-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add abstraction layer to matrix functions from summer
- Loading branch information
LiamSmego
committed
Mar 4, 2021
1 parent
a565f0c
commit 985cb95
Showing
1 changed file
with
100 additions
and
109 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,148 +1,139 @@ | ||
#include <iostream> | ||
using namespace std; | ||
|
||
float ** mMult(float ** A, float ** B) | ||
class Matrix | ||
{ | ||
const int m = sizeof(A) / sizeof(A[0]); | ||
const int n = sizeof(A[0]) / sizeof(A[0][0]); | ||
const int p = sizeof(B[0]) / sizeof(B[0][0]); | ||
if (n==sizeof(B) / sizeof(B[0])) | ||
{ | ||
float ** C; | ||
C = new float*[m]; | ||
for (int i = 0; i < m; i++) | ||
public: | ||
int rows; | ||
int columns; | ||
float * values; | ||
|
||
Matrix(int row_number, int column_number, float * mat_values) | ||
{ | ||
C[i]=new float[p]; | ||
for (int j = 0; j < p; j++) | ||
{ | ||
C[i][j]=0; | ||
for (int k = 0; k < n; k++) | ||
{ | ||
C[i][j] += A[i][k] * B[k][j]; | ||
} | ||
} | ||
rows=row_number; | ||
columns=column_number; | ||
values=mat_values; | ||
} | ||
return C; | ||
} | ||
else | ||
{ | ||
|
||
} | ||
} | ||
|
||
float ** mScale(float scalar, float ** A) | ||
{ | ||
const int m = sizeof(A) / sizeof(A[0]); | ||
const int n = sizeof(A[0]) / sizeof(A[0][0]); | ||
float ** C; | ||
C = new float*[m]; | ||
for (int i = 0; i < m; i++) | ||
{ | ||
C[i]=new float[n]; | ||
for (int j = 0; j < n; j++) | ||
float select(int row, int column) | ||
{ | ||
C[i][j]=scalar*A[i][j]; | ||
return values[(row-1)*columns+(column-1)]; | ||
} | ||
} | ||
return C; | ||
}; | ||
|
||
float * m_sub_helper(float * A, float * B, int elements) { | ||
float * C; | ||
C = new float[elements]; | ||
for (int i = 0; i < elements; i++) { | ||
C[i] = A[i] - B[i]; | ||
} | ||
return C; | ||
} | ||
|
||
float * s_mult_helper(float * A, float rho, int elements) { | ||
float * C; | ||
C = new float[elements]; | ||
for (int i = 0; i < elements; i++) { | ||
C[i] = A[i] * rho; | ||
} | ||
return C; | ||
} | ||
|
||
float * m_mult_helper(float * A, float * B, int m, int n, int p) { | ||
float * C; | ||
C = new float[m*p]; | ||
for (int i = 0; i < m; i++) | ||
{ | ||
for (int j = 0; j < p; j++) | ||
{ | ||
C[i*p + j] = 0; | ||
for (int k = 0; k < n; k++) | ||
{ | ||
C[i*p + j] += A[i*n + k] * B[j + p * k]; | ||
} | ||
} | ||
} | ||
return C; | ||
} | ||
|
||
float * m_add_helper(float * A, float * B, int elements) { | ||
float * C; | ||
C = new float[elements]; | ||
for (int i = 0; i < elements; i++) { | ||
C[i] = A[i] + B[i]; | ||
} | ||
return C; | ||
} | ||
|
||
float ** mAdd(float ** A, float ** B) | ||
Matrix mMult(Matrix A, Matrix B) | ||
{ | ||
const int m_a = sizeof(A) / sizeof(A[0]); | ||
const int n_a = sizeof(A[0]) / sizeof(A[0][0]); | ||
const int m_b = sizeof(B) / sizeof(B[0]); | ||
const int n_b = sizeof(B[0]) / sizeof(B[0][0]); | ||
if ((n_a==n_b) && (m_a==m_b)) | ||
const int m=A.rows; | ||
const int p=B.columns; | ||
const int n=A.columns; | ||
float * values; | ||
if (A.columns==B.rows) | ||
{ | ||
float ** C; | ||
C = new float*[m_a]; | ||
for (int i = 0; i < m_a; i++) | ||
{ | ||
C[i]=new float[n_a]; | ||
for (int j = 0; j < n_a; j++) | ||
{ | ||
C[i][j]=A[i][j]+B[i][j]; | ||
} | ||
} | ||
return C; | ||
} | ||
else | ||
{ | ||
|
||
values=m_mult_helper(A.values, B.values, m, n, p); | ||
} | ||
return Matrix(m, p, values); | ||
} | ||
|
||
float ** mSubtract(float ** A, float ** B) | ||
Matrix mAdd(Matrix A, Matrix B) | ||
{ | ||
const int m_a = sizeof(A) / sizeof(A[0]); | ||
const int n_a = sizeof(A[0]) / sizeof(A[0][0]); | ||
const int m_b = sizeof(B) / sizeof(B[0]); | ||
const int n_b = sizeof(B[0]) / sizeof(B[0][0]); | ||
if ((n_a==n_b) && (m_a==m_b)) | ||
const int m_a=A.rows; | ||
const int n_b=B.columns; | ||
const int n_a=A.columns; | ||
const int m_b=B.rows; | ||
float * values; | ||
if ((m_a==m_b)&&(n_a==n_b)) | ||
{ | ||
float ** C; | ||
C = new float*[m_a]; | ||
for (int i = 0; i < m_a; i++) | ||
{ | ||
C[i]=new float[n_a]; | ||
for (int j = 0; j < n_a; j++) | ||
{ | ||
C[i][j]=A[i][j]-B[i][j]; | ||
} | ||
} | ||
return C; | ||
values=m_add_helper(A.values, B.values, m_a*n_a); | ||
} | ||
else | ||
{ | ||
return Matrix(m_a, n_a, values); | ||
} | ||
|
||
} | ||
Matrix sMult(Matrix A, float k) | ||
{ | ||
float * values; | ||
values=s_mult_helper(A.values, k, A.rows*A.columns); | ||
return Matrix(A.rows, A.columns, values); | ||
} | ||
|
||
float ** create_matrix(float * values, int rows, int columns) | ||
Matrix mSubtract(Matrix A, Matrix B) | ||
{ | ||
float ** C; | ||
for (int i=0; i<rows; i++) | ||
const int m_a=A.rows; | ||
const int n_b=B.columns; | ||
const int n_a=A.columns; | ||
const int m_b=B.rows; | ||
float * values; | ||
if ((m_a==m_b)&&(n_a==n_b)) | ||
{ | ||
C = new float*[columns]; | ||
for (int j = 0; j < columns; j++) | ||
{ | ||
C[i][j]=values[i*columns+j]; | ||
} | ||
values=m_sub_helper(A.values, B.values, m_a*n_a); | ||
} | ||
return C; | ||
return Matrix(m_a, n_a, values); | ||
} | ||
|
||
void display_matrix(float ** A, int rows, int columns) | ||
void display_matrix(Matrix A) | ||
{ | ||
for (int i=0; i<rows; i++) | ||
for (int i=0; i<A.rows; i++) | ||
{ | ||
for (int j = 0; j < columns; j++) | ||
for (int j = 0; j < A.columns; j++) | ||
{ | ||
cout << A[i][j] << " "; | ||
cout << A.select(i+1,j+1) << " "; | ||
} | ||
cout << "\n"; | ||
} | ||
} | ||
|
||
int main() | ||
{ | ||
float** A; | ||
float** B; | ||
float** C; | ||
|
||
A=new float *[2]; | ||
A[0]=new float [3] {1, 2, 3}; | ||
A[1]=new float [3] {4, 5, 6}; | ||
|
||
//A[0]=new float [] {1, 2, 3}; | ||
//A[1]={4, 5, 6}; | ||
//B[0]={7, 8}; | ||
//B[1]={9, 10}; | ||
//B[2]={11, 12}; | ||
|
||
|
||
C=mMult(A, B); | ||
display_matrix(C, 2, 2); | ||
float d_values [6]={1, 1,1, 1, 1, 1}; | ||
Matrix D=Matrix(2, 3, d_values); | ||
float a_values [6] = {1, 2, 3, 4, 5, 6}; | ||
Matrix A=Matrix(2, 3, a_values); | ||
float b_values [6] = {7, 8, 9, 10, 11, 12}; | ||
Matrix B=Matrix(3, 2, b_values); | ||
Matrix C=mMult(mAdd(A,D), B); | ||
display_matrix(C); | ||
return 0; | ||
} |