzMxMMjMzS/zFcPSZsLm5ucydO5dnnnmG/fv3k5aWxubNm0Py7t+/n6uvvpqRI0fy6quv0qVLF2644QZWrVoVdtuVpbxPdDr6PKwt/vezgE/D5PsMuMbM4p1zP5SzLBHPys7O5tChQ7Ro0aLc27jrrrsC/z5y5Ajp6ens3LmTWbNm8dvf/hbwXcDt0KFDyFOa+vfvH/j3xo0b+emnn5g1a1ag37lXr15lqsf333/PsGHDSElJYc6cOWVa98iRIxQUFPDTTz8F+uCbNGnChRdeSGFhIZMmTSI9PZ0FCxYE1jnzzDO58MILmTNnDjfddBMffPAB9erV47HHHgvk6devX4llJiQk0L59ewDatWsX6CIqydSpU4mNjeXtt98OfPH07duXlJQUpkyZwiuvvBLIm5+fz8yZMwO/EC666CLeeustXnjhhUBaVSjzKBozOw2YCqx0zh19QkcSvn73onL876V3wolIuXzxxReMGDGC0047jZiYGGJiYnj66afZunVrIE+XLl34+OOP+cMf/sDKlSs5ePBgyDY6duxITEwMw4cP56WXXmL37t1lqkNhYSEjRowgJyeHRYsWlfni5Pjx44mJiaFOnTr069ePNm3asHz5cuLi4ti6dSu7d+/m17/+dcg6PXr0oEWLFmRkZATamJuby8iRI3n99ddLPHMvrzVr1jBw4MBAcAffl8SgQYMCdTiqdu3aIYE8NjaW008/ne3bt0e1TqUpU4A3s3jgVaAAuDZ4ERDu0VDHvPxtZuPMbIOZbdizJ1xPkIi3NWjQgLi4OLZt21au9X/44Qf69u3L5s2bmT59Ou+++y7r169n7NixIaNbrrnmGmbNmsWHH37IxRdfTFJSEldeeWVguGWbNm1YsWIFR44cYdSoUZx66qmcf/75xQJXSSZNmsSqVat44okn6NixY5nbcc8997B+/Xo++eQT8vLyePfddwPXHY52IzVp0qTYeqeeempgeVpaGosWLeKbb77hiiuuoFGjRvTp04dPPvmkzPUJJycnp8Q6FB3SGe7CcmxsLD/++GNU6hKpiAO8mdXCN1KmFXBxkZExOfjO4os62sqwA1qdc7Odc6nOudRGjRpFWhURz6hRowbp6en861//CjvcsDSZmZls27Yt0EfdvXt3UlNTKSgoCMlnZowfP55169aRnZ3NvHnzWLduHcOGDQvk6dmzJ8uXLycvL4+VK1cSExPDgAEDyM7OPmYdli1bxvTp0xk5ciTXX399mdsA0KJFC1JTUznnnHNITAwd7pqU5Astu3btKrberl27Qh6GPWTIEDIyMsjNzWXx4sXs3LmTSy65hCNHjpSrXkXrUVIdjtbxeBNRgDezGOBl4Dygf5ix7Z/h64cvqj2wXf3vIiX705/+xN69e7n99tvDLv/6669LPAs92tUSExMTSMvNzeXVV18tsbz69eszbNgwhg4dyqefFr90FhsbS69evbjjjjs4cOBA4IJnOFlZWYGLn5U1SqRt27Y0btw4pP8dYO3atWzbto20tLRi68THxzNw4EDGjx/Pzp072bt3b9htx8bGAnDo0KFS65GWlsayZcvIzw/c/kN+fj6vvfZa2DocDyK50ekkYD7QGxjgnPsgTLalwLVmluacy/CvlwBcBjwfxfqKeM5FF13Eo48+yoQJE9iyZQtjxoyhefPm5Obm8vbbb/P000/z/PPPhx0q2b17dxISEvj973/PlClTOHDgAPfffz8NGzZk377/3Hg1btw46tatS7du3TjllFP4/PPPefbZZwMXIZ988knWrFlD//79adasGdnZ2UybNo3k5GTOPvvssPX+6aefGDJkCHl5eTzyyCP8+9/h72ls3bo1FfmFfvLJJzN16lTGjx/PyJEjGTlyJN9++y133303p59+Otde6+stvvfee/n+++/p2bMnycnJ7NixI9BlVFL5Z5xxBjVq1GDOnDkkJSURGxtL27ZtqVu3brG8kyZN4vXXX6d3797ceeedmBkzZszg4MGDIRevjyeRjKL5O/BfwH8DB8ws+FLzDn9XzVJ8d64+Z2a3858bnQwIP7hXRAJuvvlmzjvvPP7yl79w2223kZ2dTd26dUlNTeWpp57isssuC7teo0aNWLx4MbfeeitDhgwhOTmZP/7xj+Tk5DBlypRAvgsuuIB//vOfPPvss+zbt4/k5GRGjhwZyHPuuefy5ptvMnHiRHbv3k1SUhI9evRg/vz5xMXFhS37u+++46OPPgJg7NixJbbtn//8Z4Vv+R83bhy1a9fmoYceYvDgwcTHx9O/f38efPBB4uPjATj//PN54oknuOWWW8jJyeGUU06hX79+/PnPfy5xuw0aNOBvf/sbM2bMIC0tjcLCQlatWkV6enqxvB06dGD16tXcfffdjB49GuccXbt2JSMjI6K7dauDORfu2mhQBrMsoKQxXFOcc5P9+ZKAh/FNVVALX8Cf4JzbXMK6IVJTU92GDRtKzyi/aFu2bKFdu3YR5f1kR3RHUZSkQ9N6pWcSKafSPvNm9pFzLjXcslLP4J1zKZFUwjmXA4z1v0REpJppNkkREY9SgBcR8SgFeBERj1KAFxHxKAV4OeGUNvJLxCsq+llXgJcTSs2aNSO661DECw4dOhRyl3JZKcDLCaVhw4bs2LGDnJwcfv75Z53Niyc55zh48CDffvstp5xySrm3U9754EWqRWJiIrGxsezZs4e9e/cWm1Qr2Pe5VXOmvyU//J2eIhURExND48aNK/RcWAV4OeHUqlWLZs2alZrv0j8tq4LaQNb0AVVSjkhZqYtGRMSjdAYvVSqlis6qRURn8CIinqUALyLiUQrwIiIepQAvIuJRCvAiIh6lAC8i4lEK8CIiHqUALyLiUbrRSaSCvHjzlqZf8AadwYuIeJQCvIiIRynAi4h4lAK8iIhHKcCLiHiUAryIiEcpwIuIeJQCvIiIRynAi4h4lAK8iIhHRRTgzaypmf3VzDLN7KCZOTNLKZInxZ8e7lWvMiovIiIli3QumjbAUOAj4F2g3zHyTgOWFknLL3vVRESkIiIN8Gucc40BzOw6jh3gv3LOfVDhmomISIVE1EXjnDtS2RUREZHoqoyLrNPMrMDM9pnZUjM7pxLKEBGRUkRzPvjDwFPAW8Ae4EzgLmCtmZ3nnNsSxbJERKQUUQvwzrmdwG+Dkt41s+XAZ8DdwMii65jZOGAcQPPmzaNVFRERoZLHwTvnvgHeA7qUsHy2cy7VOZfaqFGjyqyKiMgvTlXc6GSAq4JyREQkSKUGeDNrDlwAfFiZ5YiISHER98Gb2RD/P3/lf7/UzPYAe5xzGWb2CL4vjEx8F1nbAhOBI8AD0auyiIhEoiwXWRcV+Xum/z0DSMd3MfUGYAxQF8gG3gGmOOe2VqiWIiJSZhEHeOeclbJ8DjCnwjUSEZGo0GySIiIepQAvIuJR0byTVeS4kFXr6iovM+XH56u8TJHS6AxeRMSjFOBFRDxKAV5ExKMU4EVEPEoBXkTEoxTgRUQ8SgFeRMSjFOBFRDxKAV5ExKMU4EVEPEoBXkTEoxTgRUQ8SgFeRMSjFOBFRDxKAV5ExKMU4EVEPEoBXkTEoxTgRUQ8SgFeRMSjFOBFRDxKAV5ExKMU4EVEPEoBXkTEoxTgRUQ8SgFeRMSjFOBFRDxKAV5ExKMU4EVEPCqiAG9mTc3sr2aWaWYHzcyZWUqYfPXN7GkzyzazA2a20szOiXalRUSkdJGewbcBhgK5wLvhMpiZAUuBS4A/AFcBMcAqM2ta8aqKiEhZRBrg1zjnGjvn+gOLSsgzCOgBjHLOveCcW+5POwm4o+JVFRGRsogowDvnjkSQbRDwnXNuVdB6+4DXgMHlq56IiJRXNC+yngV8Gib9M6C5mcVHsSwRESlFNAN8Er4++qJy/O/1o1iWiIiUIpoB3gBXQnr4FczGmdkGM9uwZ8+eKFZFRESiGeBz8J3FF3X0zL3Y2b1zbrZzLtU5l9qoUaMoVkVERKIZ4D/D1w9fVHtgu3PuhyiWJSIipYhmgF8KnGZmaUcTzCwBuMy/TEREqlCNSDOa2RD/P3/lf7/UzPYAe5xzGfiCeCbwnJndjq9LZiK+PvgHo1dlERGJRMQBnuI3OM30v2cA6c65I2Y2EHjYv6wWvoDf0zn3TYVrKiIiZRJxgHfOlTgaJihPDjDW/xIRkWqk2SRFRDxKAV5ExKMU4EVEPEoBXkTEoxTgRUQ8SgFeRMSjFOBFRDxKAV5ExKMU4EVEPEoBXkTEo8oyF41I2U1ODPkzq1Y11UPkF0hn8CIiHqUALyLiUQrwIiIepQAvIuJRCvAiIh6lAC8i4lEK8CIiHqVx8L8kRcaki4i36QxeRMSjFOBFRDxKAV5ExKMU4EVEPEoBXkTEoxTgRUQ8SgFeRMSjFOBFRDxKNzqJnKCyal1deRufXFL6vqgXlfKnZSUuq9Q2lqQS2lhddAYvIuJRCvAiIh4V1QBvZulm5sK88qJZjoiIlK6y+uBvAtYH/V1QSeWIiEgJKivAb3HOfVBJ2xYRkQioD15ExKMqK8DPN7NCM9trZs+bWfNKKkdEREoQ7S6afcAjQAawH+gE3AVkmlkn59zuKJcnIiIliGqAd85tAjYFJWWY2RpgHb4Lr/cE5zezccA4gObNdZIvJ65quSGnGhzrpiQ5/lR6H7xzbiPwOdAlzLLZzrlU51xqo0aNKrsqIiK/KFV1kdUAV0VliYgIVRDgzSwVOAP4sLLLEhGR/4hqH7yZzQe+BjYCefgusk4EvgX+Gs2yRETk2KI9iuZTYATwB6A2sAt4BbjPOZcd5bJEROQYoj2KZhowLZrbFBGR8tGdrCIiHqUALyLiUQrwIiIepQAvIuJRCvAiIh6lAC8i4lEK8CIiHqUALyLiUQrwIiIepQAvIuJRlfXQbc+K5gMPfikPiRCR6qEzeBERj1KAFxHxKAV4ERGPUoAXEfEoBXgREY9SgBcR8SgFeBERj1KAFxHxKN3odNTkxIiyZdWq5HqIHMd0c96JRWfwIiIepQAvIuJRCvAiIh6lAC8i4lEK8CIiHqUALyLiUQrwIiIe5Zlx8BV9EIfGt4sIEPE9MdEtc1+lbFZn8CIiHqUALyLiUVEN8GbWzMxeMrN9ZrbfzF4xs+bRLENERCITtQBvZrWBd4AzgdHAKOB0YJWZ1YlWOSIiEploXmS9HmgFtHXOfQlgZp8AXwDjgUejWJaIiJQiml00g4APjgZ3AOfc18D7wOAoliMiIhGIZoA/C/g0TPpnQPsoliMiIhGIZoBPAnLDpOcA9aNYjoiIRCDaNzq5MGlWUmYzGweM8//5g5ltjXJ9IlZiJaOnIZBd+cUcd9TuXxa1uzymVCgCtShpQTQDfC6+s/ii6hP+zB7n3GxgdhTrcNwysw3OudTqrkdVU7t/WdTu40s0u2g+w9cPX1R74H+iWI6IiEQgmgF+KdDVzFodTTCzFOAC/zIREalC0Qzw/w/IAvfcDysAAAcjSURBVF41s8FmNgh4FfgGeCqK5ZyofhFdUWGo3b8savdxxJwLd120nBvzTUvwF6AvvuuWbwM3O+eyolaIiIhEJKoBXkREjh+aTbKCzOwkM5toZllm9qOZbTazqyJcd66ZuTCvx8Lk7WFma83skJntMrNHzSwu+i2KTHnbbWYJZnavvy17zSzP/+/Lw+SdXML+WVI5rQopu9wT55lZLTN7yMx2+o9XppldFCZfuT87laW87TazVDObbWb/a2YHzWy7mc03s5Zh8maVcFyLfQaqSgWPd7i2ODPrWCRf1R9v55xeFXgB/w0cBm4DeuK73nAE6B/BunOB3UDXIq8WRfJ1AA4BS4DewHX4hp4uPNHaDZwN7AKmAZcCF/v3gwN+XyTvZH/6BUX2zxmV3Lba+OZQ+hS4HN9UG/8G/g+oE8H684E8fPMz9QZe8R+/jtH67Bxv7QYexjctye+ANOBqYAuwF2hWJG8WsDzM577+idZu//oO+GeY9tSu7uNd5TvTSy/gFP8Bm1Ik/W3gkwjWnwvsiCDfYv8HMCYo7Rr/B6vzidRuoE7RD37QutuLpB0N8DWquH1/BAqBNkFpLYECYEIp657rr/O1QWk1gK3A0mh9do7DdjcKk9bCH8CmFknPAp6rjjZGu93+vA64v5Q81XK81UVTMRcDNYHniqQ/B5wT7udpWZlZDHAJ8KJz7uegRS8CP1E9E7mVu93OuQPOuYNhFm0AkqNXxQqpyMR5g4CfgYVB6xYAC4CLzSzWn1zpn51yKHe7nXN7wqRtA/YAp0W5ntFWFRMlVsvxVoCvmLPwfSt/WST9M/97JJOsnWJm2WZWYGafm9mdZnZy0PLWQC2KTOTmnPsR30/I6pjILRrtLuoi4H9LWPaNmRWa2TYzm1EF1x4qMnHeWcDXYb7EPsP3H7xNUL5o78OKiuqEgWbWDt+Z65Ywiy/z99UfNrMPqrP/nei0+wZ/Ww6a2TtmdmGYMqr8eHvmodvVJAnIc/7fWkFygpYfy8fAR/gOci3gCnx906fj62cP3kZJE7mVVkZlqGi7Q5hvTqKuwMgii74E/gRswvczuB9wC9AZ31DcylKRifOOte7R5Uffo7YPoyRqEwaaWQ3gSXxn8P8osvg1YD3wNdAYuBFYbGajnHNFz3CrQkXb/RzwOvAdvm6p24F3zKyvc251UBlVfrwV4IOYWR/gXxFkzXDOpeMb61+mCdaCOeeKjpZ5w8x+AG42sxnOuS+CtlXuckpT1e0uUnY68ATwrHNufvCyMP/Z/2VmO4DHzKyPc25lWcsrg/K2L9J9E7V9GGXRqtPfgO7AAOdcSPB0zv0hZONmi4EP8J3cVEeAh4r9Px4V9Oe7ZvYqvl8E9wM9grZV5cdbAT7UWqBdBPmO/vzOAeqbmRX5Zq4ftLysXgBuBlLxXVg91jd8ff7zE68iqqXdZtYF3zQW7wC/ibCuLwCPAV2AygrwZZ44L0gOEG54XdF9UxmfnYqqSLsDzGwavlliRzvn3iotv3Ou0MwWATPMrIlzbmekZUVJVNp9lHMu38yWEfqZrpbjrQAfxN9vWlI/cDifAbH4+smD+9aO9qeVZ5K1omfs/4ev7y5kIjczq4XvEYmLylFGiOpot5mdA6zA1011VZELyJGozDv0KjJx3mfAFWZWu0g/fHt8F8W/DMoX7c9ORVV4wkAzuxtft9pNzrlny1D2sX6pVrbKmCix6Bl79Rzv6h6idCK/+M/Qp/uKpK8E/l3ObT6Ob2hZ66C0JcDnBA0XxNdf7YBfnWjtxneNYRe+kTMJZSz7Fn+7e1Zi+27GN0SuVVBaCr7RMbeWsm5Hf/1GB6XVwHeh8bXK/OxUZ7v9eW/yt/2uMpZbw/9Z2HYitjvM9hKA7fi6NKv1eFf5zvTaC5gO/AhMANKBWf4AfVmRfG8DXwb93QJYg+/GkH7AZcAc/7qziqzbEd+NMq/gu3HmN/h+0i06Adt9Cr5x0DnAAIrfHBIblHeTP6D3x3dT1KP+/3RvVnLb6uA7y/o3vmFyg4DNwFdAfJFjWADcW2T9Bfh+2l/nP14v+fdV5yL5ItqHVXhMy91uYLi/7m+GOabtg/KN8O+fa/Dd7DMceBffF8PwE7Ddt+GbaPFq/zEc7d/OT8CF1X28q3xneu0FnAzcA2zD9w39CTAkTL7VQFbQ30n4zsy3+Q/6IWAjvhEFJ4VZ/yIg05/3e3z90MVuGDoB2p3u/89c0islKO8CfF1UB/1l/A8wiaAvgUpsX3PgZWA/kO8/VilF8qT46zy5SHocvi+jXf7j9SGQXt59WMXHtVzt5j93I4d7rQ7K1xXfNZfv8X1Z78N3FnvxCdruy/CNl8/2t2cvvutK5x0Px1uTjYmIeJRudBIR8SgFeBERj1KAFxHxKAV4ERGPUoAXEfEoBXgREY9SgBcR8SgFeBERj1KAFxHxqP8PaCYEZ6v3liIAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"z_array2, x_array = robot_z2(0.25,0.01,6.6,0.7,.05,.01)\n", | |
"plt.hist(z_array2, label = 'Robot Z Position')\n", | |
"plt.hist(z_position, label = 'Class Z Position')\n", | |
"plt.legend();\n", | |
"z_std = np.std(z_array2)\n", | |
"z_mean = np.mean(z_array2)\n", | |
"data_std = np.std(z_position)\n", | |
"data_mean = np.mean(z_position)\n", | |
"print(z_std,z_mean)\n", | |
"print(data_std, data_mean)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 185, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.collections.PathCollection at 0x7ff769c4feb8>" | |
] | |
}, | |
"execution_count": 185, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAD9CAYAAAB0i+q4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3df7xVdZ3v8deHw0EP3glwxCkQwV/XAnG0cMYZnUbJol8g6QxaWd25mT2mmSxLS8auETkPUXqkY82PqOY2I06KhUecGtGEmlHDG3gUxCQxCT3WBMLBHxzhAJ/7x9ob9tln7b3X3metvdfa6/18PPbjcNbv71qH9dnf3+buiIiIxGFEqy9ARETah4KKiIjERkFFRERio6AiIiKxUVAREZHYjGz1BbTSUUcd5VOmTGn1ZYiIZMq6deu2u/v4sHW5DipTpkxh7dq1rb4MEZFMMbNfVVqn4i8REYmNgoqIiMRGQUVERGKjoCIiIrFRUBERkdgoqIiISGwUVEREJDYKKiIiEhsFFcm39cvgplNgwdjg5/plrb4ikUzLdY96ybn1y+Cey2GgP/h913PB7wCnzmvddYlkmHIqkl8PLDwUUIoG+oPlItIQBRXJr13P17dcRGpSUJH8GnNMfctFpCYFFcmvt10LnV2Dl3V2BctFpCEKKpJfp86D2bfAmEmABT9n36JKepFhUOsvybdT5ymIiMQo0ZyKmU0ys++Z2S4ze8nMlpvZsRH39Qqf08q2G2Fm881si5m9ZmaPm9mFyaRIRESqSSynYmajgVXAHuAjgAPXAavN7FR3fzXCYb4DfKNs2S/Kfv8ycCVwDbAOuBi408ze6+4/bDwFIiJSrySLvz4GHA+c7O6bAcxsPfA08HHgqxGO0evuayqtNLOjCQLKInf/SmHxajM7EVgEKKiIiDRRksVfc4A1xYAC4O7PAg8B58d0jlnAKGBp2fKlwHQzOy6m84iISARJBpVpwBMhyzcCUyMe4y/NbI+Z7TazVWb2JyHn2ANsLlu+sfAz6nlERCQGSQaVI4GdIct3AOMi7L8U+ARwHnAZ8LvAKjM7p+wcfe7uIecorh/EzC4zs7Vmtnbbtm0RLkNERKJKuklx+csewCLt6P6hkl//y8zuJsj5XAecXXKsus7h7kuAJQAzZswI21dERBqUZE5lJyE5BYJcSlgOpip3fxn4AXBGyeIdwDgzKw8i40rWi4hIkyQZVDYS1HmUmwo82eAxy3MmG4HDgBNCzsEwziMiIg1IMqisAM40s+OLC8xsCnBWYV1dzOx1wHuAR0oW3wvsBT5YtvklwBOF1mYiItIkSdapfBP4a+BuM/sCQQ7jy8BzlHRoNLPJwDPAQndfWFh2JXAysBp4AZhM0B/l9ZQEEHf/rZndBMw3s5eBR4GLgJnE12xZREQiSiyouPurZjYTuAm4laDo6gHg0+7+SsmmBnQwONe0CXhf4TMGeImgf8tH3f3/lZ3qGuAV4FMEQWcTMM/d74k9USIiUpUNbY2bHzNmzPC1a9e2+jJERDLFzNa5+4ywdRr6XkREYqOgIiIisVFQERGR2GiSLpGc6u7pZfHKTbzQ18+EsV1cNetk5p4+sdWXJRmnoCLtbf0yeGAh7HoexhwTzD+vmR7p7ull/vIN9A/sB6C3r5/5yzcAKLDIsKj4K+/WL4ObToEFY4Of65e1+oris34Z3HM57HoO8ODnPZe3VxobtHjlpoMBpah/YD+LV25q0RVJu1BQybN2f+k+sBAG+gcvG+gPlufcC339dS0XiUpBJc/a/aW76/n6lufIhLFddS0XiUpBJc/a/aU75pj6lufIVbNOpquzY9Cyrs4Orpp1couuSNqFgkqeZeWl22i9z9uuhc6yb96dXcHynJt7+kSuv2A6E8d2YcDEsV1cf8F0VdLLsKn1V5697dqgDqW0CCxtL91ivU/xGov1PlC7FVdxfTNbf2Wotdnc0ycqiEjsNPZX3sf+SvtL8KZTCg0JyoyZBFc80fzrqaY8AEIQpGff0tJ7qv4oErdqY38pp5J3p85LVxApl6V6n2oNH1p0j9UfRZpNdSqSblmp94FUBkD1R5FmU1CRdMtSZXsKA2Di/VHaufOsNERBpV76T9Rcp84L6iTGTAIs+NniOoqKUhYAu3t6GWEWui6W/ijt3nlWGqKK+noq6lNaESspkpKGD+V1KaW6Oju48C0TWf3UtuFV3mepEYXEShX1cUlhRaykTEoaPoTVpRQZzh0/e46B/cEXyoYr71NYhyStp+Kveug/kWREtTqT3QMHDgaUooYq71NYhyStp6BSD/0nkoxopM6k7sr7lNUhSTooqNRD/4kkI8LG9qql7kCUpUYU0jSqU6lHK4b9EGlAsW5k8cpN9EbMgZz7xvH1nygldUiSHgoq9dJ/ouxKScusZikGli/ds5Gduwdqbr/6qW1JX5LkgIKK5MNwBqbMqGrNisNogi6Jg+pUJB/afUKyEJWaFXck2SFSck9BRfIhh83BK+U89rtrgi5JTKJBxcwmmdn3zGyXmb1kZsvN7NgI+80wsyVm9pSZ7TazrWZ2m5kdF7LtFjPzkM/cZFIlmZTD5uCVch7FCbk0QZckIbGgYmajgVXAG4GPAB8CTgJWm9kRNXa/GJgG3AK8C7gaeDOw1swmhWy/Evijss9PYkiGtIscNgfXlMHSCklW1H8MOB442d03A5jZeuBp4OPAV6vse4O7D2qKYmYPAc8Wjlv+Jtju7mviunBpQzlsDl7arLh0jC9Ac6xIYhIbUNLMHgAOd/ezypb/BMDd/7SBY/438O/u/tGSZVuAB939knqPp5kfJY/OWrQqtO/KxLFdPHT1zBZckWRNtQElk6xTmQaEDVW6EZha78HM7E3A0cDPQ1bPLtS97DGzNapPEQnX3dNbsTOkmhRLHJIMKkcCO0OW7wDG1XMgMxsJ/BOwDfh22ep7gE8Cs4APAq8Bd5lZaM7FzC4zs7VmtnbbNnX2kvwo9lupRE2KJQ5Jd34MK1sLbyRf3deBPwbe4+6DApW7f3LQwc3uAtYA1wNLh1yQ+xJgCQTFXw1ci0gmVRsOP1IFfs5GJJDGJJlT2UmQWyk3jvAcTCgzux64DPjf7n5fre3dfT9wJ3CMmb0h6nlE2l21McBqNinWLI8SUZJBZSNBvUq5qcCTUQ5gZtcQNCf+lLvfWse5i7kh5URECIq+KhURTBzbVbvVVw5HJJDGJBlUVgBnmtnxxQVmNgU4q7CuKjO7HLgOuMbdvxb1pIX6lz8Htrr7b+q8ZpG2tHjlpopl0ZH6reRwRAJpTJJB5ZvAFuBuMzvfzOYAdwPPAd8obmRmk81sn5ldW7LsYuBm4F5glZmdWfKZWrLd+83sdjP7sJmdW9hvNfAW4PMJpk0kUyq17HIi9k3J4YgE0pjEgoq7vwrMBH4B3ArcRtB5caa7v1KyqQEdZdfyzsLydwI/Lfv8Q8l2zxI0M14M3EcQrPYA73T32+NPlUg2VWrZ1WFGd09v7QPkcEQCaUxinR+zQJ0fpSEZbAVVbRj8rs6OaGN/ZTDdkoxqnR81n4pIPTI6L0sxYHx22ePsL/si2T+wn8UrN9UOKpqgTiLQ0Pci9chwK6i5p0/kQIWSCfWml7goqIjUI+OtoCrVrbRNb/r1y+CmU2DB2OCn+tE0nYKKSD0y3gqqrYfDVwfNVFBQEaml9Nvv3ldhROfg9RlqBTX39IntO0FX1KJJ5WYSpYp6kWrKK+b7d0DHKOg6Evp3ZqYVVHdP78F5VcZ0dVJhmvpsi1I0mdGGFlmioCLZ0KrmrGHffvfvhVFHwOefTf78MShvTtzXP3BwXVtN0DXmmELRV8jyomq5GQWVWKj4S9KvlWXlGa+Yh+qjE8OhJsWZF6WDZhs8z7RTUJH0a2Uz3oxXzEO05sLVRjDOjFPnwexbYMwkwIKfs28ZnANpg+eZdir+kvRr5bfLt107uAweMlUxD0Fz4VpBo6NdKllqddBsg+eZdsqpSPq18ttllG+/KdXd01txPvpy5b3s21aGn2dWKKci6dfqb5cZHJ6k2lhfYaywT+Yr66PI4PPMEuVUJP307bJutSrny3lhH5HhUk5FskHfLuvSyFhesVfWa1TjXFJORaQNNTKWV6x19fU2A1cv97ahoCLSbtYv4377BL887AM8OOpy5ox4MNJu7kSbsCuKepqBa8yutqKgItJOCi/o0f2/ZoTBMSO2s6jzW5EDS2z1KvU0A8/wdAIylIKKSDsJeUGPtr18bmS0b/2xzatSTzNw9XJvKwoqIu2kwot4gr0YaffY5lWpZ0579XKvLUN1TgoqIu2kwov4Bf/dSLtP+d2Ygko9zcDrCUB5lLE6JzUpFmknIR1F+30UN+6L1pR3zS93xnctUZuBF7dR8+NwGRtZWUFFpJ2EvKCfOOGT/OCnkwi6OFbXsuFa1A+psozVOSmoiLSbshf0GcD7D2xg6ZqtNXdtm4El20mUeWJSRHUqIm2uu6eX76+L1v/k/X84KeGrkbplrM5JQUWkzUUZB8yAS848luvmTm/ORUl0GRv7TsVfIm0uSt+TCWO7FFDSLEN1TonmVMxskpl9z8x2mdlLZrbczI6NuO/hZrbYzH5tZv1m9lMze2vIdiPMbL6ZbTGz18zscTO7MP7UiGRTlL4nsXV6lNxLLKiY2WhgFfBG4CPAh4CTgNVmdkSEQ3wb+BhwLfBe4NfASjM7rWy7LwMLgK8D7wLWAHea2btjSIZI5p37xvE1t4mt06PkXpI5lY8BxwNz3b3b3e8G5gCTgY9X29HMfh/4AHCFu3/T3R8A5gFbgYUl2x0NXAkscvevuPtqd/84sBpYlESiRLJm9VPbam7z6p598Q0mKbmWZFCZA6xx983FBe7+LPAQcH6EfQeAO0r23QfcDswys8MKi2cBo4ClZfsvBaab2XHDSoFIG4hStNXXP8D85RsUWGTYkgwq04AnQpZvBKZG2PdZd98dsu8o4MSS7fYAm0O2I8J5RNrehLFdzBnxIA+OurzqcPj9A/s1+6MMW5Ktv44EwsZ82AGMG8a+xfXFn33uQ7oBl28nkls3T32aaeu+xWjbC8AxFgyHzwCsOHD2oG1jn/2x1TT7ZNMl3U8lbMyHKF12LeK+Ubc7tMLsMjNba2Zrt22rXdYsknVnPPO1gwGlqNJw+LH2qG/1yLoZG4ixXSQZVHYSnlMYR3gupNSOKvsW1xd/jjMb8j+hfLuD3H2Ju89w9xnjx9duFSOSiGa+cOsYDj+2sb/S8ELX5F8tkWRQ2UhQ51FuKvBkhH2PKzRLLt93L4fqUDYChwEnhGxHhPOINF+TX7i7u14fujxsOPyJtZoWRw2GaXihZ2wgxnaRZFBZAZxpZscXF5jZFOCswrpa+3YCf16y70jgIuA+d99TWHwvQZD5YNn+lwBPFFqbiaRLk1+4Nw5cxG4fNWjZ7pDh8Ds7jKtmnVz5QPUEwzS80DX5V0skGVS+CWwB7jaz881sDnA38BzwjeJGZjbZzPaZ2cHR0dz9MYLmxDeb2aVm9jaC5sTHAV8s2e63wE3AfDP7jJmdY2b/CMwE/ibBtEm7iqNYqtYxmvzC/ZdX/oCrBy7l+QNHccCN5w8cxdUDlw6ppD9i1Ejmnj6x8oHqCYZpeKFnbCDGdpFY6y93f9XMZhK89G8lqDx/APi0u79SsqkBHQwNcH8B/C1wHTAWeBx4p7s/WrbdNcArwKeA1wObgHnufk+8KZK2V/wmXnxxFr+JQ/QWQ1GO0eShzMd0dbKi/2xW7D276na7+geqH6ieYBgyWVjTX+ia/KslbGhr3PyYMWOGr127ttWXIWlx0ykVXvaT4IqwLlcNHqM88EDwwk1o5NnTF97Hzt01AgbwZ6Me5ivj7q78Aq73/qg5b9sys3XuPiNsnUYpFimKo1gqyjGa/A26L0JAmTPiQRbat2BXoelxWA6r3txHtZF1FXDaloKKSFEcxVJRj9HEoczHdHXSV6No63Mjlw3pyzJkHvSwYHjSO4Lfl18WPTjEUcxYfjwFqNTQJF2SH7Uq0OOo2E1Z5XB3Ty8vvVY7pzLBtoevKM95nTovKOpa0Bek6fF/q79pdJyt39LQH0YGUVCRfIjy8oljhr2UzdK3YMVGDkSoNn3BjwpfUS2X1mhwiLP1Wxr6w8ggKv6SfKj28il94cdRLJWiWfpqFXsV3bhvHos6vzW4CKxWDqvR4BBn67c09IeRQZRTkXzQy6eqFQfO5uqBS+vLYTXaFyXOIsJq19DqscdySkFF8iENnfHCJPziGze6M/K261739kP1JVc8UTu31WhwiLOIsNI1nPQO1bW0iIKK5EPKKtCBplQyf3H2NDo7oo08HGXa4UGGExxKK/yjBLB6r+Hp+1TX0iLq/KjOj/mRtqancXS2jKC7p5fPLnu85gjEE8d28dDVM2M7b0stGEvFWTEW9DX7atqOOj+KQKoq0IGm1vP8zuEja1baR5l2ODOaPBSOHKKgItmUtlxHIxJ48XX39LJ45SZe6Otnwtguzn3jeL6/rpf+gf01951QPux9lu9xGsYeyynVqUj2tEuHt5jrebp7epm/fAO9ff04wdTAt63ZGimgAIOHvc/6PU5Zf6E8UU5Fsidqn5O0i3kMsMUrNw0JIFFrTEd3jhg87H073OO0FXfmhIKKZE879TmJ8cU346X7uWPUMibYdl7wo7hx37whc6ZUMmpkB909vYcCSzvdY2kqFX9J9qS1z0krrV/GolHf5pgR2xlhcMyI7Szq/BZzRjwYafe+/gHmL99Ad09vsED3WBqkoCLZk1Sfkyz3wH5gIV3sGbRotO3lcyOjp6F/YD+LV24Kfol6j7N8zyQRKv6S7EliPpK4h2NvtgrFUhNGvFjXYQ42K45yj6Pcsyy3IJOGKKhINsVdCZv1iukKzZNf63o9Xfs7IrcAG9NVMqxLrXtc655lPVBLQ1T8JQLNqZhOsqioQnHV6Hct5PoLptNh0YZqeXXvvkP1KrXUumcalj6XFFREIPmK6Ub6fdQThEL6Zfxs+pc464dHccUdj/E7h4+MNAbYwH5nwYqN0dJU656pBVkuKaiIQPIDTtb7rb2RIFQySGP3OSv58M8mH+wI2dc/AA5HjOqoeal9/QPRciu17plakOWSgooIJN8Du95v7cMsOgrrCDlwwHl1b7S6lUi5lVr3LI0jQ0viVFEvUpRkD+x6x/kaZtHRcAeHjDpjZNV7lkQrPUk9BRWRZqh3gMNhDjY5YWwXvWkYdVhDpeSOir9EmqHe4rVhFh1dNetkujoH159Ea/8VqGfGSJFSyqmIxK1Sh796vrUPs+ioOIZX+TD4//bIVg5EGGXyi7OnRbtOkTKa+VEzP0qcyjv8QZDDSMmw66d96b5I9SVbFr2nCVcjWVVt5sfEir/MbISZzTezLWb2mpk9bmYXRtjvdWZ2rZk9bGYvmllf4d9zQ7ZdYGYe8ulOJlUiNaS8w9+uCAFlYvlkXSJ1SLJO5cvAAuDrwLuANcCdZvbuGvsdC3wC+AlwCXAR8AvgLjP7qwr7nA38Ucnnc8O9eJGGpLzD35DZHUMMmqyrFTRIZaYlUqdiZkcDVwKL3P0rhcWrzexEYBHwwyq7Pwsc7+67S5atNLNJwOeBvw/Z5xF33xfDpYsMT8rnRj/3jeO5bc3WipN3je3qHDxZV7NpvLDMSyqnMgsYBSwtW74UmG5mx1Xa0d1fLQsoRWuBCfFdokgCarXaauG38O6eXu742XMVA0pXZwcL5rS4gj7lxYdSW1JBZRqwB9hctrzYTXdqA8d8K/BUhXXPmdl+M/uVmd1gZioUltao1nS4xfO+f+mejQzsDw8pE8d2cf0F01ubS4HUFx9KbUk1KT4S6POhTct2lKyPzMwuA84kqGMptRm4GughmI77HcAVwJuBt1c51mUAxx57bD2XIRJNpabDLR5ef+fuypX0D109M/HzR5Ly4kOpLVJOxczOq9DKqvzz4+IuEJrLrqf/VfHc5wC3ALe6+22l69x9qbvf4O73ufv97n4VcBVwnpmdF3Y8d1/i7jPcfcb48ePrvRyRxulbeG0aLyzzouZUHgbeFGG7Yl3IDmCcmVlZbmVcyfqazOwMYAWwCvhoxGv9LnAzcAbwo4j7iCSvxd/Cx3Z1hvZRGduVot7zGi8s8yIFlULFeaX6jDAbgcOAExhcr1KsS3my1gHMbDqwEngMuNDdI45wd1B+e3VKOtU7/lfMFsyZxmeWPTakR31f/wBnLVrFVbNObn2dCmi8sIxLqqL+XmAv8MGy5ZcAT7j7s9V2NrOTgPuBXwLvdfd6RsYrnvOROvYRSV7Sw+tHUGkGyN6+fuYv3xB91keRChKpqHf335rZTcB8M3sZeJSgE+NM4PzSbc3sAWCyu59Y+P1ogoAyCvgiMNUG/0focfc9hW17gH8FNhHkTN4OfBK4191XJ5G2XKg0dpXUVuvetfBb+OKVmxioMvBX/8B+Fq/clI7cimRWkgNKXgO8AnwKeD3Bi3+eu99Ttl1H2XVMBSYX/v3vIcc9DthS+Pcm4K+BNxSO8wywELhx+JefU+p81riU37soc6wMdx4WEQ0oqQElB7vplAqVyZOCqWqlspTeu+6eXh77wRIu3buUCbadF/wobtw3jxUHzh6y7cSxXfE1L1aOt21VG1BSQ9/LYGr22rgU3rvunl4evOsfWGhLGD1iLwDH2HYWdX4LBhgUWIwYx/1Kea4tt5oQ6DVJlwxWqXmrOp/VlsJ7t3jlJj7N7Yy2vYOWj7a9fG7koZ78BnzwzGPjq0/RcCvp06QRHRRUZDB1PmtcCu/dC339TLDtoesmjHgRIyjyuumi07hu7vT4TpxErk2jFw9PkwK9ir9kMHU+a1wK792EsV28sPsojgkJLCPGHMOzCxKajCvujp4qThu+JhXPKqjIUOp81riU3burZp3MzXddzEJfMqgIbF/H4YxMMgcVd0fPFo+b1haaNKKDir9E2tjc0ydy9vs+wY2dn+D5A0dxAGN31xsYef7Xkn0Zx93RM4WNIDKnScWzalKsJsUi6ZfS5tqZE1PrLzUpFhG6e3pZvHJTUHk/tis9Y31F0eJx09pGE4pnFVREcqC7p5f5yzfQP7AfODTWF5CNwJLCRhA15bTzp4KKSA4sXrnpYEApytxYXylrBFFVjlurqaJeJAcqjemlsb4SkuPOnwoqIjkwYWxX6HIHzlq0SkPexy3HrdUUVERy4KpZJ9PV2RG6TnOpJCCFQ/Y0i4KKSA7MPX0i118wnYkVcizF+hWJSQqH7GkWBRWRnJh7+kQeunom4XM/qn4lVimY5bNV1PpLJGcmjO2iNySAVKp3kQZlqbVajJRTEcmZsPqVrs6O+OZSkVxTTkUkB8p701/4lomsfmpbNnvXS6opqIi0ubDe9N9f18v1F0xXIJHYqfhLpM1V600vEjcFFZE2n1FQvemlmRRUJN+aNG93K1Vq1aXWXpIEBRXJt2aP0dSCXJFae0kzqaJe8q2ZYzS1aOTaYmV8ZudSkUxRUJF8a9K83UBL51mfe/pEBRFpChV/Sb41c4ymHI9cK/mRWFAxsxFmNt/MtpjZa2b2uJldGHHf75iZh3xuDtn2bDN72Mz6zew3ZvZVM1MNpETTzDGacjxyreRHksVfXwauBK4B1gEXA3ea2Xvd/YcR9t8GzClb9uvSX8zsVOB+YCXwXuA4YDEwEbhoWFcv+dGsMZo0z7rkQCJBxcyOJggoi9z9K4XFq83sRGARECWo7HX3NTW2+RLwPPDn7j5QOPde4F/M7AZ3f7SxFIgkIIvzrIvUKamcyixgFLC0bPlS4J/N7Dh3f3Y4JzCzTuCdwFeLAaVgGfBN4HxAQUXSpcUj136hewPffeQ59rvTYcb7/3AS182d3rLrkfaTVJ3KNGAPsLls+cbCz6kRjnG0mW03s31m9gsz+7yZlTa2PwE4HHiidCd3fw14JuI5RHLjC90bWLpmK/vdAdjvztI1W/lC94b4TtLmoxNIbUkFlSOBPvfCX+8hO0rWV/MY8FlgHkG9yk+A64FvlJ0DYGfI/jsqncPMLjOztWa2dtu2bTUuQ6R9fPeRkKbTVZbXLQejE0htkYKKmZ1XoTVW+efHxV2A8oBSXF6Tu9/s7l9z91Xu/kN3/xjwd8BHzeyksmPVdR53X+LuM9x9xvjx46Ncjkhb2D/kO1715XVr9ugEkkpR61QeBt4UYbvdhZ87gHFmZmW5lXEl6+v1XeDTwAzgaarnesZxqKhNRIAOs9AA0mGRvuvVpn44QsSg4u67gafqOO5G4DCCeo/SepViPceTdRyrqDxn8gxBvc20QRuZHQ4cD9zZwDlE2tb7/3ASS9dsDV0ei2aOTiCplVSdyr3AXuCDZcsvAZ5osOXXBwgCys8A3H1v4TzzzKw0OP4ZQUBb0cA5RNrWdXOnc9YJgzP2Z51wZHytv5o5OoGkViJNit39t2Z2EzDfzF4maNp7ETCToKnvQWb2ADDZ3U8s/D4ZuBW4nSCXcxjwPuB/Ad9w92dKdl8A/BRYZmZ/D0wh6Pz4PXdfl0TaRLKqu6eXR7fuGrTs0a276O7pjWdcMPXDEZLtUX8N8ArwKeD1wCZgnrvfU7ZdR9l1vExQX/J54PcIcic/By4H/qF0R3d/zMxmATcAPwB2Af8K/E3ciRHJumozQMY22GSL++FI6yUWVNx9P3Bd4VNtu3PKft8BzK3jPP8J/FEDlyiSK5oBUppBoxSL5IRmgJRmUFARyQnNACnNoEm6RHJCM0BKMyioiOSIZoCUpKn4S0REYqOgIiJSSiMtD4uKv0REioojLRcHxiyOtAzqfxORcioiIkUaaXnYFFRERIo00vKwKaiIiBRVGlFZIy1HpqAiIlKkkZaHTUFFRKTo1Hkw+xYYMwmw4OfsW1RJXwe1/hIRKaWRlodFORUREYmNgoqIiMRGxV8iOdHd06vBJCVxCioiOdDd08v85RsOzvzY29fP/OUbABRYJFYq/hLJgWpTCYvESUFFJAc0lbA0i4KKSA5oKmFpFgUVkRzQVMLSLKqoF8kBTSUszaKgIpITmkpYmkHFXyIiEhsFFRERiY2CioiIxEZBRUREYqOgIiIisVFQERGR2Bj6j88AAAgvSURBVCioiIhIbMzdW30NLWNm24BfVVh9FLC9iZfTCnlIIyid7SYP6Ux7Gie7+/iwFbkOKtWY2Vp3n9Hq60hSHtIISme7yUM6s5xGFX+JiEhsFFRERCQ2CiqVLWn1BTRBHtIISme7yUM6M5tG1amIiEhslFMREZHYKKiIiEhschdUzGyEmc03sy1m9pqZPW5mF0bYb4qZeZXPxSXbLqiwTXeyqRt0vQ2ls7Dvdypc/80h255tZg+bWb+Z/cbMvmpmTZmjdhjP8nVmdm3hul80s77Cv+eGbNu0Z2lmk8zse2a2y8xeMrPlZnZsxH0PN7PFZvbrwrP4qZm9NWS7hv8u4tJoOs1shpktMbOnzGy3mW01s9vM7LiQbbdUeG5DnnFShvk8K71nTivbruXPcwh3z9UH+FtgD3AlcC7wDeAA8O4a+x0GnBny+RHwGnBkybYLAAfOKtv2f6Y9nYV9vwP8NiStk8u2OxXoB7qBtwGXAjuBO9KcRuAU4DfA9cC7gFmFNDvwV2XbNuVZAqOBp4EngLnA+cAG4BngiAj73wb0AR8rPIvlhWdzWlx/F61OJ/AV4CHgE8CfAh8Afg68CEwq23YLcG/I3/C4tKezsL8D/zfk+ken6XmGXnurTtySxMLRhQfwpbLlDwDrG/zDeQm4s2x58UU0MovpLLxgn4+w3V2F/zidJcs+XEj7m9OaRuCI8v+cJftubcWzBD4F7AdOLFl2HLAP+EyNfX+/cI1/UbJsJLAJWBHX30UK0jk+ZNnkwkt0YdnyLcDSZqQp7nQWtnXguhrbtPx5hn3yVvw1CxgFLC1bvhSYHpaNruEC4HeAf4nh2uIUdzqHMLNO4J3AMncfKFm1DNhL8M0sSQ2n0d1fdffdIavWAhPiu8S6zAHWuPvm4gJ3f5bgm3mtezkHGADuKNl3H3A7MMvMDissTvzvIoKG0+nu20KW/QrYBqRtnuThPM+o0vA8h8hbUJlGENk3ly3fWPg5tc7jfYSgmOjeCuufM7P9ZvYrM7uhWXUNxJPOo81su5ntM7NfmNnnzayjZP0JwOEE2fuD3P01gix+vfeyXnE/S4C3Ak9VWJf0s5xG2b0s2EjttEwDng0JlBsJXjonlmwX9z2r13DSOYSZvYngG/vPQ1bPLtS97DGzNc2sTyGedP5l4dp3m9kqM/uTkHO0+nkOMbIVJ22hI4E+L+QRS+woWR+JmU0EZgJ/V/hWWGozcDXQQ5CNfQdwBfBm4O0NXHe9hpvOx4B1BH+chwPvI6h/OImg3qT0GDtD9t8R4RzDFduzBDCzywjKrC8pW9WsZ3kkle/luGHsW1xf/BnbPWvQcNI5iJmNBP6JIKfy7bLV9wA/A54Ffg/4a+AuM/uQu5d/s0/CcNO5FPh34AWCIr6rgFVm9nZ3/3HJOVr9PIfIdFAxs/OA+yNs+hN3PwcwghfDkEM1cPoPEeT0hhR9hfzR3m9mzwM3m9l57v6jek7U7HS6e3krrx+a2SvAp83sBnd/uuRYsdzPVj5LMzsHuAW41d1vK10X97OsodH0RL0Xcf79D0dc1/B14I+B97j7oBe4u39y0MHN7gLWEHw5akZQgeH9H/xQya//ZWZ3E+R8rgPOLjlWGp7nIJkOKsDDwJsibFcsFtgBjDMzK4vu40rWR/Vh4DF3fzzi9t8FbgbOIGgxVo9WprPou8CngRkElfPVvg2N41AWPKqWpNHMzgBWAKuAj0a81uE8y0p2Uvlehn3jLbUDCGuqWn4vkvi7qNdw0nmQmV0PXAZ8xN3vq7W9u+83szuBG8zsDe7+66jnalAs6Sxy95fN7AcM/htNw/McItNBpVCGXKkMPMxGgqbBJzC4HLJY9vhklIMUXkRvIigGqVfd4+K0Kp1lynMmzxCU504btJHZ4cDxwJ31HLwVaTSz6cBKguK+C8saHEQR5xhHGym7lwVTqZ2WjcD7zGx0Wb3KVIJGE5tLtov776Jew0knAGZ2DUGR5OXufmsd566Wu47bsNMZojxnkobnOVSrmp214sOhJnhfLFv+I2BDHcf5OkFrm6Pr2OcKgj+Ic7OSzrJ9/46g6eYJJcu6gV9Q0tyWoE7CgbekOY0E9UO/IWjx9bo6zx37syTIBe4Dji9ZNqXwd/bZGvueVriej5QsG0lQeX1Pkn8XzUxnYdvLC2n9mzrPO7LwrH+VhXSGHO91wFaC4t/UPM/Qa23ViVuWYFhE0FnxM8A5wD8WXpazy7Z7ANgcsn8nwYxsK6qco6fw4nk3Qee6rxb+mP4j7ekkqBT8T4IOZu8AZgP/XNj3H8v2PY2gg91ygg53HyXIct+ZdPqGmcajCfox7ADew9AOZoc1+1kS9J3ZTNBB7nyCJqmPA78E/kfZ89kHXFu2/+0ExSqXFp7F9wr35s1l20W6Zwk+s4bTCVxcuNb/CHlmU0u2e3/hfnyYoEPgxcB/EQSjizOQziuBbxJ07jyHoJXpBoJc55+k6XmGpr1VJ25ZgqED+ALBNMJ7gPXAn4Vs92NgS8jy9xX+OC+sco7bCYqHdhfO8STwf0pfVmlNJ0E5cHdhv9cIgsajBK1nRoTs/1bgp4Vt/5ugrmFIx8KUpfGcwjOs9JnSimdJUC/yfYIOtS8XnsOUsm2mFK5xQdnyLoKA95vCs3gEOKfRe5bwc2sonRwa9SDs8+OS7c4kqCP7b4IvALsIvr3Pykg6ZxP0Z9leuP4XCer9/iCNz7P8o6HvRUQkNnnr/CgiIglSUBERkdgoqIiISGwUVEREJDYKKiIiEhsFFRERiY2CioiIxEZBRUREYvP/Ad20S9mPlSrKAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.scatter(x_array,z_array2)\n", | |
"plt.scatter(x_position, z_position);\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |