Skip to content
Permalink
b7587b8399
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
502 lines (502 sloc) 202 KB
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Computational Mechanics Boundary Values - Project 05\n",
"\n",
"![6-string guitar diagram](images/guitar.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this final project, we will consider all six strings of a guitar and the deflection of the neck of the guitar. Here are the inputs for each of the strings, all L=0.64 m:\n",
"\n",
"|string|density (g/m)|tension (kg)|\n",
"|---|---|---|\n",
"|E|0.401|7.28|\n",
"|B|0.708|7.22|\n",
"|G|1.140|7.32|\n",
"|D|2.333|8.41|\n",
"|A|4.466|9.03|\n",
"|E|6.790|7.71|"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. The neck of the guitar can be considered a cantilever beam with an applied moment, shown above. At the tip we have a moment equal to the sum of the (tensions in the strings) $\\times$ (bridge height). Here we will consider it as $h=4~mm$. \n",
"\n",
"a. Use a finite difference approximation to determine the deflection of the guitar's bridge if the Young's modulus is E=10 GPa and it is a rectangular cross-section $2\\times4~cm^2$ and $I=\\frac{4\\cdot2^3}{12}~cm^4.$\n",
"\n",
"b. Demonstrate that your finite difference solution has converged. _e.g. decrease the step size $h$ and show the solution converges to a final value._"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from scipy import linalg\n",
"\n",
"plt.rcParams.update({'font.size': 22})\n",
"plt.rcParams['lines.linewidth'] = 3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Finite difference equation dividing bar length $L$ into 6 segments:__\n",
"\n",
"* $\\frac{d^4w}{dx^4} \\approx \\frac{w(x_{i+2})−4w(x_{i+1})+6w(x_i)−4w(x_{i-1})+w(x_{i-2})}{h^4}=\\frac{q}{EI}.$\n",
"\n",
"1. $w_{-1} - 4w_0 +6w_1-4w_2+w_3 =\\frac{q}{EI}h^4$\n",
"\n",
"2. $w_{0} - 4w_1 +6w_2-4w_3+w_4 =\\frac{q}{EI}h^4$\n",
"\n",
"3. $w_{1} - 4w_2 +6w_3-4w_4+w_5 =\\frac{q}{EI}h^4$\n",
"\n",
"4. $w_{2} - 4w_3 +6w_4-4w_5+w_6 =\\frac{q}{EI}h^4$\n",
"\n",
"5. $w_{3} - 4w_4 +6w_5-4w_6+w_7 =\\frac{q}{EI}h^4$\n",
"\n",
"\n",
"__Boundary Conditions:__\n",
"\n",
"fixed end at x =0\n",
"* $w(0)=0=w_0$\n",
"* $w'(0)=0$\n",
"\n",
"free end at x = L\n",
"* $w''(L)=M/EI$\n",
"* $w'''(L)=0$\n",
"\n",
"solve to only get 5 unkowns, then\n",
"\n",
"__Final linear equation set:__\n",
"\n",
"???"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"moment = 9.81* (7.28 +7.22 +7.32 +8.41 +9.03 +7.71) *0.004\n",
"E = 10* 10**9\n",
"A = 0.02 * 0.04\n",
"I = (4*8 / 12) *10**-16"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"finite difference A:\n",
"------------------\n",
"[[ 5. -4. 1. 0. 0.]\n",
" [-4. 6. -4. 1. 0.]\n",
" [ 1. -4. 6. -4. 1.]\n",
" [ 0. 1. -4. 6. -4.]\n",
" [ 0. 0. 1. -4. 5.]]\n",
"\n",
"finite difference b:\n",
"------------------\n",
"[-0.00046296 -0.00046296 -0.00046296 -0.00046296 -0.00046296]\n",
"\n",
"deflection of beam (mm)\n",
"-------------\n",
" [-4.05092593 -6.94444444 -7.98611111 -6.94444444 -4.05092593]\n",
"at position (m) \n",
"-------------\n",
" [0.16666667 0.33333333 0.5 0.66666667 0.83333333]\n"
]
}
],
"source": [
"L=1\n",
"h=L/6\n",
"E=200e9\n",
"I=0.01**4/12\n",
"q=100\n",
"\n",
"A=np.diag(np.ones(5)*6)\\\n",
"+np.diag(np.ones(4)*-4,-1)\\\n",
"+np.diag(np.ones(4)*-4,1)\\\n",
"+np.diag(np.ones(3),-2)\\\n",
"+np.diag(np.ones(3),2)\n",
"A[0,0]+=-1\n",
"A[-1,-1]+=-1\n",
"\n",
"b=-np.ones(5)*q/E/I*h**4\n",
"\n",
"w=np.linalg.solve(A,b)\n",
"xnum=np.arange(0,L+h/2,h)\n",
"print('finite difference A:\\n------------------')\n",
"print(A)\n",
"print('\\nfinite difference b:\\n------------------')\n",
"print(b)\n",
"print('\\ndeflection of beam (mm)\\n-------------\\n',w*1000)\n",
"print('at position (m) \\n-------------\\n',xnum[1:-1])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7fd8397b8588>]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAECCAYAAAC8F9OBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd3wVVfrH8c+TAiggiGBDEAVBRUQlKioIiIq9d1fW1dVd66prW9ffWrF3wd7WXtfeFl1RkKLBXlAsgCIgoAYIJe38/jgTbhKTkNzce88t3/frldfMmZk797mTyX1yZs45Y845REREQskLHYCIiOQ2JSIREQlKiUhERIJSIhIRkaCUiEREJKiC0AGkm86dO7sePXqEDkNEJGNMnTp1gXOuS7yvVyKqo0ePHhQXF4cOQ0QkY5jZzJa8XpfmREQkqGCJyMyOMrPxZlZiZkvMrNjMTjGzuGJK9P5ERCQ1gnxJm9kY4BGgCBgPjAV6A6OBp80sP+T+REQkdVKeiMzsYOBkYC6wpXNuH+fcgcAmwJfAgcCpofYnIiKpFaJG9I9oep5zbnr1QufcPOCkqHh+My6pJXp/IiKSQiltNWdmGwADgDLgqbrrnXNvm9lsoCswEJiYyv3Fo+jysSxYUva75Z3btaL4wt0S/XYiIgmTLt9fqa4lbB1NP3fOLWtgm/frbJvK/TWb/yU6huZ9yIn5L9ZZLiKSvqq/p07Nf5Yd8z4DXK3lqZLqfkQbRdPG2pzPqrNtKvfXbGtQysOtrmDLvO8pd/m8XDmQ2cTdr0tEJKV62Y+cVfA0eeZ4v6o3fyi7gBW0SmkMqa4RtYumpY1ssySatk/V/szsxKi5d/H8+fOb8LYxi2jLMloDUGiVnFTwQrNeLyIS0qkFz5FnviZU4tqmPAlB6hORRdNEPY0vIftzzt3lnCtyzhV16dL82szNFQetnD8sfxzrsbAl4YiIpMTG9hP75k1aWb614sAgcaQ6ES2Opu0a2aZ63eJGtknW/uIysaovxVW9AWhllfyl4MVVvEJEJLxTCp4nP6oNjavsz8euV5A4Up2IZkTTDRvZpludbVO5v2br3K4VYNxS4z+JI/PfYtO2Sxp+kYhIaAu/Zf/8d1cWa36H+e+11El1Y4UPo2lfM1utgZZu29bZNpX7a7aVTRzdXnDPGzB7Kq2tnNe2/Qg4PBlvKSLSchNuoIAqP7/xUP4z8sxgoaS0RuSc+wH4AGgFHFp3vZkNATbAj5Iwqe76ZO+vRcxgyHmxcvF9sHheUt9SRCQuv86Ajx+PlWt+dwUQYrSBK6Pp1Wa28oKkma0N3BYVr3LOVdVYd6WZTTOzK/m9Zu8vaTbZHdbr7+crlsOkW5P+liIizTbhRqiq8PM9BsOGOwYNJ+WJyDn3NHA7sC7wqZm9aGb/AaYDmwPP4QcrrWk9oE80TcT+kqNurej9e6F0QUreWkSkSX77AT58JFYecm64WCJBxl9zzp0MHI2/rDYEGAF8gx+c9GDnXGXI/bVIn71gnX5+vnwpTEpNDhQRaZJ3b4Kqcj/ffQdfIwrMnEtUl57sUFRU5Fr8hNYvnocnR/r5Vu3gjE9h9U4tD05EpCUW/QQ394fKaAifY56Fnru0eLdmNtU5VxTv6zUidTJsui902czPly2Bybc1vr2ISCq8e0ssCW2wLWw8LGw8ESWiZMjLgyHnxMpT7oRlv4aLR0Rk8TyYen+sPOQ8f187DSgRJcvmB0BnP9oCKxbB5DvCxiMiuW3iLb41L8D6W0OvXcPGU4MSUbLk5cPONWpFk2+H5SXh4hGR3LXkZ9+Kt9rO56ZNbQiUiJKr70HQqaefX1HiL9GJiKTaxFuhIhp4Zt0toc+eYeOpQ4komfILateKJo2B5YvCxSMiuad0Abx/T6ycRveGqikRJVu/Q2HN6Jl8y3+D9+4KG4+I5JaJt/o+jeD7OG66d9h46qFElGz5BbDz2bHypNGwImlPpBARiSldCO/dHSsPOSftakOgRJQaWx4OHaMnVSz7tfaJISKSLJPHQHn0AOu1N/d9HNOQElEq5BfC4L/HypNGwwo9r0hEkmjpLzClxq2Anc/xfRzTUHpGlY36Hwkduvv5pQuh+N7GtxcRaYnJt0NZdBugy6a+b2OaUiJKlYJWMPisWPndW6Bsabh4RCR7LfsVptToRJ/GtSFQIkqtrY6GNTbw80sX+IfniYgk2uQ7/Igu4Ed46Xtg49sHpkSUSgWtYHCNx/G+e7NqRSKSWMtL/GW5ajuf40d6SWNKRKm29THQfn0/X/ozTH0gaDgikmWm3OlHcgE/skvfg8LG0wRKRKlW0BoG1akVlS8LF4+IZI/lJX4El2o7n+P7MqY5JaIQthkJ7aOnni+ZC1P/HTYeEckOU+7yI7iAH9Gl36Fh42kiJaIQCtvUrhVNuFG1IhFpmeUlvo9itSHnZkRtCJSIwtnmj9BuXT+vWpGItNTvakOHhY2nGZSIQilsU7tfkWpFIhKvDK4NgRJRWKoViUgiZHBtCJSIwlKtSERaavmijK4NgRJReKoViUhLvHdnRteGQIkoPNWKRCReyxfBxMyuDYESUXpQrUhE4pEFtSFQIkoP6lckIs1VtzaUIaMo1EeJKF0MUK1IRJqhbm1oy8PDxtMCSkTponA11YpEpGmyqDYESkTppW6tqPj+sPGISHqackfW1IZAiSi9FK4Gg/8eK0+4Uc8rEpHalv1Wp6XceRldGwIlovSzzcjazysqvjdsPCKSXibfXvt5QxkywnZjlIjSTWEb2LlmregmKCsNF4+IpI+lv8Dk22LloednfG0IlIjS09bHQIdufn7pAnjv7rDxiEh6mDQGVizy8517wxYHh40nQZSI0lFBa9j57Fj53ZthxeJw8YhIeEt/8Y0Uqg09H/Lyw8WTQEpE6Wqro6Fjdz+/7Bf/HHoRyV0Tb4GyJX6+y2aw+YFh40kgJaJ0lV8IO58bK0+81fcdEJHcs2S+f9RDtaHnQ172fH1nzyfJRv2P8H0EwPcZqFktF5HcMfFmKI8aLa2zBWy2X9h4EkyJKJ3lF/o+AtUmjvZ9CEQkdyz5Gd67J1Ye+o+sqg2BElH663eo7ysAvu/A5NvDxiMiqTXhJqiIhvtad0vYdO+w8SSBElG6yy/w14OrTb7Nt54Rkey3aE7tTu3DLgCzcPEkiRJRJtjiYN9nAHwfgom3ho1HRFJj/PVQsdzPr7819N4jbDxJokSUCfLy/XXhalPu8K1oRCR7/TYLpj4QKw+7MCtrQ6BElDk2PwDW6efny5fChBvCxiMiyfX21VBV7ue77wC9hoeNJ4mUiDJFXh7s8s9Y+f17oWR2uHhEJHkWfAMfPRYr75K9tSFQIsosvfeArgP8fOUKGH9d2HhEJDnevgpcpZ/feCj0GBQymqRLaSIysz5mdqaZvWpm35jZcjMrMbNJZnaGmbWKY59Dzcyt4mdgMj5Pypn5/4yqffAg/DojWDgikgTzvoBPn46Vh13Y8LZZItXjh78JdAWWA8XA+8A6wA7AQGCkme3qnIunffI84LUG1mXPnf2Nh8GGO8HMd6GqAsZdDQeqb5FI1nhrFOD8fO89oNu2QcNJhVQnoq+AfwFPOueWVC80sx7AS8DWwI3AH+PY9zTn3LEtDzHNVdeK7t/Tlz95HAadCV16h41LRFrupw9h2kux8rB/NrxtFknppTnn3HDn3H01k1C0fAbw16h4WDyX6HLKhjtCz6gFjauCcVeGjUdEEuN/o2Lzmx8A620ZLpYUSqfGCh9G0zbAWiEDyQg1W9B9/h+Y+1m4WESk5WZNhm/G+nnL86Mo5Ih0SkSbRNMyIJ57ROuY2UVmdpeZ3Whmx5lZ9ia0rgOgT40xp94a1fC2IpLenIP/XR4r9zsMuvQJF0+KpVMiqh5Q7SXn3Io4Xr8pcDFwAnAGcC8wy8xOS0x4aWjYBUDUt+CrV+DH4qDhiEicvhsHM8b7+bwCGHpeo5tnm7RIRGZ2LHA4sBRobn20BN/AYTCwLtAe2Aa4B3+Z7xYzO2EV73+imRWbWfH8+RnUwG7dLWCLg2LlNy8JF4uIxMc5ePPSWHmro6HTxuHiCcCcc03b0OwaIJ6nMQ13zjU4BICZDQdeAQqBkc65h+N4j4b2fRpwC/5S3/pNqWkVFRW54uIMqlks+AbGbBfr/HbMc9BzWNiYRKTpvngBnjzGz+e3htM/hA5dw8bUTGY21TlXFO/rm9N8e30gnouWhQ2tMLNBwPNAK+D0RCahyBh8c/HOwPbAOwnef3ide8HWf4AP/u3Lb17ie2Jn8XAgIlmjsqL2vaHtTsi4JJQITb4055z7g3PO4viZUd/+zGxHfE2oLXCecy7hzzZwzlUB06Ni9v52h5wHBW38/E8fwpcvhI1HRJrmk8dhwVd+vlV7GHRW2HgCCXKPKBpy51X8/ZwLnXPXJPHtqlvOLWl0q0zWoav/T6ra/y73/2mJSPoqXw7jroqVdzod2mZvQ9/GpDwRmdl2wOvAGsDFzrmktTs2s/5Ab/x4GRl04ycOg86C1mv4+QVfw8ePNb69iIRVfB+U/ODnV+8MA08KG09AqR70dADwX3wSusw516RmXma2nZlNM7Np9aw7vb7+Qma2A1A9cuATzrk5LQg9/a3eCXY8PVYed5X/j0tE0s+KxbVHz9/5HGjdPlw8gaV6rLmxQAfgN6C7mT3QwHZnO+cW1CivTsMNJS4FrjezL4Ef8E3ANwG2xHeyeRf4S8tDzwADT4L37oTS+bDoR/+s+x1OCR2ViNQ1aQwsXejnO3SHoj+FjSewVCeiNaNpRxof2PRiYEEj62sahe9D1BcYhE9av+CT3mPAQ85Vt23Ocq3b+f+sXj3Xl8dfD9uMzOn/tETSTulCmDg6Vh56PhS0DhdPGkj1oKdxtbRzzo2rXlfPPq91zu3nnOvpnOvgnCt0zq3jnBvhnHsgZ5JQtQHHQsfufn7pQv+fl4ikjwk3QNliP99lU+h/RNh40kBajKwgCVTQGobWGJxi4q1Q2tTKpYgkVcmP8N7dsfIuF0Jefrh40oQSUTba8jDospmfL1sC7+iR4iJp4a0roTIa4KXrANh0n7DxpAklomyUlw/D/xUrv38P/PJ9uHhExD8C/ONHY+XhF2kElIgSUbbqsyd0G+jnq8prDyMiIqn3xsX+QZYAvXaFjYcEDSedKBFlKzPYrcaIvp89DbM/CBePSC77fjxMfz0qGOyqkfJrUiLKZt23r30N+o2L/JDzIpI6zsHYGpfK+x/pH+EiKykRZbtdLwaLWuV8/w5882bIaERyz+fPwk/R1Yj81jn1CPCmUiLKdp03gQE1+g6P/RdU5VbXKpFgKspqP7By4F+hY7dw8aQpJaJcMOR8KGzr53/+HD55Imw8Irli6v3w6ww/36YjDDozaDjpSokoF7RfB3Y8LVb+3ygoXxYuHpFcsHwRvH11rLzz2bDamg1vn8OUiHLFjqdC2y5+ftGPMOXOsPGIZLt3b649sOm2JzS+fQ5TIsoVrdv7J7lWG38DLP0lXDwi2WzRnNrjPO5yIRS2CRdPmlMiyiUDjoVOPf38ihIN/SOSLOOugIro8ve6/aDfoWHjSXNKRLkkvxB2vShWfu8u+OW7cPGIZKO5n8GHD8fKu10KefqqbYyOTq7ZbD/otr2fryqHsRc1vr2INJ1z8N9/xoby6Tkceu4SNqYMoESUa8xgxBWx8pcvwMyJ4eIRySbTx8J34/y85cGIUUHDyRRKRLlog6La16xfvwCqqsLFI5INKst9bajagGNh7c2ChZNJlIhy1fCLoCBqxfPTh/Dpk2HjEcl0Ux+ABV/7+Vbtaz+gUhqlRJSrOnaDHU6Jld+4BMqWhotHJJMt+w3eqnHJe+e/Q7su4eLJMEpEuWzQmbFOrot/gkmjw8YjkqnGXwfLon55HbrD9ieFjSfDKBHlstbtfUe7ahNu9B3xRKTpfvmu9kglu12szqvNpESU67Y+Btbu6+fLl8JbepKrSLO8cTFUlvn5DbaFvgcFDScTKRHlurx8GFEj+Xz4CMz5JFw8Iplk5iT44vlYecSVvouENIsSkfgOd5uMiArON+fWk1xFGldV5f9Wqm1xCHTbNlw8GUyJSLzdL4s9yXXGeN/RVUQa9vGjtZ+8uqtGKYmXEpF4XfrAtn+OlV+/UM8sEmnI8hJ/b6jajqdCx+7Bwsl0SkSy0rCpO/CLa+cLJbO44eJT6XH+yxRdPjZsYCJppOjysdx1+UlQOh+AOa4Tm43tq7+TFlAikpW+L23FtRWHryyfXPA8XZnPgiVlAaMSSS8dSr/nT/mvrSxfUX4Uy2ijv5MWUCKSWp6oHMZnVT0AaGPl/KPw0bABiaQT57io4EEKrRKAKVWb8mLVDoGDynxKRFJLFXlcVP7HleV98qewQ97nASMSSSNfvcrO+Z8CUOmMS8pHAmqu3VJKRPI7U10fnq3caWX5ooIHobIiYEQiaaB8Obz+j5XFRyuH84XrES6eLKJEJPW6qvxISl1rADbN+wGK7wsckUhgk0bDrzMA+M215foKPf47UZSIZKXO7VqtnJ9HJ0ZXHBhb+dblULowQFQiaaBkNoy/fmXxuorD+I32tTap+fcjzWNOPehrKSoqcsXFxaHDSA8VK2DM9vDr975cdBzsc2PYmERCeObP8OlTfn6dLeDEtyG/IGxMacTMpjrniuJ9vWpE0rCC1rDHVbFy8f3+IXoiuWTGhFgSAtjzaiWhBFMiksb1HgG9dosKDl46E6oqg4YkkjIVZfDSWbFy3wOhx6Bw8WQpJSJpnFn0H6BvuMBPH8LU+8PGJJIqk8fAgq/8fKt2MOKKxreXuCgRyaqt1RMG1/iv8I1LYcnP4eIRSYXfZsHb18TKwy6ANdYPF08WUyKSptnpDOi0sZ9fUQL/vbDx7UUy3avn+YdFgm+gsN1fwsaTxZSIpGkK28Be18XKnzwB378TLh6RZJr2Cnz1Sqy89w1qoJBESkTSdL2G+5u11V7+u7+ZK5JNykrh1XNj5W1GQvftw8WTA5SIpHlGXAmtoo58C76GSbeGjUck0d65Fkp+8POrdYJdLwkbTw5QIpLmWWM9f9O22tvXrhz2RCTj/TwNJtb452q3S2H1TuHiyRFKRNJ8250I6/bz8xXL/E1djdAhmc45f7m5Khrgt9tA2OrosDHlCCUiab78Ati7xlA/X78GX74YLh6RRPj4MZg5wc9bPuxzA+TpKzIVUnqUzWyomblV/AyMc999zOxhM/vJzFaY2Uwzu93M1kv05xCg27awTey5RbxyDiz7LVw8Ii2x5Gd4LfaIBwaeBOv0DRdPjgnVHnEe8FoD6+Y3d2dmNgR4FVgN+AB4B+gP/BU42MwGOee+jjNWachul/ja0JJ5sGQujP0/2E+NFyQDvXouLI/+kerYvfZ9UEm6UIlomnPu2ETsyMzaAo/jk9BpzrnRNdZdB/wdeMzMipyGGk+s1daEva6FJ0f68gcPQr9DYaOdw8Yl0hzTXoHPn42V97kJWrUNF08OyoYLoH8C1gXG1UxCkfOAb4FtgD1THVhO2Hx/2HSfWPmF06Fsabh4RJpjeQm8XGP4qv5H+f5yklLZkIgOiKYP113hnKvE15ZqbieJttd10LqDn//1exh3Zdh4RJpq7EWweI6fX70zjBgVNp4cFSoRrWNmF5nZXWZ2o5kdZ2ZrxbmvraPp+w2sf7/OdpJoa6wHu18WK08arecWSfqbMaH2SPJ7XaM+Q4GESkSbAhcDJwBnAPcCs8zstObsxMzWAKrPnJkNbDYrmm7U/DClybYZCT0G+3lXBS+cBpXlYWMSaUj5cn8ZuVrvPaHvQeHiyXGpTkQlwI3AYPx9nfb4+zf3AG2AW8zshGbsr12N+dIGtlkSTds3sB4zO9HMis2seP78ZjfaE/DPLdr3Ziho48tzP63dQ10knbx9NfzyrZ9v1R72vt6fwxKENbUhmZldA+wXx3sMd87NbsL+TwNuAX4B1nfOrWjCa7oCP0bFQudcRT3bbAJ8DZQ551qvap9FRUWuuLh4VZtJQybcBG9c5OfzW8NJE6Fzr7AxidQ05xO4ayi46EnDe98A2x4fNKRMZ2ZTnXNF8b6+OTWi9YE+cfwUNnH/Y4AF+EttTR3qdnGN+YbaW1bXmhY3sF4SaYdTYb3+fr5yBTx/sh4tLumjogyeOzmWhLrvCAP+FDYmaXoics79wTlncfzMaOL+q4DpUbFrE1+zCF+DAtiwgc26RdMmxSEtlF8A+42GvKiL2g9TdIlO0sfbV8O8T/18QRvY7xYN45MG0u03UN1ybkmjW9VW3Txr2wbWb1dnO0m29baEIefFym+Ngnmfh4tHBODHYphwQ6w8/CLovEm4eGSltElEZtYf6A04oDk3aZ6Ppr8bJtfM8oEjouKzdddLEg06E9aPWsxXlsGzf9VD9CScsqXw7F98i06ADQfB9n8NG5OslOpBT0+vr7+Qme0APB0Vn3DOzamzfjszm2Zm0+rZ7f3AXGCYmZ1SZ91VQE98bejVFn8Aabr8QjjwTt9gAWDuJ/6BYyIhvHkpLPzGz7dqBweM0SW5NJLq38SlwFwz+8TMXjazp8zsI+BdoFc0/Us9r1udWOOHWpxzS/C1nmXA6KgZ9mNm9gVwNr4BxJEaZy6ALn1g+L9i5fHXw+yp4eKR3PT9OzDl9lh5xBWwZo9g4cjvpToRjcLXTNoCg/DD7qwHjMWPGTckaoDQLM65t/EjJzwKbAAchG8tdyewpXPuq4REL8038GTYcCc/7yr9JbryZWFjktyxfBE8V+NCSa/dfOdrSStN7keUK9SPKAl+nQG37QjlUZ/jgafAHlcEDUlyxPOnwocP+fk2HeHkyX5IKkmoVPYjEonPmj1qDyY5+TY/zpdIMn39eiwJgR89QUkoLSkRSWoMOBZ67RoVnL9Et+zXkBFJNlvyMzxf45Jc3wOh3yHh4pFGKRFJapj5p7e26ejLJT/4QSd1aVgSrarK/6NTGo0b2W4d2Ov6sDFJo5SIJHXWWB/2r/Hswi9fgA/+HS4eyU6Tx8C3b0YF890I2sb7lBlJBSUiSa3N9oWiGgNMvno+/Fxf9zCROMz+AN64JFbe6W/Qc1i4eKRJlIgk9UaMgi6b+fmKZfD0cWrSLS23YrE/l6qi52B1HQC7XBg2JmkSJSJJvcLV4ND7Y88u+vlz+O//hY1JMt/LZ/tH1YN/xtDB9/oRPiTtKRFJGGtvBntcGSu/fzd8+VK4eCSzffw4fPJ4rLzvTdBJD2XOFEpEEs6AP/l7RtWePwVKfmx4e5H6LPwWXv57rLzV0WqqnWGUiCQcM9j3FlhjA19e/hs8cwJUloeNSzJH+XJ/X6gsenJMp56w5zVhY5JmUyKSsFbvBAffDRadirMmwhsXBw1JMsir58Kcj/x8XiEcch+0btf4ayTtKBFJeBvuCMMuiJUnjYbP/hMuHskMHzxYux/aiFGw/lbh4pG4KRFJehj0d+i9Z6z8/KnqXyQNm/2BbyVXrd+hsN2J4eKRFlEikvSQlwcH3gGdNvbl8lJ44mg/jL9ITaUL4cmRULnCl9fuC/ve7O85SkZSIpL0sVpHOPxhKFzdlxd+A8+dpPHoJKaqEp453o9VCNC6Axz+ELRqGzYuaRElIkkv6/T1g6NWm/YSvHtTuHgkvbx1BXz3Vqx80J2wVs9w8UhCKBFJ+ul3CGx/Uqz85qXw3bhg4UiamPYKjL8uVt75HOizZ8PbS8ZQIpL0tPtl0H0HP++qfF+RX2cEDUkCmv81PPuXWLnncBj6j3DxSEIpEUl6yi+EQx/wz5IBWLoQHjkMlv0WNCwJoHQBPHoorIgarnToDgffA3n5YeOShFEikvTVfl047CHIb+3LC76Cp47VyAu5pHw5PH50rDZcuDoc8bDvCC1ZQ4lI0lv37eGA22Ll796CV85RS7pc4By8cCr8MDlaYH5E7fX6Bw1LEk+JSNJfv0Nq3w+Yej9Mvq3h7SU7vH01fPpUrLz75bDpXuHikaRRIpLMMOQ833u+2uv/9K2oJDt98iSMq/GYkAF/gh1OCRePJJUSkWQGM9hvNHQbGC1wvmPjTx8FDUuSYNZk/0iQahsPg72u1cgJWUyJSDJHYRs44hFYs4cvly+Fx47QM4yyycJv4fGjoLLMl7ts6ltP6kmrWU2JSDJL285w1FN+aBeAxXPgwQN8E1/JbIt+8r/LpQt9efXOcNQTfugnyWpKRJJ5uvSGwx/0z58BWDgdHj4IlpeEjUviV7rQJ6GSWb5c0AaOeDRW+5WspkQkmWnjob5TY/UD9eZ8DI8eAWVLQ0Yl8Vi+yP8jseArX84r8P3Hum8fNi5JGSUiyVx9D/DD/1ebNRGe+iNUlIWLSZqnfBk8dmTsKasYHHQX9N49aFiSWkpEktm2GQm7j4qVp/8Xnvurf1yApLfKcj9SxswJsWX73gRbHBwsJAlDiUgy346n+pGYq332DLz8d42+kM6qqvyzpr5+LbZst0thwLHBQpJwlIgkOwz7Z+1HRU+9H177h5JROqqqhBdPrz1qwqCzYKe/hYtJglIikuxgBntcDVseHls25XZ46Qz/37ekh8py/ziHDx+KLSs6Hob/K1xMEpwSkWSPvDzYfwxsfkBs2dQH/CWgyopgYUmkoszfE6pZE9rqaNjrOo2akOOUiCS75Bf6EZq3PCK27JPH4Znj1JoupPJlfsSEaS/FlhUd74dtytPXUK7TGSBZp+jKt9jovX14tGKX2MIvnmf8qBH++TaSWiuWwCOHwjdjVy66q2JvekzYhR4XvErR5WMbebHkAiUiyToLlpThyOOCiuO5r2KPlcsHuw/gscOhrDRgdDlmeYnvrDpj/MpFN1ccyBUVRwH+ctyCJaqp5jolIslixqUVxzC6Yv/You/Gwb/3gyU/B4sqZ5T8CPfvDT9MWbno6vIjuLHiUKqTkAgoEUnWM66rOJxryw+LLZpdDHfvAvM+DxdWtps9NTrGn65cdHH5SG6v3C9gUJKulIgkJ4ypPIB/lf8xNjZdyQ9w7wiYrvsTCffF874mtGSeL+cVwP5jeKByj8ZfJzlLiUhyxoOVI+DIJ6BVO7+gbDE8ehhMuTNsYNnCORh/PTw5Eu7+Ha4AAA0GSURBVCqW+WVtOsIxz8HWfwgbm6Q1JSLJOp3btWp4ee/d4fj/QodufqGrglfPhZfPVl+jlqgo809VffPS2LJOG8Of34SNBgOr+L1ITjOnIVBqKSoqcsXFxaHDkGRbPA8eP9Lfy6i28TA/8nO7tcPFlYlKZvvHts+aFFu24SA4/CFYvVO4uCRlzGyqc64o3terRiS5qf06cOzL0PfA2LLv3oLbd4Jv/xcurkwz7RW4Y6faSWiro+GYZ5WEpMmUiCR3Fa4GB98HQ86LLSv9GR46CN642I+LJvUrXw6vnOtrlct+9cssD3a92A+zVKDLbdJ0KU1EZjbDzFwTfpo8AqKZDW3C/gYm83NJBsvLg2EX+P/g21ZfknMw4Ua4f0/4dUbI6NLTgulw767wXo1GHmt09TXMQWdq3DhptoIUv9/TQOcG1nUC9o3m34pj3/OA1xpYNz+O/Uku6bkLnPSuHxm6+tLcj+/DHYP9w9r6HqQvWOfgo0d8Tai8xugUffaG/UfrUpzELaWJyDl3dkPrzOxcfCL62jk3vqHtGjHNOXdsvLGJ0G5tOPoZmHgL/O8yqKqAFYvg6ePg4ydgr2tgzR6howxjwXT/sMHv344ty28NI0bBtn9WkpYWSad7RMdF0/uCRiG5LS8PBp0Bx70OHTeMLZ/+OowZCO9cl1ujeJcvg/+Ngtt3rJ2E1toETngTtjtBSUhaLC0SkZntBPQBKoAHA4cjAhsUwV/HQ9FxrBwXrWKZryndsRN8/07Q8FJi+li4bSC8cw1URsnX8mD7k+Avb8O6/cLGJ1kj1feIGlJdG3rFOTcnzn2sY2YXAV2BUuBT4Hnn3MJEBCg5qE0H2OdG3xz5pTNgbjRu2oKv4d/7Qr/DfEOHThuFjTPRFkz3HVO/fKH28q5FsM8NsF7/MHFJ1greodXM2gJzgXbA/s65F1bxkrqvH0rDjRuWAuc7525t6v7UoVXqVVkB79/tL1OVLY4tt3zofyQMPgvW6hkuvkSY/xW8cy189owfcaJamw6w6yWwzR/1EDupV0s7tKZDIvoT/r7QXKCbc65Z46yY2dbAMcB/gOn42tAmwMn4mlYecKJz7u5G9nEicCJA9+7dB8ycOTOOTyI5YdFP8PoF8PmztZdbPmx5GAw+Gzr3ChNbvOZ94RPQ588Cdb4P+h8Ju10G7boECU0yQ8oSkZldA8Qzhvtw59zsRvY7AdgJuMY5d15D28XDzE4DbgF+AdZ3zq1Y1WtUI5ImmTEBxl1V64FvgL+H0vcg35Ks+8D0vZFfVQUzJ8B7d//+EhxAr119R99u26U+Nsk4qUxEDwNHx/EeGznnZjSwz97AV1FxU+fcV/VtFy8zy8P3L+oMDHHOrfIOsxKRNMvMifD21f6Be3WtuRFsdRRseTisueHv14ew8Fv4+DHfHL1k1u/XbzIChpzrG2uINFFGX5ozs6uA84AJzrnBSXqPicAOwFHOucdWtb0SkcRl1hSfkL59s/71PQb7y1y9R0Dbhvp0J8niefD1q/DRY/DD5Pq36bOXT0Drb53a2CQrtDQRBWs1Z2b5wMioeG8S32qtaLokie8hua779nDMf/xo3h88CJ89CytKYutnjI9dxuuyGfTYCXoM8qNUJ/r+y6I5MPNdf/lwxgRYOL3+7VZbE7Y4BAb8UU2xJahgNSIz2xd4AVgMrOecK13FS+J5j/7AR/g7sF2b0jRcNSJJiPJl8NUrvhby7Zu1W6HV1bkPrLM5dOwe/Wzopx26QavV63/NiiX+KbO/zar9M+8zWPhNw++VVwC9dvOXDHuPgILWLfucImRwjYhY36HHV5WEzGw7oo6uzrlN66w7HXikbn8hM9uBWOfYJ1rQP0mk+QpXgy0O9j+L5sCnT8K0l2H2B1BVZ1TvBV/5n/rkFdaz0Pnhh5oqv5XvA7TZvtDvULWAk7QTpEZkZmsDPwKFwEDn3JRVbD+UqK+Qc87qrPsNaAt8CfyA7zu0CbAlvkv8u8BezrlFTYlNNSJJqrKl8ON7sctmPxb/PjG1VH5r39ptw+jy3wZFPjGKJEmm1oiOwSehL1aVhJpgFDAY6AsMAlbHN9ceCzwGPOScq2zhe4gkRqvVYeOh/gd8YprzMfw2M7q8NjN2ma3kx4ZrPnmF0LFb7HJeh2i6Zg8/8kFhm5R8HJFECN6hNd2oRiRpo6qKgaNeY2Hp72tMHdu24f3/GxEgKJHfy9QakYisSl4ec0sd9f2Zzi9t1gAkImlNA0eJiEhQSkQiIhKUEpGIiASlRCQiIkEpEYmksc7tWjVruUgmUqs5kTRWfOFuoUMQSTrViEREJCglIhERCUqJSEREglIiEhGRoJSIREQkKA16WoeZzQdmxvnyzsCCBIaT7XS8mkfHq3l0vJqnJcdrQ+dc3A+6UiJKIDMrbskItLlGx6t5dLyaR8ereUIeL12aExGRoJSIREQkKCWixLordAAZRsereXS8mkfHq3mCHS/dIxIRkaBUIxIRkaCUiEREJKicTkRmdpSZjTezEjNbYmbFZnaKmcV1XOLdX6LjSJZExGlmhWY23MyuN7PJZjbHzMrMbLaZPW1mQxt57QNm5hr5mZaQD5ogifq9tvRz59j5NXQVx6rmT/c6r82I88vM+pjZ38zsYTObZmZVUXyHtHC/wb6/cvYxEGY2BjgZWA68CZQDw4HRwHAzO9Q5V5ns/SU6jmRJYJxDgLHR/FxgKlAKbA4cDBxsZpc55/7VyD7eBb6pZ/mcpnyWVEjS77XZnzsHz6+5wL8bWb8dsBnwLfBDA9uk+/l1EvC3RO4w+PeXcy7nfvBfeA5/Ym1SY/k6wBfRur8le3+JjiMTjhewC/A0MLiedYcDFdH+htWz/oFo3bGhj0mKz6+4Pncunl9NeK/Po/1dkMHn15+Ba4DDgJ7AuCjuQ1J5/BP6vRD6oAb6RRZHB2lkPeuG1Di4ecncX6LjyJTjtYr3uifa3731rMuUL4pEn1/xJiKdX7X3tUO0rwqga6aeX/XE3dJEFPz7K/hBDPBL2yA6QCuA1RrY5sdomx2Ttb9Ex5Epx6sJ73dKtK/X61mX9l8UyThe8XxunV/17ufuaD8vJeo4p8NPSxJRunx/pdXNyhTZOpp+7pxb1sA279fZNhn7S3QcyZLqODeJpo1djx9mZjeY2V1mdpmZjUijG+/JPF7N+dw6v2ows9Xxl34B7l3F5ul8fiVaWnx/5WJjhY2iaWMjbM+qs20y9pfoOJIlZXGa2brAsVHxmUY2HVnPsi/M7Ajn3KctiSEBknm8mvO5dX7VdijQHvgZeGkV26bz+ZVoafH9la1ZvjHtomlpI9ssiabtk7i/RMeRLCmJ08wKgIeBDsCbzrkX69nsI+B0oG8U1/rAPsDH+FZ3b5hZ13hjSJBkHK94PrfOr9qOi6YPOufKG9gmE86vREuL769crBFZNHWB95foOJIlVXHegW/2+QPwh/o2cM7dVGdRKfCymY0F3gYGAv8ATk1inKuS8OMV5+fW+VX9Bma9gJ2j4n0NbZch51eipcX3Vy7WiBZH03aNbFO9bnEj27R0f4mOI1mSHqeZ3Qwcj+8DMtw5N7c5r3fOlQFXRsW94okhgVL2e13F59b5FVNdG5rknPuyuS9Os/Mr0dLi+ysXE9GMaLphI9t0q7NtMvaX6DiSpfq9kxKnmV2PvxwyH5+Epjd3H5HqXu+hL53MiKap+r029LlTHUe8qt87WedXPrF7PqtqpNCYdDm/Em1GNA36/ZWLiejDaNrXzFZrYJtt62ybjP0lOo5kSVqcZnYNcBawENjNOfdFfCECsFY0XdLoVsmX6t9rQ58758+vyAh88igFnojj9dXS5fxKtLT4/sq5ROSc+wH4AGiFb0lTi5kNwbeRnwtMStb+Eh1HsiQrTjO7CjgH+BWfhD5uYaiHRdP3G90qyQL8Xuv93Ll+ftVwfDR9wjnXkiSSFudXoqXN91fozliBOoAdQqzXb68ay9cmNgTI3+q85kp89fzKROyvJa/LguN1WfSaX4EBTYxhK3wLpvw6ywvwtarKaJ8jsul4teRz5+r5VWObzvgOl6vsVJlJ51c9sY9jFR1a0/37K/hBDPjLuy06UMuAF4H/ACXRsmfrOSEfiNY9kIj9tfR1mXq8gP2i5Q7/3+UDDfycX+d1B0SvWYj/D+sp4DVgdrS8Ejg39HFKwvFq0efOtfOrzjZnRtt82YT3z5jzC9gGmFzjZ1EU49c1lzfneMV7niTq/Ap+UAP/Qo/Cj7S7CH8NeSp+iJnfjY3UxBO/yftLxOsy8XjhO6y6JvyMq/O6jYCbgInRl8Py6OSfjm+S26SaVQYerxZ/7lw6v+ps80m0zTlNeO+MOb+AoU35G4rjeAX7/tKjwkVEJKica6wgIiLpRYlIRESCUiISEZGglIhERCQoJSIREQlKiUhERIJSIhIRkaCUiEREJCglIhERCer/AcgxZMXhODkrAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"x=np.linspace(0,L)\n",
"w_an=-q*x*(L**3-2*x**2*L+x**3)/24/E/I\n",
"\n",
"plt.plot(xnum,np.block([0,w*1000,0]),'s')\n",
"plt.plot(x,w_an*1000)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"2. Here we will record the first three frequencies of the 6-string guitar. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"a. Consider the G-string on the guitar, L=0.64 m, $\\mu=1.14~g/m,$ and T=71.81 N [1]. \n",
"\n",
"__Guitar string equation:__ $\\mu\\frac{\\partial^2 y}{\\partial t^2}=T\\frac{\\partial ^2 y}{\\partial x^2}$\n",
"\n",
"a. Calculate the first, second, and third natural frequencies using 6, 30, 45, and 60 nodes. Plot the mode shapes and determine the number of nodes needed to converge for the first three modes. "
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First three Natural frequencies of 6-element string G (Hz)\n",
"[194.43708661 379.1242858 544.80061022]\n",
"First three Natural frequencies of 30-element string G (Hz)\n",
"[195.99464595 391.48617646 585.97276757]\n",
"First three Natural frequencies of 45-element string G (Hz)\n",
"[196.04043699 391.85229959 587.20727994]\n",
"First three Natural frequencies of 60-element string G (Hz)\n",
"[196.05687232 391.9837462 587.65070938]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAoYAAAJjCAYAAACRA9BIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd3gc1bXAf0fNstxlyU3uvXdj3A0GAoRmWmihJCE0AyGdvOSFJJBHXkIIvYbeQjWYBwECGGxjwF3uvdtqtiXLVpfu++POzs6uVyvZ2p3ZXd3f9823c2funTkr7d49c08TpRQGg8FgMBgMBkOS1wIYDAaDwWAwGGIDoxgaDAaDwWAwGACjGBoMBoPBYDAYLIxiaDAYDAaDwWAAjGJoMBgMBoPBYLAwiqHBYDAYDAaDATCKoSFGEJHTReQlEdkmIuUiclBE1orIcyLyPa/lizYiskNElIjc5bUsBkNzR0R6iMgtIvKsiCwVkd0iUiEiR0VkkzUvTWvktVJEZI6ILLbmtaMisk5E/iwiWdF+L7GAiPS25jclIjO9lscQnhSvBTA0b0SkFfA8cFHQqXSgAzAUmAn8y13JDAZDM+Z84KF6zg2wtmtE5GngRqVUbaiOItIO+AiYGHRqiLVdKyJnK6VWRkZsg6HpmBVDg2eISAvgA7RSWAc8CUwFOlvbNOCvwF6vZDQYDM2ScvTc9AvgNLQSlwUMBq4AfIrcj4B7wlznVbRSqIA/A/2BbsB1QAnQFXhfRDIj/xYMhhNDTOUTg1eIyD3Ab4Ba4BKl1Dsei+QZIrID6AX8QSl1l7fSGAyGcFgPtYuBMUAZkK2UKgvqcxZauQT4rVLqnqDz04AvAAH+opT6ddQF9wgR6Q1st5qnKKXmeyaMoUHMiqHBE0SkG/ppHODR5qwUGgyG+EIpVQm8ZDUz0CuKwdxivRahLR/B11gAvG81rxcR49pliAmMYmjwih8AqWgTy33RuIGI3GU5O++w2r1F5DEr0KNSRPJF5E0RGdOIa/UWkQdFZIOIHLEcyNeLyAMi0qsR43uKyJMissu69x4r2GbEcbyfliLyExH5QkQKRaRKRPJEZK6InN3A2OHW/TdYsldYMiy13sOsxsphMBgAqHbsVzhPiEhLwPedelcpVVXPNV63XjPRbjTHhYjMt+a456z2NGs+yLPmme0i8pCIdG7EtaaJyCvWHFUhIodE5BsR+bWItG7E+CnWvQutAMLNIvJXEel4HO+nm4jcKyIrRaTYkmObiPxTRIY2MPZsEXnbChSqtObpbdZ8+XsRCaW8G0KhlDKb2VzfgK/QSuHyoOMpWC4OEbjHXdY9dgAzgGKrHbxVAKeFuc5lVp9QYxXaH+mSMOOnAIfDjD3HklEBd9VzjZGOPvVtzwDJ9chf3cDYNV5/JsxmtnjZ0IsqX1jfnUNAi6Dz4x3frR+FuU5/R7+fnoAc862xzwF3oN1yQn2/dwI59VxDgPsbmB92AkPDyHE72k881NhdwCmO9sx6rnEZ2ixfnww1wPX1jH2oAfkV8LDXn5t42cyKocF1LJOJb5VuiYhkiMgfRGQLUAlUW0+bf7dMzk2lHfAWenK7EO3w3QW4Bq0stgCeCWXKEZGpwMtWn93AVUAO2oH8KutYOvCqiEwKMb4T8B7QBq0c3ob2JexsybIHeMGSMSQi0hP43Bq3C7gB/YOSCQwH/hf9g3Ad8Iegse2Bp9AK93Lrnn2BjsAw4CzgYaCgvvsbDAYQTWcROR0daTzdOvXfSpuWnQxy7G8Lc9mdaIUKdGDLiTIdbXl5D73ymIX+nv8JrRT1JIQ52+JO4CfW/kJ0sE02eo75DfrhtSfwkYh0CB4sIqcB/0ArmJuA2ej5rbd13fbAP8MJLyLnAK8ALYFF1jW6o+epqcC7QDLwhIicETR2FjDHar6BzmLRA+gEjAUutY6Xh5PB4MBrzdRszW9DK2a+p7j7gbXU/5R3EJh+gve5y3GdFUCrEH0udPQ5M8T5lda5AqB7iPM9gUJCrH5a5x+2ztUC00Kc7wzsc8hwV4g+71nn9qCd3EO91x9afSqBbo7j5+J/2s70+n9vNrPF2wa8Wc/clA/cUM+Y2x39hjdw/QNWv7dOQLb5jvs8WU+fBx1zQ9ugc52t48q6VlqI8Wc77vH3EOdXh5uf0IqaczVxZtD5dOtvqYAPgaR63scLVp/VQcfv882/RMja1Nw3s2Jo8ALn6tjN6FyF76JXEdPRq3E/R09YHYB3RCSniff8lVLqaIjjc9GmIIAJzhMiMh4YZTXvVkrtCR6slNqFTkMBMEZExjrGJ6NXFQHeUNrZPHh8PmHSXYhIX7SpGeAnSqnCero+A2wF0oBLHMd9q6Bl6NVRg8HQdKqAx9APbaFo5divqKePD99KVoN+fGEoA35Zz7lnrdc0/POZj+9bxwFuUyF8IZVSH+B/n9dZ8xpgz5HDrebdoeYnpSOQ3woj++Xo1b064FqlVF09/f7Leh0uIs734Zvj9ilLUzQ0DaMYGrzA+blLQ6d0mK2UWqmUqlRK7VdK3QdcbfXJpP5JrzFUok2xx2BNQlusZpeg005n8DfDXP8Nx76zGsII/EpwuKjrt8Ocm4U20dQBX4lI61Ab+odolTVmvGP8KvTTdBvgnyLSPcy9DAbDsVyF/v60BfqglaktwO+BXBGZHGKMOPYbUlakgfON4WulVH0Pfhsd+/XNcZuUUrlhru+b49rjVwSd40E/ZNdHuDnuNOt1FXA0zBx3CG2dgcA5boX1epaI3NGYQBlDeIxiaPCCI0Htu0I96SmlXkebKQAuaML9CpVS1WHO+/KPZQQd72W9Fiul9tU32FpJLAkaA9rHxseGMOP3O8YH4/NVSkIn+i4Ns11o9c12XHsb8IDVvBbYZUX8PSQil4pJrGswhEUpVaGUOqKUKlVK7VBKvYRWTL5B+/K9a/nyOnHOcS0buEV6iDHHS7j5yZlfsb45bl0D118bYgz457hipVRemPHrw5zzzXFjCD+/leKf27Id418ClqDnyL8DRVa09t0icoaIpGE4LoxiaPACn08NaDPKsjB9febXnk14EgxZrioEwU/ubazXxkzYvj5tHMdahzjf0Phg6g1KCUN6UPun6AoNq9HvcRTaWftfQJ6VNqfrCdzHYGiWKKXKAV9C6iwguJ57kWO/U33XEZFU9Coc6HnxRIn2HFcaYgz457gTnd+giXOcUqoGOBW4G9iPDhScgTY9fwTkW8GNRkFsJEYxNLiO5eu322qWhPEpAb//H2hTjpv4JsPGKKS+Ps4J9EiI8w2ND8Z3jSKllDRym+m8gNL8Uyk1Eh2t9z10UMwOdC7JK4HFouu6GgyGxvGNY39k0Dmn+bZvmGv0wv87XK9VIYo0do5zng81x53o/Oa8xpvHMcfd5byAtaL7O3TGiBHAj9HZJIrRivd/ox+EDY3AKIYGr1hivbYXkXCfQ2dyVLeDJ3ZYr+3DrahZgTE+pWqH45Rzv95UFNa161PKfKkusiLhH6iU2qOUel0pdSv6B8tXfaYXOt2NwWBoHM70VsGuMGvxB51MDHONkx37yyMh1HGyw3oNmzwandoqeIxzv30DSbTDJZf2zXENFhpoCOsheI1S6imllC+1mM8//AIRGd3UezQHjGJo8Aqfo3I64SfOGdbrpiBfGTdY6Ni/KEy/i+sZswa/7+DsMOMvDHPuE8d+RBU3axL9G34ZTWUAg6HxTHfsb3WesEzNn1rN88OYMX0ZBA4ROHe4he+eAyV8FSbfHFeMnteCx8OJz3EfW6/9RNePjhjWb8afHYfMHNcIjGJo8Iq30MEUAH9ypkDwISLX4P8iv+qWYD6UUsvQeQwBfhsq2ba1iudLo7BcKbXcMb4Gfz3VS6xk2cHjOzvGh5JhAzpqG+DOeiIgndfr5ExCKyJ9wvnWWPf3+Qw1xcfJYEgYRCRssmnrO/YXq1lL6LQ1j1iv2cDPQlxjCv5UVE9a84XbvIROvQPwQD1J/s/EH/z3jNP1Rym1FH9gym9FJDvE+JmEf7B+CX+C/acbWHlERAaFa4egn2PfzHGNwCiGBk+wnqh/ajVnAR9atTYzRaS/iPw3umIHaFPD/V7ICdyKThXTGVgkIpeLSFcR6SIil6Oz9GejfxzmhBj/R3SS7iTg/0Rkjoj0EJFsEZmNfuJuSXgz+Y3oibMl8LmI3CciJ4tIloh0FJEhInKFiLyKrqTgnAivQUciPyAi3xVd87m99XoJelUjyXqPr2MwGADWiMg7InK1iAyzvmuZomuO34ZOreIzr/5NKbU1+AJKqQ/RCZsB7raiZPtac8c1wDz82Qb+14X3dAxWHlVftaRTgP+IyCnWvNJXRH6FPwfhXnSARzB3WK85wEIRucCa33paf6v3CDQ/B8twFG0NqQMGAitF5KfW372D6Goz40XkZhH5FL8bko8nRGSNiPxWRGaIrrfcQUQGicit+H9H9gFfHsefp/niRVZts5nNt6GfpGuov/LJZmDgCV77LusaOxroN9/q91w95y+nabWSp1J/reQKdHWSHdRT+cS6xmB0SomG6oHWAaNC/A3CbTXAzV5/FsxmtljZGvGd8X1v/kyYahto3+Gvw1xjHzC6CXKGnbtCvJ9rQ5wTdEm7cO+1KbWSd9O4WsnnoU3qDf3dD9TzNwi3FQGTvP5cxctmVgwNnqJ0IuuJwPPoyacS7fP2Nbr6ySil1CbvJASl1Ktok/ZD6GjDMmvbiC43NVgp9UaY8QvRSWGfQpeNqkL/ILwGnKyUmtcIGTagIx99Kw37rOtUoifef6PrMPdQSq1yDP0H2o/pcWCpNa4aOIo2AT0CjFRKPdqIP4XB0FyYjk5g/Snaf7AU/b0pAr4C7kUrSr9RlnYSCqVUCfrB8FZ0FHMxeu5Yb11jpFJqZX3j3UBpfoJ+z6/hn6NKgG/RtZSHKaXqzXWolHrAGv8e+m9Uif67/QNdr3h7I+R4Dx0Qdyd6Za8IrXwfRS8QvIZ+SO8dNPQa4Hrr/GprXC36b/0N+v84SCm1uCEZDBoJ85k2GAwGg8FgMDQjzIqhwWAwGAwGgwEwiqHBYDAYDAaDwcIohgaDwWAwGAwGwCiGBoPBYDAYDAYLoxgaDAaDwWAwGIDAWo+GJpCVlaV69+7ttRgGg8Elli1bVqSUOqbSQzxi5i+DoflR3xxmFMMI0bt3b5YuXeq1GAaDwSVEZKfXMkQKM38ZDM2P+uYwY0o2GAwGg8FgMABGMTQYDAaDwWAwWBjF0GAwGAwGg8EAGMXQYDAYDAaDwWBhFEODwWAwGAwGA2AUQ4PBYDAYDAaDhWeKoYhcISILRKRERI6IyFIRuUVEjksmEblLRFSYrcINOQwGg8FgMBjiHU/yGIrII8DNQAXwKVANzAIeBmaJyCVKqdrjvOwqYGWI49UuyxHzKKWoU3UkJyV7LYohFqirBQSSvHsWqq2rRURIMs9jhhOgpq6GlKQo/JzV1oAkefrdMMQeif4b6rpiKCIXoZWxPGC6Umqzdbwz8DkwG5gDPHCcl56rlLorBuSIaY5UHeHqf1/NntI93D/zfqbkTPFaJIOX7FkGL18EqRlw5r0w9DzXRViSt4TbPruN7IxsXjzrRdq1aOe6DIb45dUNr3L/svvpmN6Rq4Zexez+s8lIzTi+i5QfgqLNULTJet0MBzbDwW2Qkg6jr4BJc6BDr+i8CUNcUFBWwEvrXuKtzW+RnpLOvdPuZUKXCV6LFXFEKeXuDUWWAuOAa5RSLwSdmwHMRytrOUqpukZc7y7g98AfjlMxjKgc48ePV/FQOeDVDa/y52/+DEDXVl15f/b7pCWneSyVwRPq6uDJGZCX6z824hI4638hI9MVEarrqpn97mx2HtYJ+H827mdcO/xaV+7dVERkmVJqvNdyRIJ4mb+cKKV4ZOUjPJH7RMDxdi3acfngy7li8BV0SO8Q7gKw9J+w4O9weG/DN5RkGDYbptwOXUc2UXpDPLGtZBvPrXmOedvmUVNXYx9vkdyCv07/K6f0PMVD6U6c+uYwV9fHRaQ7WhmrAt4IPq+U+gLYC3QBTk50Obzgyz1f2vv7j+7njU3HvH1Dc2Hd3EClEGD1G/DoJNj0kSsivLvlXVspBPhy75dhehsMmtq6Wu7++u5jlEKAksoSHl/1OGe8eQb3fH0Pe0r3HHuByiPw1g/h/37WOKUQQNXCmjfhiWnw4mzY9oVWLg0Jy8qCldz22W2cP/d83tnyToBSCFBZW8kd8+/g3S3veiRhdHDbcWKM9bpWKVVeT58lQX0by1gR+YuIPCki94rIbBGpbyksmnLELOU15SzJWxJw7MncJzlafdQjiQyeUVsNn93tb3fs798/kgevXApzb4GKkqiJUFFTwWMrHws4tiJ/BaVVpVG7pyH+qa6t5tcLfs3rm163j03NmcqdJ91JTusc+1hFbQWvbXyNc945h199+StKKq3PcsEGeOoUWPOW/6Ip6dB5uF4RnPEruPBp+PEXcOceuOpt6DMjUIitn8EL5+nr7FgYzbdr8IDNhzZzzYfX8P0Pv8/nuz8PODcqexR3T7mbHm16AFCravntot/y/NrnvRA1KrjtY9jHeg1XfH5XUN/Gcq61OdkjIldZK4BuyRGzfLv/WyprKwOOHaw4yIvrXuTGUTd6JJXBE1a+DAe36v30dvCj/8DOxTDvdjhaYPV5CbZ9Duc9BP1nRVyE1za8RkF5QcCxGlXDV/u+4ju9vxPx+xnin7LqMu6Yfwdf7fvKPnZ2n7O5e+rdpCalcumgS/lk5yc8s+YZNhzcAOgf7g+2f0BxZTFPdD4N5t0G1WX+i467TvvXpqaHvmn/WXrbuxwWPQDr3wOfd9G+FXr18Ip/Qb9To/W2DS5ypOoI1398PQcqDgQcn9l9Jj8Y8QPGdNJrRVNypnDjJzey8dBGAP629G8UVxZz25jbEBHX5Y4kbq8YtrZewy1RHbFe2zTymluBO4HRQDsgGzgV+ALoDnwgIqNckCPmcZqRe7X1O1E/v/Z5iiuKvRDJ4AXV5TD/L/72lNuhZQcYfDbc8g0Mv8h/7vBeeOlCmPcTqIzcSl5pVSlPr3nabjs/j87PqcHgo7iimOs/vj5AKbx88OX8z7T/ITUpFYCUpBTO6nMWr5/zOk+c/gQTu060+3617ysWfTjHrxSmtITZT8C5/6hfKXSSMxYufR7mLIXxP4DkFvp4bRW8diXs+jpi79XgHc+secZWClOSUji/3/nMPX8uD816yFYKAbJaZvHMmc8wttNY+9jTq5/mD4v/QG1dfCczcVsx9KnREXPMUEq9qJS6Vym1Sil1WClVpJT6XCk1E3gLyADuiYYcIvJjK+/h0sLCwqZcKuoopQL8t3538u/o004vhh6pPsI/1/zTK9EMbrPkaSjdp/dbdYKJjtXijEy4+Bm45DnI6Og/vuxZeGwybF8QERGeX/u8bdrLaZ3Dn6b8yT63cO9C6hqO9zI0I/KP5nPtv68lt8jvE3vzqJu586Q7Q6Y4EhEmd5vM02c8zcW9zrSP/y2zPbWgXSeu/wxGXXb8wnTsB+fcD3O+hbbd9bHqMnj5Uti/6vivZ4gZ8o7m8cI6fyzqHyf/kbun3k2/9v1C9m+b1pbHT3+c6d2n28fe2vwWv/jyF1TVVkVd3mjhtmLoW3JoHaaP71wklif+aL2eLiKpkZZDKfWkUmq8Ump8dnZ2E8SMPpuLN5N3NA+ANqltGNt5LLeOudU+/8r6V+zzhgSmogQW3Odvz/glpLU6tt+w2XDz1zD4HP+x4l3w/Dnw4a+gquzYMY2kqLwoYPK9ZfQtjMoeRWa6joQ+WHGQtUVrT/j6hsSioqaCH338I7aWaNcHQfjNxN9w0+ibGjbZHdrBLUvfpmWdftDYkpbGu4OmwY/nQ+ehTROsQ2+4ei5kZOl2ZQm8eCEUbmradQ2e8dCKh2x3q6Edh/Ldvt9tcEzLlJb845R/cE5f/1z5yc5P+N2i30VNzmjjtmK4w3oNlwyqR1DfprDBek0DsjyUw3Oc5rnJOZNJTUrltJ6nMazjMACq6qp4fNXjXolncIuvHtY52wDa94Kx19Tft3Un+N5LcOFT2g/RxzePw+NTYdc3JyTC06ufprxGx3wN6DCAs/ucTZIkMTVnqt3HRCcbfMzbNo8dh3cAkCIp3DvtXi4ffHnDA2uq4I3ryDpSxA9KDtuHH04uoyxSiYmzBsD33wFf7s2yInjxAv0QZYgr1h9Yz7yt8+z2z8f/vNEJ91OTUrln6j1cNeQq+9gH2z9ga/HWiMvpBm4rhius12Ei0rKePhOC+jYFhy3M9hn0Qg7PcSqGvmVvEeH2sbfbx+dumcuOkh1ui2ZwiyOFsPgRf/uU/4KUBnJYisDIS+Hmb2DAGf7jB7fCs2fCx7+D6rBVJwPYe2Qvr2/0R5PeNuY2u3qA0xzzxe7geDFDc6RO1fHCWv/q8u1jb+fsvmc3bvCnf4B9ywG4urSc7DStvBWWF/L8ughGkHYdCVe+oZPEg/bLfeF8KM2P3D0MUUUpxX1L70NZ3mUzu8887sTVSZLELyf8kpndZ9rHnJaReMJVxVAptRtYjl7BuyT4vJVYujs6sfTiCNzyUut1o1LKNgl7IIenFFcUs6pQ+74IErAyM6nbJCZ20Q7ataqWh1c+7ImMBhdY8DfwpSbqNBRGXNz4sW27whWvw3kPQ5oVj6Xq4KsHdZLsvcsbdZlHVz5KdZ2uUjkqexQzuvvTgEzuNpkU0YkS1h9cT2FZbPvtGqLPl3u+tFcLW6e25uKBjfzMbvwQFvvnsoxZd3Hr+J/Z7WfXPBvZz1fPiXDZK+ArFnBwm145LDsYuXsYosaCvQv4Jk9bQJIlmTvG3XFC1xERrht+nd2et3UeReVFEZHRTbwoAPk/1utfRMROniYinYBHrea9zmojIjJHRDaISHCFkp4icoWItAg6LiLyfce97o+EHPHKon2LbGf+EVkjbF8uH85Vw492fMS6A+tclc/gAsW7YOkz/vas/4bjNaeJwNjvw82Loe9M//HCDfD0aTovYk39Dtdbi7fy/rb37fZPxv4kwEesTVobxnT2R/0t2BuZQBdD/OLMDXfxwItpnRbOLdyiZA/MvcnfHngmTLqF8/qdx4AOAwCd0/WRlY/Uc4ETpN8pcPGzukIKQME6ePliqDJ5YmOZmroa/r7073b74oEX07d93xO+3phOYxiRNQLQlZ1e2/Bak2V0G9cVQ6XUm8Bj6Koiq0Vknoi8DWwGhgJzgeBlqyxgENAz6Hgm8DJQKCJLROQtEZmHTmHzAtASeFgpdUx6/BOUIy5xmpGndZ92zPkR2SOY1dOfp+7BFQ+6IpfBRebfq9NqAHQ/Sf9Ynijte8D358J374NUK3BF1cKXf4WnToW81SGHPbTiIfsBZUrOFMZ3Obaa3PQcvznZpK1p3qw9sJal+bpMX4qkcOWQKxseVFsDb/7Q70fbNgcueAxESE5K5ufjfm53fWfLO2w+tDmyQg85By541N/euww+/VP9/Q2eM3fLXDuwKSMlo8k5fUWEq4ddbbf/tfFftk91vODFiiFKqZuBK9Hm3BnAd4AtwBzgIqVUY5MA7Qb+CixDK3hnAaej39e/gFlKqVvrGxxBOWKW2rpaFu1bZLedflxObh1zq+1ou2jvomMqpBjimIINsOpVf/u03+vVv6YgAhN+BDctgl5T/MfzV8OTM+GL/9XVVSxyC3P5dNendvv2MbcTCufnc/G+xXGd8sHQNJyrhWf0PoMurbo0PGj+n2G3lU9QkuGifwbU/Z6cM5kp3fTntU7V8fdlfw91laYx6jI405En9NsnYN/KyN/H0GTKqst4eIV//eeHI35IVsusMCMax2k9T6Nbq24AFFcW896W95p8TTfxRDEEUEq9opSaopRqq5RqpZQap5R6JJTpVil1l1JKrNyEzuMHlFK/VEqdopTqoZTKUEqlK6V6K6UuU0p9Fkk54pHcolw7X1x2y2yGZA4J2a9f+34B4fYPLH8AZeqAJgaf/clfqaHfLOg9NXz/4yGzD1zzvq4ckWIlCa6rgc/v0eblgvUAPLjcvwp9Zu8zGdIx9OewT7s+dlmzspoyluUvi5yshrhh/5H9fLzjY7t9zbAw0fM+tnwKCxyK3im/gV6Tjul2x7g7ECuV7cK9C1m8Lwpu5BNv8LtbqDp4/w6I86THiciza5+1k1l3yujE94d+PyLXTUlKCbjWi+tfjKvcrJ4phgZ3CI5GDpf36+bRN9sVBFYVruKLPSYyNO7Zsww2+P36mPXfkb9HUhKcfBPcuAi6OyL59q+EJ6az+ONfBDh2zxkzp95LiUjAqqExJzdPXlr/ErWWwWZClwkM7dhAzsHSPHjnBuyaBX1Pgak/Ddl1UOYgLuh/gd2+b+l9ka9UIQLf/bu/Osq+5YE+vgbPKSgrCFiVvnXMrbRMqS9JyfEze8Bs2qTqQL2dh3cyf/f8iF072hjFMMFpyL/QSU7rHC4ddKndfmD5A3Ff2qfZ8+kf/PvDZkO30dG7V1Z/+MFHcNof7OhMVVvFAzvetbtc0P+CgPJ3oXBGKpsAlOZHaVUpb21+y25fO+za8APqauHt6+GoFWXcqhNc+KR+YKmHW0bfYisBGw9tDAiKihgd+8E0h3L66R+1AmuICR5Z+Yjt+zeowyDO7XtuRK/fKrUVFw/yR9E7ldBYxyiGCUze0Tw2HdJZ+FOTUpnU9VizSjDXj7jenjC3FG/hg+0fRFVGQxTZ+jlst1Z9JRlO+W3075mUDFN/Ajd8CV1H85+MlqxtoVdN0pTixpoMqAtvUhnfZbz9Gdx5eCc7D++MuthuYWVRWCAiJSJyxCqpeYtIIzPp6mskichkEbnbutYeEakSkXwR+UBELmj4KrHL25vf5qiVVqlPuz4B6bVC8tVDsN33ACxw0VM6OXsYOrfqHGCefnDFg9HxZ516hy6/B1B5GD76TeTvYThuthZv5Z3N79jtn43/mZ1PNZJcMfgKOwXX8oLlrC4MHZgXaxjFMIFxrhaO7zyeDF8C1jB0bNkxwDfikZWPUO0IIjDECUrpFQofY67UK3pu0WkINT/4Nw9199cYvaKklC6f3aPL6h3cXu/QFsktmNh1ot1OFI4gkVIAACAASURBVHOyiDyCzqIwHlgAfAIMRGc/eFNEGvvL1BdYBPwXOoPCWuBtYCc6AO8dEXlWGqwXF3tU11Xz0vqX7PbVQ68OX33iaBF8+Td/e/ovAlMpheG6YdfRMV3XQCgoK2DR3kUNjDgBUlro6H0fa97SvpAGT5m7Za6dzHpKzhQmdWt40eRE6NKqC2f1OctuRzSxehQximECs2CP3wxXXzRyKK4ddi3trBJPe4/sDTDrGOKE9fPsqg8kt4AZv3ZdhHk7/s32al2KrLWCH/rKku1cBI9NgSVPawU2BInmZygiFwE3o5Pmj1RKnaOUmg0MANYDs9HZEBqDAj5DK4GdlFLfsYLtTgJmAkeBa60trvh4x8d2zfbM9EzO7deAeW/B36HKql2QNQhm/KrR98pIzWD2gNl2+6OdHx23vI2i70wY4XfR4f9+BtXxlb4kkVBK8dEO///6ysGNSIPUBJwr05/s/IS9R/ZG9X6RwCiGCUpFTYXt8A/Hpxi2SWvDj4b/yG4/kfsEZdVlEZXPEEVqa3Qkso+Trod2Oa6KUFlbyaOr/Pncrhl1I+2n/syf/Lf6qP6BfPECKN59zPhpOX5/2KX5S23TYhxzp/X6K6WUnTxPKZUP+LIx/7oxJmWl1Fal1Cyl1L+DU2oppb4A7rWaVx07OnZRSgX4YV026DJaJLeof0DxLljylL89678hOeW47nlGL3+Zx/m751NZW3lc4xvNd+7x11M+tD0wetrgKquLVrP/6H4A2qa15eSuJ0f1foMyB9kWkDpVx0vrXmpghPcYxTBBWZK3xHas7d22Nz3bBucGD89lgy+jU4b20ykqL+KVDa9EXEZDlMh9DYq0bylpbeqNzowmr298PWDl5+rh18Gpv4UffaJXdnxsmw+PTYblLwasHnZp1YVBHXS/mroavt73tZviRxQR6Q6MA6qAN4LPW8rcXnQu1kj8Svnqu3ePwLVcY2n+UtYf1OmNWiS34HuDvxd+wOf/40jaPgEGf/e47zk4czA92+i58Wj10eiYk0H7PJ72e3974f1QuCk69zKExZkG6dSep5KanBr1e14z1L9q+PbmtzlcdTjq92wKRjFMUI4nGjkU6Snp3DTKX1bqmTXP2PkQDTFMdYWucuJjym3QqqOrIhytPspTuf6VnB+P/LHfvzVnnA5MmXwbWLnkqDwM782Bf12lVzstAszJe+PanOyr87dWKVWfDXFJUN+mMMB63R+Ba7mGc7XwvH7nHVO6M4D8dUFJ2+86oaTtIsJ3en/HbjtNjBFn3HWQY1X7qauG//tpva4UhuiglApwGXD+76PJ1Jyp9Gun/a3Lasp4c9Obrtz3RDGKYQKilApI83E8ZmQnztQipVWlPLvm2YjIZ4giS5+BEss0m5Gl8wu6zAtrX+BQpS5J1q1VNy4ZeElgh9R0OONPOrVNpj84hQ3vw4oX7Wawn2E8JYgNoo/1Gi68eldQ3xNCRDKA26xm3DgHbyvZFpA3tcFEw5/9CTtnYf/Tm5S03akczN89n4qaihO+VliSkuDcf/jdKXYsgNzXo3MvQ0hyi3JtS0bbtLYBQW7RREQCfA1fXv9yTAd1GsUwAdlWss12cG2V2opxncad0HVSklKYM9rvD//y+pcpLCuMiIyGKFBZCgucEZo/hxZtXBXhUMWhgMi7m0bfRJqV0/AYek6EGxfCqMv9x1b5C86PyBpB+xbtAe3O4DMzxiGtrddwjpJHrNem/sMeRSuX64Anm3gt13hjo9/CPrP7TPq0C6Mf7/oaNjrSaDlNtCfAwA4D6d22N6BXc6JmTgboMiLwYe0/v4eaKPk1Go7BuSJ8Wq/T7IIObvDdvt8NiIKfv2e+a/c+XoximIA4zciTuk5qkg/FGb3PYHDmYAAqait4IveJJstniBKLH4UyXd6Jdj1g/A9cF+Hp1U/bgSL92vVrOGlsWgac/if/Ksrur+HgNgCSk5KZkuOvwxzH0ck+G2dU7YYi8jvgGqAEuFQpFVbjEJEfW3kUlxYWevfAp5Ti892f2+3LBl8WrjP85y5/e8QlWtlqAiLC6b1Ot9tRNScDzLwTWnfW+6X7A03ihqhRp+oC/Au/08sdM7KPtOQ0Lhxwod2O5UooRjFMQILL4DWFJEni9rG32+23Nr3F7sPHRpEaPOboAZ3o18fMO3UONRfJO5rHaxv8K363jrm1cUljW2fDAP8Ps9O8Nj3H//l1pl+KM6x8KvbKYSh850rD9KkXEfkp8Ef0yuNZSqm1DY1RSj2plBqvlBqfnZ19IreNCFuKtwRYOE7qclL9nTd/DLus2sZJqXDKf0VEhgBz8p4ompMBWrSGSbf42wv/EeBba4gOuYW55JflA9C+RXsmdJ3QwIjIc2rPU+39BXsWxGxlMaMYJhiHqw6zomCF3T6RwJNgpnSbwrjO2hxdo2p4ZNUjTb6mIcIsDMrnNirMqkuUeGzVY1TV6SjREVkjAibBBhnpiEBd9artlD8lZ4qd4HhN0RoOlB+ImLwussN6DVcLsEdQ30YjIrcC9wHlwDlKqcXHew0vcfoWTu42uX4LR10t/MdR4nH8dZDZJJdMG6c5ubymnIV7F0bkuvUy/geQ7khfs25udO9nCFgJntVzlqtmZB9DOw4lq2UWAIcqD5FblOu6DI3BKIYJxlf7vrKLzw/rOMz+EDYFEeEnY39itz/Y9gEbD25s8nUNEaJkD3zryOd26m91aToX2V6ynblb/D9ut4+9neMqvDHoLEeetx2wW+fgbNeiHaOzdX1nhYr+D3Z08D2pDRORlvX0mRDUt1GIyC3Ag0AFcJ6V+iaucJrUTulxSv0dV78BBdZCaGorXeUkQrganQza9/ekG/zthfebCOUoEmxGPqP3GWF6R48kSQqoBR+r5mSjGCYYJ1rtpCFGdxptf6AViodWPNTACINrfPEX8CXm7TYWhkS2GHxjeHjFw3bU8MldTz7+aL/UljDMUeLXEYQS71VQlFK7geVAGnBJ8HkRmYHOOZgHNHq1T0RuBB4CKoELlFL/iYjALnKg/AC5hXrVJEmSAhKbB1BTCZ/d429PuqXBesjHi1Mx/GLPF3Ye2Kgx8UbwpXHKX6PN5IaosKpwFQXlBYA2I4d1V4gyM3vMtPeNYmiIOnWqLmBFJZKKIWifMbH86L/Y80WAydrgEUWbYYUjk/5pvz+hfG5NYe2BtXy80/+j5vRJPS6c5u+1b+ucjAR+jr/a9xXVdbGb5iEM/2O9/kVE7KLVItIJHUkMcK9S/pw8IjJHRDaIyAvBFxOR661xVcCFSqkoL3FFhy/3fGnXrB2dPZr26e1Dd1z6LJRYGX0yOsLkWyMuS//2/enbri+gzclR92lt1RHGXetvL7jPrBpGieBo5JSk46uQE0kmdp1oV/TZVrItJn32jWKYQKwpWsPBioMAdEzvyNCOQyN6/UGZgzi779l2+x/L/oEyE5m3fHY3+HSJPjN0XVaXeXD5g/b+aT1PY3jW8BO7UI+Tob3lhldRApv1ZN6/fX+6tuoKwJHqI6wsWNkkeb1AKfUm8Bi6uslqEZknIm8Dm4GhwFzg4aBhWcAgIKBskYiMBp5ARztvBy4VkedCbH8jxnH6F87oMSN0p6qj8OVf/e1pP4f0thGXRUQCTIzOh52oMWmODqIB7T6x86vo37OZcUw0sktJreujZUrLgDJ8sZi2xiiGCYTTzDY1Z6rttB9Jbhl1Cymin7aWFyyPV5+vxGDfikCn9VlNy+d2Iny7/1u+2qd/zJIkiVvHNGElJykpKAhFm5NFJO7NyQBKqZuBK9Fm5RnAd4AtwBzgouC6x2Fojz8FzmB0ippQ28UREz4KVNZW2p8d0PkLQ5L7Lygr0vtRTsPkTGHy5Z4vo18jvl1O4Er5QlNDOdKsKFhBYblOx5SZnsn4zuM9lijwIeiL3bHnFmwUwwQikmlq6qNH2x5cNPAiu/3gigfjuSJFfPPpH/37Q86F7ieWyPxEUUrxwPIH7PZ5/c6jb/u+Tbuo80dy88dwVCsEiaAYAiilXlFKTVFKtVVKtVJKjVNKPeI0ITv63qWUEqXUzKDj863jDW293XpfJ4KznnuPNj1CJ7VWCr5x5E6ddIuunBMl+nfob5cuK68pD6ggFTWm3gG+h/gt/4H9q6J/z2ZEgBm5p7dmZB/OAJRl+csorTqhLFVRwyiGCUJBWYFdGSJFUpjUbVLU7nXDyBtIT9aT84aDGwKW6Q0usX0BbP1M70sSnPo710X4fPfndrqF1KRUbh51c9Mv2rEfdLccw+tqYM3bAEzoMiHAL2dP6Z6m38vgKU7H+xndZ4SOYt82Hwo36P201jD6iqjL5Wp0MujP/NDz/e0FZtUwUtTW1fLJzk/stlfRyMF0yuhku3rVqJroVts5AYximCA4HaXHdh5Lm7TolULLzsjmyiFX2u2HVjwUrwEB8YlS8Kkjn9uoyyF7kKsi1NbVBkSmf2/Q9+jaumtkLj4qKKch2i/HGUkYz6uGBr3a7PQvrDdNjXO1cPSV/tx/UcSpPCzYsyD65mSAqT/17697F4q2RP+ezYDlBcspKtdWh8z0TDsfbywQEJ0cY36GRjFMENwwIzu5bvh1tvK5q3RXQA47Q5TZ+CHsWaL3k9Ng5q9dF+GD7R+wpVj/eGWkZHD9yOsjd/FhF/od8vcth8JNQOKYkw2w6dAm8o7mAdAmtQ1jOo85ttPBbbDp3/72ST92RbZ+7fvRv70OHK+orXDns9Z1JPT3Vf9RsOj+6N+zGeC0Zp3e6/SYMCP7cPrULtizgJq62Kl+YxTDBKCqtorF+/3pzyJR7aQh2rVoxw+G+53AH1/5eHTLSBk0dbWBvoXjfwjte9bfPwpU11bzyEp/9Zurh11NZnpm5G6QkQmDzvS3c3UQilMxXJK3xJ2VHENUcNZGnpozNXQVim+fwi4v3f90yOp/bJ8o4Xp0MsC0n/n3V/0LSva6c98EJdiM7HU0cjCDMwfTOUPXzA6uWOY1RjFMAJbmLw104m4bmTJRDXHlkCvtyioF5QUBdXINUWL1G1CofUlJbRX4Y+ISb2x6w65t275Fe64Zek3kbzLSEYSS+zrU1dGtdTd7Jaeqropv9n8T+fsaXMEZiRkyTU1laWB+zpNvdEEqP65HJwP0mgQ9Ld/wumpYHJy9yHA8LC9YzoEKXUKzY3pHxnYa67FEgYhIQBBKLEUnG8UwAQiudnJcpciaQMuUltww0l/W6ek1T8dcdFVCUVMFnwdXf8h2VYSy6jKezH3Sbv9oxI9ondY68jcacAa07KD3S3bDTu2c7VwN/3KvMSfHI4Vlhaw5sAaAZElmas7UYzuteg0qD+v9jgOg73HU3Y4Afdv3ZUCHAYBOq+P0h4wqzge9Zc/B0bisDR4TOAOHTu91OskulwltDAFpa9z6jDUCoxgmAAH+hTnR9y90ctGAi+jeujsAJZUlPLf2OVfv36xY9hwUW9UfWmbC5Dmui/DS+pfsp/DOGZ25bPBlDYw4QVLSYLg/LZIvp6Hz871gzwKTYD0Occ5XYzqNoV2LoICSujr45nF/e+INOsely5zRy29Odpq+o0r/06DLCL1fXQYrXnTnvgmGUiog6j1WopGDmdh1Ii1TdPn0HYd3sKNkh7cCWRjFMM7ZUbKDXaVaWWiZ0pLxXdxN3pmanMotY26x2y+ue9GOAjNEkGOqP/zUlQhNJyWVJTy35jm7fdOom+wUMlFh1OX+/XVzoaqM0Z1G20FP+WX5bDq0KXr3N0QFZwSmMzLTZutncMCKym3RNvBz4CLBPq2uPISIwMn++ZTlz2tF2XBc7CrdRX5ZPgCtU1szplOI4KYYoEVyi4AqKLGyamgUwzjH+fR9cteTSUtOc12Gs/ucbZtdymvKeSr3KddlSHi+fgyO6iLwtOkGE37kugj/XPNPSqu1q0Dvtr05v//5DYxoIjnjoKMVcFB1BDZ+QEpSClO7+U2PJjo5vqioqeDrfV/b7ZCKoXO1cMz3oUUUXBUawaAOg2ibpkvvFZUXsb1kuzs3HnaB/6Hv4DbY4UKS7QTD6X88vvP4mIpGDsaZqsm5yuklRjGMc5x+Vm6kqQlFkiRx25jb7Pbrm163gxMMEaDsICzy1yNm5q8gtaWrIuQfzeeV9a/Y7Tlj5kR/shUJDEKxchoG+BkaxTCu+DbvWypqdfaC3m1706ttr8AORZthiy+SVOCkCKZBOk6Sk5KZ0GWC3f4mz6Vgp9SWgZ/7Zc+5c98E4tu8b+195/8wFpnWfRpiVbhcUbCCksoSjyUyimFcc6TqCMvyl9ntaTnRT1NTHzO6z2B09mgAaupqeHTlo57JknAs+gf4JouO/WH0Va6L8ETuE1TWVgIwJHMIp/c6vYEREWLkpf79rZ9BaT5Tc6baE2luUS7FFcXuyGJoMs4VkZCrhd/6A5sYdBZkupNhoT6cSdW/3f9tmJ4RZpwj0n/9PLs0pKFh6lQdS/KW2O2JXSd6KE3DZLXMYkSW9iutVbUs3LvQY4mMYhjXLN6/2E6KOThzMJ1bdfZMFhHh9rG32+33t73PlkMme3+TObw/sPrDKf8Fye6aRXYd3sU7m9+x2z8Z+xOSxKWpo0Mv6GWZjlUdrH6DDukdGJk9EtA/Agv3eT+RGhpGKRWYpqZ7UJqaihJY6V+VZuINeI1TMVySv8S9uvCdhzlKQ1YH/l0MYdlSvIWDFQcBnU7L5+YUyzijk2PBnGwUwzjGaUbzcrXQx/gu45mSMwXQP9jOkmmGE+TL/wVf4vAuI2HoBa6L8PDKh6lR+gFkQpcJUa3DHZKAEnnHJrs25uT4YN3BdRSUaz/ZtmltGd1pdGCHla9oX1KA7CHQJ0R+Q5fp176fnby9pLLE3WCncdf695c9p0thGhrEuVo4ocsE9x5im4DzIWnR3kWel5iN/b+YISR1qu6Y/IWxwO1j/KuGn+3+jNzCXA+liXMObIXlL/jbp/3e9bQdGw5u4MPtH9rt28fe7lqeTJuh50NKut7PXw15awI+74v2LoqpclKG0DhXC6d1nxboo1pXG7gyPvEG7WPqMSLCxC5+U6SrSdWHzQZfKp+DW2GHWRlvDM7/kfN/F8sM7DCQrq10rfnS6lKW5y/3VB6jGMYp6w+st/PJdWjRwfZR8JohHYdwZm9/ObMHlj9gcs2dKJ//GXwKT6+p0G+W6yI8uNwf9DKzx0xGZY9yXQbS28Ggs/3t3NcY1GEQnTI6AbqclHkAiX0C/AsddWIB2PwJHLKiftPbB/qWesxJXR1+hnku+hmmZQT+HUwQSoPU1tWyNG+p3Xb+72KZ4CooXpuTjWIYpzjNZ1NypsRUVvc5Y+aQLFqeb/O+DajjbGgk+3NhzZv+9mm/d30FZVn+Mhbs1avSggREnruOM5dd7huIqgtwnzDm5NjmYMVB1h/UpRxTJMV2ObFxKj1jr4a0Vu4J1wDOVaeleUvdNfMFBKG8ZyqhNMCGgxvslFqdWnaid9ve3gp0HDjT1ny17ysPJTGKYdzi/CE8xonbY3q17cUF/f2+cA8uf9CsGh4vn/3Jvz/wLOjh7pOvUooHlj9gt8/pe463Ttz9ToVWVvm/I3mwbX6AOTlWEsMaQuM0jQ3PGm4nKQfgSAFs/tjfHn+di5I1TPc23W0zX1lNGesOrHPv5l1GQI5VtKC2yk7ZZAiNM6XQSV1Pct/tpQmM7TzWdq/YVrKNA+XePQQYxTAOKSovCqg1OjlnsscSHcuNo260q2KsPbCW/+z6j8cSxRE7Fzt+KAVm/c51ERbsXcCKghUApCSlcPPom12XIYDkFBhxib+96jVO7noyqUmpgI5E3H9kv0fCGRrCmVZrXOdxgSdzXwdVq/d7TobMvi5K1jAi4l3aGghcNTRBKGFx/m+c/7N4ID0lPcAlbHmBd36GnimGInKFiCwQkRIROSIiS0XkFpHGhxCJSJKITBaRu61r7RGRKhHJF5EPRKTeEE4RuUtEVJitIjLvNPI48xyN7jTazs4fS3Rp1YXLB/vNfw+teMgECDQGpeA/d/nbIy/VqStcpE7VBawWXjLwErq36e6qDCEZ5Uj6u+F9MupqA5LXGnNy7LI03+/3FVC2U6nAVCyjr3BRqsbjzIXnWqJrH8MuBN8K64HNsNNbM2OsUl1bHaBMxYt/oZPxnf3fDefDlNt4ohiKyCPAy8B4YAHwCTAQeBh4U0Qa6zDXF1gE/BcwFFgLvA3sBM4C3hGRZyX8evIq4PkQW8xWL3f+AMZKNHIofjj8h7RO1eWstpdsZ97WeR5LFAds/hh2WyXDklJg5p2ui/Dh9g/ttBwtU1ry45E/dl2GkHQZCZ2G6v3qMlg/LzBtzV6jGMYih6sOs/HgRkBXSfIlwgcgLxcK1ur9lJY6Aj0GcT6ArCxYSVVtlXs3b9EaRjpWy00QSkhWF62mvKYcgJzWOeS0zvFYouPHuZrerBRDEbkIuBnIA0Yqpc5RSs0GBgDrgdnAnEZeTgGfoZXATkqp7yilLlNKnQTMBI4C11pbfcxVSl0bYvOuFlMYquuqWbzPH8wxPSd2FcP26e25ZpjfDPLoqkft6hmGENTVwacO38Jx17pe+aG6rppHVj5it68achVZLbNclaFeRGCkM6fhqwGf/2/3f0tFTcwu9DdbVhasRKHNn4MzB9M6zVH72LlaOPQ8SI896wdoC4ivfF9lbSWrCle5K4Azp+G6d3WZTEMAzojxWK92Uh+jO4228y5uPLiRw1WHPZHDixVD3xLIr5RSm30HlVL5wE1W89eNMSkrpbYqpWYppf6tlM9JxT73BXCv1XS/hliUWJG/giPVOglst1bd6Ne+n8cShefqoVfbCWLzjubx+sbXPZYohln7ts7TB5CaAdN/4boI72x+h92luwGdhPja4de6LkNYRl4KVjk8ti+ghxL6tNPKc0VthbvpRAyNwmlGDvAvrKnS/oU+YtSM7CPAz9Dtz1nXUdBtjN6vrbQTvRv8OP8n8eZf6KNVaiuGZA4BQKFYkb/CEzlcVQxFpDswDqgC3gg+bylze4EuwMkRuKXvrxoDDlKRIaDaSfdpMR91lZGaEWCKfCr3KY5WH/VQohiltho+u9vfnngjtOniqgjlNeU8vupxu/3DET+MPf/Vtt2g70yroSD39YBVQ+NnGHssy/ObxJw+VGz+GMqtla+23aF37Fo/ICifodsBKGAqoYShoqaClQUr7Xa8KoYQG36Gbq8YWo88rFVKldfTZ0lQ36bgy68RLlxxrIj8RUSeFJF7RWS2iKRF4N5RwZmWI5b9C51cMvASurXqBsChykO8sPaFBkY0Q5a/4Ejw2w6muJ8z8JX1r1BYXghAdsvsgOChmMIZhJL7L6Z39+czXLBngUmNFEOUVQemdxnbaaz/pNOMPOoy16v6HC8TOvv9DHMLcymrLnNXgOEXgc8MX7QRdn3t7v1jmJWFK+38kn3b9SU7I9tjiU6cWPAzdPub6HOY2hmmz66gvieEiGQAvl/Xt8J0PRf4JXA98Ct08MpWEYmt5IDA7sO72XF4BwDpyelx81SUlpzGTaNvstvPr3ueQxWHPJQoxqgqgy/+19+eege07OCqCIerDvPMmmfs9o2jbqRlSktXZWg0g8+BVCsBcuEGxtQm2UFO+47uY2vxVg+FMzhZVbjKrrPdv31/2qe31yeOFMLmj/wdY9yMDNCxZUc7l2eNqrHTOblGizYw4mJ/2wSh2DhXcJ2BQvHI2M5jEctdZu2Bte4/gOC+YujzOg5nS7SqqNMmTJ/G8ChauVwHPBni/Fa0v+NooB2QDZwKfIE2PX8gIh7U/6ofZ9TlSV1PIt1XPzYOOLfvufRrp/0hj1Yf5enVT3ssUQzx7ZM6aTNA6y5w0g2ui/DcmudsR+cebXowe8Bs12VoNC1aw5Bz7Wbq6jeZ1G2S3TbRybGDc8UjwIy8+g1/ucceE6FjbPtK+wiom+x22hqAsc5KKPOgyrjlQOD/Il4DT3y0a9HOfgCpVbWsLFzZwIjI47Zi6HOIi6qtR0R+B1wDlACXKqWOCYVVSr2olLpXKbVKKXVYKVWklPpcKTUTvcKYAdzTwH1+bOVfXFpYWBiFdxJIQJqaGI5GDkVyUjK3jrnVbr+24TXyjuZ5KFGMUF4MC+/3t2f8QtdIdZGi8iJeWv+S3Z4zeo6dODpmcZqTV7/J9G7+EmvGzzB2CAg86eIIPFkV+7kLQ+FpomvQAShZg/R+9VHY8IH7MsQYR6qOsLZord12mvzjFa/NyW4rhqXWa+swfXznSsP0qRcR+SnwR/TK41lKqbUNDAnFH63X00Wk3l9IpdSTSqnxSqnx2dnR9Wkoqy5jSd4Sux0v/oVOTu15qp3ZvaquisdWPeaxRDHAVw9CRbHe79AbxlztughPrHrCzv81qMMgzuxzpusyHDd9pkMb7bdKWRFTK+vsUysLVlJSWeKRYAYflbWVrC5cbbfHdbJ+7PbnQp51PCUdhsXw6nQQ47qMs9OJrD+43v3PmUhgTsPVJsvD8oLl1FpJSQZnDva7K8QxzU0x3GG99grTp0dQ30YjIrcC9wHlwDlKqcUNDKmPDdZrGhATSdy+3v+17Vw7oMMAurbu6rFEx4+IcPvY2+323C1z2VayzUOJPKY0H752KMen/BZS3I172l26mzc3v2m3bxt7m/3DF9MkJQf8QGatf5/hHYcD2vzizPVp8IY1RWuoqtOJoHu17eUPCHDW+x18jg62ihPaprVlaKZOsl6n6rwJDnCWhtzyKRwtcl+GGOKb/Y76yHHid98QTsVwdeFq1/P/uv0L4PPWHSYi9Xm2Twjq2yhE5BbgQaACOM9KfXOidHTsH6m3l4vEsxnZycSuEzm5q85EVKfqeHV9My4Kv/SfuoIHQOfhOurQZV7f+LpdqnBsp7FMy5nWwIgYYqTDnLzxQ6Y7fhSc0fsGbwjpX1hbHVe5C0PhTFvjtOK4Rofe2i8TdI3pNW+79X0VVwAAIABJREFUL0MM4fwfxLt/oY+slln0btsb0NY158q7G7iqGCqldgPL0StxlwSftyKBu6OrojT6kV9EbgQeAiqBC5RS/2miqJdarxuVUidk0o4kSikW7F1gt+PRjOzk2mHX2vtOH6Rmx9q5/v1pP/UkXcfSPP/f/5ph18R8XswAOg/ViX8BaiuZXuF/ql64dyG1dbX1DDS4gfOzZa+AbP4EyqwVrjbOnJTxg3NVypMAFAhcNWzG5uTiimI2HNQGvmRJDkyHFOd4aU72wmb0P9brX0Skv++giHRCRxID3KuUqnOcmyMiG0TkmAR4InK9Na4KuFAp9VFwnxBjeorIFSLSIui4iMj3HTLef+xo99l4aCMFZQWANmWMzB7psURNY0ynMSRb5bC3FG9pnv5gBet1LjLQVU4GnuW6CGXVZaw/uN5uB1SliBccq4ZDNs2nY7pe7C+uLGZ1kbtP2QY/1XXVAdGU9mdr5cv+TqO+p10C4owxncaQIikAbD60mQPlB9wXYtiFupY6wJ4lcLB5uuQszV9ql1scljUssNxinOOcj91eQHFdMVRKvQk8hq5uslpE5onI28BmYCgwF3g4aFgWMAjo6TwoIqOBJ9DRztuBS0XkuRDb34Kulwm8DBSKyBIReUtE5qFT2LwAtAQeVko9EcG3fsI4zchTcqaQ4psQ4pSM1AwGZw62267XHY0F1r3r3x9whuuRyKCLzvuctvu370+7FvHj62Uz4mKwHjKSdi1mWvZo+5SJTvaODQc22AFN3Vp1o1vrbnD0AGxyPLePij8zMuj5y/lwviTfA3Nyq47Qb5a/vfrN+vsmMInoX+jDmY9xVeEqO8bADTzxMldK3QxciTYrzwC+A2wB5gAXBdc9DkN7/ClwBqNT1ITaLg4atxv4K7AMraCeBZyO/nv8C5illLqVGCHAvzDOzcg+xnb2L/kvz1/uoSQe4TQjDz3fExGWF/j/7nFrgmndCfr7fyCnl/snT6f7hcFdQtZHXvMm+H7cuk+A7IEeSBYZPC+PB1bdcIvc15tlibxEqI9cH11adSGndQ6gy5WuP7C+gRGRw7PwQ6XUK0qpKUqptkqpVkqpcUqpR5wmZEffu5RSYuUYdB6fbx1vaOsdNO6AUuqXSqlTlFI9lFIZSql0pVRvpdRlSqnPovvuG8+hikPkFuYCkCRJTO021WOJIoNTEXEqKM2Cwo1QaH3JU9L1iqEHOBVyp6IedzhyGk7ausheUd9wcAP5R/O9kqpZ4/SJCm1GjtFyi40kIJ9hnkeK4aCz/BWADmyG/e4nQvaSwrJCO6tFalIqozuNbmBE/OGVn2Ec5KVo3izcu9D2oRiZNTIhcjQBAV/iNUVrXA/H95R17/n3B5yuK3m4TE1dTYAJP25XDAEGnQ0t2gLQ+uB2xrUbYJ8yq4buU1tXG/DQMa7zOP0wtN/6vCW3gOEXeiRdZBiVPYoWydpFfefhnRSWRb/AwTGktYIh5/jbuW+4L4OHLCvwK0ojs0fGbgnPJuCVn6FRDGOcRDQjgw7H79VWp7OsrqsOyFyf8KxzmpEv8ESEjYc22j5gXVp1icu8mDapLQPM8dMr/Z4oxs/QfbYUb6G0WidzsL/nzpQqA89wvRZ4pElLTmN41nC77Zmf9AiHOXnNW9CMIvFXFSTIg20YnGUkV+SvcC3TglEMY5iauhoW7VtktxNJMQQd3eej2ZiTi7ZA/hq9n9wCBn7HEzFW5PvThDr/D3GLwzQ5fYf/s/T1/q+pqq3yQqJmS7B/oQCsdSiGw+J7tdDHqOxR9v7KAo/MuH1nQisrcfiRPNjefB6EnMp4IpqRQdetz26p/7+l1aVsLt7syn2NYhjDrCxYSWmVfvLunNGZgR3i11k7FM6nvBUFx5XPPH5Z74hG7n8atGjjiRhORdwuVRbP9JwE7XXSgt5HD9KzhU5bU15THpBPzxB9jvEvzF8DRZv0gdRWnj0MRZrRjgh4z1YMk1MCFe3VzcOcXFFTERCMMTIrvlO41YeIBJqTXZrLjGIYw3y5N9CMHFfJhxuBM+BhRcEK6o6NO0o8YiAaWSkV4AM2pnMCrBgmJcHI79nN6TX+74rze2SILkqpYyuerHnL32HQWdo3LgEY1cm/Yrj2wFrvVqad0cnr3oPqcm/kcJG1B9ZSo3TFpj7t+iSM730onOZktwJQjGIYwyzYkzjVTkLRs01PMtMzASitKmVL8RaPJYoyB7dBno4wJzkNBp3piRi7S3dzoEIn5W2T2ob+7fs3MCJOcCS7nrZvo73/5Z4vUc0wlYcXbD+8nYMVBwFo16Id/dr1DfQv9KDsY7TITM8M8JNed2CdN4LkjIMOffR+VSls+rc3criI03TvXLlNRIIjk92Yy4xiGKPsO7LPVpTSktISLkcT6GXyAHNyfoKbk53RyP1OhXRvEko7zcijO40mSRJkGsjqDzn66Xp82VFaSiqgFeEdh3d4KFjzwWnqGttpLEn7VkLxTn2gRbuAnJOJgNPP0DNzskhQTsPENyc3B/9CH33b96V9C70ieqjyENtLtkf9ngnyi5B4OKMpJ3SdQEaq+5Ux3KBZBaCs896MDIH+nHGdvzAUVk7DNGBSrcOcbKKTXeEY/0KnGXnIOZDSIsSo+CUmFEMIjE7e/DGUHfROliijlAr4Wzv/B4lIkiQFLKC4kbbGKIYxSkCampzEMyP7cC6TJ7RieGgn7LMUsqRU7WvlEQGJrRMtzcPwi/TfF5h+YL992CiG0UcpFfCjNb7TOFj7jr9DnOcuDIVztWpFwQrvXBay+kM367tcVx34EJpg7C7dbbsrtElrQ592fTyWKPqM7+L3MzSKYTOlvKY8IJt+IvoX+hiUOchOTJp3NI/9R/Y3MCJOWe8wI/ed6VketwPlB2yzampSKsOyhnkiR9TIyLSjXqeVV9iHl+cvtyP8DdFh75G9FJQVANAqtRWDjhyC0n36ZEZH6DPDQ+miQ792/WidqhPUF5UXse/oPu+EaSbm5JWFfv/CUdmjEscVJgxu+xkm/l80DlmSt8SuBNK3XV+6t+nusUTRIyUpJaAgfcKuGsZANDIEOm0PzxpuV29IKCxzcqfaWobowEVqVA2L9y32UKjEx2lGHt1pNCnOVash50FyqgdSRZfkpGRGZI2w257lMwSdtsanJO36Cop3eydLFHEmtk70wBMfgzoMopVV/rCgrIA9pXuiej+jGMYgiVrtpD4SPp9h8W7Yay3/J6XA4O96JopT8U6IxNahGOCvrDGttMQ+bMzJ0cX53R2XPSbwYSiBopGDcZqTPfUzbNM5cFU2Qc3JASuGnRLbv9BHclJywOfM+TeIBkYxjDGUUnyx5wu73SwUQ0cAREKuGK6f59/vM12bOz0iIPAk0fwLfaS0sJP+zij353RbsHdB88iV6RG5Rbn2/qgaoKxIN1p3gV6TvRHKBZyrVp6uGEKgH+faxFMMj1QdYfMhXf0jSZICVmsTHTcDnYxiGGNsLt5M3tE8QOeYS/RQfNBZ65MlGYAth7ZQUlnSwIg4I0aikcuqywKqBST0Z8sqkTe8sorMWq0MHqw46F2uuQTnSNURthzS6bWSJInhux0K0rALICnZI8miz4jsEYgu/MemQ5soqy7zTpjB54A1l7J3KRTv8k6WKLC6aDUK7V83sMNA27zaHHAqhrmFuWF6Nh2jGMYYTnPXpG6TSE1KPL+cYDJSMxicORgAhfLWHBNpDu+D3d/ofUmGwed6JsrqotV2tYD+7fvTroU3eRRdoft4yOxHEjC1zP9DbczJ0WHNgTX+H+z2A8jY8H/+kwlsRgYdGduvfT8AalUta4rWeCdMRqYObvOx7t36esYlwYEnzYkRWe49gBjFMMZI9Gon9RGQzzA/gczJTjNy76nQqqNnojjN9AlrRvYhYgehOKOTjWIYHZwBASPTMqHCWvVv1xO6T/BIKveIGT9D0Cu0PhLMnOz8nDU3xTD4AWTtgbVRu5dRDGOIksoS+4lIEKbmTPVYIvcIrpucMMRINDIEVpZJiPrIDWGl75hcXk6yld5h7YG1FJUXeSlVQhLgX1hS6D8xfLZW0hOcAD/DKAcGNEiCmpPrVF2ACTWhXWHqwS1zslEMY4hFexfZzvEjskbQsaV3q0tu41wxXF202k7XE9eU5sEuK0WKJMEQ78zINXU1ASsZCb9iCNChN/ScTNs6xZgK/+fJuSpvaDpKqYAfqZE7HQl4hyVeUutQBAcGeBrklKDm5G3F2yit/n/2zjs8jurqw+/d1arLktVtuciWXCSruGEwBkPozWAwnQCptFQSahJaCISS5COEkhBSIITeq0OvNrjLkrvcLVu99y33+2NWO7OyunZ3ZnfnfR49muudclbenTn3nnN+R9EiTYlOYUJ86Mq49YdW2s2fK9OmY2ggPq9Qw1zHTjhWR0sCT2pMqldD+k21/lsmDxhb3gJ33hWTF0F8um6mbGvYRrtDyUnJjMtkfPx43WwJKO5w8uJe1ckmvmNv814auxoBSLTGMLm9WXkhOQfGhUe4b/KYyZ5+tk1dTfr35g7BcLJ2JXZ2+mxEGKxE96b3BMRfQtemY2gQnC4nX1V85RmHU35hDyHXN1k7UzdSGDlU9Qv7YtZSsEaxuF11DFccXIHdadfRqNBCG0YukjY8j+uCZWERRgYQQniFk7W5cLow8yxFMxVCJpyslQIKt/zCHqYkTiHBlgAoKgsVrRV+uY7pGBqE0tpSz6w7LSaNvOQ8nS0KPCEldN1aDXt7HH2haxgZwqzwREt0Isw8g6l2B1l2pSK7zd4WGhMPg+BVENCgaWkZgr2RB0Irtqx7AUpsci+x6+APJ2v/puGYXwhu7cY0VbvRX58z0zE0CNpqyWMnHBuWy+Talaz11euDW4x4y1vQY/+khZCQqZspUkovRzusVgwBii9BAMdqwslaEXmT0eG1Ytjeqmyk50N6eE1utatYugtdA8w6V90O8nByQ2eDJzwfYYkgPyVfX4N0RJtn6K8CFNMxNAhebfCywi+MDEqeTnK00hWkpbuFnY07dbZoFGhn6Np8Hx040HLAU4mbYEsgNylXV3sCTs4JEJfmFU42C1B8Q7u9ne0N2wEQQGFXt/JCmBSdaClILfAI9e9s2qm/UP/MM0MmnKx1gPJT8kOzx/sQCUQHFNMxNACVbZVsa9gGKLOho8YfpbNF+iCE8ApzBq2eYVst7PlSHescRl5bvdazPTt9NtYQ7kLRJ1YbFJzPEZ1dRLuUVdw9zXvY1xy8D0qjsKluk2dlP7fbQXxPMrzOkyE9iImI8Qj1g5IepCshVJ0czsLWvdG2AdxWv41OR+cAe48M0zE0ANrVwvkZ88OqzU9vQqIAZevbIJ3K9sQjYYy+FcBe/ZEzwii/UEvxxURLyZEa2RpT7Hr0aFcsijrdD6j0fEidppNF+qLNfTNEODlfW538mn52jBKv/MK08Mwv7CExKpEpiVMAcEiHX9p8mo6hAQjXbid9ERJC117VyPqvnGhXXsMuv7CHccWQNtMrnGw6hqPHq/Cky+10G+AzrxdeeYZ6C11Dr3Dy2qAMJ9tddq82g+FaeKLF3+Fk0zHUmS5nF99UfuMZh7tjODN5JjERMQAcajvEodZDgxxhMNrrYZemsEHnMHJ9Z70nadtmsVGQWqCrPbrhbpGndQzXVK3xa7/RUEdK6d3xxOMY6ivNpCfa1azSmlKcLqeO1hAS4eTtDdvpcCjf2/Fx40mP1U8P1ij4uwDFdAx1ZnXlas+HfvKYyR6R53AlwhLh9aEPunDy1nfUMHLWfEiaqKs5Wv3CgtSCsE7apvBCMp0uprsLJOwuOysPrdTZqODlQMsB6jvrAUhwusi2OyB1BqTPHOTI0CUzLtPjuLQ72ilvLNfZIoI+nOylX5ge3vmFPfhb6Np0DHXGqxo5zFcLewhqPUMDVSODt2MdtmHkHhKzYMpi7y4oZnXyiCmp1eQXdnUpD5MwXi0EpYDOcLI1vcPJDXv1tWeYaEOl4V540kNOYo6nFqGmo4bKtkqfnt90DHVESmk6hn0QtAUoHQ2w61N1nHe2bqb04FV4Ek7C1v1RfMlhsjX+aisV6vSdXxjejiF4h5MNkWcY5OFk7efMzC9UsFqsXmlBvs4zNB1DHdndtNvT0ibOFse89Hk6W2QMitOKPXpg5Q3l+uuBDZVt74HL3Wpt/BwYq29aQLu9nS11Wzxj86YK5C2hyBVBolMJ91d3VLO1fqvORgUnXsLWXd1Kb+SMWTpaZAwMV5kM3mLXm4NH7LqqrYqDbQcBRQ5o+tjpOltkHIpS1ZQr0zEMIbSrhQvHLcRmtelojXGItcV69MAkUv/2UkPFYNXIZbVlOKTSBi43KZfEqESdLTIAUfFY85awqEPV/jKrk4dPh6OD7fXbPePCri5ltTAMOzb1Ji85j0hLJAAHWlVxeV2ZcUZQhpO19/6C1AJsFvMZ2YN2AuLrAhTTMdSRzyvMMHJ/eIWTg0HourMJdn6sjvP1DyNrha3NMLKGXtXJn5vt8YbNptpNnknH1G47Y1zSDCO7sVltzEpVV04NMbGNTYap31LHQRJONvML+0crdL25fjNdzq4B9h4epmOoEy3dLV4Vo8dOOFZHa4xH0OkZblsOTnc7sMwiSJ6qrz14VyTPyQjzwhMtU47jGGsiFnduYWltmae61mRoHCZTkzRZ0Yo0AbzzDLU5crqiLYYzHcOgZ2z0WI+KicPl8EobGi2mY6gTKw6u8My481PySY1J1dkiY6FdMSytLfXpbMgvGKwa2eFyeN1UzRVDDRYriQUXeAomJJKvKr7S2ajgwqvwpNMMI/dG68RonWhd8Qonr4GmA/raMwjdzm4vZ8d0DA/HX0LXpmOoE2Y18sCkxqQyKWESoOjN+aPtj8/oaoHyD9WxAfILtzdsp92hiDdnxGYwLm6czhYZjOJLWNyu5hl+tvfDAXY20SKlZKO2FV5XtyEmQ0aiME0N822q3YTD5dDRGjexyTBF86zZ8pZ+tgyBbfXb6HYpUZiJCRMZGz1WZ4uMh7YAxZd5hqZjqAMu6eLLii8948VZpmPYF9pwsqHzDLf/D3pWNDMKISVHX3s4XKZGmKs53mTkc2zsBM9wRcVX2Hsqyk0G5GDbQWo76wCId7nIic2E8eaKtJb02HTPZKzT2cmOhh06W+RGmwdq8HCyV9W7pumBiYpW8DskVgyFEJcKIb4QQjQJIVqFEGuEED8SQozIJiHEaUKI94UQ9UKIdiFEmRDi10KIAVs9CCGOFEK8JoSoFkJ0CiF2CCEeEEL4rYSzTJPTlByd7JWobKKiDX8aWs9QK/9gkAT8tVWawpMM86HdF9MLLyPDoazktLi6AiItYpT73mjQrkwUdHVhMcPIfeLvtmUjYuZZ0PNR2/c1tPhWGNmXaB0d7cqYiUpuUq6nhWxVe5XPhK51cQyFEI8C/wXmA18AHwDTgUeAl4Vwi9gN/Xw3Ae8BJwDrgHeAdOB3wKdCiNh+jrsE+ApYCmwH3gAigRuBNUIIvzRl1IaRj8k6BsvIngkhjzbPcH31elzSpaM1/dDVCjs+UMcGcAyllF4rhmHf8aQfROEFHKcJJ39R/rZ/r2eQ+95oKdEUNRV3dhviM29EvMJ8RskzjEuFyYvcA2nocLLWmTbzC/smwhLhJXTtqwlIwD0SIcQy4DqgEiiSUp4lpTwXmAZsAc4FfjyM880H7gPagUVSypOklBcAU4HPgaOAe/o4bgLwD0AAS6WUx0gpLwJygBeAXOBvI36jA6B1DI+bcJw/LhESTB4zmeToZECp4t7ZuFNni/pgx/vgcDsX6fmQpr8A64EWVTstwZZAblKuzhYZlIQMFifN8Aw/3/eR3y5llPueLyjRFOoUWeKVnuAmh2HIFUMIinBybUetp/lDlDXKFLYeAH8IXeuxVHWr+/fNUkpP4oWUsgq41j28ZRihlVtQnLv7pZTfaM7XCnwXcAHXCSGSeh33cyAGeEpK+YbmOAdwFdAMLBVC5A/5nQ2BmvYattQrlVYRIoKF4xf68vQhhRDC+H2TvUStjbFyog27F6cXY7UMayEqrFhQdCVRLmUleqe9iYoWv1VqGuW+Nyo6HZ1sbd3vGRflnAoWM+LRF3kpeUS4q4D3NO+hsbNRZ4vc5C1B+egAe7+CNgMIcPeitKbUs52fkm82fxgArwr4YFwxdK/SzQO6gZd6vy6l/AyoADJRZryDnS8SON09/G8f59sFrEQJD5/R6+WeMrq+jmsG3uq1n0/4ouILz/bcjLkkRCb48vQhh6H7Jne3KyuGPRjEMTT7Iw+dmPylHNHt9Iw/LzvsdjBqDHbfGxVbastwoOg/ZnfbSSq4wJenDymirFHkJed5xqW1pQPsHUASMmGS+2MmXbDVvykUI8Gr8MTMLxwQ7cr05rrN2J2jL6IL9FSv5ym/SUrZ0c8+q3vtOxAzgFigXkrZX5zxsPMJIcaghIy1r4/GjiFjytQMD0NXJpd/AHZFEobUGZCeN/D+AcIsPBkGthgWj1X/3z7fvdwfVzHEfc8XbNyh5qQVuSww8Uhfnj7k8AonGyXPEAwfTtaufJkVyQOTEpPChHhFYaHb1e2T3u+BdgynuH8P1KhxX699h3K+fQPs09f5st2/G92rg6O1Y0g07f6GL/d+4hmb3U4GZ0byDE/V1aG2QxxqPaSzRRoMGEau76xnT/MeAGwWm1disknfLC76jmd7dVcNNU11vr6EUe57o0JKyYpdavvA4pQCMNMUBsRfOnOjJm+Jur37c2g3Tucfp8vptbpqOoaDU5SsZrx9/tWj4BpdoWagHcN49++2AfZpdf8eSox1pOfztR1D4l/vP0GXUP7D0uwWxsVM8tWpQxabxeZ1czVMnqG9Q2mD14NBHEPt32dWyiyirH5TLQkZ0nLOZHK38r3ssgj+9NK9vr6EUe57o2JleQ3bHTWe8ZjUk3116pBF69SU1pQaR1khcYJaNORywLb39LVHQ3ljOR0OZWE9PTadzLhMnS0yPlGHVHWFsoovaep0DrD34ATaMewRu5I6n88ndgghrnLrkK2pqakZfP9ZasjqpPYm/vWe2YZrKHiFk42SZ1j+Edjdz+WUXMgwhhal2R95+Dz+2W4SW9WHT0Ziha8vYZT7nvdJhnn/mhazhzqrculol+TB1dl02kf3AAp1suKzVGUFewt7mvboa5AWg4aTvfpwmzI1g7KzppWsXWrrwPK4eBJjR1esE2jHsMX9O36AfXpeaxlgn9Gezyd2SCmfkFLOl1LOT0tLG9BQgJ8dcwPPtWRwV00dS1tbaVn9HKUHmgY9LtwxZAFK7zCyQQR+tX+feenzdLQkONha2cwjn+xgT9MpHFGVy48zH+DnFzzv68sY5b7nxXDvX2kTFvDqae9TcPAEcquK2VnXzUMfGqSjh0ERQnitGvqyO8WoyT9b3d75MXQa41nklV9oFp4MiMsluf3l1VxsL+OWunqerajkzZP/OurzBtox3OP+PXmAfSb22nco5xsoJtvX+Xq2k9yFKKO1Y8jkH/N9zmttI7/bzrmWz7nxpQ10OwwSXjAoRWlFWN3av+UN5TR16XwDs3d6h14MEkZut7d7NZ2fnT5bR2uMj8Pp4saXNmJ3Sio6C2iIv4EfnHyaPy61x/1b7/veqMnNHM9ZJ/yClY2XAvD3L3ax8YBBZFgMipeciJEKUMZmwzi3bS670trTAJiFJ0PnP1/vJW7/ZySKLi5rbmV6zERixo9+lTXQjmFPnGuWECKmn32O6LXvQGwFOoBkIUR/DWoX9D6fu+Ckp5rviMOO6Oc4X2DJW4LLpjQkmG6pwFpdyqOflPvyEiFHnC2OGcmKELFE6j/r3vUJdLsXYsZOgUxj3LzKastwSKXFW25SLolRfuvqGBI88cUuSiuUSUZkhIUHzy/CavHLyq8h7nu+4pIjJnHUVCU86nRJbnp5ozm5HQDDFqCA4cLJzd3N7GraBSg6v3kpxlB6MCL769u5f/lWzrB6ZEyJKj7PJ9GrgDqGUsr9KK2bIoHDBLCEEMcBE1C6A6wcwvm6UVpCAVzWx/mmAgtR9MPe6fVyz7egr+PGAD1lW68NZsewiIrHkqcu4S+zfsGjn5Sz5VB/xdEmgLGEroMgjGy2wRuY8uoWrzDoz0+aRm66fzRFDXbfGzUWi+D+ZUVE25THx9bKFh7/1IBdiQzCrNRZnran5Y3ltNkHqhkKMHkax3DHB9A1lEwG/1FWU+bZnp483aNIYeKNlJJbXy3F2d3BiRbN89BH0Ss9JOt/7/59vxDC06vL3Zf4MffwPinV8i0hxI+FEFuFEE/3cb77UJKwbxZCLNAcEw/8E+U9Pial7B3veAhl1n2lEOJszXERKK3wxgCvSyk3j/B99k/xxZ7Ns60rwGXnxpdLsDvNWXd/GEbP0NEFW99Vx7N8qn8+Ksz+yEPD6ZLcqFnlKsxK5Kpjp/r7ska57/mEySlx3HCK2k7wkU92sK1SX6fCqMTZ4jxtKV3SxabaTTpbpCE1F9LdhXPOLm/Bfh0oqVWjQWZ+Yf+8tOYAX5bXcoyllAThlkZNngoZvpEnC7hjKKV8GXgcReW/VAjxlhDiVWAHkA+8jtJUXksqiqjrYTk1UsrVKO2hYoEVQoj3hRAvooSKjwO+AX7dx3H7ge+j3FxfF0J8LoR4HigHLnb/vnr077gPpiyGhHEApIpmjrWUUlbRzBOf7/LL5UIBraNTVltGt7NbH0N2fQY9OY5Jk2CcMfL4HC4HG6o3eMbzMszCk/7411e7Wb9P8ZdsVsGDFxQRYfXvrdAo9z1f8t1FU5gzSem4Z3dKbnq5BIc5ue0TwwpdQ69w8pv62YGZXzgUqpo7ufsdZb3qDOsq9QUfRq90aXIppbwOJQSyDuUmdiqKI/ZjYJmUclgaCFLKB1BaRH2CkquzBKgFfgMcJ6Vs7+e454BFwJtAHkojewfwIDBfSlkNESTNAAAgAElEQVQ97Dc3FCxWKLrQM1xmVdrk/fnDHWyvMmfdfZEak8qkBOX52O3qZlOdTrNug4aRtzdsp92hfMwzYjMYFzdOZ4uMye7aNh783zbP+MffmsbMzP7qz3yLUe57vsJqETx4fhGRbqe65EAT//xqtz8vGbRoV790z5HujdYx3PG+0upTB6SUXo6hKVVzOFJKfv1aGS2dDmw4ONWqdrnyZRGkbt3PpZTPSikXSSnHSCnjpJTzpJSPakMpmn3vlFIKKeXxA5xvuZTyZCnlWClljJRylpTyHill1yB2fCOlXCqlTJNSRkkpc6WUN0kp/Vv6WqSGk0+xrmUMbXQ7Xdz48kacLl/JnYUWXrI1eoSTnXbvvqL55wbehn7o3R9ZGMRhNRIul+TmVzbS5Q4hz8xM4Nrj+6vd8A9Gue/5itz0BH56oicyzh/f387uWgPl0BkEr8rkmo1IaaB7fPpMSJ2ubNvbofxDXczY27yX5m4l1z4pKomJCRMHOSL8eGvjIT7cUgXAIksZ8bideB9Hr3RzDMOejHxPNWskdpZEKK1NS/Y38o8vzZByX2jDo7oUoOz+DDrdKVtjJkCWcfoQax1lU9i6b/7z9V5W7VZaf1ktgj9cUExkhHkLHC1XH5dD/jhl1bXL4eLmlzfiMie3XmQnZpNgU4qb6jvrqWj1uYj66NCuNm3RJ5ysDbEXpRWZk9te1LV2ceebaqTsJ5maqJmPo1fmXVFPii/xbF6XvNqz/cf3t7OrprWvI8Ia7Yrh+ur1gW8vZdAwspTysBVDE296pB16uPa4HAqyTDkfX2CzWnhAI/Wzak89z3wzUFvo8MMiLBSmFXrGhpat2bZc0WoNMKaw9cDc8eYm6tuU3PqJYyKY275CfTHft0WQpmOoJ4Xng1u4Oat5PSdkKMvCXQ4XN5mz7sOYPGayp71Uc3czOxsDKJHhtMMWTRjZQNXIB1oOUNOhtDRLsCV4KiBNFKSU3PLqRtq7lRS+aenx/ORE82/kSwqyErn2ODUsf997W9lfr0+umlEpTNU4hkYrQMkoUKpaQdFo3flxwE0wC0/6Z3lZJW9vPOQZP3J0G6KzQRmMmQBZvi02NB1DPYlPh9wTPcP7pm0hwj3rXrO3gadW7tHHLoMihDhs1TBg7PkSOpQwJAnj1Qb0BkCrX1icXozVYtXRGuPx3Kr9fFVeB4BFwIMXFBMVYf6NfM1PTsxlWrrSia+928ktrxosl05nvCqTjbZiKIT3qtMm38r3Dka7vZ3tDdsVUxAUpPpGdiUUaGjr5jevq/qO58+bQHHLZ+oO+Wf7PHplOoZ6o9E0TN/1GtdpkuEfWL6NvXVmIrcW3fome4WRzwaLcb46Zhi5fw42dnDvu2qbwB8eO5XZE5N0tCh0iYqw8uAFxfQ0j/mqvI7nVu3X1ygDoQ2PbqnfQpczIPVBQ0cbBdn2XkDDyZvrNuN0F+XnJOWQEOkfsflg5Ldvb6a2VfmspCdEcdvp02HLW+oOfmjJapynW7gy4wyIcstl1O/iJ9MbmZGhfCk67E5ufsUMKWvxKkCpCtCKodPR64tonDAymB1P+qOnO0Brl9ImcGpqHNefPF1nq0Kb2ROT+KFGLPzed7dQ0diho0XGISk6icljlHbZDpfDq6+5Icgs6hVO/ihgl+5deGKi8NGWKl5brxYq3XtuIYnVq6BdiYCQMA4mLOjn6JFjOoZ6Y4vx8vhtZS/w4AVqIvfXu+p5dtU+vawzHDOSZ3jaJB1sO0hlW6X/L7pvBbTXKtvxmTDxSP9fc4jUd9azu0nRjouwRJghGA0vrz3AZ9uV3Esh4IHzi4i2mSFkf3P9ydOZmhoHQGuXg1tfLTVDym4M3Tf5sHDy6wG7tFl4cjhN7XZ+9VqpZ7x09nhOys/wjl7l+Sd6ZTqGRkBTnUzZKxRlxnDVYnXW/ft3t3CgwUzkBrBZbF43joDoGQZJGLkgpYDoiGgdrTEOVc2d3P222s3yO0dnMz87WUeLwodom5UHLyjypD19vr2Gl9Ye0Ncog2DoDiigSzhZSukl+m2uGCrc/c5mqpqVEHJqfBR3LJkFLqffw8hgOobGYNJCSHR3vepshB3v87MTp5GTpsy627qd5qxbg1anz+95hi6nd5soP30RR4o2nG7qFyoo3QFKae5UQsiTkmO58dQZgxxl4kvmTU7me4umeMZ3v72ZyqbAS6AYDUMXoIAu4eTKtkpqO5SITJwtjqmJfu9bbng+2VbNy5rJ1O+WFjA2LhL2fQ1t7oZscekw6Si/XN90DI2AxQLFF6njkueJtll54Pxiz6z7ix21vLTGnHWDd4GF3yuTD/siLvTv9YaJWXhyOG+WHOTDLWo3y/uXFREbGaGjReHJDafMIDslFoCWTge/fs2c3E4bO41oq7Kqf6jtEDXtNTpb1AsdwskltepqYUFqQdirKjR32vnVq2oI+ayicZxWkKkMvMLIS5T2un7AdAyNgqZFHtv/B+31zJs8lu9rZ93vmLNuUGbdVrf+446GHZ42Sn5hs+bG6Mcv4kjocHSwuU4Nl85O811LpGClpqWLOzTdAb591CQW5qToaFH4EhNp5f5l6grZR1ureX2DwTp+BBibxUZ+Sr5nbMxwsqbVZwDCyaU1qhNk5hcqqWOH3M/5lLhI7jp7lvKCy+XdlcaP0SvTMTQKqbmqNp7LDmWvAPDLXrPuX5mzbuJsccxIVkKDEsmG6g3+uZDLZegwcmlNKQ6phEtzEnNIijZlWO54s4zGdjsAWUkx3HJ6ns4WhTdHTk3hyoWTPeM739xMdUt4T2579002HJmFAQ0na/8G2r9NOPLljloviae7zplFSnyUMjiwGlrcItexKTB5kd/sMB1DI6HRNKTkeUCZdT9wvvpl+dicdQMBCicfWAWt7qpnP38RR4I2v3JuhhlGfrf0EO+WqlXq9y0rJD7KDCHrzU2nzWRisqIk0NRh5zevlYX15NbweYZCeK8a+lHs2u60e0U9tG0Dw43WLgc3v6J+Hk6blcmZhePUHbRh5JlngdV/9zbTMTQSBcvAYlO2K9ZAbTkAC6Ykm7PuXngJXfurMnlTrzCyH7+II0HrEIe7fmF9Wze3aboDXDR/IsdOS9PRIpMe4qIiuP881Rl6f3MVb2w4qKNF+qJ1DMtqy7C77Dpa0w/5vauT/aNFuaV+C90upf/vhPgJnpan4cg976ian0mxNu5eWoDoKTJwubwd9Pyz/WqL6RgaidhkmH6qOt74vGez96z7ttfDe9atXSErqy2j29nt2wsEMJ9jJDhcDq8QerivGN711ibq3A3mM8dE8+uzzBCykTg6N5VvHzXJM779jTKqmsNzcpsem05WfBYAnc5OttZt1dmiPsgshGR3F67uVij3TzjZnNwqfL69huc0esV3nT2LtIQodYf930CLezIVmwJTjvOrPaZjaDS8wskvKA4Kyqz7Ps2s+3+bqryaaocbqTGpTEpQHjTdrm6vcIRPqFgLze6QfcxYyD7Wt+cfJTsadtDuULQt02PTGR83XmeL9OODXitQ955XwJhom44WmfTFrafneSa3zZ3hLXytW8/3oSKEt6bhZv9UJ3s5hmEqt9XUYT8shHx2ca/7ubvmAFBEra3+vb+ZjqHRmHYK9BQRNO2DfSs9Ly3KTeWSBeqs+443N1HXarB+mwFEe3NdW7XWtyfX3ghnnuX3L+Jw0eYXzkufp4Ycwoymdju/1nQHOG9OFifMzNDRIpP+iIuK4MFe+dLhKnxteMcQ+qhO9m04WUrp7RimhadjePfbmz1VyMlxkfzu3ALv+7nT4f08Kljmd5tMx9BoRER5/8eXPOf18q/OmMn4REUHq76t20uaI9zQhk99enOVsle3E2P1RgbvvMpwnWmDIuFU3aJMjtISorh9Sf4gR5joyVFTU/jO0dme8d1vbeZgGPZS9sqRrl5nzJXTjAK/hpP3Nu+lvrMegDGRY5iaFH7C1h9tqTpMyDo1Psp7pz1fQJtb7zI+EyYf7Xe7TMfQiGhb5G1+w2umlhBt497z1MqttzceYnlZAPoFG5Des26XdPnmxAfXQZNbMiA6EaYs9s15fUTvmXa4Clv31R0gKTZSR4tMhsLNp81UJbjclZiGdIz8SE5SDgmRCYDS73x/y/5BjtABP4eTe+cXWkR4uSON7d3cohGyXlI8njO0Vcg9bHpV3Z61NCBauuH1PxEsTJivztS6mmHbu14vHz8jnfPnTfCMf/N6GY3tPi6+CAKyx2R7qtiau5vZ1bjLNyfe1CuMHGEsZ+NA6wFqOpQZZLwtntykXJ0tCjx9dQc4dVamjhaZDJWYSCt/uMC7q9OzmsT7cMAiLF6C9H5v7TlS/BhO1jqGs9PDT5z/zjc3UaOJdvy2R8hai6PbW0s3AGFkMB1DYyJEn5qGWm47M590d9VSbWsXv33Lx8UXQYAQ4rCQzKg5LIxsrGpk8L6hFqcXh2ULqd+/u7Xv7gAmQcH87GR+eKwaOrznnS3sr2/X0aLA47dUGF/ix3ByOEc9lpdV8rq2YO7cQqUXcm92fQKdjcp24iSYcERA7DMdQ6NSdKG6Xf4RtFZ7vZwYa+Pec9WQ8qvrK/h4a1WgrDMMPncMD5VA415lOyoRph4/+nP6GG1+4bz0eTpaog9fldd6SztouwOYBA2/OHk6OWlxALR3O7nhpRJcrvAJKWtXDA3rGPpJ7Lq+s549zXsApU3grNTwmdjVtXZ5F8zNzeLk/H4K5so0YeSCcyFARYamY2hUxmbDJHeSqXRC6cuH7XJSfgZLZ6tl7be+WkpThwHFUv2IVweUKh/cXLV5NDNOV4qBDIbWAQ437a+2wboDmAQN0TYrf7xwNhb3s+6b3fU8vXKPniYFlILUAiIsimj+7qbdnkIMw6HNM9y+3CfhZK0jPCtlFlFW491n/cXtb3hrrt6xpB+n2N4BW99Rx7POC4B1CqZjaGS8wsnP9bnLHUtmkRqvLEFXNXdx7ztbAmGZYZiZMpOYCEUb7WDbQSrbRlGIEwRh5PrOenY37QYgwhJBQWqBzhYFlvuXb+VAg9od4LdLZ4WtVE8oMHtiEtcen+MZ37d8K7tqWnW0KHBER0QzK0V1CvzW8320ZBRAijuPubsVyj8c9Sm1k/hwUlV4q+Qg75Sq+sP3LSskMaYfKbQdHyi9qkEJ548LXB9p0zE0MvnnQM9MqnIjVB2eRzg2LpK7z1GdgxfW7Ofz7TWBslB3bBYbRamq8PeoQjJVZVDvLmCJTICcE0Zpne/RPjxmpcwiOiJaR2sCyze76nh65V7P+I4l+aQnhM/7D1V+euI0ZmYqFbqddhe/eLEEh9NHCgMGR7vib1jHUAhvya4+olfDZX1N+OUXVjZ1eoWQLz5iIsfPSO//AK2odcGygIWRwXQMjU1MEsw8Qx1vPLwIBeD0wnFe4bRbXy2ltcvhb+sMg3bGOaq+ydpq5Bmngc14Tke4Jmx3dDu5SRNCPnFmOktnZ+lokYmviIqw8scLi7FZlQffhv2NPPrJTp2tCgw+z5H2F4Xnq9vbl0Nn84hP1eno9OpUpc21DFVcLsmNL5fQ3Kk8lyeMjeHXZw7QtrOrFbb/Tx0XBC6MDKZjaHy0moYbXwKXs8/d7jpnFmNjlSXpisYO7nsvfELKPrm5SumdX2jAMDJ4O77h1B/5D+9vY2+dUrWaEB3BPecWmiHkEGLW+ESuP3m6Z/zwxzso2d+oo0WBQSvTsqluE50Og/aPTs+DDHexo6MTtrw14lOV1ZbhcCkO0tTEqST1dPoKYZ5auYcvdtQCysLfny6cTcJAbTu3LweHO5czPV/5+wcQ0zE0OjknQGyqst1yEHZ/3uduqfFR3KmR7Hjm632s2FkbCAt1pzit2COOuqNhB83dI5jNVm+BunJl2xYHuSf50ELf0OHoCLuZNsDavQ3886vdnvFtZ+aTmWi81VyT0XH14hzmTx4LgNMluf6FDXR09z0RDhWSo5PJHpMNgMPlYFOdgTtZFV2gbpe+OOLT9Ba2DnV2VLVw33tbPeOrF+ewYErywAd5hZEDu1oIpmNofKw2KNR8IfvQNOzh7OLxXmXvt7xSSnt36IeU42xxzEyeCYBEUlJdMvyTaFcLp58KthgfWec7ymrLcEjl/zMnMScsZtqddic3vVxCT2OMY6elcsH8CQMfZBKUWC2CP104m7hIRZdzV20b974b+pGPoNAzBCg4H3Cv0u/+HFpGVugXTqoK3Q4X17+4gS6HkjObN24M1588beCDOhq9C3wCWI3cg+kYBgPa6uQtbyn5B30ghOCepQWMiVYkEPbVt/Pg/7YFwkLd8ZKtGcnN1eDVyBCe/ZEf+nAHO2vaAIiLtHLfsiIzhBzCTEqJ9ZLv+M/Xe/lkW/UARwQ/QaFnCJCYBdnHKNvS5b2qNURc0uU1cQ/1POmHP9pBWYUSwYqMsPDQRbOJihikIcHWd8Dp7mQ2bjak5Ay8vx8wHcNgYFwxpCkrYtjbYOvb/e6aPiaa2zU31n+v2MOaPQbVx/Ih2pnn2qq1wzu4eivUuJf6bbEw7RQfWuY7tDPtUL+hApTsb+SJz9UihFvPyCMryXgruSa+5YL5EzhFE/m46eWNNLSFbsvP3iuGPuv57g+00auNww8nlzeW02JXJFhSolOYkBC6q/9r99bz2KflnvFNp85ghrv6fkB6VyPrgOkYBgOHtcjrW9Owh2Vzszh+Rhqg1FTc9PJGOu2hnaujvbmW1ZbR7RzGg0S7WjjtZIiM9aFlvsHhcnjJWYR64UmXw8lNL2+kpxHGwqkpXLpgkr5GmQQEIQS/P6/Qo89a09LFr14rRcrQ7IoyKWGSp+d7S3cLOxsNXJGdfw5Y3a3bDm2A2h3DOlyrXzg3Y27Irv63djm4/oUSr/vX9xZNGfzAtlrY9ak61nadCSCmYxgsFF6IJ79j12fQfLDfXXturAlRSkh5V20bf/pgewCM1I/UmFQmJSiOQ7er26tIY1CCIIy8o2EH7Q6lKjc9Np3xceMHOSK4efTjcrZVKSsLMTYr9y8rwmIJzYeIyeGkxEdx/zJVn/S9skpeXVeho0X+o3fPd0OHk2OSvCMqw1w11OoXhnJ+4e/e3sy+elVF4Q8XFg/t/rXlTaXTGcDEIyFpoh+t7B/TMQwWErNgymL3QA76hRyXGMOvNDpJT36xi/X7GvxooP6MSLamdgdUuysBI6Jh2ql+sGz09A4jh+pMG2DTwSYe+1RdNbnptBlMSjHeKq6JfzkxL4NLNKvEd7y5if3uh22oETSOIUDRhep26YswjJVcr44nIeoYfrC5iudX7/eM7z6nYOgpMF69kfUJI4PpGAYXWk3DkucH/UJefMREjslVpG5c7pBylyN0Q8peuTpD7ZusrUbOPQmi4n1slW8IF4kHu9PFjS9txOGOwRyRPZYrF2bra5SJbvzmzDyy3ZOC1i4Hv3yxBKcr9ELKQeUYTjsVohKV7YY9cGDNkA6rbKvkYJsS6YqJiGFG8gw/Gagf1c2d3KIR4j+zaBznzB5idKf5EOz5UtkWFu9uMwHGdAyDibwlSnEEQM0WpU3eAPSElGPd8g87qlt5+KPh5YQEE71XDIeUxK0NI+uUzzEYUsqwEbb+66c72XxIqeKLirCYIeQwJy4qgj9dNJuej8CqPfU88nH5wAcFIXnJeURbFW3OitYKqtqqdLZoAGzRkL9EHQ9R01CbI12UWoTNMoDAcxDickl+8WIJde5CqYwxUdyztGDo0Z2NLwDuSU/2MZCQMeDu/sR0DIOJqHjFOexhAE3DHiYmx3LL6TM9479+touyiiZ/WKc72WOyPUnczd3N7GrcNfABdTuh0t270hpl2GrkA60HqOlQ+l/H2+KZljSIDlaQsr2qhYc/VicuvzxlOlPTjLmCaxI45k4ay89OVLui/Pmj7azaHVpKCzarjYJUtee9NhfPkBRqwsllr4LTPugh2nQYbceXUOGJL3bxZbl3d5Ok2MihHSyld1GpNjqoA7o4hkKIGUKIZ4QQB4UQXUKIvUKIx4UQ4wY/+rBzTRJCXCOEeE0IsVUI0S6EaBFCrBNC3C6EGNPPcdlCCDnIz8V9Hasr2urk0pfAObiA9bePnMyRbqV1p0tyw0sldDsMLIkwQnoncQ+aZ6hdLcw9EaL7/Kjojja0VJxejNUyiA5WEOJwurjxpRLsTmXGPHtiEt8/ZqrOVpkYhR+fkOvpFuGS8PPn19PYHloSNtp7l3Z1zZBkHwMJ7hBpe69K2n7wUlUIMbmtDfsb+YNGM/ja43JY5E7jGhIH12kk0+Ig72wfWzg8Au4YCiGOA9YDlwGHgNeAduAaoEQIMX2Aw/viWeBx4CygGXgTWAnkAHe5zzlQnXgb8FQ/P7sHOE4fphwHCW7/ua0Gdn486CEWi+D+ZUVE25T/7q2VLV76SqHEsHJ1vKqR9cvnGAyvMHKI3VB7ePLL3ZQcUFayI60WHjy/CKsZQjZxY7UI/nzxbJLc/eAPNnVyyyuhJWGjTRHRfucNicUKhZriiEGKIVu7W9nWoDhOFmGhKK1owP2DiZZOOz99br0nL3rOpCSvvt9DYsOz6vaspbrnugfUMRRCxAHPAzHAT6SU86SUF0sp84A/AmnAc2J4JZcVwPVAppRygft8pwC5wKdANvDvAY6vlVJ+p5+fb4b9Jv2NxdqrRd7AmoY9ZKfGceOpakj5kY/L2XxwBD2FDc6QO6DU71Z0uAAsNphxmp8tGzmhXnhSXt3qJaf0s5OmMS1jCEKwJmHFuMQYLwmb5ZsqeXbVPh0t8i3FacUItyTZtoZttNnbdLZoELTh5K3vQHf/9m6s2ejJ+Z4+djrxkaGRIiKl5NevlanSNFERPHzxHGzWYbhWji4ofVkd6xxGhsCvGH4XyAQ+lVI+0uu1m4GdwFzg9KGeUEp5kZTyISllXa9/rwEudw8XCyH0EQTyB9oPzrZ3oXNoOYPfOTqbuZOU/roOl+S6/64NuXDMzJSZXknclW399PNc+291O+cEiE70v3EjoKGzgV1NSq5khCWCwtRCnS3yLS2ddq55Zq0ntaEgawxXLTZDyCZ9c+qsTC4/arJn/Nu3NrPdrXcZ7CREJjBtrJI/7JIuNtYMXFyoO5mFvTpyvdvvrqGqX/jKugreLFE1he89r5CJycOU1tr2HnQ2KttJk2DyIh9aODIC7Rj2xOue6f2ClNKJspqo3W9USCkPALXuYej03snIV76UAI5O75DoAFgtggcvKCbGpuSo7alr58fPrsfhDJ18Q5vF5hWm6HPVsKUSvvmbOp59aQAsGxla+2elzCI6IlpHa3yL0yX52fMbKK9Wen9HRlh48Pzi4c22TcKOX5+Zx0x3a7Euh4sfP7suZDo7BZVsjRDe0asBqpNDUb9wV00rt79R5hlfOH8CS4pH0HhAG0YuvhQs+t//Am1BzydidT+vr+6136gQQqQCY93DQ/3sFieEuFUI8TchxMNCiOuEEMZ3Ir00DV8Y8mE5afH86cJiz/jL8lrueXeLLy3TnUFzdT57ABwdynZmke6JvgOhfTiEWn7hH97fxsdbqz3j+5cVkjfOmAVAJsYh2mblL5fM8eRMb69q5XfvDKPTkYEJKscQvB3D8o+Ulm69sLvsbKxVVz9DwTHscjj5yXPrae9WJiRT0+K48+xZwz9RSxWUf6iOi41R7xowx9BdHZzsHu7tZ7eehJEhNBUcEjcAVmCdlHJPP/ukAvcCVwE/AR4Fdgkh7hlmrmNgKThfEcEE2PslNPT3Jz2c0wvH8bMTVcmTf321hxdWh06uzoA31/pdsO4pdXziHYaYofWHtrI6FG6oPby+voLHNd1Nrj5uKufOMf58zMQYTMtI4Paz1AfxM1/vY3lZP2kjQYR28ldSU4LDNbjqhK6MnQwTj1K2pRM2vXbYLtvrt9PhnoiPjxtPZlxmIC30Cw8u38Ymd45+pNXCwxfPITYyYvgnKn1RbYE3eREk+8r1GR2BfCJqs037y1Jtdf8edea5EOIkFMfQBfyyj126gCeAk4EsIA4oBO5HUZn8FXD3aO3wGwkZkHOiOh5mz8qfnTiN0wvUL+hvXi9j9Z7Q0AYrTivG4naatzdsp7lbU2Tzyb3Qc7OdfIwiU2NQOhwdbK5VV0JCxTEs2d/ITZruACfMTOcmTWGUiclQuGTBRK972M2vbORAQ3C3zBsXP46MWEXYuMPR4ankNTRFmlXDjYdHr0JNv/CTrdU8+aUqWHLL6TMpyBpBjrqU3mFkA6U0DdkxFEI84NYJHO5PVs8p/PQe+rK1EHgJZbXwdinlp733kVIeklJeLaX8UEp5UErZLqUsk1LeApzv3u0mIUS/SQNCiKuEEGuEEGtqamr88VYGRrvsvHHwFnlaLBbBHy8s9oTu7E7JNf9ZS0Vjh6+tDDhxtjhmjFXaLUkkJdUlyguVZd7VXyfdoeTJGJSy2jIcUnFicxJzSIpO0tmi0VPV3MkPn17jKTbJTY/nzxfPNqVpTIaNEIL7zivy9KFt6rDzo/+uC/q2n9pVw1WHVuloyRCZdR5Y3KtlB1ZD9Vavl7XvIdjTYfbXt/PzF1Q9xhNmpvPdRdkjO9mhDVDtnvjbYiH/nNEb6COGs2I4Hpgxgp+evjfa0rG4fq7Rs6o44jIzIcRM4EMgCfijlPKe4Z5DSvkWitaiDThpgP2ekFLOl1LOT0tLG6nJI2fmmRDpXlytK4eKtcM6PDYygr9fMY+UOEWdva6tmx88tYb2boOHL4bAvIx5nm1POPnju/G0HJp+OkxcEHjDhoE2P3JORvCvFnbanVz19BqqW7oASIyx8eQV80mIDq3WWCaBIzHWxsOXzCHCPbEoOdDE794O7pzpo8Yf5dlecXCFjpYMkdhk5VnUgyZVx+60s6pSdQy17y3Y6HI4+dGz62jqULq8jEuM5sHzi4be8q432tXCvLMhyjgSXUN2DKWU35ZSihH87HEf30Z0hzkAACAASURBVAz0xCon93OZHkmZPSN5M25x7I+BdOAxKeUNIzmPm55pT9aAe+mJLQZmaWYZQ9Q01DJhbCx/vXweNqvy4d5yqJlfvliCK8gb1R/WAWXf17B9uftfBJx4mz6GDYNQKjyRUnLrq6UeEWurRfDYZXPJTu1vjmhiMjTmTR7LrWfkecb/+Xovb2yo0NGi0XH0+KM92+uq1nny8wzNvO+o2yXPgb0TgA01G2h3KOH9rPgsJiVM0sE43/Dbtzaz0X3/irAIHrl0LinxUSM7maNL6VzWg4HCyBD4quSeJ90R/by+oNd+Q0YIMQ34BBgH/B348bCt8ybF/bt1wL30RludXPYKOIavS3hEdjJ3n6P26XyvrJK/BHmjeq1jWFZbRveHd6ovFl0IGSOoIAsgTpeTDTVqyCLY8wv/9vkuXluvPqxvOzNveC2jTEwG4HuLsjmzUO2oessrpUGrb5gZl0lOYg4A3a5u1lSu0dmiITDleEhyr/d0NMCWtwDvFc9F4xeNfHVNZ15bf4D/fqMWaP76zDzmTR47wBGDsP1/yt8JIHEiZB87Sgt9S6Adwx7Bvct6vyCEsAI9SXOHlzYNgBAiB8UpHA/8C7hajqJXkhAiE+j5n+pPWscYTDpa+WCB8kHb8f6ITnPxgkl85+hsz/j/PtzOe6X9KfwYn7TYNCYmKH+XLmcXm6vcYXZLBBx/q46WDY3tDds9nQ/SY9LJijfuwvVgfLy1ivuXq3lHlyyYyJWaz5qJyWgRQnDfskKmulegO+xOrnlmLa1dwZkWs3D8Qs92UISTLRaYe4U6djcQ0NquXQkNJrZVtnDrq6We8ZlF47yelSPCS7vwYsMpYwTamn8BlcC3hBA/6vXafSj9jdcD72lfEEJk9VHM0vPaFBSnMAulv/EPhuIUCiF+2Ptc7n/PR+m3HAOslFJ+PeR3pwcWCxRdpI43Pt//voPwmzPzOEazivOLF0uCum2eVzg52r3kP+87hpEEGAhtJd/cjLlBO9Mur27hp89t8NRFLchO5q6zC4L2/ZgYl4RoG49/e55HwH9XTRs3v7IxKPspL8pSu18EhWMIMOfbIJS/PXu/pL5iDVvqlHxPq7CyYJyxc7r7oqXTzrXPrKXTrhTL5aTFcf+yUeQVArRWey/gGKAFXm8C6hhKKVtRVgU7gEfcFb3PCSE2o0jL1AKX9OHY2Ti8mKWHV1ByE7tQ3s8/hRD/7uOntx7Gj4D9QojNQojlQogXhBCrgRKUUPdW4EKCAW118rbl0D4y2ZkIq4VHLp1DdorS0qfD7uSHT6+htrXLF1YGHK8ClKgopfJr8Y06WjR0QqE/cmN7N99/ao1n1SYrKYbHvz2XyAhjzY5NQocZmQnce56aFvPOxkP8e8Ue/QwaIfMy5hFpUYoCdzXt6r+1p5FIyIQZajfblav/gnQX+xWnFZMQaZziiqEgpeTmVzayq1aJ3MTYrDz+7XnER41Ar1BL6UuqduGkhZCSM0pLfU/A79BSys9QOps8i9Km7jyUauS/AUVSyuEKN/WIZkeh9Ea+sp+f3qqafwFeRZG0OdJtx1RgBfBzYK67pZ7xSZ0GWW4nyGWHTa+O+FRJsZE8eeV8z4e/orGDazW9bIOJOSlqX+H10VG4Flyt3LwMjpTSq4WUtpNLsOBwuvjRs+vYW6cknsfYrPz9ivkjT9Y2MRki586ZwGVHqkUO97yzhbV7G3S0aPjERMR4fe+DZtVw3nc9mysqv/Fsa0PjwcI/v9rDu6WqQ37fskKmZ4zSuZUS1v9XHRtwtRB0cAwBpJTbpJSXSSkzpZRRUspJUsprpJR9JrVJKff0rnLWvJY9xOroT3sd9w8p5flSyhlSyrFSSpuUMkVKeZyU8s9SyiAoBdMwwhZ5fZGbnsDDl8z2SPyt3tPA7W+UBV1IJnvnF4x1KjOzJquV3YXG0YkaiIrWCqo7lFZxcbY4piVNG+QI4/G7d7bwVXmdZ/x/FxWTP95sd2cSGG5fkk/RBEV02OGS/PjZddQFWeRj0Xg1nPxVxVc6WjIMcr4FiZOQwEqbGm7VvpdgYM2een6vaRV7+VGTOWe2D/K8KzdC9SZlOyIGZi0d/Tn9gBnTCRW8REZXQd3OgfcfhBNmZnDzaWr0/fnV+3kqmEIy9g7E5w8wp1N9GKxt2qGjQUPHq1NA2mysFquO1gyf51bt8wrfXX/SdE4rGNf/ASYmPiYqwsqjl84lMUbJPDrU1MmPnl2H3Rk8kY+js9Rija8PfY3TFQTC3RYrzL2C7TYbNRHK8ygxKpH8lHydDRs6lU2dXPffdTjckm3FE5P4zVl5gxw1RNY/o27nLYHoEXRMCQCmYxgqxKXAtFPVccnIi1B6uHrxVM6do86S7n5nC1/uOLxJuiFZ9QS0HGKuxjEMiqb0eAtbB1sYedXuem5/o8wzPqMwk5+ckKujRSbhysTkWB66SG3B9vWueu56a5OOFg2PaUnTSItRGic0dzdTVlc2yBEGYc5lrIiN9QwXJhcGzeS20+7kqv+oIvxJsTYevXQOURE+sL+zGTZotIYNpl2oxXQMQ4neLfJco5sdCyH4/XmFFE9UWrE5XZIfPbuOPbX9tbo2CJ1N8OX/AQSlYxishScHGtq59pm12J3KTDt/3Bj+cEExFrPdnYlOfGtmOjecMt0zfubrffxn5R7d7BkOQojgk60BGDOeFSnqgsLR7QZ/XriRUnLjyxs9ItZWi+CxS+cyYWzsIEcOkQ3PQrdbWzN1Bkw93jfn9QOmYxhKTD8VevrpNu6D/aNX2om2WXni8nlkjFGKBpo67Pzg6TU0d9pHfW6/seIvHvHQmXHjiLYqtle0Vhi+uq+hs4FdTbsAiLBEUJBaMMgRxqCty8EPnlpDXZsisJ4SF8nfr5xPbOQoK/hMTEbJj76Vy5JiteX9nW9tZkV5cEQ+tLl5KyqCwzHscHSwjk7PeGH5V0qnD4Pz2Kc7eavkoGd855J8jvaVCL/LBav+po6PvAoMLNllOoahREQUFJynjn0QTgbIGBPNE5fP98iMlFe38vPnN+A0Ytu81mpY+ZhnaPvWbRSlFXvGG6o39HWUYdDal5+ST0xEjI7WDA2XS/LLF0vYWqnMhm1Wwd8un0dWkvFtNwl9hBA8eH6RpxjF6ZJc9+w69tYZfyVr4fiFCBQHorS2lOZu4+vKrqlcQ7dUJKpyu7vJbK2Fre/obNXAvL+pkgf/pwqiXHbkJC5fmO27C5R/APXKhJ+oRMNWI/dgOoahhvYDt+l1sPumuLp4YhIPnl/kGX+8tdrri2QYPv8DuDuGkFEABcu8wrFrezqgGBQvYesg6Y/85492sHyTuhJ7z9JC5mcnD3CEiUlgUSIf80lPUKIHje12vv/UGlqMHPkAxkaPJS9FKXxwSierDq3S2aLB0Ya8F3a4Vw7dnVCMyJZDzfz8BXVCftTUZO4828ctU7/5q7o993KINHaPeNMxDDUmHAHJU5XtribY9t7A+w+Dc2Znce3xqhjnXz/byWvrDST12LAX1vxTHZ9wG1gsXgUcRs8zDDbH8N3SQ/z5I7Xa+7uLsrnwiIk6WmRi0jeZidE8cYV35OOnz603ZuRDg5dszUHjy9Z49UfucIeQd382aqUMf1DX2sUPnlpDe7dS8T0pOZbHL5uHzepD16hmG+z82D0QsOCHvju3nzAdw1BDCCjSFqGMTtOwNzecMoMTZ6Z7xje/UsqG/Y0+vcaI+fT3isA3wMQjlZxLFNV9i1A+6tsbttPSkwBsMDocHWyu2+wZz06fPcDe+rPpYBO/fLHEMz52Wiq/PsNHsg4mJn5gdq/IxyfbanhA08fbiGh7DK+oWGFoPdnKtkpPjnSkJZJ5ExarL657Wier+qbb4eLaZ9ZR0ahE1eKjInjyyvmMjYv07YVWPaFuzzgDxmb79vx+wHQMQ5EiTSe/HR9Aa43PTm21CB66eDbT0uMB5ct11dNrqGruHORIP1O9xTun8qQ7Pcm9cbY4ZoydAYBEUlJTcvjxBqCstgyHS8nNmZo4lbHRY3W2qH9qWrr44VNr6LArM+3slFgeuWQuEb6caZuY+IFzZmdxnSby8bfPd/HKWgNFPnpRnFZMbIRSGXuw7SB7m/fqbFH/aFcL52XMI3r+99QXN/wXHN06WHU4Ukpuf6OMVXuU9rFCwJ8vnj36zia96Wj0lqg56hrfnt9PmHfxUCR5itKDEZSejGUv+/T0CdE2nrxyvkc8trqli6ueXkOnXUcB1o9/B+6+nOSeDJOP9npZG07W6gQaCa1dRpapUWbaaznYpEwGEqIiePLKI0iM7d3G3MTEmNxwygxOysvwjG99tdSwlco2q40F4xZ4xkYOJ2s7tCzKWgS5J8EYt3RNWw1seVMny7x5/LOdPL96v2d882kzOVHzefAZ659Rc97T8yH7WN9fww+YjmGootU09FF1spbJKXE8ftlcrG6NupIDTdzyykZ9whz7V8PWt9XxibcdtovW0dLm8RkJbf7jvIx5OlrSP1JKbnu9jDXu3rNCwMOXziHXvYJsYhIMWNyRjxnuFaJup4ur/rOWTQebdLasb7xkawyqZ+h0Ofn6kCqRdvT4o8EaAXOvUHf68iGlX7COvLRmPw8sVwsnz5uTxdWLp/r+Qi6ndxj5yKsNLVGjxXQMQ5X8peDW7+PQBqj2fR7N0bmp3LFEbXX0+oaD/PWzXT6/zoBICR/dpY4LlsG44sN20xZylNWW0e00RkijB6fLyYYatTLOqCuG/16xhxfWqDPtW0+fybdmpA9whImJMYmPiuCf3z3Co9Ha2uXgO/9azf76dp0tOxytY7i6crXh7l8Am+o2eeR00mPSyU1ydzw64odgc4tEV5VC+Yc6WQifbK3mlldLPeOFU1P4/bJChD8ctu3LodEd9o8ZC4UXDry/gTAdw1AlJglmnK6ON/p+1RCU5uKXLJjkGT/wv618tKXKL9fqk12fwJ4vlG1hhW/9us/d0mLTmJigVMt2Obu8ijyMwI7GHbS5Qw7pMelkxfugYbuP+WJHDXe/rf7dzpubxQ+P9cNM28QkQGQlxfDU9xaQEK0Isde0dHHFP1dR12osQeaJYyYyIX4CoBSpGVGPVRviXjh+oepsxaXA3CvVHb/4Y4AtU1i/r4Hr/rvOU4WeN24Mf7tinm/a3fWFl0TNlRDpow4qAcB0DEMZrabhxheVpW0fI4TgrrNnsWCKolsnJfzs+Q3sqApA5a+U8KFmtXDu5ZCS0+/u2lU4o8nWeOUXZszxzwx2FOyubeNH/11Hj7LH7IlJ3Huun2baJiYBZGbmGJ7UyNjsrm3je/9eTVuXQ2fLvFmUZWzZGm1nFq2tABz9Y7C4c5D3rYS9KwNoGeysaeV7/17tKZabMDaGp757BGOi/ZQXXbUZdn+ubAsLHPED/1zHT5iOYSiTeyLEulv6NFeoK2s+JjLCwuOXzfV0umjtcvCDp9fQ0ObncMfmN5QwOUBENBx384C7a8PJRitA0eY9Gi2M3Nxp5wdPraa5U3lQZo6J5onL5xFt89NM28QkwBw5NYWHL55NT1vvkgNN/OjZddido+s370u8ZGsMlmfY3N1Maa0SohUIjhp3lPcOiROg+CJ1/OWfAmZbVXMnV/xjFQ3tipRZclwkT39vAeljov13Ue1q4cyzICm4tF1NxzCUsdqg8Hx1XOJbTUMtKfFRPHnlfGIjFWdhb127f2+sToe7EtnNgqtgzPj+90dZiethfc16XNIYN30pJeurjFl44nRJfvrcenbWKGHuqAgLT1wxz783VRMTHTitYBy/PUftTf7pthpu1qugrg8WZC4gQigh7631W6ntME4V9apDq3BKZTUuPyW/b6mtRdeDu70fO96HQxv9bldzp50r/7nKo1UYY7PyjyvnMzXNj8Vy7fVKhK6Ho67137X8hOkYhjpFmlna5jeg23/9QfPGjeFPF6qizCt21nHPO1v8c7GS56DO3XEjagwcc/2gh0wZM4WxUcoNq6mrid1Nu/1j2zCpaK2guqMaUDQXpyVN09kilQeWb+XTbaoO5gPnF1E0IUlHi0xM/Me3j5rMT0/I9YxfXVfB/cuN0fozPjKeojRVnHvlwcCGYwdCG9rWrmx6kZoL+eeo4y//z682ddqd/PCpNZ4e7hEWwWPfnsucSX7Wh133NDjcrWgzC1XpuCDCdAxDnfFzIFURd8beBlveHnj/UXJaQSa/OHm6Z/zvFXt4btU+317E3ql0Oenh6J9C7OC9eYUQhpSt0eY7zk6bjdVijBDtK2sP8LfP1Srz647P4ZzZxiuKCRaEEDOEEM8IIQ4KIbqEEHuFEI8LIcaN4FyThBDXCCFeE0JsFUK0CyFahBDrhBC3CyHG+OM9hAPXnzydizVtHf/62U4e/9QY7dyMmGcopRw4v1DLsb9Qtze/7rc2ed0OFz99bj3f7K73/Nv9y4r8r6Dg6IbVT6rjI68JGokaLaZjGOoI4a1p6KfqZC0/OSGXMwvVZ91tr5fxza46311gzT+UnEmAuLRhLdV79U2uMkYBihHzC9fta+BWjazDSXnp3HDKDB0tCm6EEMcB64HLgEPAa0A7cA1QIoSYPsDhffEs8DhwFtAMvAmsBHKAu9znnOIb68MLIQS/W1rgJYB9//KtPPZpuY5WKWidrk/2fUK7XX9pnZKaEg62HQQg3ua9qnkY44oV0WsA6YKvHvK5Pd0OFz96dh3vb1bVMW4+bSbL5k3w+bUOY91T0OSW84pNgYLzB97foJiOYThQdCGe3I5dn0LzIb9eTgjBgxcUkT9OWbRwuCTX/ncdBxp8cBPravGWO1h8I0QNPV/EiCuG2kIYreOqF5VNnVz9n7V0u/NDp2fE89DFc7BYgm/mawSEEHHA80AM8BMp5Twp5cVSyjzgj0Aa8JwYXol3BXA9kCmlXOA+3ylALvApkA3823fvIryIsFr4yyVzWDg1xfNvDyzfprtzmJ+cT/aYbADaHe18uE8/TcAeXi9/3bN9avap2CyDVPoeo1k13PAcNFX4zJYep/ADjVN49eKpXHNcAGS1ulrhswfU8aKfgS04c7FNxzAcSJwAU9yteKQLSl/y+yVjIyP4+5XzSY1XGpLXt3Xzg6fWjF4CYuWj0O5efUycBPO+M6zD81LyiLYqX9aK1goq2ypHZ88oaehs8DSdj7BEUJBaMMgR/qXT7uSq/6yhpkXRcUuKtfHkFUcQHxWhq11BzneBTOBTKeUjvV67GdgJzAVO731gf0gpL5JSPiSlrOv17zXA5e7hYiFEcJVDGoiYSCv//M4RhzmHj36in3MohODcaed6xq/teE03WwDa7e28t/s9z3hp7tLBD5p8NEx0Vy277Mo93Qf06RQeN5VbTp8ZGFmtrx+HNiVXnDFZSkFkkGI6huGCVtOw5LmAtCXKSorhr9+eh82qfCm3Vrbwixc34HKN8NpttbDiL+r4W7+CiKhhncJmsXmFOvQWitVePz8ln5iIGN1skVJy08sb2XhAaQtmtQgeu2wuk1KCR5jVoPQ8LZ/p/YKU0omymqjdb1RIKQ8APSWrAYifhS49zuHROapz+OD/9HUOl0xdglUoechrqtawr9nHOdzD4IO9H9DuUCJBUxKnUJx2eNepwxDCO9dw7b+gbXSpRt0OF9f9tw+n8LQAOYVtdfDVn9Xx8beATb97+WgxHcNwIW8J9Dgd1ZuhsnTg/X3E/Oxk7lla6Bn/b1MVD320Y2Qn++JP0N2qbKfluUPkw8dI4WRt4YlWZ1EPHv9sJ2+WHPSM71ySz9E5qTpaFDL0fOBW9/P66l77jQohRCrQU3rp37yRMCAm0so/rjSOc5gWm8axWcd6xtpQbqB5rVxdsTw399yhO2HTToEMd3TE3g6r/jZiGxSncC0fajpuXXNcTuCcQlB0GbvdTR1Sp0PxpYG5rp8wHcNwISpBcQ572Og/TcPeXHjERL63SM2Df/ijHbyzcZjPq8b93tVeJ/wGRli9q3XA9O6AYpTCkw83V/Hg/1RZjsuOnMTlC7N1sydUcFcH95TM7+1nt54lH18Vi9wAWIF1Uso9PjpnWNPjHC7K9XYOH/l4hJPcUaIN2b6x8w2cfuhqNRh7m/eytmotAFZhZUnOkkGO0CCEt8TYN39V8seHSZfD6XYKqz3/du3xOdx82ozAOYWN+2HVE+r4hNvAGtypN6ZjGE54VSe/qIhEB4hfnTGTY6epq0+/fGkDZRVNQz/BZ/eB092/NGs+zDxzxLYUpRVhEcpHf1v9Nlq6A9C+rw86HZ1sqtvkGevlGG6vauFnz6/3ZBccOSWZO8+epYstIYi2Mqo/EVH3MjgJo72YEOIkFMfQBfxytOczUYmJtPLkFUdwTK56H/vD+9t56MPtARfBXjxhMcnRynyjur2alYcCr2n4Rvkbnu1js44lNWaY0YVZ50KyuyikswnW/HNYh3fanVz3zLrDnMKbTg2gUwiKdJrT3eUra773AkyQEtxurcnwmHo8xGdCa6WSJFv+AcwYcr77qIiwWnjkkrksfewrdte20Wl3cdXTa3jxmoVMGDtIDlvNdtjwrDo+6Y5RaUPFR8YzY+wMttRvQSL5ycc/YUxk4GXf2uxtOFyKcz41cWrf3QL8TGVTp1IU1K32EH382/OwWc05I8BNN93Em2++2d/Ls4QQW/t57UQpZQUeOQD/I4QoBF5CWS38jZTy00H2vwq4CmDSpEl+ty8UiIm08uSV8/nBU2v4slxJ43zowx1UNXdx9zmziAjQ98ZmtXHW1LN4evPTgBJOPibrmIBcG8DpcvLGTtUxXDptBOmxFqtSufvWz5Txl/8Hsy+DuMEdzLrWLn7w9BrW72v0/Nt1x+dwY6CdwuotSs5+DyfdGZS6hb0xHcNwwmKFogvUAo6Xvwcn3aU0+Lb4/4aWGGvj71fM59xHv6Kly8HBpk5Of+gLbjsrnwvmT+j/C/3J75RqaoCp34Ipi0dty9yMuWypV7qy9IRD9CTQq4VSSl7fUMEdb2zy9ECOdT/0kuMiA2qLkTl48CDbtvXb+SIa6E/csUezQ7scHQf0tUwe38e+w0IIMRP4EEgC/iilvGewY6SUTwBPAMyfP98Yfd+CgGib8j354dNr+GKH4hw+t2oflU0dPHLpXOICVMG/NHepxzH8eN/HNHY2khQdmK5EKw+tpLpdWalLjk5m8YQR3pOLL1Fyxxv3QkcDvH8bnPv4gIfsqW3jO/9axZ46Vf7sR9/K4YZTAuwUAnx0t/psyjlRVf8IcsxlgXBj/vcg0v0csrfDezfC02dDQ3/pT74lNz2ehy+dg9WtidfS5eCmVzby/afWUNXcefgBFeuUVn49nHi7T+xYMnWJJ5xsBM7OOTtg16pp6eLq/6zl+hdKPE6hRcD/XTSbmZlmwwwtzzzzDFLKPn+AtVJK0c/PHgApZTPQ035hcj+X6ZGU2TMSG93i2B8D6cBjUsobRnIek6ETbVNyDs+bo3YC+mRbDRc9sZLqvu5jfmDa2GkUpiqFfXaXnXd2vxOQ64K3TM6SqUsG1y7sj4goOOMP6rjkWdj9Rb+7r93bwHmPr/A4hULAHUvyufHUABaa9PD/7J13eJTF1sB/k0pIIAECAUIJvZdAAAHpRQFFkCKCCNYrggX081rvtVzuVRE7ooCIiqKACiiIFOm9995LgIRASEhP5vtj3i0Jm80m2ZKQ+T3P++xOP5u8O3vemTnnnN0CR6z+5j3/7d7xXYheMSxplK8NoxfDb09BjBHH+PQ6mNoBev9H+QV08ResW4NKzP3HHbwwd4/5C/734Sv0/mgtb/Vvwn0tq1q+5CvftjRsfB+EO8dyt0loE5bcv4TDcbntBLqP+iH1qV7WPe7mFu+N5vUF+7iWlG7Oq14+gEmDW3CHlb82jVPZBfQA2gB7bZS3taqXL4QQ9YBVQBVgOjCugDJq8omfjxeTh7YgvFwAn/2tLJT3X7jBwC82MuuRNtQLK/SR0TwZUHcA+2KVh4kFxxcwotEIl495LeUaf5/7O5sMhaJ+bzW3mxYAFk+ApzaAT/adi6X7o3nup92kZqgVOn8fLz4ZFsndTSsXbvyCICWseNOSbjpYRXW5TRDuPjR7uxIVFSW3b9/uaTEcJyMVVr+rQhKZlsJBLYf3/wyCXR8TNzktk/eWHmbWxtPZ8u9qEsbEgc0IjdkC3xoHeYUXPL0FKuY3cpgGlIPxfy3czx85rMFHtKvBq30buW3763ZCCLFDShnlQL1ngE+BVVLK7jnKvIEjqFB2/aSUS/Ixfh1gDRAOfAM8Jgs4oRe7+auI8dPWs7y2YD+Zho/WMqV8mDYyivZ1XPuwlZCWQLe53Ug1DPPm3jOXRhUauXTMHw79wLtb3wWgeWhzfuj3Q+E7vXERPm9rcfnS/XUV1cpg5vpTvLP4oNlArnygHzNGRdGqhvvPZQNwdBn8OES99/KBcdsshjTFiNzmsKKzl6ZxLz7+aun7seVQoZ4l/8RK+KK9MvZw8UNDgJ83b/Zvwpwn7qBaOYsz0L8OXKb3h2u4tuh1S+WWw7VSWECWHbhE74/WZFMKqwaX4vvH2jJxYDOtFLqeb4BLQDchxNgcZe+ilMJdwJ/WBUKIcCHEYeMKz1FWC7VSGA58CzxeUKVQU3iGta3B16OiCPRTLrQSUjJ4eOYWFu52Xrg3W5TxK0PPmj3NaWu/gq5ASsmvx341p++re59zOi5bVSmDJtZ+AHEnycySvP37Qd7+w6IU1goN5NcxHTynFGZlwcq3LOnWo4ulUmgPrRiWdKpFwVProP04zAaUqfGwYAzMeRASLttt7gza16nAX893ZkQ7i2VkVMpGyl3bA4D09oMuL7tcjtuN+KR0Jvy8mye/30FsYpo5f2hUNZaO70ynehU9KF3JQUqZCAwDkoHPhRDbhRBzhBAHUa5lYoEHbSh2vijjlgZYjFlM/II6m5iKmsdnCiFm2bgauvCjcCKuUgAAIABJREFUaazo2qASP/+jPZXKqGhM6ZmS537azX/+OEhaRlYerQvOwLqWEHmLTy42rx66gkNxhzh67SgA/t7+9KnlRK8WbR63bMdmpJC26AVGz9zCzA2nzFVa1QjhlzEdiAgNdN64+WXnt3B5v3rvWxo6v+Q5WVyEVgw1KnTPXRPhkSVQzsrH7tE/4Yt2sG++y1cPA/19mDiwGd8/1pbwsr686DPXXPZjVm+WX9SWsvlh1ZEr9P54Db/usqxYVCrjz8zRUbw/uAVlSxXwsLimQEgp16Aim/yIClN3P8oa+SuguZQyV9PnXDA5zfZHxUYelcvlgQNYJZem4cH8NrYj9cMs7itnrD/FkK82cS4uyU7LgtOmchvCg9SC8o20G6w6t8ol40D2KCu9avaijJ8Tz1F6+8A9H2FaoPA7/TdlTlqMO/o0rcyPT9zhWa8JVw7B0lcs6fZjoUyY5+RxEVox1Fio2QHGbIA2T1jykq/BL4/BvFEqVrGL6VSvIit6XaG+l1JoEmUpJiffwxPfbWfC3N3EJ6fn0UPJJiElnX/O38sj32zj8g3LysHAyHCWje9M94a33yRWXJBSHpFSjpBSVpZS+kspa0gpn5JS2gwDJKU8ndPK2aoswo5FtPW12h2fTWMhPCSAeU91oEfDSua8Peeu0/fTdSzd7/wIhV7CK9uW7oJjrgmRl5qZymIrRc16pdJZZFZpxe7Kg83pf/t+RxmSeLprHaYMb0Up34JFu3IKaUkwbzRkJKt0xYZw5wS7TYorWjHUZMcvEPp9AA8vhGArS9mDC2FKOzj0u2vHz0glYP175uSP3v2JQ7lQ+XXnBe76aC2rj1zJrXWJZsPxWO7+eB0/bz9nzgsN8uPLh1rz0QMtCSmtV101GncQHODLjFFRvN6vET4m11wpGTw1eyf/XriflHTnhrC7r859CGOlbePFjVy6ecmp/QOsOruKG2k3AAgPCieqcp52V/ni8o0URszYzMjTd3FFKn+MYeI6fzZfy0t3N8TLy8OOo/98CWIMLxY+ATBkFvjlEZyhmKIVQ41taneFMRuh1cOWvKRY+Pkh+OUJSIrLrWXh2DEL4o3QsaUrMPSZd7mvZVVz8aUbKYz+Zhuv/LqXxFT3hfQrytxMzeCNBfsZMWMLF64nm/P7NavCX8939ow7B42mhCOE4PFOtZk/pkM247pvN51h0NSNnIrNLUJi/qkaVJU7qtwBgERmC1fnLKwNWwbUHeBUP7BrjsbQ95N1bD4ZRwKleTt9pLms2rHZyp+tJ9k7F3Z9b0n3nQSVXGv97Um0YqjJnVJlleuaEb9AGYtyxr65ynL56F/OHS81EdZOsqQ7vUBIuQp8MiySLx9qRQWrsyVztp7jro/WsvG467e3izJbT8XR55N1fL/Z4qA8pLQvnz0YyZQRragQ5O9B6TQaTcvqISx+thN3N7E8oB24eIN7Pl3HT1vPkpXlnPPbA+tZtnYXHF9AlnSewUt0YjSbLqp4zALBfXWcY42clJbBxMUHGTVzK1dvKgM5LwH1uj2MrG14dpJZ8Md4yPTQMaLY42p8E82GQuRDnpHFTXhEMRRCNBBCzBZCXBRCpAohzgghpgohqhSgrwghhMzjGuYOWW5b6vWEpzep8EUmEi/Bj0NhwVgVAN0ZbJkKN2PU+7LVIOoxc9HdTauwbHxn+litfl24nszwGVv418L9JKWVrNXDlPRM3vnjIA9M28RZq0PtPRuFsWx8Z+5tUdVOa41G406CA3yZ+lAr3rmvCX5GPOWbaZm8/Os+Bn+5kQMXCz+Hdq/R3WwMcj7xPHMOz8mjhWNIKflg+wdIlAJ7R5U7qBJUuJ9HKSVL90fTc/Iapq+zWB1XKuPPD4/fwXO96iP6fQDexoNt9G7lKSPLddbdNklPgfmjIS1RpcvXgXs+vC3iIdvD7YqhEKILymfXCCAa+A1IAp4C9hjhnQrCTZQ/L1vXKVsNXCjL7UdACAz8EobNgUDLoWp2z4YvOsCJv3Nv6whJcbDhU0u668vgWypblQpB/nwxohWfPhhJSGmLVe13m87Q55N1bDvtou3tIsbOs9fo+8k6vl5/ymwsXqaUD5OHtGD6w62pVKaU/Q40Go3bEUIwsn0Evz7dgVpW7lZ2nr3OvZ+t581FBwplXOfv7c+wBpY1kMnbJzslstMvx35h2Zll5vTIxiPt1M6bU7E3GfXNNp6avZOL8ZbwgZ3rV2TJc50sTsEr1IFur1oa7psHS15wuYeMbCx7HS6pyDJ4+6tzhf6uj2jjadwa+UQIEQgcR7lQeEZK+blV2QfAC8BOIMpRZ61CiAiU4ndGShnhKVlKVOSApDhY8iLs/yV7ftSj0Osd8A+y3c4ey96AjYZiGFofxmxS7gty4cqNFF79bR8rDlkMUYSAxzrW4sW7GnjWes1FpGZk8tHyY0xbewLr3afO9Svy3qBmVAkOyL2xxuk4GvmkOFCi5q8iQHJaJp+vOsa0tSdJz7R8mUOD/Hm1b0MGRoYXKPZvWmYaDy15iENxKtxpRNkIfr7nZ0r7FsxI4sT1Ewz7YxgpmUqBG1p/KG+0f6NAfSWnZfLF6uN8teYkaZmWlb8KgX683Kchg1pVu9XAREr1W7NthiWv43PQ8y3Xr9odXAhzrc7Y9/0A2j6Re/1iSG5zmLsVw3HAZ8BqKWW3HGUFCg1VCMXQqbKUyIn1wG+w+AVIumrJC6kB930BtTo53s+Ni/BpJGQYT49DvoUmecfflFLyy84LvPX7ARJSLFvJtSsGMnlICyI95RnfBew7H88L83Zz9HKiOS/I34fX+zXigTbV3R9AXqMVQ02hORmTyL8XHWDdsexnpdtGlOet+5rQqErZfPd5Ov40Q/8YSrLhVmVA3QG80/GdfPeTkpHCg4sf5Ph1FQe6bkhd5vSbQymf/O1ISClZcegKb/1+gPPXLMZxQsBD7WryYu8GBJe241c1KwsWPAV7f7bkdX8DOr+YLznyxbXT8GVnFewBoFF/GPrdbbeFXFRC4pl+7WfnLJBSZgI/5ahXUmQpnjQZCE9vhob3WPKun4Vv74E//6n8PjnCmvcsSmGVliqgugMIIRjcuhrLxnemc31LFI+TMTcZNHUj7y09TGqGc91CuJu0jCw+XH6UAV9syKYUdqhTgaXPd2JY2xpaKdRoiim1Kwbx3aNt+WJEKyqXtShcW08ro7LHv93O9nwekYkIjuC1dq+Z0wuOL2DJSYdDcJv5YPsHZqXQ39ufSZ0n5UspzMjMYtGei9z7+Xqe+G57NqWwRfUQFo29k3cGNLWvFAJ4ecF9U6BBP0ve3+/Almn5+jwOc+UQzB5kUQpDaigjzBI0z7p7xfAqymN/CynlXhvl9wELgO1SyjYO9hmBWjGMBT4EIlBhog4Di6SU590hS4l+4pbSOP/xYnZDlPJ1YMBUqNEu97ZXT8DnbUAaCtzI36BO9wKIIPlp2zn+88dBbqZZlMEGYWWYPLQFTcOD892npzkUfYMX5u7hYPQNc16Arzev9G3IQ+1qet6vVwlHrxhqnMnN1Aw+/fsYX687RUYOS+VWNUJ4snMdejUOw9uB772UkpfXvcySU0ohDPQNZN6986hepnoeLRUrz6zk+dXPm9Nv3PEGQxsMdahtUloGc7edY8b6U9mUQVAeE/55d0MeiKqe//krPUUZPJ5aY8kb8CW0fDD3Nvll71z4/TlINxY1vHzg0WVQrbXzxihCeHwrWQhRFjBpDSFSylvMsIQQkahzfVellKEO9htBLsYlQDowCXjd+pygK2TREytwIxp+fxaOWQ4qI7xUHOZur91iTALA/EctZxUjOsGo3wv1ZHYuLomX5u9l00nL9raPl2Bst7qM614XX++i76EpIzOLL9ec4JOVx7KdP2oTUY5Jg1t4Nk6oxoxWDDWu4NjlBN5beoQVh26NU18rNJAnOtXm/lbheZ6jTkxLZOgfQzmXoBzeNwttxrd9vsXXy/4KXXRiNIN/H2x2Zt2rZi8md5mc585EbGIq3208zXebz3A9KbsRjb+PF8PaVOe5nvULF9IuNRG+HwDnt6m08Iah30KjewveJyil869XYPtMS55vabVS2fT+wvVdhCkKimFVwBS41VdKeYt/ESFEPeAokCaldMgBm+FW5k1gHnAQuA7UBh4CxgN+wEQp5euulEVPrAZSwu4fVDzJVMtKFxUbqtXD8FaWvOi98JXVWcTHVkB1hxaK7ZKVJfl+8xne/fMwyVYRBppULcvkoS1oWDn/53bcxfErCbwwdw97zlueVfx9vPi/uxrwSMdaDq0WaNyDVgw1ruT4lQSmrz3Fb7suZDPWABXR6O6mlenVuDLta1fAz8f2A+/+2P2MXDKSDOMn7pGmjzChde5h3DKyMnjsr8fYeUU5lK4SWIV5984j2N/2jkt8cjqrj1xh+cHLLD94mdSM7HKWK+3Lw+0jeLh9Tef5VE2+BrPugcv7VdrbD7q/Dq0fUb5388u1M8rIJHq3Ja9CPXWmMKyxc2QuohRaMRRCvA/0L8DYPaSUF4QQ4YBpW9dpiqE9hBD3AotQK4cRUsqLRr5TZBFCPAk8CVCjRo3WZ86csVWtZHL9HCx6Bk5aBXQX3tBpAnR+CXz8YPZgOL5clTW8B4b94FQRTsfe5MV5e9h+5po5z9db8HzP+vyjc218itDqYWaW5Ov1J/lg2VHSrCbXltVD+GBIC+pWKoClt8alaMVQ4w6u3Ejhm42nmb35TDYjOxNB/j50aVCR3o3D6NqgEsEB2VcEv9n/DR/u+NCc/qrnV3QI72BzrCm7p/Dlni8B8BbefHP3N0RWisxW58L1ZJYfuMTyQ5fZcjLulm1vgBrlS/N4p1oMaV2dAD8XeIhIvAIz74a4E5Y8/2Bo8yi0GwNlHIwJf2Qp/PYPSLluyWsyUJ0pLAluaZygGM5G+fvLL7WklKddtZWcF0KInUAkMEpK+Z2Rp7eS3YGUaml+2RuQbhX+KawpRD2iLJoBEMqBtgtCDGVmSWauP8WkZUeyKVwtqocweUhz6lby/Jf/lKHA7rBSYP28vXi+Vz2e7FS0FFiNBa0YatxJYmoGP209y9frTxFt5f/PGh8vQbva5WkbUYHaFQOpUzGImhUCeGHtM2y4uAGA8qXK06NGj1vaZmRlsPDEQnPElHEtxzGs3qOciE3kxJVEjl9JZN2x2GxnnnPSvFowT3auzd1NKrt+3rp+Dr7rD3Ens+d7+6lgDB2ehdC62ctS4lUkk6vH4OwmFYLVhJcv3DUR2j5ZYgxNPL6VbAiRl8FHf2Ah4LQJVwjxI/Ag8KqU8n+ukkVPrHaIOwULx8GZ9bbLWzyonGe7EFtbtH4+XjzasRahQYU481JIriWl8fX6U6SkW5TWJlXL8uHQljSo7HmlVZM7WjHUeIKMzCy2nb6mtm8PXeJcXLLd+kJA5XLppFSaRIbIXamzpnRmfTIuPsnVxLwjSjWvFkyvRmH0ahJGg7Ay7vWSkJ4Ce39SwRGsVw8BENCwHwRVgthj6kq8ZLufstWU82onHGUqTuQ2h+XuQdg17AJ6AG2AW5QxoK1VPWdhuFEnMUe+J2QpmZSvpYxKtn4FK96CDKuJzMsXur7ichHqVirDL2M68NXak3y84ijpmZK0DGXkUVTw8RKM616Xsd2Kh5GMRqNxPz7eXrSvU4H2dSrwxj2NOHI5geUHLrP80GX2nr81tJ6UEB3ni3fqYAKqz0II+2HlsjICuXJqEDLDtlLoZ4zfs3EYvRqFUTnYg5GWfEtB69EQORIOL4YNH8OFHUahhMN/5N1Hne5w/wwIrJB33RKCu1cMnwE+BVZJKbvnKCuQg+s8xqsMnAQCgPZSys2ukkU/cTtI7HEV8/L8VpVuNwb6vOtWEQ5fUm5gDlx07OnZHRRntzolFb1iqClqXIpPYe2xGI5dTuBkzE1OxCRyNi7JHCnJq9QFvEuds9ODFxmJ9ZEZIYDaVakdqrak61QMpFGVstxZL5QypfLwPegppIQzG2D9x5bz69Z4+yk3aqH11BUeBfXvAq/bL1KWIxSVreQg4BgqDN04KeUUq7JJwIuoFbrWOdzLhAMrjWQPKeUFq7IngCXWeUZ+Y2AWakVwk5SyQ47yAsmSG3pizQdZmcrvYdJVaPOEMkRxM+mZWfy28wKHLyW4feyc1K0UxKDW4fj7lMzJqbiiFUNNcSA1I5OzV5M4EZPIiZibXE1My7WuEFA1JIA6xvnEqiEBxdcTwqX9cGQJ+AaoMKuh9SC4ht1QqyWNIqEYGoJ0Af5EreLtQClnLYBGKCfVd0opj+RoE4HFV2EtKeVpq7LdQHOUQ+uzKKOS2kBL1Fb5YaCXLUfXBZElN/TEqtGULLRiqNFoijNFJSQeUso1KCvhH4FqwP1AEPAV0NxRRcyKz4BfAW+gndFfbWAj8DzQKrfoJy6QRaPRaDQajabY4pE1VUPhctj1jbFCaHM9W0r5NfC1u2TRaDQajUajuV3Rpo8ajUaj0Wg0GkArhhqNRqPRaDQaA60YajQajUaj0WgArRhqNBqNRqPRaAy0YqjRaDQajUajAbRiqNFoNBqNRqMxcLuD69sVIUQMcMbB6qEoB9oaTVFB35P5p6aUsqKnhXAG+Zy/QN8vGuei7yfPYHMO04qhBxBCbL9dIiZobg/0PanJD/p+0TgTfT8VLfRWskaj0Wg0Go0G0IqhRqPRaDQajcZAK4aeYZqnBdBocqDvSU1+0PeLxpno+6kIoc8YajQajUaj0WgAvWKo0Wg0Go1GozHQiqEbEUIMF0KsE0LECyEShRDbhRBjhRD6/6BxK0KIWUIIaec67GkZNUULPX9pHEUI4SuE6CGEmCyE2CyEiBZCpAkhLggh5gshuubRXt9rHkRvJbsJIcQU4GkgBVgJpAM9gDLAb8AQKWWm5yTUlCSEELOAUcAG4LiNKtFSylfcKpSmyKLnL01+EEL0BJYbyUvADuAm0BhoauS/I6X8l422+l7zMFoxdANCiEHAfNQXpLOU8piRHwasAhoBz0spP/GclJqShJVi+IiUcpZnpdEUZfT8pckvQojuKOXuEynluhxlDwA/AN5AdynlKqsyfa8VAfSyrHswrbz803SjA0gpLwNjjOTLeplco9EUQfT8pckXUsq/pZSDcyqFRtnPwCwj+VCOYn2vFQH0H9fFCCGqAa2BNGBeznIp5RrgAlAZuMO90mk0Gk3u6PlL4yJ2Ga/VTBn6Xis6aMXQ9UQarweklMm51NmWo65G4y66CSE+FEJME0K8I4S4Sz+Na6zQ85fGFdQzXqOt8vS9VkTw8bQAJYBaxqu9APVnc9TVaNzFwzbyDgohhkkp97ldGk1RQ89fGqcihKgMjDaSv1gV6XutiKBXBlxPkPF6006dROO1jItl0WhM7AaeBZqg7tGqwD3AHpTl4AohRLjnxNMUEfT8pXEaQggfYDYQDKyUUv5uVazvtSKCXjF0PcJ41ebfmiKDlPLjHFk3gcVCiOXAGtQZnleAce6WTVOk0POXxpl8iXI9c45bDU/0vVZE0CuGrifBeA2yU8dUlmCnjkbjcqSUacD/jGRfT8qiKRLo+UvjFIQQnwCPoVzR9JBSXspRRd9rRQStGLqe08ZrTTt1queoq9F4ElPUE72VrDltvOr5S1NghBCTUUdXYlBK4TEb1U4br/pe8zBaMXQ9JrP8JkKIgFzqtMlRV6PxJBWM10S7tTQlAT1/aQqFEOJ9YAJwFeglpTyYS1V9rxURtGLoYqSU54CdgB8wJGe5EKILypfTJWCTe6XTaGwy1HjdZreW5rZHz1+awiCEeBf4P+AaSinck1tdfa8VHbRi6B5MZ7beE0LUNWUKISoBXxjJd6WUWW6XTFPiEEK0FELcI4TwzpHvI4SYgNryAfjI/dJpiiB6/tLkGyHEO8A/gesopdCRVT59rxUBdKxkNyGE+AIV0icFWIElMHhZYAEwWAcG17gDIcQAVDD6OOAocB7l/qEZym1NFvCKlPJ9jwmpKVLo+UuTH4QQ/YGFRnI7cCCXqoellO/maKvvNQ+jFUM3IoQYDoxF/QB7ow75zwSm6icgjbsQQtQCngPaog56V0C5iDgPrAOmSCl3eE5CTVFEz18aRxFCjAa+caDqGillVxvt9b3mQbRiqNFoNBqNRqMB9BlDjZsRQoQKIWKFENK4ZtmpO9qqnr1rvxs/gkcQQkRYfd6unpZHoylJCCF6CSFmCyFOCiGShRBxQogDQohZQogH8mjrI4QYJ4TYZLS7KYQ4KIT4rxAi1F2fwZPo+at4oSOfaNzNx1jcoWg0Gk2RRQgRCHwLDMpRVAoohwof2RX4OZf2wcBfQLscRY2Ma7QQoq+UcrcTxdZoCoVeMdS4DSFEL2AEcKoAzcvYudrYaafRaDT5RgjhDyxBKYVZwDTgTiDMuDoBk4ALdrqZg1IKJfBfoC7KwOsRIB6oAvwhhCjvmk+h0eQfvWKocQuGw9IvjeRY1ITrMFJK7WxZo9G4k38BnYFMYIiU8rcc5VeA9bk1FkL0AfoYyTeklBOtimcJIU6g4pKHAy8BLztLcI2mMOgVQ427eAuoDcyXUv7paWE0Go0mN4QQVVGOmQG+sKEUOsJY4zUWtbKYDSnlOuAPI/mEEEIv1GiKBFox1LgcIUQLYDwq8PlzHhYnG0KI1dZGMEKITkKIBUKIS0KIVCHEKSHEZ0KIMAf66iSE+FEIcVYIkSKEuCaE2CKEeFkIYS8wvKl9R2PsGOOA+zEhxCQhhMNnMoUQVYUQ7wohdgshrhtynBRCfC2EaJxH275CiF+FEOeMz55otF0jhPi3EKKRo3JoNMWcRwFf1Bbw5Pw2NnZIehjJhVLKtFyqzjVey6O2qfM7jp6/LG31/OUspJT60pfLLtTDx1bUBPucVb40rll22o421bPK83OyfKtNcqCU10wr2ayvM0B4Ln0IVJQQW+2s2ze2I8dzqHNMttqeBbpZpbvm0scwIMmODBnAE7m0/SwP+SXwuafvJ33pyx0XsNG453fmyPfBcPOWR/soq+/N43bq1bWqN6EAcur5S+r5y9mXXjHUuJpnUcYhu4DPC9qJEGKnECINSBVCJAgh1gohnjesBp1BZ9TKwCLUk3soauv7HdSkUgMb20EGrwDPG+/XAz2BiqhJ/1Ug2Wj/lxCinI3P1hNlrS1QkUgGog63Rxj9hgBf2xNeCHEP8CMQAGww+qiGsgC/ExWFwBv4SgjRO0fbHsA4IzkPZWVZHagEtELFTp5nfA6N5rbG2NKNNJLbhBClhRBvCSGOA6lAurEa9qGx5WyLBlbvT9oZ7gxKoQJoWAix9fyl0POXM/C0Zqqv2/dCfTkTUE+xbXKU5WvF0M51AmheCBlXW/U1LZc6nxrlqUDZHGVhRr40+rplRRPoazXGhzbK92GJPFLRRnlXsj+Nd81RXgq4bJT9CXjl8jm+M+rsy5E/2cjfiQOrIfrS1+18oSyFTd+1j1Dh3HKbf+KAzjb6eM6qTtM8xrtq1PulALLq+UvPX06/9IqhxpV8AQQBX0optxWgfTLKh9gA1BN4ICpeZieUGwhQT8XLhBDhhZQ1CWUZaItvjFc/oEWOspFGPsCz0sZZIinlEtSTPMAjQghvU5kQIgpoaiT/I6WMsdF+NfCLHdkfRD0dZwGjZe4ho14zXpsa5z5NmA69X5TGTKvRlGCCrd4/jfJVuBC1ilgK5W7mRZRCVQ74zcb8Y72TkZLHeKaVrDzP8dlBz196/nIaWjHUuAQhxFDgHuASajsi30gpf5ZSjpZSLpRSHpVSJkkpE6SU66WUw4EJRtUw1JZJYdgspbyeS9kRq/eVc5SZDowflVLutdP/POM1BMtEat0eVID43PjVTllP43UPcFMIEWTrAq4Bpok7yqr9LuO1jxBivCMHzTWa2xjr30U/lGutgVLK3VLKVClltJRyMvCwUac8typlwup9XsqKyKPcEfT8pecvp6EVQ43TEUKEAJ8YyQlSynhXjCOl/Ahl2AIwRAjhW4juLtoZJ8kqWTpHcU3j9WAe/R+w0QbUORyA61LKS3baH7JTZjrPFInaurd3VTTqVrRqPxvYhpoPPgRiDWvH/wghegsh/NBoSg45faa+aWslSko5F7WNCmpXI7c+AvIYr1Qu4+YHPX/p+ctpaMVQ4wr+jXoyXS6lnJNX5UJi2uIIAuoVop9MB+vlfLovY7zmNakn2GgDlu2jvNrbKw+2U5Ybph8jpJQZQHfgP0A04A90QW3d/AVcNg7f6wlWUxIwnfkDtc27w07ddcZrjRwrVbFW7yvl1th4mA2xGreg6PlLz19OQyuGGldQy3jtJSyB07NdVnVHWeXnfOp2hCtW70NyreU6TBNmXtsX1uXWk2yijfK82ufE1Md8KaVw8HrTugMpZaKU8g1UFIZmwJPAD8B11N/1X+QSD1ajuZ2QUt4EzhnJeDtn3kBtb5ooa/Xeevu2tp32NbH8Dh92WEjnoecvzS1oxVBT3LE+M5PbGRtXctp4tet8FWhio431+5A8nNDac85qcocRaaeOQ0jFfinldCnlQ6iJdr5RPEAI0bKwY2g0xQCTsVyIEMLe76S182br+ecAFqOTdnba32H1fqfj4jmN08arnr80ZrRiqHEF41FfcnuXid+t8lYVYCzTKmMCcKyA8hYGU6zU+kKIZnbqDTZerwP7bbQH5bsrN+63U7bMeK0jhOhkp16+Mc4n/dcqS0cP0JQETIYUpbCv2HUxXo9an+WTUiYDK43kfXa2MYcYr9ewE3fZhej5S3MLWjHUOB0p5SnDgi/Xy6p6nFW+2UhFCFFGCFHWRvdY1XkZ5cAUYK6UMt0FHycvZgMmFw+fCBvxToUQd2NRYGdab01JKbdjOdj9uhCioo32XYFBechg2lKfkceTO0KIBvbSNqhj9b4w56A0muLCL8AF4/071i5aTAghRmFRNGydpZ5ivFYEXrDRviOPLhLQAAAgAElEQVTKcwMoH4QZhZK4YOj5S3MrznaMqC99OXKRh4NroCXqKXoq0B/15S6H2jq+C/VEb+rjIlC1gHKstieHDXlH2yh71ap8NSr8UwXU2aJ/AjexOIAtZ6N9L6v2R1CTcEVUtIFngRuo7ZZcQ0qhnNCawmFFo1z5NDH+ZmEo9w5Po1Yxbtj4G+wHXketgFQ12jUAnjH+DxL1Q1nK0/eOvvTljgsVMcP0nVsGdES5pqmLOrOWhsXJfnAufSwx6mSijCNqG3PYKJRzbNO8UL6AMur5S89fzr/3PS2AvkrmZTVJzMqlvKVVHXvXAezE8HRADmdMrAIVEsqenIWJNXoOx2KN9reaBO1dV3P5G9i7YoH2nr5v9KUvd16olb4MO9+LY0B9O+2Dgc122l8EWhZCPj1/6fnL6ZfeStYUVY4Dj6NibO5CTaCpKPcRZ4HfUA5mI6WUefngcilS8TwqXulPqCfrNCAe5WfxFaCJPTmllJ8Y7RehJrFU1ErEx6jt8lMOyLEI9ZT/CrDW6CcD9cR/zJDtQSy+x0yMAp4wyvcZ7TJR54m2oNwPNZBSbspLBo3mdkIqR9btUBGYzqC+l/EoZe9FoIWU8qid9vEoJ9DPoL5L11FRSg4B76LCee7Orb070POXJifC0Lg1Go1Go9FoNCUcvWKo0Wg0Go1GowG0YqjRaDQajUajMdCKoUaj0Wg0Go0G0IqhRqPRaDQajcZAK4YajUaj0Wg0GgBu8XKuKRihoaEyIiLC02JoNBo3sWPHjlgp5S2RHoojev7SaEoeuc1hWjF0EhEREWzfvt3TYmg0GjchhDjjaRmchZ6/NJqSR25zmN5K1mg0Go1Go9EAWjHUaDQajUaj0RhoxVCj0Wg0Go1GA2jFUKPRaDQajUZjoBVDjUaj0Wg0Gg2gFUONRqPRaDQajUGxUwyFEMOFEOuEEPFCiEQhxHYhxFghhMOfRQjhJYToIIT4j9HXeSFEmhDishBiiRBigCs/g0aj0Wg0Gk1RpFj5MRRCTAGeBlKAlUA60AP4HOghhBgipcx0oKvawAbjfRywHVhv5PcB+gghZgGPSimlUz+EptiRlpHF2bibnLmaREJKBgmpGSSmpHMyYR/nkvcQXqopdcu2JKiUL0H+3pTx96VGhdLUrFAafx9vT4tfMNJT4NwWSE/Oni+8oEoLKBPmGbk0mhxkySzWX1jPwasHqVm2Jq0qtSIssAD3Z1YWXDkIZzfB9bMQEAKlK0DpUChfGyo1AiGc/wE0xQIpJafiT7Hjyg7iU+PpWLUjjSo08rRYLqHYKIZCiEEopfAS0FlKeczIDwNWAQOBccAnDnQngb+BScBya2VSCNEFWAyMBtYC3zjvU2iKOvHJ6Ww5eZWdZ69z/EoiJ2MSOROXRGaW6fkgC++gw/hXWI136bMAHEj+hT8vViPtalcyEhpjWoj39hLUKF+aOhUDqVMxiMga5WhfuwLBpX098+Ec4doZ2D4Tdn0PSVdt1/HygYb3QNsnoGZH/WOp8QgZWRn8eepPZu6fyfHrx7OVhQeF075qe8a0GEOl0pVy70RKOPQ77JoNZzdDanzudcOaQauHofkQCCjnpE+hKeociD3A9H3T2XF5B9dTr5vzP9n5CR2rduSxZo8RFRaFuI3mQVFcFsSEENuB1sAoKeV3Ocq6AKtRSmO4lDKrkGO9DrwD/C2l7OFIm6ioKKkjBxQ/0jKy2Hoqjg0nYtl4PJZ9F+LJsvmVyMQneDd+Fdbg7X8l1/4yUyuSdrUzGfGR2HruEgKaVg2mQ90KdKgTyh21y3t+VVFKOLESts6Ao0tRz00OUrERtHkMWjwI/kEuE7EoIoTYIaWM8rQczqC4zV+bLm7irU1vcSHxgt16VQOrMr33dGqUrXFr4dnNsOwNOL81f4P7lILmD0Cvt7SCeJuz9vxaJqyeQGpmqt16kZUimXjnRKqXqe4myZxDbnNYsVAMhRDVgHNAGhAipUy2Uec8EA50lFJuLOR4/YA/gKNSygaOtCluE2tJRkrJzrPX+HXnBRbvi+Z6UnoeLTIJqf09mf6Hs+V64UO1gOZcSN5HJtn78E6rS/zJ0Uhpf1G+bCkf+jWvwsDIakTVLIeXl5ufOlNuwK9PGAphTuGqQViT7Hk3Y+DiTtt1h/0AVVu6Rs4iiFYMPcPemL08+tej2X6sA3wCuCviLi4mXmRvzF5SMlPMZRVKVWBa72nUL1dfZcRfgD9fgsN/3Np5YCWo2R7CmkJqAiTFQeJlOL0eMnL87JQNhwFToXYXV3xMjYdZemopr6x7hQyZYc4r51+OyEqReAkv/j73N1lWa1A1ytRgdt/ZlCtVfB4WcpvDistWcqTxesCWUmiwDaUYRgKFUgyBesZrdCH70RQhLlxPZu62cyzYfYEzV5Ns1hECmoUH0752BZqEB1OnYiAro2czfb9FKSztU5qhDYbyUKOHCAsMIzY5ltkHZ/PzkZ9JTE8EINPvOGMHnqRvtcc4EZPIwegbbDxxlX3nr2dbkbyRksGcreeYs/Uc1coFMDAynKFR1alevrRL/xYAxJ2EOQ9CTHaFlzrdoc3jUO8u8LYxRVzaD9u/hj0/Q/pN44Och5l3w8Cp0GSg62XXlEguJF7gmb+fMSuFIf4hjGg0ggcbPkiwfzAA6VnprDq7itfWv0ZKZgpXU67yyNJH+KLnF7RIy4Q5w5SyZ8LbD9o+CVGPqrOEtrYEk6/D/vmw41u4tFfl3bgA3/WH9uOgx7/Ax9/VH1/jJuYfnc/bm95GGrsn4UHhfNj1QxqVb2TeMj5z4wzf7P+GhScWkpGVwdmEszy/6nmm956On7efJ8UvNMVlxfBZ1NnBBVJKm786QohPgGeByVLKFwsxVmlgP1ALeFZK+Zkj7YrTE3dJ4/ClG3y15iSL9ly0OitoITwkgB6NKtGhTugtZwB3XdnF6KWjzU+GDzR4gGcinzH/CFmTkJbA1D1T+f7g9wAIBNN7T6ddlXbmOqYzjBtPXGXl4cuci7v1OcfbS9CvWRX+0aU2TareOo5TOLUW5j4Mydcsea1HQ/tnILSuY32kxMOen+DvidnPZnV5Gbr8E7yKndODfKFXDN1LQloCI5eM5ET8CQCC/YP5oe8P1Cxb02b9HZd3MHblWG4aDy8BXn7MvniJ+smJlkpNB0OPN6BchOOCHPoDFj0DyXGWvKqR8NCvULp8fj+Wpoix8PhCXt/wujldO7g203pNy9WgaeWZlYxfPd6sRPat1Zd3O71bLM4cFvet5FeBicAPUsqHcqkzEXgVmCal/EchxpoFjAIOAq2klPYPFxgUh4m1JCGlZMupOL5ac4JVR2JuKS9Tyod+zaowMDKcNhHlbW7h3ki7weBFg4m+qRaOW4e15uveX+PtlfuZwCyZxZgVY9h4US1aVwqoxPz+821uL0gp2XHmGr/uusAfey5yIyXjljqd6oUypksd2tep4LyJZtsM+POfkGWM5+0P930OzYcWrL/YY/DjAxB3wpLXqD8M/BL8AgsvbxFFK4buIz0rnbErxrIpehMAvl6+TO89ndZhre22O3D1AGOWj+FaqnoAap6SyvfRl/EqFQJDvyv4NnDCJVg4Fo6vsORVaQEjF2jlsBgTmxxL/9/6k5CeAEDjCo35sueXeW4Pz9o/i8k7JpvTY1qM4emWT7tUVmeQ2xxWXB7pTb+ILtVihRBvoJTCeGBoXkqhEOJJw4/i9piYW5UPjWfYdz6eYdM2M2za5luUwjtql2fK8FZse60n7w5qTrvaFWwqhVJK3t70tlkpLOtXlnc7vWtXKQTwEl5MvHMi5UupH4cryVf418Z/YesBTAhBVER5/juwGdte78mXD7WiY90K2eqsOxbL8BlbGPzlJnadvXZLH/lm5duw+AWLUhgUBo8sKbhSCBBaD55YCbW7WvIOLYJZ/dQ5LY2mkEzdPdWsFAK81eGtPJVCgCYVmjAj9E58je/f3lL+zA+rCY+vKNzZwDKVYcR8uOt/mH+eovfA9wOyr8JrihWTtk0yK4U1ytRgRu8ZDp0ZHNVkFIPrDzanp+6ZyvoL610mp6spLoqh6dfFntmjqaxAv0RCiAnA20Ai0EdKeSCvNlLKaVLKKCllVMWKFQsyrMaJRMcnM2Hubu79fD1bTlm2eYSAu5tU5renO/DTk+3p17wKpXztK3gLji/gr9N/mdNvdniTyoGVHZIjNCCUdzq+Y06vPreauUfm2m3j7+PN3U2r8MPjd/D7uDvp17wK1vrqjjPXGPjFRp6ds4vz12yfj8yT3XNgneWpliot4YlVUM0Ji14B5WDEL9DuKUvexV3w21PKP5xGU0Au3bzEdwctjijGtBjDvXXudazx3rnUXz+Fx67fMGd9HBxIbKATDASEgPZPQ/9PLXnRe+A7rRwWRzZe3MiSU0vM6dfueI0yfmUcaiuE4NV2r9Khagdz3uTtk8nMcsStctGjuCiGp41X24dJFCY78dN26thECPEMMBlIBu6RUm7Ko4mmCHEzNYMPlx+l2wer+XWnxX2Fj5dgWJvqrJjQhS9HtiayhmM/BqfjT/O/rf8zpwfVG0Svmr3yJVPnap0Z0WiEOT1p+ySOXTvmUNtm1YKZMrwVq17sykN31MDX26IhLtpzke6T1/D+0sMkpORlTW3FuW3w+7OWdL3e8MifEBzueB954e0Dfd6DPpMseYf/gNX/y72NRpMHU3ZPMRubNK7QmKdaPJVHC4PT69V2L/B4fDzVDVvLhPREPtj+gfMEbPUw3GutHO5WRl2Z+fh+ajxKamYqEzdPNKf71OqTTclzBF8vXybeOZEAnwAAjl8/zqITi5wqp7soLorhLuO1iRAiIJc6bXLUdQghxFjgU1Q0lf5SyjUFE1HjCdYejaH3R2v5dOUxUtItK1O9GoexbHxn3h3UnDoVHfevJ6XktfWvkWy4pqgVXIuX2rxUINnGtx5PvXLKwD01M5VX1r2Szb1BXtSsEMh/BjRjxYQu9G1mWa1My8jii9Un6PXhWv4+fNlODwY3LsLPIyAzTaUrNoLBM8HPRZbP7Z6EO8Za0mvfh/2/umYszW3N0WtHWXh8oTn9QusX8HIk+mnMUfjJcs/7hzbk9c7vm4sXn1zM5ujNzhO09Si41yq2wtlNsOJN5/WvcSlf7/uaswkqYEEZ3zIFnvNDA0J5pMkj5vTnuz8nJSPFTouiSbFQDKWU54CdgB8wJGe54eC6GsrBtcOrfUKIp4DPgFRggJRyRR5NNEWE+OR0Xpq/h4dnbuXCdYtlb+MqZfnxiXZMfziK2vlQCE1subSFvbHKHYWvly/vdXqP0r4FU6D8vf2Z1HkS/t7KjcWRa0cKdO6kZoVAvhjRmnlPtadFNYuV8qUbKTw6azvjf97N9aQ0243Tk+Gn4Rb3HAHl4ME54O/YFkmB6fW2cntjYsHTaptNo8kHH+/42GzteWf4nbSt0jbvRklx8MNgSDGiVASFwYh5dKjViz61+pir/Wfzf0jLzOV7UxBaj1Zua0xs+hwOLHBe/xqXcObGGWbsm2FOP9fqOUIDQgvc36gmo6hQSp0Vv5J0hdmHZhdaRndTLBRDA9N+1HtCCLM/DSFEJeALI/muddQTIcQ4IcRhIUS2SClG2RNGuzTgfinlXznraIomKw9dpvdHa5i7/bw5r1xpX94f3Jzfn7mTDnUK/qX+7oDlVhlUb1ChY2HWCanDsAbDbPafX9pElOe3pzvy0QMtCA2y+Mn6bdcFen64lqX7c7jdlFK51bhoLKILb2WJWb5WgWVwGG8ftSpZvo5KZyTDnOGQmHvUGI3Gmq3RW1l3YR2gXD+Nbz0+70ZSwuIJcP2MSvuWhgd/ghAV+eSlNi9Rxlc9FJ25cSbbmTKn0HE81LconywcB7HHc6+v8Thf7/ua9Cy17d8stFk2I5KCUNq3dDaL5Jn7ZnI95bqdFkWPYqMYSinnA1OBysA+IcTvQohfgWNAY2AB8HmOZqFAAyBbPCQhREvgK5Q52SlgqBBilo3LiQdRNIXlZmoGL8zdw2PfbufyDYvBeL9mVVg+oQtDo6rjXYjIISevn8z2Q/RQY5uekfLN8EbD8RbK2GXLpS0cjjucR4vc8fISDIysxrLxXRjQsqo5PzYxladm7+TZObssZw83fgb75lka93kPanUu8Nj5JqCc+lH2L6vSN84r34mZt7rl0WisyZJZfLjjQ3O6f53+lsgl9tg3Hw78ZkkP/ArCW5mToQGhPNrsUXP6+4Pf2/QYUGC8vJSTd5NfxLQEmDsS0m46bwyN07iafJXFJxeb0y9GvZin5wlHGFhvIBFlIwBISE9g2r5phe7TnRQbxRBASvk0MAK1rdwFuAs4DowDBkkpHTUBCsHiAqchykWNratwjw4ap3HkUgL9P1/PLzstq4ShQX5MHdGKKSNaERpU+KgD3x/63vy+a/WuuTrOzS9Vg6pmM14xOcAuDOUD/fh4WCTTH46iUhnLZ1+05yL3fraeYwd3wN8Wy2haj1bRTNxNxfpq5dD0dTu7CbZMdb8cmmLFqrOrOHBVOYbw9/ZnXOS4vBvFn1eumEy0ehga97+l2pD6Q8wGAkevHWXrpXzGSs6LgHJqZd44QsKVg/DXa84dQ+MU5h6ZS1qWOk7QLLQZkZUi82jhGL5evjzX6jlz+qfDP3H5pgPnwYsIxUoxBJBS/iil7CilLCulDJRStpZSTrHeQraq+6aUUkgpu+bIX23k53VFuOtzaWwjpWTu9nPcN2U9J2IsT90DWlZl+fgu9GlWxSnjxKXE8fuJ383phxs/7JR+bfW35NQSriQ5Z0u1V+Mwlk/owpDW1cx5p6/e5NrPYy3GJlVbKUthT3nir9cLuln9MK76L1w74xlZNMWCOUfmmN8Pbzg8b1dRWVmwYIwlAk+5CLjrvzarBvsH07+ORWF0xoPaLVRpAf2sNpx2fANnChupVeNMUjNT+enIT+b0yMYjnRqtpEeNHjSv2BxQDtp/PVZ8DPCKnWKoKTkkpWXwwrw9vDR/r9niOMDXm8lDWvDxsEjKBTovHuXcI3OzucRwxHlufmhW0fI0mpGVwU+Hf8qjheMEB/gyaUgLPn0wkkA/b4Z4r6GtOARAJl7cvPsj8PFw7M47n4dKTdT79CRY8qI6D6bR5OB0/Gm2RG8BlMP44Y2G591oy5cqzCOA8FJbyHYMrB5qZDkmsub8Gk7FnyqUzDaJHAkN+lrSvz8HGQ4F0tK4gSUnlxCXovzdhpUOo2fNnk7tXwjByMYjzen5x+aTkVU8jtFoxVBTJDkXl8TAKRuz+SWsVymIReM6MshqdcwZpGWmZVPUnP3kaMJ61XDu0blmlzjOon+Lqix+rCH/8vvRnDc9ox/3zrvOqVgPn3Hy9jXceRh/12PLsp8F02gM5h+db37fpVqXvFcLr52GlW9Z0neOhxp32G0SERxBl2qWyCc/HPqhIKLaRwjo+wGYnCTHHoV1H9pvo3ELUspsTtOHNxqOr5ev08fpUb2HJQpW0hXWnl/r9DFcgVYMNUWO7afjuG/KBo5ctgSxGdy6GgvHdaRemPPdrCw5tYSrKVcBqFS6EnfVvMvpYwB0q96N8CDlUDo+NT7b1rWziNg+kTIyEYCzWRX5OON+TsbcZMCUDWw6cdXp4+WL6m2gzWOW9NKXIbl4WetpXEtqZioLTlhcvAxt4ECoxr9eA5OvuMrNoMvLDo1l/aC26MQi4k3b0M4kOBx6/tuSXjcZrhTc+EzjHDZFb+L4dWUtHuATwKB6g1wyjq+3L/fXu9+cnnvUfgSsooJWDDVFil93nmf49C3E3VTn4/y8vXh/cHM+GNKC0n4+Th/vlifHhsPx9Xb+kyOAt5d3tq2F7w9+ny+H13ly4m/YZ5l4zneciDQO2ccnpzPy6y38tPWs88YrCD3+BUHGClDi5ewrPZoSz7LTy8wKWnhQeN7RJ06sUtF1TPRz/NhEm8ptaFCuAQDJGcnMOzovjxYFJOpRqGbEX8hKV1vKOkykR7E+Vzqg7gCC/YPt1C4cg+oNQhg7JRsvbORcwjmXjeUstGKoKRJkZUneX3qYCXP3kJapJs0KgX78+EQ7hkZVz6N1wdkcvdkcqi7AJ6DQPqzyYkDdAWY/aqdvnGbd+XXO6Tg9Gf6w8vPWdDAd7nqAn//RnoqG1XJGluTlX/fxnz8OkpnlofN9pYKhryUCBdtnwtktnpFFU+SwVs4G1x9sP8pJZrpadTbRYrhalXaQnGfA5hye45rYtl7eKmSel/Fge24z7HbB1rXGIU7HnzYHGhCIbOdNXUG1MtXoGN4RAInkl6O/uHQ8Z6AVQ43HSUnPZNycnXyx+oQ5r35YEAvGdiQqorxLx7ZeLXT1kyNAoG8gg+pbti2+PfitczpeO0mdtQKlfN2t/MG3rB7CwrEdaVylrLnqjPWn+Mf320lO81CA90b9szsB/v05HVdWw9FrR9l1RTlj9/HyYUDdAfYbbJsBMca2rF9Q9i1bB+lTq0+2M2DbLm/Ldx8OEdYYOj5vSa+aCGlJrhlLY5fFpyx+CztX60yNsjXs1HYOQ+tbjkT8dvw30ov4fKcVQ41HSUzN4NFZ21iy75I5r2uDivwypgPVy7solq/BlaQrbLiwAXDPk6OJ4Q0tDq+3XdpW+K2F+Auw0cq3e693IKiSOVk1JIB5T7Wnd+Mwc96KQ1d4eOYW4pM9MEEJAX0ngW+gSscc0isoGuYdsawW9qzR035YssQYWPU/S7rLS1AmDyMVG/h5+2ULk/fnqT/z3YfDdJqgwvMBJETD5i/s19c4HSlltv+xtdsiV9KpWifCSqv/fVxKHCvPrnTLuAVFK4YajxF3M40R0zez0cooYnSHCGY8HEWZUq4552fN8jPLzXFY21Zu65YnR4AqQVXMWwsmOQrFug/AcLVD1VbKTUYOAv19+PKh1vyjc21z3rbT1xg2bTMxCR5woRFSHTq/aEmveR/Si1+weY1zSEpP4veTFmOsPI1O/n7H4rOwQl1oN6bAY/etZXEps/z0cufGT7bGLxC6vmJJb/gEbnrYIKyEcfDqQc7cUD5UA30D6VzNPZGgfLx8su0UFXUjFK0YajxCdHwyQ7/axJ7zFkvA/7urAf++tzE+3u65LZedXmZ+3zuit1vGNI9X0zKetRz5Ju4U7LSKv9zjDRWWywZeXoJX+jbi9X6W+M+Hom8w5MuNnIvzwLZWu39AoLGyeeMC7Jjlfhk0RYLV51ZzM125VIooG0FUWFTula+egF2zLem73y2Un85moc2oFqRcYCWkJ5jDYrqEyJEQaoT2S72hjoBo3Ib1NnKPGj0o5VPKbWPfX/f+bDtFl25eyqOF59CKocbtnIxJZPDUTRy/otyqCAETBzZlbLe6LvEfaIuYpBjzeSYv4UWPGj3cMq6JbjW64WMcRj9w9QDnE87n0SIX1rwPJqepNTtC7W55Nnm8U23eH9wcU1jp01eTGPzlRo5auQdyC36B0MkqhNm6D3RM2RKK9ar5PbXvsT8PrH4XTNFPa3VRkXUKgRAi23bykpNLCtWfXbx9oOeblvS2GerhTuNyMrMyWXpqqTndr1Y/t44fFhhG28ptzekVZ1a4dfz8oBVDjVs5fiWBoV9t5sJ15dzZ11vw2YORjGjnnLjEjmK9jRwVFkWFgApuHb+sX1naV2mfTZ58E3ME9lpFUOn+usNh74ZGVWfqQ63x81FTwOUbqTzw1SYOXryRfzkKQ+vRUFb5duRmDGwtXsHmNYUnKT0p2yqd3dX7mCOwz8qtTPfXnSJDv9oWJWHN+TUkpiU6pV+bNOgL1Q0H3Fnp2WOaa1zG9svbiUmOAaB8qfK0rdI2jxbOx/reXnamEDtFLkYrhhq3cfxKIsOmbSE2UZ1pC/D1ZsaoNtzTvKrbZbH+Ulpv67oT60miQIrh6v+ByQ9inR5QMw+fbzm4q0llZj3ShiB/tXJ5LSmdETM2cyjajcqhbyllOGBi/ceQ4gJHw5oiy9oLa83hKOuG1KVWcK3cK6/+HxgPdNTtBdWd8+NeJ6SO2adhamYqf5/72yn92kQI6PW2Jb3/F4je67rxNIAKZGDi7oi7zTs27qR7je7m7eRdV3Zx+eZlt8vgCFox1LiF41cSeXD6ZrNSGOjnzfePtaVL/YpulyUmKYadl3cCxjZyTfduI5voVt2ynbwvdh8XEy863jh6b/aQcgVcOelQJ5QfHm9HmVLWyuEWjlxy47ZyyxFQzlAGUq7DJm2tWZJw+Kzvpf3Z7/lurzpVjr61LUYoLt1OBqjRDhreY0mvm+za8Uo4aZlpLD9tefi2/l+7k/KlyhNV2XJ+dsXZormdrBVDjcs5EaOUQpP1a2k/b759tK3LfRTmxoqzK8zbyK3DWtt3i+FCgv2DuaOKJaZrvlYNV/3X8r7hPRDeqsBytKgewvePtaOMsXIYdzON4dM3u0859PbNbq25aQokxblnbI1HSUpPMjsbhjxW71dbuadp0LdQ97wt+kRYzhlujt5MbHKsU/u/hS7/tLw/uBBijrp2vBLMugvrSEhX81l4UDjNQ5t7TBanGR66EK0YalzKyZhEHpyWXSmc9YjnlELIsULhoW1kW+M7PEmc2wZHTb64hFNWTlpWD+G7x9qalcOrhnLoNoOUZoMhVG3lkZYAGz52z7gaj7L+wnqSM9R54zrBdagTUsd2xYu7s4e+c/JqISg3Uq0qKWUzU2a6/ke7SnOoZ4rLLmH9R64drwRjvQLct1Zftxk52qJ7je7miD67ruwiJinGY7LkhlYMNS7j/LUkhk/fwpUEy5nCb0a3oW0tzymFscmx7Li8A1BOrXvW7OkxWUBNEj5CKWN7Y/cSnRidd6NVEy3vmw6CsCZOkSWyRjm+fayt+cyhUg63cDrWDZbCXt7Zf+y3TIPEK64fV+NRrFfJe0XYsS62duvS+D6o3Mwl8lgboSw9vdROTSdh7ctz789w7YzrxyxhJLbY3kIAACAASURBVKUnseb8GnPa+n/sCUIDQmkd1hpQIfKK4nayVgw1LiE2MZWRX2/l0g3ltDjA15tvHmlDu9rutf7NycozK4vENrKJYP9g2lVpZ07naakWvRdOrlLvhVf2LVgn0KpGOb59tC2BfuqAdGxiKg99vYXLN9zgfLpRf6hsbPFkJCtXHprblpSMlGw/2Lmu3sceh8MW/3PZtmCdTM+aPRGo1aQ9MXu4lnLNZWMByngmopN6LzP1SrkL2BK9xWzcZHdV2o0U9e1krRhqnM6NlHRGzdzKKWOlyc/bixmjorjDw0oh5LBGdrNT69zIlwsD6zBajQdAaF2ny9O6ZjlmPdqWUr5qejh/LZmHv97K9SQXRYQw4eUFd463pLfNgPRk146p8RgbLmwwbyNHlI2gbkgu9/KmzzBbItfr7bQVcluUL1We5hXVw0mWzMp2/tFlWK8a7poNNxzYNdA4jPXDR5fqXTwoiQXrB5Adl3e4/jxrPtGKocappKRn8vi32zlg+MPzEvDpgy3pWNezK3MAV5Ovsv3ydkBtI/eqWTjHuM6ie3WLC4O9MXtz94h/Ixr2zbek249zmUxtIsozdURrfAwv2EcuJ/DorG0kpWW4bExArRoGG6EJk67Cnp/s19cUW/4685f5fe+I3rbPfSVegd1zLOkOz7pcri7VLMrD2vNrXT4etbpAuGGpmpkGmz63X1/jMFLKbP9D6/+tJwkNCKVVmDrPKpGsPFO0YidrxVDjNDIysxj34y62nrJYlP7v/mbc3bSKB6WysPLsSrIMv3+twlp5fBvZREipkGzbyblaJ2+dphziAtRoD9Vau1Subg0r8cGQFub0zrPXeWr2TtIyslw3qLcP3PGUJb35C8hy4Xgaj5CemZ7tBzvXbeSt063igEdCxJ0ul816VWnDhQ2km75zrkKI7KuG22dCsou3sEsIh+IOmZ1aB/sHm1eDiwLWCxPLzxbAj60L0YqhxilIKXn5132sOGRx2PlKn4Y80KaGB6XKTlGyRs5JnmdO0m6qHwwT7ce6QSoYEBnOm/c2NqfXHo1hwtzdZGVJ1w0aORL8yqj3sUfheNE7nK0pHDv/n73zDm/jOPP/d9AIgr03USIlkiLFJqq7yb3GTlzlFidxLpfmNCeOS+5yKf4lsePESRzbaXeX3F3cJce9xN2yLVuNReykJIoSe+8FZX5/DICdBTsJ7M4C+3kePdwRtgxIYPedt3zf7sPe3sgZkRnIi8ubudP0GHDgL9L49G8turPPSsiNzUVaBFvMjthHUNFdEfBrIu8SINkdIrePA4f/L/DXDAH4MPKZGWeqImo9F3wb1sNdhzFuV6Ff/RzohqGOX/jtm03YfUjq9/uVs9fiK2ern+TrYWhqCAe6DgAQK4zsgVfEr+ipmJlzUvE4E38GmBj0euUEWr9wRja+fX6ud/xSVQfuf70+cBe0RgObPy+N9/0+cNfSUYUP2z70bp+VcdbsYeTyxyTPWewalmagAIQQ7Fy10zt+7+R78+ztt4sCO74mjff/BXAGOG0jBHj/pHhhZA+pEanIjWP3VbvLjv2d+1WekYRuGOqsmN2HTuF3bzV5x7u2rMLdl+SrOKOZ7O/c7w0jFyUWIcmmfMeV+YizxqEsucw7/rjjY+lFl1NedLLj60zeRUG+c0Eubtkh9bP+03vH8NgnAZTW2P4VwG0o4/j7esuwIIPvjXxmxizhYadDnmt32jdYmoFC8EYE73UKKMXXATZ3gd5QK9Dw8vz768xL70QvqvuqAQBGYsTp6UtrGaoEZ6ZLn31FCp0WiW4Y6qyID5t7cfce6aG9My8JP7uqWFUB0dn4qP0j77aINwhAPq997fukFxpeBfqPsW1rDLDxJoVnxrwoP/50IS4oSPb+3388X4N3GgKkNRi7munVedj3SGCuo6M4nWOdaB5sBgCYDWZsTd06c6f6l4BB98IjPA4ou1nBGQLb0rYh3BQOAGgZbsGJYQX0Bc1WYPOt0vjjPwb+mkHM3lPS4qMsuQwxYTEqzmZ2+EXRB20fgNIApugsAd0w1Fk2TV0j+OrfD8HhzjfLT43CIzeVwWwU62NFKcVHbdoyDD9q/0i6SfBG0ZYvAmGRCs+MYTQQPHRjGYoz2A3W6aL4xmOHUdM+FJgL8lXX1buB4SX0ktYRFj6MvCVlC2xm28yd9nO5hVv+BbBEKDAziTBjmKwgTJHqZADY+iXAkwfX+hHr+KKzLGQyNYKFkT2UJZfBZmKf/7bRNrQMt6g7ITdiPcF1NEP3yCS+8NcDGJlkeTAp0WH4661bEWU1qzyzmbSOtKJ9jBkVEeYIFCcFpmvCSsmPz0dsWCwAFgZpHGgE2g6xBwTAHhjbvqziDAGbxYT/+sIWZMQyb8rYtBNf/NsBdAwFQG9w1WZWfQ0ALofcWNDRLHzI7IyMM2bu0FULnHDvQ4zA1n9RaGZyVAknR6cBhVdJ4090r+FymHZOy6JEOzN3zrO3epiNZtkCRJRwsm4Y6iwZj1Zh2yAzBiIsRvz3F7YiLSZc5ZnNDn+D2Ja6DWaDeMYrABgNRuxI2+Ed72vfJ/cWFl0LRKerMDM5yVFWtghwt87rGp7CF/92EGNTAUiW572GB/+bVarqaBa7yy7Lnz0r46yZOx38L2m74HLVPvP83A51HsLo9KgyF97OFaFU7wFGuubeV2dWDnYe9IqnZ0ZlIjs6W+UZzY1vOFkEdMNQZ0lQSnHn7ipUnWLhQ6OB4OGbN6EwXbz8DQ9ayC/0IAsnn3wXqH1eelEhiZrFkJcShT/eIglg13UMB0bGZv2lrAobYFXZ1Xv8e34dRansrsSonRlY6RHpyI7xeWBPDstFzbd+ScHZyUmJSEFBfAEAwEEdsvtIQFm1GVi1jW07p+UyVTqLwjeMLFrOOw9vGPIGrZrohqHOkvjDe0fxQqWU6/XjKzbg3PXJ8xyhLnaXHfs7JBkA0Q3D09JP824f6qnAJHWyQeYOIE0ccVYAOCMnET+/SgrLv17TJatO9wsGI7DtX6Xxwb/69/wKQwi5iRCylxAyRAgZJYQcJITcRghZ0r2YEJJJCPkaIeS/CCFVhBAHIYQSQu5Y+Gj18A0jz3hgVz0FeDxzSflSH2GV4MWuFfXm8NI1h/4GOAMssh1k8H8rXnpIRNIj07E2Zi0AYNo1jQOdB1SekW4Y6iyBN2u78MDrDd7xzdtX45bTstSb0CKo6qnCuIMJh2ZEZiAzKlPlGc1PakSqdJOgThy2hrEXttw6z1HqsWtrJr54huT1+d1bTXjliJ97vZbeCBgtbLv9MNBR6d/zKwQh5BEAjwHYAmAvgDcA5AF4GMBuQshSNIiuAfAogC8CKAagrH7RMuEf2DNkaihl/bE9bP2SIoLW83FGupQD+XHHx8pVjRZcAUSmsu3RTqDxNWWuGwS0j7ajdaQVAGA1WrE5JbAdovyBaOFk3TDUWRRNXSP4zlMV8NwXt2fH40dXBK6Zvb/wDSOLHFLwIAsnh1sBa6xcukUwfnBZPs7KldoLfu/pSv9WKtvi5e//0P/479wKQQi5BsDXAXQCKKGUXk4pvQpALoA6AFcBWErz6+MAfgfgcwA2ABC+VUb3eDcaBtjC0mQwyZLuAQAtHwA9buF0SyRQcr3CM5xJYWKht2q0Y6wDJ0dOKnNhoxko+6w01rinXEk+6fjEu12WXAaLZ1EpMLxhyFftq4VuGOosyOD4NL70vwcx6i4uWBUXjkdv3gSLSfyPD68HKHoY2QMfTv4o3Mo8ZmYxC3sAwGQ04OEbNyErgT1AJ+xOfPl/D6F3dMp/F+H13aqeBqYUKgTwH/e4f95FKfXG2ymlXQA8ccO7FxtSppQ+Tyn9DqX0/yildQCEbyjNP/A2JW9ChNlHgoZvf1dyPeuAozK+Oosy4flAs/nzANwL2aNvAwMtyl1bw/B/ox3pO+bZUxw2p2z26ma2jrSidbhV1fmI/2TXURWH04VvPF6OE30sHGuzGPGXz21BQmSYyjNbmKGpIVT3MuV7AzFgW9o2lWe0OLZEroHJ7ZptsljQU6hMK7CVEGMz4z8/v8Vbqdw2OIGv//0w7E4/2StrTgcS3G35pkeAmmf9c14FIISsArAZwDSAZ3xfp5S+B6ANQCoAbTzJlsGH7ZJhOCOMPNwB1L0kjVUsOvGF92zy3qiAE7sayLnAPaDA4f9V7toahVIqay03wystKBajBdtSpecT3xlIDXTDUGdefv1GIz5olvr2PrhrIwrS1F/JL4aPOz4GBTOwihOLEW3Rxrxt1c9i06Tkbdtn751nb3HISY7CQzeWedPC9rf04+ev1Pnn5IQAm78gjQ/9zT/nVQZPr8MaSulcJYcHfPYNKlzUJTOqZugXVj4OeAqtVp8OpGxQcHbzwxsXfGtNReA/8+V/14tQFuDo4FFvn/loSzTy48RqzTof/HdC0QXILOiGoc6cvFbdiT+8e9Q7/vb5ubikKFXFGS0NLYaR4XIBh/6G0yYmvf+lmEyGHzg3Pxl3XizdjP/6YQuer2jzz8k33iQVobQd0lL/ZE91znx91TyxI3EF11ZA00ATBqcGAQDx1njkxuZKL1IKHOZSJHljSAByY3MRb40HAAxODaKhv2GBI/xI3iVcEUoX0PCKctfWIHwYeXvadhgV7im/EranSguQg10H4XQ5VZuLbhjqzMqxnlHc8YxU/Xnu+iR8+/zceY4QC0qppvQLvRx/DxhowekTkmNpX/s+Zb0UK+SrZ6/FxYUp3vHde46goXNk5SeeUYTyt5WfUxk8PQznU+f2JE1GBXguqsBLcGxJ2SIvAmv5ABg4zrbDYoANYqVOEELUCycbTcCmW6Sxdj7zqsD/bXhDSwtkx2QjMZwV8Y1Mj3gLtdRAc4ZhqOuAKcHYlANf/fshb7HJ6ngbfnt9GQwG8St6PbQMt6BjjMmmRJojUZRYpPKMFskhVn2YP21HHGHesf7JftYeTyMQQvCr60qxNpEVF0zYnfjq3w9heNIPYTDem6SdIhTPF0chrZPFQQj5svv+ebCnpyeg1+LzvvhcKgBAOectLL5WyEIrviORogUoALDpc5AVofQfV/b6GsHhcuBg10HvWCv5hR4IIdiaIhU6qalnqCnDUNcBCzyUUty1pwqNXeyBG2Yy4A+f3YQYm5ht5OaC9xZuT9sOk6cxvciMdgP1LwNgX8wdXDWklsLJABBlNeOPt2yGzcK+Vsd7x/C9pytX3hllzRlaLELxuEsj59nH85ofXKuLg1L6Z0rpFkrplqSkpIBdx+lyyh7YW9OkzzUmBuXdfXjvmEDwRsbh7sOwK5nrF7sayL1QGutFKLNS01fj7aqTYkvBmug1Ks9o6fAFkvxiSmk0YxjqOmDK8NcPW/BSlSRQ/POrioVudzcXmswvrHgMcLn7DWfuwOlrL/G+pDXDEGBt8+6/RurW8kZtF/74/tF5jlgE2ixCaXH/nO9J5VFeb5lnH03SMNCAkWlm7yaGJ8r71lbvBhzufNrUYiBtowozXBheHH/CMYHKHoVF1vnPfOWTgIr5Z6LycTsnU5O2QxOatb7w3vRDXYfgcAWg//wi0IxhCF0HLOAcOjEgqyK9eftqXLN5lYozWh52l1222uJ1AYWFUrlw8+Yv4LQ0ad6Huw4L0UNzqVxRmi7rjPKr1xuw72jfyk7Kd0JpOwR0HlnZ+QJPuftnISFkrjjpVp99gwY+JLY1dav8gc0XnZR9TvVOJ/MhyzPsVLhqNPciwOYWkR9pB469q+z1NQD/N9FaGNlDZlQmUmwsP3vMPoa6Pj+pOiwRTRiGug5Y4Bkcn8Y3Hz8MhzvUV5oZi/+4QhzJiKVQ21frNaK00AYPAHDyE3kCfuGVSIlI8bbHs7vsONIjvAE0K/dclo9tWayq00WBbz9ZvjLx64gE1jLMQ+WTK5xhYKGUngRwGIAFwHW+rxNCzgawCiwass/3da0zZ35h5xGgo4JtG8OAkhm/GqHgjQ3eO6UIRrO8E0zF48peX3AmHBOo6K7wjrVqGBJCZN8RtcLJmjAMoeuABRRKKb73dCXah1hIJybcjEduKkOYSZtpl4e6Dnm3tdAnEwBQ+YS0XXSVNwGfnz//vrSE2WjA728qQ0IE8/J1j0zh9qcqVpZvuPEmabvqacCpTshlCfzC/fN+QkiO5z8JIclguc4AcB+lUvk5IeQbhJB6Qohmk8ocLofscyszDHlvYcEVQHicgjNbOvzcq3urMWafr8g8APCf+fqXWH6mDgCgvLscdhfL+1wbsxbJtmSVZ7R8+E47ahWgaMUwDHkdsEDyn3uP4636bu/419eVYlWcTcUZrQz+QbQlZYuKM1kk9kmg+h/SuPRG72YwGIYAkBJtxW+u3+iNFO5t6sWj7zYv/4TZ50j6bmPdrFpTYCiluwH8ASyqcYQQ8iIh5FkATWA5zs+BFdHxJAJYD2C17/kIIWmEkI89/wB8yv3SN/n/J4SkBeo9LYbavlqvAZUakSp57x1TwJGnpR0FLTrhibfGIz+eaXQ6qEP572NqEZDqztl1TAI1/5h//xCCl6nhK8i1CF+AonihkxutGIYhrwMWKA63DuD+1+q94y+dmY0LNqTMc4TYOF1OlHdJaVqa8Bg2vgpMDbHtuCwgUwqD8POv7KlU5SbhL3bmJeHr56zzjh98oxGfHFtmvqHRJA898h5XQaGUfh3AzWBh5bMBXAygGaxo7hpK6VIqCsIAbOf+uRPQsNrn/1XtXekbRvbmFza+DkwMsO3Y1UDWThVmt3R4ryFfaa0YG2+WtvVwspc5vdIaJCMyAxmRGQBYiLy6r1rxOWjFMAx5HbBAwPIKy715hRszY3HnJdppITQbzYPNGLGzCsik8CRt5BdWcEZN6Y2yBPzUiFTvTWLSOYna/lqlZ+dXbr8gT5Zv+K2V5BtynlXUv6yJ0Bql9HFK6RmU0mhKaQSldDOl9BE+hMzt+2NKKaGUnjPLay3u1xb616LE+5oL38ITL1VPSdslNwAGbTyKNqVs8m6r4sEvvg4wuKXDTu0HerSjbxooJhwTqOmt8Y75v5FW4b8r+zuUzzPUxrcxxHXAAgGlFHc8U4W2QZayGW014eGbymAxaeUjMTv8Kn5TyibxJQtGu4HmN6Uxn2DuJljCyQBgMhrw0I1liHfnG3YNryDfMKWQSZwAgHNKroenozp2px3l3ZL33uvJGe9nHkMPpTcoPLPlsylZMjpqe2uVVwqISADyLpbGlbrX8EjPETgoyzFeF7MOcVaxc1UXA+/1VCPPUCtWQIv7Z0jqgAWC//moBW/WdXnHv9J4XqEHzRWeHNkNeCKIq08D4memyAaTYQgAqTFWPLir1Dve29SLv+w9tryT8V5DwauTQ43qvmqZOkB6ZLr7hT2Au1AAq7YCCevmOIN4xFnjkBPLaocc1IGqHhX6dfPhZF3TUHv3/EXAG4YVPRWYdk4ren2tGIYhrQPmb+o6hvHzV6W8wi+ekY2LClNVnJF/oJRq7yZR6RNGngX+fZR3lavaXN1fnLM+GV/j8g0feL0BVaeWEQouvg7wNDxq/UhvFyYQfAhMlvfFG/CzeMhFh/caqrJQy70QiHBHqEY6gGPvKD8HgeD/BsEQRgaAlAipc8uUc0pxQXVNGIahrgPmTyamnfjmE+WYdrCUpsL0aNx16XqVZ+UfWoZb0D/ZDwCItkR7V/bC0lUDdLo9DsYwoPDKWXdbHbVaaq5uH0Hz4AqqeQXiuxfmYWNmLADA4aL41hPl3v7ciyYyGci5QBrzuWs6qnK4+7B325sz1dsEtLnTPQxmoOgaFWa2MviF2uGuw/PsGSCMZqB4lzSumiHtGzLYnXaZ0aQJZ8Ai4RU1lP6cacIwdBOSOmD+5t6Xa9HczQq4w81GPHSjdvUKfeG/PJtSNsGwuCY46sF7TvI/BVhnbz1ICJHd8FSphgwAZqMBD91Qhsgw1se6pW8cP3q+ZoGjZoHPUat8gnWR0VEVh8shExz2enJ4wz3vYsAWr/DMVg7vlVJNKaCEMwzrXgSmFdZUFITa/lpMOpn+bkZkBlIjtB/58iCLFHUrGwgV/MkpEao6YP7kteoOPP5Jq3f8409vwLqk+ep5tIUsjJws+MrR5WTCzB7mCCN7UD18FSBWJ9jws6uKvOM9h0/h+Yq2pZ1k/aWsWwwADLSwLjI6qtI00IRxxzgAINmWjPSIdMDlAio5w1BDRSc8QigFpJUCiXls2z4GNLyq/BwEgHcGBJO3EADKkqVeHRU9FYqmEGnGMARCUwfMX7QPTuCuPVJLtU8Vp2HXFg1IuSwBTeUXHnsHGO1k2xFJwLrz5t3dN3xFg8gr9pmNGbh6U4Z3/O//qMbJ/vHFn8AcLg/D6/puqsOHkTclu9UBWvcBQ+6FqTWW9f/VKKoXhBHiE05+eu59gxhN3fOXSEZkBpLDWQeXMfsYGgeUkybSlGEIhJ4OmD9wuihuf6oCQxMs5JERG46fX10svpTLEmgfbUf7WDsAINwUjvwEwfUY+TBy8S4m2DwPuXG5iLIw7fa+yT6cGJ6vCZD2+OlnipCVwKriR6Yc+NaT5bA7Z3yl54b3uNY8B9gVlhHRkeGb1gHAp+3jNYBJu2tu1Q1DACi+Vto++hYw1qvOPFTCRV0zFiDBBCFElrbAv9dAoznDUGfp/On9o/jkOCvKMBDgdzdsREy4WeVZ+Rf+5rwxaSPMBoHf39QoUPeSNN44fxgZAAzEIAuPB1M4GQAiw0z43Q1lMBnYYqW8dRAPv72EIpvVO1jXGIB1keF18nQUhVIqy4nalLyJtcCrfUHaSaNhZA9CKAXEZ0tdklyOkGuR1zTQhJFpJlucYE3wVvEGE3w4Wck8Q90wDHKq24bw4D8lF/Q3z8vFliztJXwvhGzlKLpkQcOrgEcYN6lAEmleANW7LgSY0sxYfO8iqUL+4Xeacbh1YHEH+4bWqnf7eXY6i+XU6Cn0TLBOUJHmSKYO0PSG1PYxdg3TL9Qwq6NWI8GaAEBlpYBiTqQjxMLJvjI1wRQB88Df88u7yhVLIdINwyBmYtqJbz8pb3n3zfMEl3BZJprKNaneI20XL16uQ4jwVYD58s612J7NFi6eFIixxUrY8KG1xn8Ck8MBmKHOQvBh5I3JG2E0GOWGevG1sraPWsRXKUC172Ph1YDBnYZyan9I6XjyzgDh7/nLJDc2FxHmCABA90Q3To2eUuS6umEYxNz3ah2O9jAZA5vFiN9evxEmY/D9yfsm+nB8iN0QzQYzihMX54FThfF+eQu8Jei4FSQUINzE9N3bx9rRMdrh79mpjtFA8OtdpYhyS9ic6BvHvS8tsuozaT2QwrXIq385QLPUmY8ZYeSpEaDhNWmHomtnOUp7COHBj0gA1p0vjY+Ehqdck80MloHRYMTGpI3esVLh5OCzEnQAAO80dON/9kkFCv9x+QZkJUaoOKPAwa8cixOLYTVZVZzNAtS9KLUDS98ExK9d9KFmgxmlSVIruUPdwek1XBVnw71XShI2Tx44iddrOhd3MO+B1cPJqsB/H8uSy4D6V6TUieRCIGWDSjPzL7wA8aGuQ+opBfCahlVPhYSOZ+tIK3onWLFNlDkKubG5Ks8ocMgKUBQSutYNwyCkf2wad+6WenheuCEF128NLmkaHk2tHH1DaktEiPCVAnxmYzouL5EkRO959gi6RyYXPrDwamn76DshV6mpNv2T/V7vvclgQlFikc9nXnudTuYiJzZHphTQOtK6wBEBYv1lgMWtR9vXBHQo2z5NDWZNVwhS1ChA0Q3DIINSinuerULPyBQAIDEyDPcFmTSNL5rplTnSCRzf6x4QuRGzSELFMCSE4GdXFiMthnl/PYudBb0ycWuAVe6+vNQJ1D4f4Jnq8PAPrqKEIlinxoCjb0s7aLAF3lz4hvmU7mfrxWJjnZM81DyrzjwUhP9dC33P9wNFiUUwufNIjw0dw8DkIgvyVoBuGAYZew634fWaLu/4gWtLkBCpXb2whRidHkVDfwMAJunC36iFo+Y5AG7DJutMIHrpTXWKE4u9N4njQ8e9vaGDkRibGb+6Tgqdv9vQg8f3L8Irw3ti+UIfnYBT3iUZhmUpZUDtc0xKBWAGu0dSKEjYmCzdb/gWgIrDG9zVzwZ9OJlfgAh9z/cD4aZwbEiQ0i+U8BrqhmEQ0TY4gZ+8IPWa/eyO1Tg3P1nFGQWeqt4qULexlReXh0iLwC3++JBa0dK9hQBgNVlRmFDoHVf1VM2zt/Y5IycR/3Jmtnf8s5frcKJvgb6whVcBnj7ZJz4ChpbYYk9n2cwoPJFV4AdH0QmPGoUBs7L2XNZNBgCGTgKnDqg3lwAzNDWEY0PHAAAmYkJhYuECR2gfXrxbNwx1Fo3LRfH9Zyox4pb2yEqw4QeXFag8q8BT2S2FFPjCDOEYaJFu1gYTsOHKeXefD/59quqlUIjvX7weOcnM4B+fduJ7T1fC6ZrHIxKZDGTvdA9oyAn/qsWEYwK1fVIFeZk1BTjxIRsQAzPYg4yixCIYCctvOzp4FMPTKkkkmSzAhk9L4yD2lPNh5Pz4fK9SQzDDG4ZKdEDRDcMg4X/3teCjo30AWHeTX+8qhc0yf5u1YIC/SfBhHeGo5vJ+1p0H2JYvMs6/T9XymhTEajbiN7s2eruiHDwxgL/sPTb/QUV6dbLSVPdWw0HZwjQnNgcxjW9IL2afzQz2IMNmtiEvLg8AQEFxpOfIAkcEEP4zX/McoEY3FgXgF8NC3/P9CP8+a3trMeEIbMtP3TAMAo72jOK+1+q946+cvQ6b1wRfdxNfXNQlC6UK7THkV/ArTMDn32d1bzXsHvmbIKZ4VQy+wYmzP/jPRtR3zuOdKbgC8LRFbC8H+o4GeIY6sryv5I3yIoggDCN7kOUZ9qjowV9zJhCRxLZHO1kaRRDCL4ZLkwW+5/uROGsc1sYwaTMHdaCmt2aBI1aGbhhqHIfThe8+XYlJuwsAkJ8aFEVy8AAAIABJREFUhe9cELyaTjzHBo9hxC71ylwVuUrlGc1Bdz3QVc22TVZ5BeEySLYlIz0iHQAw6ZxE40DjAkcEB7edm4OSVTEAgGmnC999qhLTDtfsO4fHAbkXSuMgDq2Jgsx7b8tgBjnADPQVfuZFhs8zVDW1w+iTohKEn3mHy4EjvZJXNtgLT3h4h0CgI0W6Yahx/vjeUVSeHAQAmI0Ev7l+I8JMwavpxMOvzkuTSsWV5OFv0HkXA2FRKz5lqOUZAoDZaMCDu0phMbHbVm3HMB56q2nuA3jP7JHdQV+pqSaUUrknp/ek9GLO+cxQD1J4j2FVTxWcaoZw+c987fOAM7iiCY0Djd4wampEKlIjUlWekXLohqHOoqhtH8bvuAfjdy7IQ0FatIozUhZNhBQo9Qkj+yekxr/fUMgz9JCTHIU7L17vHT/6bjMq3AujGay/FDDb2HZvA9AV2PBLKNMy3IKhqSEAQGxYLNY0vSW9GIRFJzxpEWlItrH8yXHHOJoHm9WbTOZ2IDqDbU/0A8feU28uAYBPVyhLKptnz+DDN7c8kJ12dMNQo0w7XPjeM5WwO9mHo2x1LL6yc/Ht1YIBWehK1JBCZxXQ785vs0TJw5srgH+/wS5Z48sXz8jG9myWQ+uiwPeersCkfRYvjSWCGYce9OrkgCFbpMXkgHS6w33GMNaZI4ghhIgTTjb4VH8HWThZpkIhqjMgQGTHZHs77fRP9uPUyKmAXUs3DDXKw+80o66DJd+HmQz49XWlMBlD5885NDUktd4iJpkAqFDUPCdtr78UMPtHWiEvPg9WI+sK0jbahp7xHr+cVwsYDAS/uq4UNotbJqRnDL95Y448S/4hWfucHk4OELwxVMob6TkXANbgj2IIU4ACyMPJ9S8Bjin15uJn+N9tqFQkezAQA0oSS7zjQH7OQseSCCKq24bwyDtSuOLOS/KxNklgYecAwHsoChIKYDVZVZzNHFDKjBEPhcvXLvTFbDDLhF1DKZwMAJnxcp3OP+89hkMnZukCk3MB10e2WQ8nBwiZ975dUkhYrpC71hDGYwgA6WVSh5mpYdYzPAjoHOtEx1gHANYNxCMTFEoolUKkG4YaY8ohF/jdlhWPW0/PUndSKiDzUIgqU9NZBfS79fYsUcC68/16+lAsQOG5eftqnJmTCIDZ4N9/pmpmSNkcDuRdIo31cLLfGZkewdFBli5hJAYUdrm9tyYrK7YKAfLj8xFmZK1HT42eQu9Er3qTIURenRwkn3neECpKLILZI0cVQihVgKIbhhrjobea0NDFJFrCzUb88toSGAyCVuMGEE3oF84II/vXq6lklZqIEEJw/7UliAxzN5jvHcOvXm+YuSPvqdXDyX7nSM8RqS2lOQY2z+839yK/VOBrAbPRLGtVyefCqQKfQtHwSlCEk2XC1qLmlAeYksQSELDnfeNAI8bt4wG5jm4YaojKk4P4w7uSUO/dl+YjKzFCxRmpg8PlQFWvZBgKmWtCfVqxBaAykzcMa/pqMO2c9vs1RCcjNhw/vFwKKf/Xh8dxoMUnpKyHkwOKrPBklBMdD5Ewsgf+PqRq32QASCv1CSe/rep0/EEodjzxJdISiZw4JvTvoi6ZpqM/0Q1DjTBpd+J7z1TC0yJ2x9p43LJjjbqTUonmwWavllWyLVlMLavOKmCAFcewMPJ5fr9EQngCMqMyAQB2lx11/XV+v4YW2LUlE2fnsY4PlAJ3PFOJ8WmHtIMeTg4oMj3RwS62YbYxj2EIwXuxyntUNgxnhJOfm3tfDTDhmEB9v5S7KmyUSAGUiBTphqFG+O2bTWjuHgUA2CxGPHBtaUiGkAF5mEbYkAJvfORf5vcwsgf+/asevlIJQgjuu6YYUVYWUj7RN44HfEPKejg5ILioS9YfuHTKHbLMu5jJBYUQvBerrq9OfQ9+EIWTa/tqvX24s2OyERMWo/KM1EM3DHUAsBDyn9+XQsj3XFaAzHibijNSF9+OJ8JBqXyFvsF/1ci+yApQ1JbJUJG0mHD8x+WSZNHfPmqRh5RnhJOrFZ5hcCJrS+kCVjncxT9BLmo9G3HWOKyOWg2AefB5D5cqBFE4WRM55QohcwYESOhaNwwFZ8rhxB1cCPm0tQm4edtqdSelMjJpDBFzTToqpTByWHRAwsgeZGr43YFVwxedazevwjnrpZDynburMDHtNlRmhJO1HVoTBdkibWKcpcWbbUCOf4TctUZJkqQzp7rwPCFyA13DKRT875L/HYcia6LXIDYsFgDT820ZbvH7NXTDUHB+/1YzmrgQcqhWIXvom+jDyRHWh9VisKAgvmCBI1SgNrDVyDw5sTmwmZj3uHuiG51jnQG7lugQQvCLq4sR5a5SPt47hgff4ELKejjZ78gKTzxh5NyLAEtoRjR4o0UIpQA+WtHwKmCfVG8uy2RGH+4Q9xgSQgL+OdMNQ4E5cmoIf3hPCiHfdUl+SIeQAfmXYEPCBpiNgmlZKRhGBgCjwYjixGLvWIiHkYqkxYTj37kq5f/84LgkfK2Hk/2OzHs/6c6p86OQu9bgjRbVPYaAO5yczbY1Gk7uHOtEzwTr7GQz2bAuZp3KM1If33Cyv9ENQ0GZdrjw/d2ckHV26FYh8wjfEknBMLIHXg0/lPMMPezakomzcjnh691u4Ws9nOxXZG0pKcWG6WnAFB5y1cg8uXG53laV7WPt6reqJERuqGswnFzZKxk+xYnFMBqMKs5GDALd3EA3DAXl4XeaUd/JkrqtZgMeCPEQsgdZE3URQwoKhpE9yKrUQrQymYdVKXPC1z1j+M2b7m4cejjZb/AesfXT07BSCuReGHLVyDxmg1nWt53XW1UNPmrR+JrmqpP1/MKZFCUWwUCY+XZ08ChGp0f9en7dMBSQmvYhPMr3Qr44H2sSQvdm68HusqO2r9Y7Fs4w9A0jK1SZyf8e6vvrMenQXh6Rv8mIDZf1Uv7L+8dQ3jqgh5P9CG/0lOphZC/CdSTyrU4+9q6as1kyen7hTGxmG3JjcwEAFBTVff69j+mGoWDYnS7cubsKDncIecuaOHwhBHshz0bjQCMmnczoSY9IR5ItSeUZ+aCAqPVsxITFIDuG5RE5qCNkha59uXFbpreXsstdpTxFLPJwcu3zKs1O+/D6hSVTU6w3cm5o9EaeD+HyDAkBNnxGGmvoMz/tnEZdn3Q/K04qnmfv0CKQFfC6YSgYf37/GGraWVupMJMh5KuQeYTXsqp9QdpefylgClPs0iWJAslkCIKnStlmYTlJTd2jePjtZp+H5AtzHK0zHy7qknkMS6ammDc2LFLFWYkBb7zU9NbA4XLMs7dC8J/5+pcAhzbaZ9b318PusgMAMqMyEW+NV3lG4qAbhiFCU9cIfvdmk3f8vYvysDZJv9F6EDrXhFJ5fiF/I1YA4WQyBCEz3oa7Lsn3jh999yhqIrYxrT0A6G0AulUWItYgLcMtGJlmOdDxTicTtg5BUevZSLYlIy0iDQAw6ZxE40CjyjMCkL4JiGHtMzE5BBx/X935LBI9jDw3voahPzVsdcNQEJwuiu/vrsK00wUAKM2Mxb+cuVblWYmF0IZhdx3LWQMAcwSQc76ilxcufCUQt+xYg61ZcQDc37PnmuDK4SpnNRRaEwXZd3FyCsQYxtrg6QAQTOgamCWcrI2KfKHv+SqTFZ2FKEsUAGBgagCnRk757dy6YSgIf/3wOCpODgIAzEaCB64tgVEPIXsZmBxA60grAFb5lx+fv8ARCsMbF3kXM2kUBVkXuw7hJnbNrvGukBa69sVgILj/mhKEmdjtrrZjGP/EdmkH3TBcMrIH9tQ0WwiFRak4I7EQcqHmG0522tWbyyLRDcO5MRCDPIXIjxXwumEoAMd7x/DA61KHhm+dl4u8FP0my3OkV0p0L4gvgMVoUXE2s1DH5apt+LTilzcZTChMKPSO+d+XDrA2KRLfuyjPO767Kg0uozsHtLsG6G2e40id2ZAbhlMBF3LXGjKPoQiSNQCQsQWISmfbEwNAywfqzmcBesZ70D7WDgCwGq3Ii8tb4IjQI1Cead0wVBmXi+KuPVWYcrAQ8oa0aHz1HF3Z3RehV449jUC3W0bHFK5an1j+98JXjOow/uXMtSjNZD1GB50W7Ddukl6s072Gi2XcPo6mAZYLTShFkZ3qYWQfCuILYDawrkwnhk9gYHJA5RkBMBjki1bBPeX8PX9Dwgbv71NHQjcM3RBCbiKE7CWEDBFCRgkhBwkhtxFClvVeCCGXEEL+SQjpJ4SME0KqCSH/RghRpKT0sU9OYP9x1rLLaCD45bUlMBs192cJOEIbhrxRkateZaZegDI/RgNL0TAbWYrGE6Nl0osKPSSD4f5V01cDF9hCNsduR8Tac4Dw2EBdTpNYjPI+7sJ48Plwct2LgMup3lwWgO94oheezA7fDtWfGraaskAIIY8AeAzAFgB7AbwBIA/AwwB2E0KW1CuHEHIngFcBnAfgMICXASQD+H8A3iWEBLQx8amBcdz3qlQR+dWz16IoIyaQl9QkLuqS3ViFMwx5o0LFkBqfb1LbV+uVedCRyEuJwjfPY8Kwb7s2YZqy7ijoqAT6jwf02sFy/+IXHSWT04pX4GsFIRdqmTuAyFS2Pd4LnPhI3fnMg/DyZAIQExaDrOgsAEzDtr7fPwoLmjEMCSHXAPg6gE4AJZTSyymlVwHIBVAH4CoA31jC+bYAuA/AOIAzKKUXUEqvA7AWwPsAdgD4mX/fhQSlFD/4RzXGptmKLSc50vvA0pFzfOg4Ru2s5U+8NR7pEekqz4ij/xjQ6TZajRZV+8Qm2ZJkMhmecJ+OnK+dsw4FadEYgQ3vuzjB3LrAaRoG0/2rqn2/d7t02g6svywQl9E8wnVAAVg4ueAKaSxodbLD5ZB1udKFrecmEAsQzRiGAO5x/7yLUup94lFKuwB8zT28ewkhmbsBEAD3U0o/4c43CuBWAC4AXyeEBCRGsvvQKbzfyBqsEwLcf00JrGa9Ofhs+IaRCRGoWpsXSF53PmCNVm8uEFAmQ0DMRoO36v811zbphcCGk4Pi/kUpRVVPhXdcklgC2HTR4dngv4vVvdVwihK25fMM614CXC715jIHTQNNmHBMAADSItKQbEtWeUbiEogKeE0YhoSQVQA2A5gG8Izv65TS9wC0AUgFWykvdD4LgEvdw8dmOd8xAPsAWAD4fTncPTyJe1+SVkO3np6NzWvi/H2ZoEHWk1W0kIIsjKx+SI0PJwuT1yQgRRkx+PLOtXjDuRl26l6QtR0CBk/6/VrBdP9qH2tHn5M9sCNdLmRvuNafpw8q0iLSkBjOWjKO2cdwfCiwqQqLZvXpgI3NC6OdwKn98++vAkLnlAtGICrgNWEYAvBkiddQSifm2OeAz77zsR6ADUA/pfSoH863aCil+PfnqjE8ydokrY634Y6L9TL8+ZDdJBIFukkMtgLth9m2wQysv2T+/RVA9xgunm+fn4uEpBR85JJkfmhgwslBc/+qapU6ZhRPTcPAhyV1ZBBCAqYztyKMJqDgcmksYHUy/7viCyx0ZpITm+PVsO0c60TXWNeKz6kVwzDb/fPEPPu0+uy7mPO1zrPPUs63aF4ob8ZAy+NID2ONwe+7uhg2i8mflwgqxuxjaB5kGnMGYkBhYuECRygIH0ZeezYQrr7XtyChACYD+zy1DLdgcHJQ5RmJi9VsxC+vKcGrru04YTKhIsyCjv1PB+JSQXP/qmx+xbtdbE0BIpP8efqgg8+NE2qhVsDL1rzAWnoKhF54snhmaNj64XOmFcPQo/8xNs8+o+6fi1GG9vf5FsVjr3wbP628CvVr3sDq+Fdw47bVOD0n0V+nD0pqemvgom5pjNgcRJgjVJ4Rh2BhZAAIM4aJKZMhKFuy4hG/+SrsjorCLempuDymD3/++Pf+vkxQ3L+au0fxSaf0edqQcZa/Th20yPK/RPEYAkD2TsDqTj8dPgW0HVZ3PhxDU0NoGW4BwIwe4bpcCUiWQcrB3PfS7RiZmFrR+bRiGHqqDfy1rPHL+QghX3brkB3s6elZcP/mzjBMu9vcTYd3455L16/k8iGBsCGF4XYpN4cYgfWfUnc+HPzvSaiHkaDc9qnt2Od+SNoJQVdVxQJHLJmguH+F2btxwuLwjg+O7FzJ5UOCwoRCGNz1RM0DzRizz2fLK4jRDOTz4WRxqpP5xWx+XD6sJquKsxEfp4uC1rV4x4ctVoRbViYGrhXDcMT9cz7lYM9rI/Ps49fzUUr/TCndQindkpS0cEjlhku/5t0+bgEsA7Xz7K0DCBxSqHtR2s4+C4hIUG8uPugdUJZGmBk4zj17ris529+XCIr7V3SEERcac7F+AsiYIvjTAZe3v7vO7NjMNuTGMhkyCorq3mqVZ8QhE7sWJ5ysF54sjb991IKLBmsR7XTijPEJ7Ew7DaYVNsnQimHY4v65Zp59Mn32Xcz5VvvpfItifVo21rgbEjgIQX3V//nr1EEJk8YQ9CYhYBjZg2+VmicUrzM7TQNNmAaTEkmLSEP+js/5+xIt7p+avn/FxK7BfZ99FmGmv6Dl2I/gosCduysx5RBEhkVQhC0IW3s2EOaW1xpoATrFmJssSqTrF87Lib4xPPP62zidtuKD1jY83DOM2y/6+YrPqxXDsNz9s5AQEj7HPlt99p2PegATAOIJIXM1JvYInC3mfIumlMv/qmx915+nDjrax9rRN9kHAIg0RyI7xq959MtnpIvrGEDkIRkBWBW5CvFWpi03Mj3izdfRmR1ZJ4/ALD6C5v5FCMF9V5eAuHN9G7tG8cg7cxVG6wACG4amMGD9pdJYgOpkF3XJohyliQJFiQSDUoq79xzBeS4mY0oAGHLOB8JWnlasCcOQUnoSrOWTBcB1vq8TQs4GsAqsq8C+RZxvGqyVFADcPMv51gI4DUx37OVlT3wWSrIu9G5XOgaBnkZ/nj6o4G+ixYnF3lwd1al/Ed70rjVnAJFiia/OkMkQ6WEkIIGWQwqm+xcAZMbbcOclUn70o+80o7Z92N+XCRp8JWuoICFbAPJoR+3zqoeTTwyfwPA0+yzFhcVhVdQqVecjMk/sP4l9x/pwqdGrbw9DoX9asgrypF0Uv3D/vJ8QkuP5T0JIMoBH3cP7KJXiZoSQbxBC6gkh/zvL+e4De7rfRQjZxh0TCeC/wX43j1JK/ZpEU5oudVqoCrMAdeqv0kRFZhiKFFLgZWoECyN7EFYmQ0BkAurJAfNQBMX9y8PnT8vCFrcov8NFceeeSjicesrCbGTFZCHKzLw4/ZP9aBttU3lGHOvOAzxKD33NQLe6ee9Cd7kSiI6hCfzilTpkki4UG1rYf/pRS1czhiGldDeAP4B1BzhCCHmREPIsgCYAGwA8B9aMnicRTAx2Ri4OpfQAWFspG4CPCCH/JIQ8DeAogLMBfALg3/z9PnJicxBuYBVDXSYTOmv/4e9LBA1CdjwZ6wVaPpDGggr8ygpQdMmaORmcHMSJYSYvaDaYZVI//iRY7l8eDAaC+68tgcXEHiHVbcP4895jgbqcpjEQg7gLNXM4kHexNK4NiMD7ovGNEunMhFKKHzx7BCNTDlxiOCC9sO48wBrjl2toxjAEAErp18FCJ4fBbn4XA2gGaz5/DaV0SVnQlNJfgrWWegcsx+cKAL0A/h3A2ZTScf/NnsHEKIu84yPDx4B+/Ybqy7RzGnV9dd6xMDeJ+pcBz8cscwcQnabufOagKKEIxK1q0jjQiHG73z/KQQG/+CiIL4DFaAnYtYLh/sWzLikSt18gdW367ZtNaO4eneeI0CUQbcv8hm84WUX4RaxQxYYC8VxFG95pYPJSlxm5doZ+jF5pyjAEAErp45TSMyil0ZTSCErpZkrpI3wIhtv3x5RSQik9Z57zvUYpvZBSGkcpDaeUFlJKf0YpXZlC5DyUpEhdqqrCwlRfpYlIXX8d7C47ACAzKhNxVvW7igAQuhqZJ9ISiXWxrC7BRV2o6atReUZionTVezDcv3j+9axsFGcwL8W0w4U7d1fC6RIoh04QhM75zb0QcLdUQ08d0NOgyjTG7eNoHGA59wQERYlFCxwRenSPTOLHL7Bwfzp6UWZgXcFgMMkLiVaI5gzDYEC2erRaVF+liUhlt1QpKkwYeWIAOP6eNBY0jOyB/73xlbc6EsLKIWkEk9GAX15bApNbuP9w6yD+56MWdSclIHzEo66/DlNORez2xWGJYMahB5UcFbV9tXC6nebrYtchyuK3pj1Bw4+er8HQBHOYXB/FCfFn7wRs8X67jm4YqgC/eqyxWGBvPwwMztf2NPQQMr+w4VXA5e78kLEZiM2cf3+V0Q3D+XFRlx668gMFadG47VxvPQ0eeL0BrX166gJPrDUWa6KZjKXD5ZClyQiBAOFk/p6vfxdn8uqRDrxa3ekd3xrL3dP9HL3SDUMVSLIlIT0iHQAwZTCg0WKWd9LQkRkywhiGGgkje5D1ae0RTCZDAI4PHceoneXEJVgTvN9JnaVz27k5WJ/CPDwTdifu2lMFlx5SliF0ODnvYsDTeq7rCNCnvDalXngyN/1j0/jh81LXnC+XhSO6x93fmhj8rqWrG4YqIQsnh4Xp4WSOrrEudI6xlVG4KRy5cbkqzwjA5BBw9G1pXPBp9eaySLJisrzhmP7JfpwaOaXyjMRCl8bwHxaTAQ9cVwJ3RBn7jvXhiQN6FIRH6AKUsCgg5wJprHDvZEqpEkLzmuUnL9agd3QaAJAabcXtqxog09KNSPTr9XTDUCXkeYZhwMlPgOF2FWckDvxNszChECaDScXZuGl8HXCyLybSSoF4QbqwzIOBGGReispePZzMoz+I/EvJqlh8eafUiOUXr9SjbXBCxRmJhfCpHSqGkzvGOtA70QsAiDBHYF3MXA19Qo83arvwfIVkG/zi6mKEN3IRRj+JWvPohqFK8A+iyjC3RIYeTgYgaOGJxsLIHmQPo24BH0YqImS6gsb5zgW5WJvEBJNHpxy4e4+ewuAhNy4X4e7q386xTnSNdak8Ix/yLgY8ck0dlUD/ccUuzX8XixOLYTQYFbu2yAyN2/Fv/5DyoK/elIFzM1zylqwBiF7phqFKFMQXwOwWuj5pNqPfYABqlHXfi4pwSchTI0Dzm9K4QDuGodDhKxUZnR7F0UGWR2UgBhQmFKo8o+DAajbigWtL4InK723qxTOH9BQGwKNhK33OhPMaWmOYSLKHOuWqk3Xv/ezc+3ItukdYBXtSVBj+4/INbgdSYFuy6oahSliMFhQkSF0WjoRZgNZ9wEjnPEcFP3anHTW9kuaeEJ6cxtcBxyTbTi4EEnPm318g+I4Ljf2NmHDooT0AqO6rBnXfXPPi8mAz21SeUfCweU08vniGlGpx70u16ByaVHFG4uBbECYcKoWThYwSqcy7Dd3YzS2q/t+VRYi1+cjbBSCMDOiGoarI8r+sYQBoyItd1/fXY9rFcvlWRa5CQniCyjMCUMO1LSy8Sr15LINoS7Q3X8dBHTKjO5SRFZ4k6h4Kf3PHReuxJoEZ2yOTDvzgH0f0kDI0kGe4/lImlgwAbYeAgRMBv+SkYxL1/fXesf59BIYn7bjnWSmEfHlJGi4uTAVGu4ETH7r/lwRMS1c3DFVEtnoMC2MbvBESgggfRg7QCi2Q6OHkmejC1oEl3GLEL6+Rfq9v13fj2cNtKs5IDPjPWm1fLexOu4qzmYXwOGDtudJYAa9hXX8dHJTpw2ZFZyHWGhvwa4rOz1+uQ4fbyx4fYcFPPu1OQah7EfA0SVp9GhCVGpDr64ahivA3ieowC5xAyIeThQsp8GHklCIgUQDpnCWiF6DIoZTqhqECbF+bgM+ftsY7/smLNegaDu2QckJ4AlZFrgIATLumZZ4yYeAXvwrI1vD3JP27CLzf2IMnD5z0ju/9TBESIt2OI/7vEUAnhW4YqkhaRBoSw5n+0JjBgGNmM0I9nCxcpSjvwd2gPW8h4FMB31MZ8iG9UyOnMDA1AICF2j0dKXT8z52X5CMznlXiDk868INn9ZByabLo4eTLFA0nC3fPV5GRSTvu3iMtWi8rTsWnStLYYKwXaPlA2jmALVl1w1BFCCFyNXyPbE2IhpN7xnvQPsb0mqxGK/Li89Sd0NQI0PSGNNZgGBlgfUcjzZEAgL7JPu/vOFTh9RyLk4phIPptMFBEhJlwPxdSfqu+G89VhHZIWfg8Q1u8YuFkX2HrUDcMf/5KPdrdIeQ4mxk//UyR9CIfRs7cAUQHrlOTfkdUGZk3x+puSdS6DxjuUGlG6sGH9zYkbPDK+ahG4+uAp9m9RsPIAJNj4VtMhXo4mf+clSaG9oNICU5fl4hbdkhe2R+/UIvuEA4p+3rwhYRfBAfQUdE51omeiR4AgM1kQ06sdhQf/M3eph48sV/qFvTTzxQh0RNCBhQLIwO6Yag6sptEpCfpliqqISUKwq0cgyCM7EETDyOFqOiu8G7rOU3KcPel+VgVx0LKQxP2kK5SzovLg9XInAAdYx3oHu9WeUazkP8pwLMwbz8csHCyLmzNGJm0467d0oL10qJUXO4JIQMsjHx8rzQOYBgZ0A1D1SlKLIKJsHyOY8SOIYP7TxKCYtdCGYZBEkb2ILx+mkKM28fRONAIACAgumGoEBFhJvzyWul3/WZd6FYpmw1mFCZKQtdCfh/D44C150jjABWh6MLWjJ+9XDcjhCzr3V73AkCdbDtzBxCzKqDz0Q1DlQk3hSM/Pt87DtVwst1lR21frXes+k0iSMLIHvjfZ31/PSYdoRnKO9J7BE73DTYnLgdRliiVZxQ6nL4uEZ/jqpR//GJNyApfa8KDz2u2BshRIZQzQCXebeiWVyFfWYSkqDD5TtXPStsKaOnqhqEAbEze6N0uT17r3gqtcHLjQCMmnewhkR6RjiRbkroTCqIwMgDEhMUgKzoLABO6ruuvU3dCKlHeXe7dLksqU3Emocldl+RjdbwkfH3Ps6HZS1mkdrOAAAAgAElEQVQTHvz8ywIaTp5yTsnuQ6o7A1RgaMKOu/dIQtafKk7D5SU+RSUjXXJR6w2Bb8mqG4YCwBuGFRGcByOEqpOF0i8MsjCyB13PEKjokfIL+e+djjJEhJnwABdSfqehJyR7KfPfxZq+GvGEroGAh5Pr+urgcDFh6zXRaxBnjfPr+bXAvS/VotNdiJUQYcFPPzNLz/a6F6Rq5DWnA9FpM/fxM7phKABlyZLnonqqF3aPfEbrx8BwaEiLyEIKySobhkEWRvYgvH5agHFRF6q6Je+Mbhiqw/a1Cbj1jCzv+N4Xa9E2GFo9vBPDE5ERmQGAec4aBhpUntEcyMLJ/nVUyPILQ7AN3pu1XTN6ISdEhs3cUYWWrLphKADJtmSkRzD38aRzCg1rtrhfCR2xa6F61wZZGNmDrDd3CApdHx08ihH7CAAgwSp1oNBRnjsvzkd2YgQAYGTKgbt2V8HlCq3PI+815FMchEIWTi4H+o/57dT8ew61RdrA2DTu9umFfGnxLJ7A4Q7gxEdsmxgUCSMDumEoDLI8w1RO2Lnm2Vn2Di56J3pxapStnCwGi6wYR3Emh4MyjAwAObE5sJlYflfPRA86xkKnuAnwyS9MLpNX/ekoSrjFiF9dVwKD+0/wQXMvHvsksB02RIOPFAlrGIbHATkXSONq/zyPKKUhbRj+8Plq9I6yqFRSVBju5YWseWqfB+BeMGWdCUQmKzI/3TAUBFmeoYkAxK3ndPITYPDkHEcFB7yuXGFiIcxGFYWt61/mwsjFQRNGBgCjwShL8Bb2YRQg+NBVqD2IRGTzmnh8eec67/jnr9SjpXdMxRkpC28YVnRXiOvBL7pa2vaTYXhy5CT6J/sBAFHmqJAStn6xsh0vVUmL8vuuLkZchGX2nVUIIwO6YSgMsptEfx1o9k7pxSD3Gh7uPuzd3pS8ScWZAKjeLW0XX6PePAIE//sNNcMwlD0UonL7hbnIS2HtGifsTtzxTCWcIRJSzonN8baq7JnoQduooLqO6y8FTG4Zte4aoLt+xafkv4slySUh05aye2QSP3y+2jvetWUVzi9ImX3noVPAyY/ZNjECBZ9WYIaM0PhraIDc2FxvmK97ohsd6y+SXjyye46jgoPyLukmsSlFRcNwrA84+o40Lrx67n01SlmKtADhDfJgp3eiFydHmOfdYrCgIL5A5RnpAECYyYgHd22EyR1TPnhiAP+51395bCKjGQ9+WBSQd7E09oOjIhRloyiluGfPEQyOswr0jNhw/PDyDXMfwPeozt4JRCQGeIYSumEoCDNuErFJgNHtXu6sAnqbVJpZYBm3j8u0rFSVqql9TlKXX7UNiFsz//4apCSxBEZ3mkLzQDOGpoZUnpEy8PI8RYlFsBjnCN3oKE5RRgy+eZ6UsvHrfzairmNYxRkphyyFiEupEY4iLnpSvQdYYdibf698tCyYeerASbxVL7U/fODaEkRZ50mbqt4jbSsYRgZ0w1AoZOHkgUYgN/i9hrJOFLE5iAmLUW8y/Bex+Fr15hFAbGabt7iHgoaMbA2vX6i6HJLODL5+7jqUrGLf/WmnC7c/VYEph1PlWQUe/p4vtAc/9yLAwsLe6GtmzoplMjQ1hKNDRwEARmJEUeIchRdBRGvfOO59Sers9YXTs3B6zjwewL6jQNshtm0wAxuUCyMDumEoFBuTuNVjT4XfV2kiIkx+4VCbXBZA4RWakmiiGtLPhGLoSkuYjQY8uGsjwkzskVTfOYLfvBGcURIe3oN/dPAohqcF9ZSaw4H1l0ljfhG9RPjFaEF8AWxm20pmJjxOF8V3n67A2DRb6KxLisDdly6gvMEX+eRcwKrDFUQ3DAWiJKkEBCzXpnGgEWPZZ3GrtKYVrdJEhc8v5PPfFKfmWXhlAbJ3KiYLoAZ8HufhLoG9FH5iyjkl68OtewzFJCc5EvdwD8w/vX8UB1r6VZxR4LGZbVgfvx6A24MvckcimaPiH8t2VIRaEdif3z+GgycGAAAmA8Fvrt8Iq9k49wGUAkeekcYqRK90w1AgIi2RyI1juTYu6kLVULN8lRZk4WSHyyFbParqMeRXwEXBV43MI+u001uNaee0irMJPLV9tbC7WMJ3VnQW4q3xKs9IZy4+d1oWznSH2CgFvvt0BUanHCrPKrBoxoO/7jzA6k71GWoFTh1c1ml89USDmZr2ITz4htTV5pvn5aJkVez8B3VVA73uY8w2VhWuMLphKBiyPMOeCvlqoeYfgMulwqwCQ+NAI8Yd4wCAFFsK0iIC3wNyVvqOMlV/gOVzFFyhzjwUIjE8EaujVgMApl3TMm9aMMInuqveh1tnXgwGggeuK0G01QQAONk/gZ+8UKPyrAKLrAClR+ACFJNFLplSvXRHhd1pR3WvJNcSzIbhpN2J7z5VCbuTeVZLM2Nx27nrFjgKcm/h+ssAS0SAZjg3umEoGDOq1NaeC1jdK4yhk8Cp/SrNzP/wK8dNyZvU60TBewtzL1Q8n0MNNJP07gdCyUMRDKTFhOPeK6WChGcOncJr1cHbpYfPeT3Sc8Tr3RYS37x359K8uXX9dZhyNxDIiMxAki3Jn7MTil++1oCGLtaC02o24MFdpTAZFzC5XC55fmHxdQGc4dzohqFg8AUolT2VcBqM8v6IQRRO5vPbVMsvpFT+Ow3yMLIHPs+Qz/MMNiilescTDfKZjRn4dGm6d3z3s0fQNTyp4owCR0pECtIj2HuddE6iob9hgSNUJHsnEJnKtsd6gOPvLunwUFmkvd/Yg//+8Lh3/G+f2oB1SZELH3jyE+YAAphDaN15AZrh/OiGoWBkRGYgKZytosbsY2gebJaHk2ufW/IqTUR8e2Wqll/YVaN6PocayPKaesrhosGTosDTOtLqbb0VbYlGdky2yjPSWSz3XlmE9BjWcWNw3I47nqmEK0i7ovALFqHzDA1G+fOo6uklHR4K+oUDY9O44xlpMXp+fjI+u3314g7mw/OFV7LwvQrohqFgEEJmhpPXnCFfpbW8r9Ls/EfbaBt6JnoAAJHmSPV6ZfJfxPWXqpLPoQZZ0VmIC2Mh86GpIRwfOr7AEdqEf8iWJpWGTOutYCAm3IwHr98IT4bJ3qZe/PWjFlXnFCg0U4ACyMObdS8B04vrb+3rDAhG7z2lFPc8ewTdIyxcnhhpwf3XliwuTcppl/dGLlJPS1e/SwoIH04u7ylnqzS+kXkQhJNlD+zkUhgN85TvBwqXy6caOThFrWeDEBISeYah4KEIZnasTcBXdkoJ+/e/Vh+UXVFkRYfdFaAia9amlQKJeWzbPgY0vLqow06NnELfZB8AIMocpZ4zIIA8c/AUXqvp9I7vv6YEiZFhizv42HvAOPv9ICoNWHN6AGa4OHTDUEBkD+yuw+wmwRsttS8A0+MqzMx/CCFsffJjYLCVbVtjgJzz1ZmHSoRCnuGhrkPe7WD0UIQC370wDxvSogEA0w4XvvVEOSamg6srSk5sDiLNLAetZ6LH29dbSAgBSnZJ46qnFnXYwS5J3qYkuSTovPdHe0bxI66C/rM7VuP8gpTFn6DqSWm78GrmEFIJTf1lCCHrCSF/J4S0E0KmCCEnCCF/IIQsWeeEEGIkhFxHCLmfEPI2IWSIEEIJIdULHx1Y8hPyYTMxNfiOsQ60jbYBGZuABPcKa3oEaHhFxRmuHJmwtVqenMonpO3CqwHTIld2QUKwewx7xnvQMtwCALAYLLJe5DrawWIy4KEby2A1s8dVU/cofvZKcEksGQ1G2feRN6KEhA8nN78FjPUueAj/nrakbAnErFRjyuFkCxa71N3k3y7bsIQTjLCwvIfS6/08w6WhGcOQEHI2gHIANwPoAPAPAOMAvgqgkhCSt8RTRgF4GsCdAM4FEO2/2a4Ms8Esq9I90HmArdJKb5B24o0ajTE4OejtlWkymNTplWmfAGqek8alNyo/B5UpiC+A1ciS+9tG29A11qXyjPwL/yAqTS5FmDG0DP9gIic5Ej+6otA7/vvHrXidC9kFA1tTt3q3D3YKbhjGZQGZ29k2dcpz4+aA997z7zUY+NXrDahpZykOFqMBv79xE8ItS/D41b4AOCbYdvIGIFXdRawmDENCSASAJwGEA/gmpXQzpfQGSmkBgF8DSALwBFmaEJ4dwN8B3A7gLACX+3naK2JrCneT8DzgSrhVxNG3gRFt3hh5EdcNCRsQbgpXfhINrwBT7lyl+LVA5jbl56AyZqMZxUnF3nF5T3CFkw90HvBu898nHW1yw9ZMXFKY6h3ftacKnUPBI2HDe9EOdB0QO88QWFI4uX20nUW+AISbwrEhYQneNMF5v7EHf9krFe/dfWk+NqQv0c/Eh5FLrgfU0vR1ownDEMCtAFIBvEspfdjntbsAHAWwCcCitUYopWOU0lsopb+llH4AYHGlVQrBr6gOdLpvErGrgayz2H9Sl1whXUMIkV9YyX0RS29U/YuoFrJqyCDLM+QNwy2pwRW6CkUIIbjvmmKkcRI2tz9VAWeQSNgUJBR4U4g6xzq9hpSwbLgKMLAONTh1AOg/NueuvPd+Y9JGmA3mQM9OEXpHp/DdpyVpmnPWJ+HWM7KWdpKhU8Dxve6BT/6mSmjFMLzS/fPvvi9QSp1g3kR+P83D3yS8eYaAPJxc8cSyG5mrier5hSNdLC/GgwBfRLXgDXPhZTKWgJ5fGJzE2iz47fUbYXCv4/Yd68Mj7zSrOyk/YTKYtJVnGJEA5FwojSvn9hryofFgWaS5XBS3P1WB3lGPNE0YfnVd6dI7eFU9DcD9HF97DhCdPs/OyqAVw9DzbTkwx+sHfPbTPLPmGQKsC4on9NpdA3QeUWF2y2fSMYmaPqlyS5VK0SPPsLwYgGlExmUpPwdB4LX9GgYaMDo9qvKM/IOeXxi8bF+bgG+cl+sd//bNRnxyrE/FGfkP3mgSPs8Q8Ml7f5xJgM0C/30MlvzCP75/FHubpKKbB3eVLl6axgOl8jA8//tUEeENQ0JINIB49/DEHLu5NUcQVG0NZs0zDIsCCq6QduJDohqgsqfS2ws0OyYb8db4BY4IxCT4MLIYX0S1iLREIi+O1W25qCtoqpP1/MLg5lvn5WBbNrt3uCjwrSfL0T82rfKsVg6fZyi8xxBgTQGssWx7sBU48eGMXTrHOr3yO1ajFUUJKhQb+plDJ/rx6382esdfO2cdduYto+9zRwXQU8+2zRFAvhilDsIbhgD4BoNz5QF63BxRAZ6LosyaZwjIjZkjT2uqRd4nHZ94t7elqlDw0XkE6HJ7WU1WeR/qEIX/O3zc8bGKM/Efen5hcGMyGvDQDWWIs7Fcta7hqaBomVeYUOgtxmsbbUPHaIfKM1oAU5hcuqbi8Rm7yLz3SaUwG7WdXzg4Po1vPl7uzW3dvCYO371wqaIobvjwe8EVQNgi+ikrQMANQ0LILwkh9cv4l+E5RaDnuFwIIV8mhBwkhBzs6enx+/nnzDNce468Rd7Rt/1+7UDBG4Y70nYoPwHeW5h/ORO2DnG2p233bvN/H60ian5hqOiwKkVqjBW/3lXqHb9d343/+kDbrR3NRjNKk6T3pAmv4cabpO3a54EpeToKHxLfnLpZqVkFBEopvr+7Cu3uaviYcDMeurEMZuMyTCmnXV5AKlD0SgmPYTqA9cv451lWjHDnmquRrcfMHpnj9YBAKf0zpXQLpXRLUtIy3MgLMGeeocEoL5jQiKbhyPQIqvvYc4uAKJ9r4nT4fBFDT7twNrakbIGJsOrCxoFG9E1oO19LxPzCUNJhVZLz8lPwr2dJGUT3v1aPQyf6VZzRytFcODm9DEgqYNv2MWYccsj0CzWe1vGfe4/jjVpJ7/VX15UiI3aZcmtNbwDj7hzFqDQge6cfZugfAm4YUko/Sykly/jX4j5+GIDnm75mjstkun+2BPbdKM+seYaA3KipfxmYGFRwVsvjUNchuChLTi5IKEBMmMLeumPvAKPuL3VkCvO86sBmtsn0DA90zVXjpQ1Eyy8MRR1WJfn+xfnYmMny3BwuitseK0efu1JUi2iuAIUQudeQCyf7eu/5+4zWONjSj/teq/eObz0jCxduWELLO1/K/0/aLr1B1RZ4vmghxxBgK20AmOsuv81nv6BhzjzDFE4d3TkF1D43y9FiwYcpt6dun2fPAMF7VouvA4wm5ecgKHyeodbDyQLmF4acDquSWEwGPHLzJsS68w07hyfxHQ3rGxYnFnu93K0jrdroSFSyCyBuw+bEB0A/C+nL+iMnlQjhvV8OfaNT+AaXV7gxMxb3XFqw/BOOdAKNr0vjsltWOEP/ohXD0OObvtn3BUKIEYAnOL9wXx6NMWeeISBfpZU/pvDMlg5f2MDntSnCxADzrHrgf3c6QZNn2D3eLWJ+YcjpsCpNRmw4fnO9JH21t6kXv3+7ScUZLR+L0aK9PMOoVCDnAmnszuUOBv1Cp4viO09VoHOY5RXG2sx45OZNsJhWYD5VPC6XTEtY54eZ+g+tGIZ/BdAJ4FxCyG0+r90HYB2Yt/BV/gVCSMYsxSyaYs48QwAouhbwKMif2g90idtYvneiF82DTIjWV8hVEaqeBhzu9lmpJUBK4fz7hxilSaXevsknR06ifbRd5RktD/5BJEp+IUJQh1UNzl2fjNvOlR6wv3urCXub/F8UqASayzME5Ittt6ahTL9QgLSO5fD7t5tkeoW/uX7j8vMKAaZdWM6tEQXzFgIaMQwppaNgXsEJAA+7K4GfIITUArgDQC+AG+nM5pJmzCxm8UIIeZQQ8jEh5GMAj7r/e63n/9z/vhSo97VY5swzjEwC8j8ljQ//j4KzWhq8QVuSWAKb2abcxSkFDv1NGm/+gnLX1ggWowWbUqQuKFr1GvL5kSI8iEJZh1UNbr8gDzvWsl83pcC3nijHqYFxlWe1dHjv2v6O/SrOZAn4aBr2NryIY0OsTZ7JYBLFe78k3qnvxu/ekjzPt527DueuT17ZSU98BPQfZdth0UJKpmnCMAQASul7YCvqxwGsAnA1WDXynwCUUEoblnHaDQC2u/95EgbCuf/b7r6WqsyZZwgAW26VtiufAOwTCs5s8agqU3NyP9Dt9qaaI+S6WzpeZHmGndo0DAUMXYWsDqsamIwGPHRjGZKjmKd4YNyOr/39MCbtTpVntjRKkkq8HvzWkVacGjml8owWgSlMJrmyr/wv3u2y5DJYTVY1ZrVsTvSN4dtPlnu7zp62NgG3X7BMvUIevuik6BrAoqCTZJFoxjAEAEppA6X0ZkppKqU0jFK6mlL6VUrprCqglNIW3ypnn9fPWUR19I8D/b4WYt48w6ydQJzb0TA5BNSIWYSian4h7y0svgawhqSyx4LwBvsnHZ9gpgNebAKRX3jnnXciPz9/1n8ACnUdVvFIjrLiD5/dBJO7ofKRtiH88LlqTX2ew4xhMs2/fR37VJzNEuCiMR8N1Hm3T08/XYXJLJ+JaSe+8n+HMDzJmkekxVjx+5vKYFqOXiGP7zN60+dWdr4AoSnDMFSZN8/QYAA2f14a///2zjs8imr945+z6R0CJIEASWgSitTQixSxiwWvFSsoYudaLr/b77VgvfdawC4gTUHFig2lCUjovRMIhEAKCQnp2fP7YyazuyE9O1vC+TzPPjtn9szM2Tk7s++c877f194I8hCO5x03jNkg3yB6tnShZEHhGdj1ua2sppGrpWtkV8L8tUGrzMJMYxrIWzDDvzAtLY19+/ZV+QICUTqsHkm/uEj+dk03o7x403EWbDhWwxaex5DWNmNqXZqXGIZRidBuEBJYF2i7/ga3Gey+NtUTKSV/+nw7e9O1y9Hfx8KsO/rVPw9yVexYAmX6rF50D00D0gNRhqGXYO8v5WAYAvS+wxaEkroeTu/Bk9iQbvOR6Rvd17UpkSoHnbTpW3P9Cxgfi49Xy9aY4V84b948pJRVvoBNSofVc5k4KI4b+thiDv/x1S42HT3jxhbVD/tRtvUn11Nu9ZLp8H53s9/PjyxfTb6mWUAzEiMbIe3iYj76LYUvt9qC7/41vruhk9lo7KeR+0zUNCA9EGUYegn2fobrTq5znBapHITiYaOG9tPIg2Jc6F9YVdCJh16InoK3GoZSSodRFQ/xL6zggtVhdSdCCJ67vieJrTXXkdJyyZR5m0jX05l5Oh2bdSQqSAt0yCvJY1fWLje3qI50v4514c2N4qCwBCzCO0yNNQcyee4728DKLUntuGVAe+fs/MRmSNMvcR9/x+xlHoZ39JaC7i260yxAe2rJLMxkb/Zexwr2U6QeFIQipXSIqhvQekANtZ3M8WQVdFJP7P0Mk08le80oxZHcI4a7QohfCL2jeteyhUu5YHVY3U2Qvw/vTuxHc138OiOvmPs/3ugVwShCCAa1sV2Pa9PWurE19cAviLUtbDGbQ3Iya6jsOaRknuOhBZsNEete7Zrxj2udKGuW/IFtufv1EBxZfV03owxDL8HH4sPQ2KFGefWJ1Y4VEkZ6ZBDKoZxDZBVpuXcjAiLoGtnVdQff+JFtWQWd1ImEiARaBWn+Znkleec/gHgo9tfDkDZD8LO40F2hdi5YHVZPoF1kMG/d1hcfPRhl+/Fc/vTZdq8IRrGfTvYWP8OisiI2leca5cEpyZDn2dlb8opKmTx3I7mFpQBEhQXw7sR+BPo5KU1dQTbsXGIrJ7ldBa9GlGHoRQyPHW4srzq+yvFDDw1CsZc9GRAzwHVTCiropEEIIRyixu3dADwZ++vB/jrxBC50HVZPYEinlvzdLhhl6dY03l3l+cFV9iP42zO2k1+SX0Ntz2Dzqc2UWDUDK6GklJjSEth6XtIfj8FqlTzxyVYOnNbOrb+vhXfv7E90uBPldbbOd/R1b+t+jdWaUIahFzG0zVCErn6xPWM7Z4oqOVL3vh0sev5fDwlCcZCpcWV+5O2L7S7EniropB54m59hfkk+m09tNsr2I+uewoWsw+opTBwUx60D2hnlGd/v5afdnj2S1SKohTHLUibLzg889EDspXWGFOr34E2zwUPdUl76YR8/7zltlF+8safzgk0ArFbHaeQBkz3e110Zhl5Es8BmhjabRJ7vcxIaBV2vtpXdPGpYZi1zkBBxmX+hlLDJbhq53z0efyF6EvajFFtOb6GkvMSNramd9SfXUyY1vbHEyESighuZmcAkLlQdVk9BCME/r+1BUrwWGCElPLZoCztP5NaypXuxl3rxBj1D+/+lIVZ9KjbnGOxbVs0W7uOT5GO8vfKQUb5/RAeu7+PkZ6lDv8CZI9pyYISWytbDUYahl2E/TXaenyE4Tpluma/5G7qJbRnbyC/VhuejgqOID493zYGPrLILOglWQSf1pHVoa9qHaZF4ReVFDsa9J2J/HQyLHebGlig8HX9fC2/f0Y92kVqu24KScibN2ejRkcre5GeYUZDB/jP7AS0NXv9ut9o+XD/LTa2qmrUHM/nzFzuN8piuUTxzuQk+8Mm2DDD0vsMjM51URhmGXsbwtjbD8LcTv50fNZowElpepC2X5MHmj3EXvx771Vge2XYkwlWjduvesi33vk0FnTSAEW1HGMu/pP7ixpbUjJSS1cdthqF9uxWKqmgRGsCHdyURFqi53aSfLeK+OcmcKy5zc8uqpk9UHyM9XsrZFMfMVx6GvetQ71a9CR44BYQ+anh0DZzc7qaWOXIoI58p8zZRpkcgd2sdzuu39jEClJzGmRTY/4OtnHSfc/dvEsow9DK6RnalZVBLAHKKc9iZtdOxgsUCg+0CH39/G8pdf8OTUvJrqs0wHNVulGsOnLEPDlRciAIGTXXNcZsY9v21InWFx0Zw7juzj4xCLZ1bRECEa7PqKLyWztFhzLq9n2EI7Eo7y2OLtlBWbnVzy87nvPR4HjxqaN+2IW2GQERb6DbeVuH3d9zQKkcy84u5d3ayke4uKiyAD+7uT0iAr/MPtvEjQL93dhwDLTo6/xgmoAxDL8MiLA7TZfajJQYX/wGCNeOR3FTY8+X5dUzmcO5hjuVpKaiCfYNdlx95/Uzb8kVXes2F6Gn0je5LuL820nqq4BS7s3e7uUVVY//7H9JmCD4WJ8lLKJo8wzq35N/jexjln/ec5u9f7fLIhyD79HjnKVJ4COXWctacWGOUDd/IQQ/aKu34FPLdl5e7oKSM+2YnczSrAIAgPx8+uCuJ1hFBzj9Ycb6jn7+HS9TYowxDL6RWP0O/IMcf4do3NU9rF2I/Wjg0dij+Pv7mH/RcJmxbZCsPriwZp6grvhZfh2lZe7cAT8L+9+9pMjUKz+e2ge15YEQHozz/92PMXHGohi3cw8h2I43ldWnrKCzzjAQG9mzN2MqZYk0po2VQS7q10OWB2iZBrD7iWV7iGBjoQsrKrTw0fzPbjmt+9xYB/72lNz3bRphzwC0fQ1GOttw8AbpcZs5xTEAZhl7I4DaD8dH9NnZn7SazsApl+aRJ4KMn/U7bDMdcq0dnb0i4bBo5+QObRE2bPhA3pOb6ihqx7zd7Q99TyC3OZVvGNgAEwiNlahSezzOXd+XaXm2M8ss/7GPxxlQ3tuh84sLj6BihzX4UlRd55HTyL8dsvsij2o2yadYKAQPtRg2T34cy1yodSCn58xc7+XWfbbTyn+N7cFn3GHMOWF4G6+xmr4Y8DF40m6EMQy8kzD+MPlF9jLL98L1BaCvodbOtvO5NF7RMI6Mgg+2ZmpOxj/BxTUBAaZFj9Nfgh5VETSMZGjvUyCCy/8x+jucdd3OLHFmbthar1HzCerbsSWSg56aYUnguFovg5ZsuZkjHFsa6P32+g1/3na5hK9czuv1oY9neCPMEpJQObbJvK6D5GYbqRlj+Kdjl2uyP//n5AJ/YGfsPjerIxEFx5h1w91LI1VypCG4BvW4z71gmoAxDL8U+OrlKP0OAQXZTqXu/hSzXTJGsPL7SWO4b3ZeIAJOG6u3Z8Smc058Gwys5PCsaRIhfiINvqH2/egL2v/thbRpvXzwAACAASURBVJVMjaLhBPj68PbEfnSNCQOg3Cp5cN4mNqZku7llNuyNrZXHV1Jm9Zwo6gM5Bzierz04hviFOIjkA+DrDwPs3Zted5l704drjvD68gNG+Ya+sTw57iLzDiil9v0qSJrsFRI19ijD0Eux96dal7aOUj0FkQNRXaHTpXpBahHKLsDl0chSOkrUDHwAfDwqV67X4jCd7EF+hlZpdRgpHxGrZGoUjSM80I859w4gtpkWiFBUauWe2cnsSvMMAexuLboZ4u05xTlsOb3FzS2yYT9aODx2eNU+5f3u1XRlAU7tdJRxMYklm47zr29sgXMjurTixRsvNlc67cgqOKm5uOAbqGU68TKUYeildGrWiZgQbWg+rzSPbae3VV1xyMO25S3ztGTeJlJQWsD6NJs/o0sMw4PLIWOvtuwf6pgzWtEoLml3ibG88dRGcos9409yV+Yuw9E9MjCSxBaJtWyhUNROdHgg8yYNpGWo5p+dV1TGnR9s4HCG+3MUW4TF4X7qSdPJNU4jVxDSQstCVcHqV0wdNfx+ZzpPL7H9L/aLa87bd/TFz8dks2ftG7bl3rdDSEtzj2cCyjD0UoQQtUcngyZ4Ha1LMpQWmB4RtjZtLSVWzbG4c/POtA1zQapWe//JvndqaYcUTiEqOMrQBiyX5dX/zlxM5WwnhqO7QtFIElqG8PF9AwjXBbCzzpVwx/u/c/xMgZtb5mh0/Zr6q0dI65zMP8me7D2ApmZQY/ahIY9AxWji8WRtdM0EVh/I4NGFW9D1q0lsHc6HdycR7G+CVqE9p3bDwZ/0gvBaZQx1N/Vi7A3D5ceWV32TEJV+nOtmavpKJuHyaeTUZDisH1NYtGlkhVPxxOnk5ceWG8v2/rYKhTNIbB3OR/cMIMhPiyRNyy3i1vfWk5bjXpmYpOgkQv1CATiRf8JIP+dO7DMjDYgZQJh/WPWVw1tro2gVrH7F6e1ZezCTSXM2UqKLlSe0DGHuvQOICHKBe9HqV23Lidd4rY6uMgy9mMFtBhPiFwLA0bNH2Zm5s+qKPSZARDttuSDTNF/DMmuZQ4DC6HbVTCk4k1/+bVvucSM0jzf/mBcY9tPJa06soaTctVITldmXvc/4QwzwCWBYGxV4onA+/eKa8+6d/fDXpx5Tswu59b31nMx1n3Ho5+Pn8CDkCdPJ9g+LdbrnD3vclibvyCpI3eC0tqw7lMW9c5IpLtOMwjYRmmtAq7AApx2jWk7thp2f2crDHjf/mCahDEMvJtA3kLHtxxrlbw5/U3VFX38Y+bStvPZ1KMxxenu2nN5i+KBFBUfZBE7N4sgqOKIbosIHLplu7vEuUDo160TbUM0loKCsgA3pzruRN4RvD39rLI9uN5pQ/1A3tkbRlBneuRVvT+yLn48WrHA0q4Db3vud9Nwit7XJQbbGzXnMc4tz2Xhqo1G2f4islubx0PMmW3mVc0YNfz+cxb2zkykq1YzCmPBAFt4/yAgmMp2VMzDS33W53Cbq7YUow9DLuabjNcby9ynfVx2dDJqOUqSu8F+Ua4quYeVpZFMjv6SEX561lXvf5rXD9p6OEIJR7T1jOrncWu5gGF7d8Wq3tUVxYTC6azSzbu9nGIdHMs9xmxtHDoe1GWboi+7N3ktafppb2gFaer5yWQ5oWqLRIdF123D4NED/fzjwA5zc3qh2/H44i3tmJ1NYqrUlOjyAhfcPIq5FSKP2W2dObofddqlnR/2fa45rEsow9HL6R/c3JAyyi7KrV8T38YVL7H6s62dpKeSchJTStdlODvwEqb9ryxY/xxFRhdOx788VqSsMYWlXk3wqmdOFmvBwZGCkLR+rQmEiY7tF89ZtffG1aMbM4cxz3PT2Oo5luT4gJdQ/1EFfdNmRZS5vQwXfp3xvLFcbjVwVrS6CbtfayvYP+fVkxb7T3PXRBgpKNKMwKiyAhZMHkdDSRUYhwIoZtuWuV0PrXq47tgkow9DL8bH4cFXCVUb5m0PVTCeD5oMXpU/vluTDmv84rR27s3Y7CJwmxSQ5bd/nIaWjb2H/e6BZe/OOp6BPVB9DqPx04Wk2n9rslnbY/74vj7/cGDlRKMxmXPcY3rzNNq18/EwhE95ey4FTeS5vyxUJVxjLXx36yi3RyRkFGfx24jejfFlcPXMBj3wGh1HDI/VXPFi24yST5240po+jwgJYMHkQHVq50L3kxGbYZ5vF8PbRQlCGYZPAfjrtl9RfyC+pJurYYnH80Sa/D2dPOqUNi/cvNpbHtB9TtcCps9jzFaTrUw++gTD8j+YdSwFoMhTj4sYZ5c8OfFZDbXMoLCvkp6M/GWV7NwqFwhVc3iOGdyf2J8BX++s8nVfMze+uZ+cJ1+p7jm0/lmBfTSz6cO5hdmTucOnxQfNpr5hG7hfdj3bh7eq3g+ju0OtWW/mnv4K17jMRn28+zkMLNlNarhnFsc2CWDxlMJ2iXOxzvOIF23L367Xv5eUow7AJ0KV5F7o07wJAcXkxPx/7ufrKXa+G1r215bIip8gFnCs9x3dHvjPKN3W5qYbajcRaDr8+bysPmAxhJiVCVzgwocsEY/nHlB9dLna9InUFBWXa1F18eDzdW3j/DVjhfYzqGsXsewYQ4q9F1mafK+GWd9fz20HnuebURrBfMJfF20bovjz4ZQ21nY+U0uGY13W6rmE7GvV/4KNHDKdtgd11y6H8/urDTPt0m6FT2KFlCIunDHadT2EFR9fBgR/1gmgyAZDKMGwiXN3BNmpYbXQyaLqGo/9qK2+aA2eONurYy44so7BMc8TuGNGRXq1M9K/YscQxy8nQJ8w7lsKBbi26GZHmJdaSmn9nJmB/vKs6XGVucJNCUQODO7Zg3qSBhgh2fnEZd3+0gS+3nnBZG8Z3suWDX3ZkGUVlrouU3pW1i0O5hwAI8g1ymE2oF83awaAptvLyf0FZ9XJYVqvkX1/v5tlv9xjrusaE8ckDg2njquhjozHlsMzOt73nTZrvZBNAGYZNhCsSrkDo/hobTm4g/Vx69ZU7jYF2g7Rla6njCFwDWLJ/ibE8ocsE8/6wS4tghV1bB03V0iwpXMaNnW80lpfsX+Iy36aswiwHf6arOlxVQ22Fwnz6tG/OJw8MJjpcG/EqLZc8tmgrb6885JLrom9UX0NGKq80z0EVwmyWHlxqLF8adynBFTmQG8KwJyCwmbZ8JqXa7FxFpeU8snALH/52xFiXFN+cRfcPco1OYWU2z7VzaQqCMX+tub4XoQzDJkJMSAwDWg8AQCJrjlQTwvFHvH1Rgxx/QQs62ZW1CwB/i7+5fl9rXtNuHKClvfPSdEPezJUJVxLkqz2ZH8w5yLaManJ0O5nvU743/Jn6RPWhXVg9/ZkUChNIbB3O51OH0tnOr23Gsr389cudlJabG7kvhHAYNXTVdHJxebGD61CDp5ErCGoOI56ylVe+eJ7OblZ+MXd+sIFvd9h84q/oEcPH9w2kWbCJ/uzVUXhGG92sYNgTTSoAUhmGTYg6TycDxA/TUvYYGzyujcjVk8/224IQLo2/1IhcdToZ+2D1a7by6L9CUDNzjqWollD/UK5MuNIo248Wm4mDdmEHpV2o8BximwWxZMoQBiZEGuvmrT/GnR9s4Mw5c7MEje843pgpWpu2tuaZIifxa+qv5JVokdixobH0i3aCkPOAyRChG1YFWQ5G156TZ7n2zd/YkJJtrLt7SDxv3taXQD1locv59QUo1NsT0R6GPuqedpiEMgybEGPbjyVAd+Tdf2Y/+7L31bzBFS9BRV7LrIPaiFw9KCgt4Nsjtj/sCZ0n1FC7EVit8PXj2rQ3QGx/6H+vOcdS1Ip9EMoPKT9wtuSsqcc7knvEiLqsHB2tUHgCEcF+zL1vANf0amOsW3c4i2vfWsN+E+VsWoe2dpgpcoXfr/3I5PhO47EIJ5gRvgEwzm4EbuMHcGw93+9M58ZZazmh56gWAv58ZSJ/v6YbPhY3+Rif2qUpelRw2bPg52L/RpNRhmETItQ/1CFXZa03ifA2MPbvtvLq17SRuTryQ8oPnCs9B2hRok55cqyKrfPg2Fpt2eIL1/wPLG56UlTQvUV3LmquOVkXlRc5jOaZgf3veETsCJoFqpFihecR4OvD67f05slxXYx1qdmFXP/Wbyzb4RxZsKoY39E2nbz04FJT/RtPF5xmbdpao3xtx2trqF1Pul2npZLTyVo4hUfnrTeEq0MDfHn/zv5MHtHBfYFnUsKyZ0B3ayFhBCQ68Rx4CMowbGLYaxp+duCz2kdz+t+rjcCBNiL39eN11pJySdBJfgb8aOcPOfhhiOnh/OMo6owQwmHU0MwglILSAhbvs2lkqqAThScjhODh0Z15Z2I/gnU5m3Ml5Tw4fzP/+GoXJWXO9zscGzeWED9NpuXo2aOsObHG6ceoYOHehUbWowExA4gNjXXezoWAq17Fqn+XFoVHmOLzNQBxLYL5YuoQxiTWMeWeWWz8EFJ0f3zhA5e/qLW7iaEMwybGkDZDiAuPAyCvJI95u+fVvIHFRx+B02QXOLYWtnxc63H2Ze9je6YWkeVn8XPuk6M9P0yHIt0RuVmcrpavcDdXdbiKQJ9AQHNb2Jm505TjLNi7gDPFZwBoHdLa/FSLCoUTuKx7DJ9PHUK7SNsU4+y1Kdz09lpSs52bRi/IN8ghAOSd7e+Y8qCWW5zLwr0LjfLNF93s9GOsywzitXLbfh/yXcqEuHMsnTqUztFhTj9evcg8CD/+xVYe9CBEd3Nfe0xEGYZNDF+LLw9c/IBR/nj3x7ULEcf00EbiKvjpr5B/usZN7EcLx7YfS/PA5g1qb40c/Bl22EaLuPo/4N8IWQSF0wjzD+PyBNu0z5IDzg9CyS/JZ/au2Ub5gYsfwM9HpcBTeAddY8L55uHhXNrNNsq17XguV72+mi+3nnCq8XZ397uN9JDbMraxIX2D0/ZdwYI9CwzXoQ4RHRgbN9Zp+y4ps/Lqj/u4/f31zCwYzVZrRwACRBkv+39I80A3myrlZfDF/VCqG/WtujrqATcxlGHYBLky4Uriw+MByC/NZ86uObVvNPIZbUQOoCgXvnmi2inlvJI8B7+yG7vcWGW9RlGQrbWhgp43afqLCo/BXtNw2ZFl5BTl1FC7/szfM994qIkNjeXaTk3Pl0fRtIkI9uPdif34y1WJ+OrBEmeLynhs0VYeXrCFbCdFLceExJw3auhM8kvy+XiPbSZp8sWTnRN0AuxLz+P6mb/xxi8HsUqwYuEF3wexCm0WS6Sug1+fc8qxGszqV+HEJm3Z4gc3vAt+ge5tk4l4lWEohLhICDFPCJEmhCgWQhwVQswSQrRuwL7aCyGmCCG+EELsFUIUCCHyhBCbhRB/E0KEm/EdXIGPxYepvaca5fl75nOm6EzNG/kHayNyFez9Bla9XGXVmVtnkleqRdq1D2tPUkxSo9vsQHkpLL4Lco5p5cBmcNkLNW+jcDm9WvWic/POgJbH+I0tbzht32dLzjJnt+2BZkqvKcaIiELhTQghmDS8A59OGUzb5rap5W93nGTcf1bx8+5TTjnOfT3vw1c3ppLTk9l8arNT9guwaN8iQ6KmfVh7Lo+/vJYtaqes3Mo7Kw9xzRtr2JVm84UfmBDJ649PxDLSLqvImtdgXw3avGZyYpOmrVjBqP+D1iZm9/IAvMYwFEKMBLYAtwMngS+AAmAKsE0I0aWGzatiATALuBo4C3wFrAM6Av/U95ngnNa7nnFx4+jUrBMABWUFdRs17DQGBtqlJ1rxPOz+yqHKgTMHHPxMHunziNOeHA1++DMcWWUrj38TQls59xiKRiOE4OHeNheExfsXsztrt1P2PX/3fIc/IqVdqPB2+rZvzvePj+CWJJs4e2Z+MZPmbmTKx5tI0yVZGkpsaKxD8KGzRg0LSguYu2uuUZ7UcxK+FT7pDWTzsTNc++ZvvLBsLyW6ELi/r4W/XJXIwsmDiA4P1ESvO9rNEn3+AGQfqWaPJpF/GhbfY4tCbjcIhj7m2ja4Aa8wDIUQIcAiIAh4RErZT0p5i5QyEXgVaAUsFPULiz0BPAHESCkH6PsbB3QCVgDxwGznfQvX4mPx4cFeDxrlBXsXkFWYVfuG456DDpfYyl88AOmahpyUkhc2vGBkoEiKSXJI5O4UNs2GDXY3tEv+z1GIW+FRjGo3iqGxQwFNR+353583ohYbSm5xLnN32/6IpvSa0ug/IoXCEwgN8GXGjRfz4d39HdK4fb8rnbGvreTdVYcalTFlUs9JxoP62rS17MjY0eg2L96/2AgAq2x81pecghKmf76DG2etZfdJ2yjhxW0j+O7RYUwa3gFLhT6hxQI3vAcRuiFdnAuf3tmgRAwNoqQAFt4COUe1sn8oXP/2BSGV5hWGIXAPEAOskFK+WemzZ4BDQF/girruUEp5s5Tyv1LKrErrM4CJenGEEMJrc2+NjRtLl+baQGphWaGDI3+1+PjChI+guT5YWloAC2+Dc5n8kPIDyenJWjXhw/QB050rUXN0LXz7pK3cbbxjqiSFxyGEYPqA6Q6O718f+rpR+5y7ey75pfmApo9pn2lFoWgKjO4azY+Pj+AP/dsa6wpKynn+u71c9t9VfL8zvUHBKXHhcQ7TvG9tfatRQS6VA8Du7XFvg1w6ikrLeX/1YS55ZQULNxyjokmBfhaevvwiPntwCJ2iqog6DmkBN83R/PpAy0385UNgLW/At6kH1nL4fLLNr1BY4Mb3IdJrJxHrhbcYhhVetedpr0gpy9FGE+3rNQop5XEgUy+2ramuJ2MRFgdfw0V7F5FZmFnDFjrBkXDrIltWlNxjFHx6By8n23wOb+16q+Ff5hRyjsEnE23ZTaJ7wnWztKdGhUcTFx7HXd3vMsqvbXrNmAauLzlFOQ4SS1N7T8XnAnhCV1x4NA/x56UJvVg8ZTBdom25lg9nnGPKvE3cMGstG45k17CHqrn/4vuNNHm/pf3WKMWA535/zvjPiAqOqnde5HKr5LNNxxnz6kqe/XYPOQWlxmdjE6P46YmRTL2kE34+Ndzn2/aDK2bYyjuXwNKp5hqHP/5F87Ov4IqX4KI6jzt5Pd7yr9tHf0+u5vPkSvUahRCiJVChv2KeZL0LGN1uNImRiYCWpeJ/m/9XtyfIqK7aE5J+g3n37G5OF2oSNi0CWzgYnI3mzFGYfxMU6EZrcEu4dQH4hzjvGApTmdxzMtHBmixHdlE2M7fObNB+3tz6JgVlmiREp2adVPo7RZMnKT6Sbx8dzvQruhIWYHOZ2HIshz+8s47b31/P6gMZdR7569isI7d0vcUov7ThJQ7nHK53u745/I1D1qGnkp7C38e/TtuWlFn5NDmVcf9ZyR8XbzNS2gG0iwzi3Yn9eP+uJNpF1lF+rP992quC7Yvgy4edbxxKCStmwHq7+9fgh7VczhcQHm8Y6tHBFdnJj1ZTTQ9fxVnjvE8CPsBmKWWKk/bpFoQQDkbc0oNL6+6UfNHlMPbvpPj6MifCFqQ9rfs9hPk7SWz06Fp4bxRk7NXKFj+4eR40a++c/StcQrBfME8m2dwAFu5dyIEzB+q1jw93fsgn+z4xylN6TVGjhYoLAj8fCw+M7MjKp0dx79AE/HxsLjq/Hcxi4gcbuObNNXy9La1O2VOm9ZtmBB8WlRfxzOpnKCmvuzROal4qz65/1iiP7zi+TpHIuYWlvLfqMCNe+pWnP9vOoYxzxmeRIf7845puLJ92CeO6x9S5LYCWXeTKV6CvbWaCbQvgq0ecZxyWFcPSB2GFnQJG4jVw6b+ds38vwuMNQyDUbvlcNXXy9fdGWytCiLFohqEV+GNj9+cJjGw78jy/k0V7F9WwhY2SQVN5tkNPynRfwt5FxVz9/fNwfFPjG7Z5Lsy5Fgp0N0+Ln+bcGze48ftWuJzL4i5jYMxAAMplOc+uf5aisro5in9+4HP+s8kmlzS63WgujbvUlHYqFJ5KZIg/f7umG7/88RJu6BOLxc6Fe+eJszyycAuDX1jO89/t4eDp/Gr3E+gbyIzhM/C3aCN8e7P38r/N/6tTG8qsZUxfPd0Qs24f1p7pA6dXW19KyfrDWTzxyVYGPPczz323h/Sztus+LMCXR0d3YuVTl3D30AT8fRtodlgscPV/oc9E27qt8+Hj6yD3RMP2WUFBNnx8PWyzKW7Q4RK4/t0L0p1JmJlwG0AI8RLQEGXaMVLKE0KIWOC4vs5PSllWxTE6A/uBEillQOXP69HWnsAqoBnwFylljaqaQoj7gfsB2rdv3+/o0eoGNN1PSXkJDy9/mHUn1wEgELw44kWuSKjebyL9XDrTVkxjR6YW2Sak5JO0dBJLSsEnAMa/BRffVP/GlJdpPhy/z7KtC24Jt8yH9oPqvz+Fx3Ao5xATvppAmX6ZJkYm8tolr9E2rHpX3eVHlzNt5TQjmrl/dH9mjZ1FoK9nC8gKITZJKfu7ux3OoH///nLjxo3uboaiEqnZBby3+jCfbkylqPT8kcI+7ZtxWfcYxnWLpkOr0PM+n79nPjM22PzzXhj+Qo3ST2XWMl5OfpkFexcA4Ct8+fjKj+nR0jE/vdUq2ZKaw4+70/l+ZzpHs85P89cqLIB7hyZw+6D2hAc6UYPUaoWvH4EtdiEHgRGa0djjhvrv79AvWtBj9iHbur53wlWvQRPPtFTdPcwVhuE8NO3B+pIgpUzRp5Ircro1k1Kel99NCNEH2AxkSSlbNrCdXYGVQBTwqpTyyVo2ccAbbqwFpQVM+nGSYej5Wnx5c/SbhtyIPevS1vHMqmcMmQKAe9qOYVryF7bcxaANtQ+4H+KH155MvLQIdn+p+W+c3GpbH91T8ylU08dNgplbZzJrm83oD/cPZ8bwGQxvO/y8uhtObuDBnx+kxKpNcyVGJvLBZR84z1XBRJRhqHAVWfnFzF13lE83pnIyt+pR+E5RoYzo3Iqk+Ob0j4+kVVgAUkqmLp/KmhNrjHrjO45n+sDphPg5+nCnnk1l+prpbMvYZqx7rO9jTOo5CSklKVkFJKdkk3wkm1/3ZZCZX1xlO7q3CeeOQXFc3yeWQD+TXEGsVi0byprXwF4eq/sNMOQRaNOn9v+j9B3w0980w9Cesf/UtAqdqbjhobjNMHQGQogsND/DXlLK7VV8fi3wJdCgG7Uujr0CaA3MlFI+VN99eMuNNacoh7u+v4vDuZozcpBvEBO6TKBDRAcSIhKID4/ni4Nf8MaWN4wRHF/hy7T+07gj8Q5E9mFN2ylzv+OOW3WFpElw8c0QWClpTM4x2PihNnVcUElLsevVcP07EHD+067CO5FS8um+T5mRPIMyqzZyKBBM6TWFmy+6maNnj3Ik9whHco+w5MAShymrOVfMoWVQg57tXI4yDBWuptwqWXUgg082pPLznlOUWav//45vEUzXmHDatChjee5fyS6xxVG2DW3LU0lPGTnuD5w5wKsbXzUCvwA6hQygd8ATHM4oYFfa2WoNQYCwQF+u6x3LzUnt6BEb4YRvWkeOrtNyGFdkyaoguif0uwvihkJwC01pQ0o4uQ2OrYWUNXDgJ8Du/PmFwHUzobtTxE28Am83DH8GxgCTpJQfVPH5s8CfgfellPUKH9KnoVcAbYD3gAdkA06KN91Y08+lc+eyOzl5rvaA65ZBLXll5Cv0i+5nW1mUq2lJ7alCr87HH/wqRZoV5eJwAYLmTzjiSRjx9AXpw3EhsC1jG39c8UdOFdSe8isqKIq5V84lNjTWBS1zDsowVLiTM+dKWL73ND/uSmfVgYwqp5oNLIUExnyJX8TW6uvoSGmhJONSSrJGUlMYQosQf8YmRjOuezRDO7U0b3SwNorOwrJntGCUmrD4gvU8TzRNo7DPHVoyhfB6Z9f1arzdMHwEeB34VUo5utJnPsA+tFR2V0kpv6vHfjuiTR/HAh8B9zXEKATvu7Gm5KZw7w/3klGYUW2dvlF9eWXkK7QKriYd3ek9kPw+bFsEJdU7QjsQ3hb636NFl6k0d02erMIsnln1DL+n/15tncjASN4f975zdTFdgDIMFZ5CYUk56w9nsSElm40p2WxLzTVSzdnjG76VwJilCJ+qp6OtxS0pTLsFa9H5PsHhgb70j4+kf3xzBiZE0rtdc3wsHjTdeux32PQR7FoKZXVML9j5Mrj0nxCVaG7bPBRvNwxDgQNo2U8ellK+ZffZy2hRxFuAfvaGnR64slwvjpFSnrD7LAHNKGwHzAHulbLhuby88cZaUFrAmhNrtGm9s0eM6b2S8hLuSLyDx/o9VjeV+6KzsP0TSP4AMvZUUUFoEV4DJmsXoo9Kb3YhUWYt462tbzF752z8fPyID48nPiKehIgEEiISGNZmGKH+3udKoAxDhadSVFrO/lN5HMrI5+DpfA6dPsfxnALOnCslu/gU1mY/4uNvGxSQCMoLEgjIH0tkcBiRIf7EtwihY6sQOrYKpVNUKB1bhdrS1XkyhTmwY7E2o5WXrrkvFWZrvojN46H9YC3IMW4YtOzk7ta6Fa82DAGEECOBZWj5kjehGYq9gES0LCXDpJT7Km0TD1Rk3U6w1yQUQmxGE8QuBj5Fk6epihlSyr21ta+p3Fit0kqZtazOQqbnUZR7vq6UbyD411HIVNFkKSkvwdfia+Ry9XaUYajwVgpLyikuc7xPB/v7NlxKxtOxWqGsSP0PVaK6e5jXDN1IKVfq0cd/Q/M37AmcAt4B/imlrG+GkgrR7ABsuZGrYjZQq2HYVLAIS8ONQtBkAxSKKmjU70qhUDiNIH8fgvwvIPF4i0UZhfXAawxDAH1EsM7SN/oIYZVj31LKeOe0SqFQKBQKhaJp0ETHjRUKhUKhUCgU9UUZhgqFQqFQKBQKQBmGCoVCoVAoFAodZRgqFAqFQqFQKABlGCoUCoVCoVAodJRhqFAoFAqFQqEAlGGoUCgUCoVCodDxmswnno4QIgM4WsfqLdGytSg8A9Ufnoc39EmclLJJJPyu5/0LeoJFMQAABx5JREFUvKN/miLqvLuPpnjuq7yHKcPQDQghNjaVVFpNAdUfnofqE89G9Y97UOfdfVxI515NJSsUCoVCoVAoAGUYKhQKhUKhUCh0lGHoHt51dwMUDqj+8DxUn3g2qn/cgzrv7uOCOffKx1ChUCgUCoVCAagRQ4VCoVAoFAqFjjIMXYgQ4jYhxGohRK4QIl8IsVEI8ZAQQvWDExFC+AkhxgghXhVCrBdCnBRClAghTgghlgghLqlle9VPLkAI8bwQQuqvJ2uop/rDA1D94Hwaeq8SQsy2u3aqeu118VfxOhp6DoUQFv13v1G/DnL16+JWV38Hs/B1dwMuFIQQbwFTgSJgOVAKjAHeBMYIIW6SUpa7sYlNiZHAT/pyOrAJOAd0A24EbhRC/FtK+bfKG6p+cg1CiCTgaUACooZ6qj88ANUPptHge5XOb8DBKtafdHZDmzB1PodCCB/gc+Ba4CzwIxCAdi0sEEIMllI+amJbXYOUUr1MfqFd4BLth9bZbn00sFv/7DF3t7OpvIDRwBJgeBWf3QyU6ed8lOont/RPALALOAF8oZ/XJ6uop/rDA16qH0w9tw29V83W19/t7u/gra+GnEPgj/o2u4Bou/Wd0Qx7CYx393dr7EtNAbiG6fr7M1LKAxUrpZSngAf14p/UlIxzkFL+IqWcIKVcXcVnn6DdEADuqPSx6ifX8C+0EZEpQG4N9VR/eAaqH0yiEfcqhYvRRwuf1osP6r9/APTr4hm9+GdXt83ZqAvZZIQQbYF+QAmwuPLnUsqVaCMnMcAg17bugmWL/t62YoXqJ9cghBiI9tS9QEr5dQ31VH94AKof3M559yqF2xgMRAHHpZSrqvh8MZqLRZIQItalLXMyysfQfPro77uklIXV1EkGYvW6a13Sqgubzvq7vQ+J6ieTEUIEAnOAbOCxWqqr/vAMVD+4l6ruVfaMEkJcDIQCp4A1wE9SSqsrGtdEqOs5rLgWkqvaiZSyQAixC+itv06Y1F7TUYah+STo7zUlqD9Wqa7CJIQQMcDdevEzu49UP5nPc8BFwC1SytqS0av+8AxUP7iJGu5V9txZxbrdQohbpJQ7TGlY06Ou57Cu10JvvPxaUFPJ5hOqv5+roU6+/h5mclsuaIQQvsA8IAJYXmkqU/WTiQghhgCPA0t136naUP3hGah+cAO13KsAtgKPAt3R+qgNcDWwDc1/92dvn850AfU9hxfMtaBGDM2nQopDpZhxP2+jyQqkcr4zt+onkxBCBAEfock7TK3rZvq76g/3ovrBPdR0r0JK+d9Kq84B3wohfgJWovl7TgceNrmdXksDzuEFcy2oEUPzydPfQ2uoU/FZXg11FI1ACPE/4D40SYExUsr0SlVUP5nH80AXYJqUsq76aqo/PAPVDy6mDveqapFSlgAv6MUrTWhek6eGc3jBXAtqxNB8UvT3uBrqtKtUV+FEhBCvok0ZZKDdaA9UUS1Ff1f95HyuB6zAXUKIuyp91lV/f1AIcTVwUEo5CdUfnkKK/q76wQXU8V5VGxUZO9RUcsOp6hym6O9N/lpQhqH5VMgNdBdCBFUT2ZdUqa7CSQghXgKmAVnApVLK3dVUVf1kLha0LA/V0UF/NdPLqj88A9UPLqIe96raaKG/59dYS1ETVZ3Dzfp7ElUghAgGeuhFr74W1FSyyUgpU9F+UP7ATZU/F0KMRNOoSgfWubZ1TRshxAzgKeAM2o12W3V1VT+Zh5QyXkopqnqhydcAPKWv661vo/rDA1D94Brqc6+qA3/Q36uUVVHUiarO4TrgNNBWCDGiim1uAvyAZCml10rVgDIMXUWFv8KLQohOFSuFEFHATL04Q2lPOQ8hxL/RlOhz0G60dXmCU/3kWaj+8AxUP5hIfe9VQojeQoir9Uwc9ut9hRDT0KaiAf5jSoObAA05h1LLBf6yXpyl//4rtusMzNCLz5nXctcg9Dx/CpMRQsxESx9VBPyMLQl9OLAUmCBVEnqnIIS4FvhSL25Ey2tZFXullDPsV6h+ci1CiNnAXWgjhq9U8bnqDw9A9YM5NOReJYS4Di3HeDawHziOJo/SE01yxQpMl1K+ZGLTvZqGnkPdkPwCuAZNZWE52ijhWCAQeENK+ShejjIMXYgQ4jbgIbQfnw+ag+uHwCz1tO08hBB3o8mj1MZKKeUlVWyv+slF1GYY6nVUf3gAqh+cT0PuVUKIBLTMQQPQAiFaoEmoHAdWA29JKTeZ0d6mQmPOoZ4TfCpwD1rwXDmwHZgppVxgfuvNRxmGCoVCoVAoFApA+RgqFAqFQqFQKHSUYahQKBQKhUKhAJRhqFAoFAqFQqHQUYahQqFQKBQKhQJQhqFCoVAoFAqFQkcZhgqFQqFQKBQKQBmGCoVCoVAoFAodZRgqFAqFQqFQKABlGCoUCoVCoVAodJRhqFAoFAqFQqEA4P8BB+SeUnGkQtwAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 720x720 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"L=0.64 # 64-cm guitar string\n",
"T=71.81\n",
"mu=1.14*10**-3 # kg/m\n",
"\n",
"plt.figure(figsize=(10,10))\n",
"N_list=[6, 30, 45, 60]\n",
"for i in range(4):\n",
" N=N_list[i] # 6-node guitar string\n",
" dx=L/(N+1)\n",
"\n",
" k = T/dx**2/mu\n",
"\n",
" A = k*(np.diag(np.ones(N)*2)\\\n",
" -np.diag(np.ones(N-1),-1)\\\n",
" -np.diag(np.ones(N-1),1))\n",
"\n",
" e,v=linalg.eig(A)\n",
" isort = np.argsort(e.real)\n",
" e=e[isort]\n",
" v=v[:,isort]\n",
"\n",
" print('First three Natural frequencies of {}-element string G (Hz)'.format(N))\n",
" print(e[:3].real**0.5/2/np.pi)\n",
" \n",
" ymodes=np.pad(v,((1,1),(0,0))) # add a 0 to the first row and last row, but add nothing to columns \n",
" \n",
" plt.subplot(2,2,i+1)\n",
" plt.plot(ymodes[:,0])\n",
" plt.plot(ymodes[:,1])\n",
" plt.plot(ymodes[:,2])\n",
" plt.title('%s nodes' %N)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"b. Use the number of nodes necessary for convergence to calculate the first 3 modes of vibration for the other 5 strings on the guitar. Display the first three natural frequencies for all six strings. "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First three Natural frequencies of 30 node string E (Hz)\n",
"[329.55824171 658.27051214 985.29301161]\n",
"First three Natural frequencies of 30 node string B (Hz)\n",
"[246.99641153 493.35878682 738.45471718]\n",
"First three Natural frequencies of 30 node string G (Hz)\n",
"[195.99355421 391.48399578 585.96950354]\n",
"First three Natural frequencies of 30 node string D (Hz)\n",
"[146.8518095 293.32665252 439.04853023]\n",
"First three Natural frequencies of 30 node string A (Hz)\n",
"[109.98239926 219.68247527 328.81862952]\n",
"First three Natural frequencies of 30 node string E2 (Hz)\n",
"[ 82.4196898 164.62780943 246.41333184]\n"
]
},
{
"data": {
"text/plain": [
"<Figure size 1080x864 with 0 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"L=0.64 # 64-cm guitar string\n",
"N=30\n",
"T_list = [7.28, 7.22, 7.32, 8.41, 9.03, 7.71]\n",
"mu_list = [0.401, 0.708, 1.140, 2.333, 4.466, 6.790]\n",
"str_list = ['E', 'B', 'G', 'D', 'A', 'E2']\n",
"\n",
"frequencies = []\n",
"\n",
"plt.figure(figsize=(15,12))\n",
"for i in range(6):\n",
" \n",
" T = T_list[i]*9.81\n",
" mu= mu_list[i]*10**-3\n",
" string = str_list[i]\n",
" \n",
" dx=L/(N+1)\n",
"\n",
" k = T/dx**2/mu\n",
"\n",
" A = k*(np.diag(np.ones(N)*2)\\\n",
" -np.diag(np.ones(N-1),-1)\\\n",
" -np.diag(np.ones(N-1),1))\n",
"\n",
" e,v=linalg.eig(A)\n",
" isort = np.argsort(e.real)\n",
" e=e[isort]\n",
" v=v[:,isort]\n",
"\n",
" print('First three Natural frequencies of {} node string {} (Hz)'.format(N,string))\n",
" print(e[:3].real**0.5/2/np.pi)\n",
" frequencies.extend(e[:3].real**0.5/2/np.pi)\n",
" \n",
" ymodes=np.pad(v,((1,1),(0,0))) # add a 0 to the first row and last row, but add nothing to columns \n",
" \n",
"# plt.subplot(2,3,i+1)\n",
"# plt.plot(ymodes[:,0])\n",
"# plt.plot(ymodes[:,1])\n",
"# plt.plot(ymodes[:,2])\n",
"# plt.title('String %s' % string)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First three Natural frequencies of 60 node string E (Hz)\n",
"[329.6628732 659.1071585 988.11441292]\n",
"First three Natural frequencies of 60 node string B (Hz)\n",
"[247.07483046 493.98583425 740.56929334]\n",
"First three Natural frequencies of 60 node string G (Hz)\n",
"[196.05578023 391.98156274 587.64743601]\n",
"First three Natural frequencies of 60 node string D (Hz)\n",
"[146.89843351 293.69946381 440.30575228]\n",
"First three Natural frequencies of 60 node string A (Hz)\n",
"[110.01731758 219.96168654 329.7602066 ]\n",
"First three Natural frequencies of 60 node string E2 (Hz)\n",
"[ 82.44585724 164.83704751 247.11894012]\n"
]
},
{
"data": {
"text/plain": [
"<Figure size 1080x864 with 0 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"L=0.64 # 64-cm guitar string\n",
"N=60\n",
"T_list = [7.28, 7.22, 7.32, 8.41, 9.03, 7.71]\n",
"mu_list = [0.401, 0.708, 1.140, 2.333, 4.466, 6.790]\n",
"str_list = ['E', 'B', 'G', 'D', 'A', 'E2']\n",
"\n",
"frequencies = []\n",
"\n",
"plt.figure(figsize=(15,12))\n",
"for i in range(6):\n",
" \n",
" T = T_list[i]*9.81\n",
" mu= mu_list[i]*10**-3\n",
" string = str_list[i]\n",
" \n",
" dx=L/(N+1)\n",
"\n",
" k = T/dx**2/mu\n",
"\n",
" A = k*(np.diag(np.ones(N)*2)\\\n",
" -np.diag(np.ones(N-1),-1)\\\n",
" -np.diag(np.ones(N-1),1))\n",
"\n",
" e,v=linalg.eig(A)\n",
" isort = np.argsort(e.real)\n",
" e=e[isort]\n",
" v=v[:,isort]\n",
"\n",
" print('First three Natural frequencies of {} node string {} (Hz)'.format(N,string))\n",
" print(e[:3].real**0.5/2/np.pi)\n",
" frequencies.extend(e[:3].real**0.5/2/np.pi)\n",
" \n",
" ymodes=np.pad(v,((1,1),(0,0))) # add a 0 to the first row and last row, but add nothing to columns \n",
" \n",
"# plt.subplot(2,3,i+1)\n",
"# plt.plot(ymodes[:,0])\n",
"# plt.plot(ymodes[:,1])\n",
"# plt.plot(ymodes[:,2])\n",
"# plt.title('String %s' % string)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"c. Create an audio signal that has the 18 frequencies (6 strings $\\times$ 3 modes) in an array and display it using the `from IPython.display import Audio` library. \n",
"\n",
"_Hint: you don't need to solve the differential equations here. You can use the calculated frequencies to add sine-waves together:_ $\\sin(f_12\\pi t)+\\sin(f_22\\pi t)+...$"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <audio controls=\"controls\" >\n",
" <source src=\"data:audio/wav;base64,UklGRmScAABXQVZFZm10IBAAAAABAAEAIE4AAECcAAACABAAZGF0YUCcAAAAAL0VwipgPv5PJF97a9h0Nnu4fqN/Vn5De+N2r3EXbHlmHWE1XNhXB1SwULFN5UojSEVFMkLbPkA7bTd9M48vxytJKC8ljCJjIKkeRh0THOMahBnHF4IVmhIGD80KDQb1AMf7yvZN8pzu+euU6onq2etr7g3ydvZL+ygAqQRuCCgLmwynDEsLowjmBGQAe/uS9hHyVe6r60nqRuqf6zHuw/ED9pf6Hv85A5oGAwlNCm0KcwmHB+cE3gG//tr7ePnS9w33NvdD+BH6avwN/68BBgTRBdkG/gYxBn4EBAL3/pL7H/jk9CLyDvDK7mfu3+4a8O7xJfSD9sz4y/pT/E39rv2C/eX8AfwK+zX6tvm4+VX6mPt0/cr/aAIOBXUHUQlfCmcKRgnsBmgD4P6Q+czz8e1j6ITjqd8T3e/bStwU3iDhK+Xa6cvumPPe9037pv3H/qr+Zv0s+0b4C/XZ8Q/vAO3x6wzsZO3u74Xz7vfb/PIB3AZBC9kObxHiEi8TZhKxEEsOewuLCMUFagOrAaoAcAD2AB4CvwOiBY4HTAmrCocLyAtqC3YKBAk2BzMFIAMfAUj/ov0r/M36Z/nO99T1TPMS8A/sQee94a7bWNUVz0nJZcTTwPm+Jr+PwUrGSc1V1hrhIO3a+a0G/RIwHsEnRS9yNCc3ZzdgNV0xyyslJfIduRb2DxMKYgUZAk4A/P8CASwDOAbbCcsNwhGIFfEY4htPHjggqiG0Imkj1yMGJPMjkiPPIo0hrR8RHaIZVBUqEDsKrwPD/MH1/+7b6K7jyd9u3cXc4N2v4ArlqOov8TP4Qf/nBb4LcBDDE5cV7BXkFLkSvg9SDN4IxAVeA+8BpAGLApUEmAdRC2oPhRNBF0QaQxwIHXUciBpbFx4TFg6SCOkCb/1r+Bj0mvAA7kTsSOvh6tjq8+r66r/qIeoU6Z3n2eXy4yLiqeDK37/fuODU4hvmf+ra7/T1hPw1A7QJrQ/XFPgY7RulHSgekB0JHMgZCBcDFOkQ4A39CkMIowUAAzMAEP1q+SH1H/Bk6gTkLd0g1jTPychIwxa/jbz2u3+9N8ENx9LONNjL4h7uqfnqBGkPvxifINkmXis9LqQv1C8iL+ktgiw9K1wqCCpUKjgrlCw2Lt0vQDEZMicyOTEyLwkszienIswcghYWENUJBgTk/pX6Mfe49BXzJfK38ZLxfvFH8cTw2u9+7rbsl+pD6OPlpOOu4SDgDd953lXeg97Y3h7fHd+f3nrdktvg2HTVeNEszeTIAsXrwQTAp78YwYPE8clL0VjavOQD8Kj7GQfKETcb8CKmKCcsay2MLMgpeiUSIA4a7BMlDiIJNQWVAloBfAHbAjwFVgjWC2YPtRJ/FY8XwhgKGWkY9BbGFAYS2A5eC7QH7AMMABX8+/e18zbveOqA5V/gM9sr1oXRhc15yqrIXMjDyQDNGtL72HHhLuvN9dcAzQsuFoMfZSeILb0x+DNQNP0yUzC5LKQojiTmIA8eUhzcG7oc2x4NIggmcirmLv8yYTa+ON45ojkGOCI1ITFCLNAmFyFjG/IV9xCODMEIhwXEAlMABv6u+yT5TfYb85bv1usH6GHkJuGc3gLdj9xp3aLfMuP858vtWfRQ+1QCDAkjD1UUbRhRG/scfR39HK8b0xmmF2cVRRNkEdUPlA6MDZoMjws4CmcI8wXEAtb+N/oP9ZjvHur25Hrg/dzH2gva5dpS3TLhR+Y87KnyGfkX/zUEFwh0CiULIQp/B3cDXP6Q+IXyrOxx5y/jLOCU3nPeu99A4sPl9Ol+7gfzQvfq+tL93v8IAWMBDgE2AA3/xP2H/Hf7pvoW+rb5afkI+WP4TPea9S/z/O8C7FbnH+KS3OzWc9FozAXIecTewT7AjL+ov2XAi8HcwiDEJ8XRxRXG/sWwxWTFZMUGxqLHjcoLz0/VbN1Y5+jyz/+kDeobFCqRN9dDak7qVhFdwGD/YfVg711QWY5TKE2cRltAyDoqNqwyXjAyLwAvjy+YMM4x6DKlM9IzTTMIMgcwXy0zKqom8CIvH4YbDRjNFMIR3g4KDCkJIwbgAlb/g/t591XzQ+946y7on+X642Xj8eOZ5UDor+ud76/zf/em+sX8iv28/D36EfZg8HHpqOGA2YPRPco3xOe/rL3EvUvANcVTzFTVzd9B6yv3BQNVDrIYyiFmKW8v5zPoNqI4TTkpOXQ4YjccNrw0SDO5Mfsv8i1+K4Mo7SS2IOcbmxb+EEsLxgW3AGj8FPnu9hH2g/Yz+PX6jf6pAvQGEwuuDn0RRRPmE1QTnRHnDmgLZAckA/H+CPud9870p/Ic8Q/wU++v7untyewh69To1+U34hferNk81RbRi83lymLJLclXytfMiNAs1XDa899O5R3qB+7F8CryJ/LN8Enu5er+5gHjXd9+3MLacdq726/ePuM76WDwUfipAP4I6BAOGCYe/SJ5JpcobCkdKd0n4yVpI6EgtB29GscX0BTJEZkOJQtTBw8DUP4b+YXzs+3W5yri8Nxn2MfUPNLf0LXQrdGg01bWidnp3CvgB+NE5cDmb+df57nmveW95BXkJORD5bznw+tu8bX4bgFSC/wV9SC7K8o1pD7gRSpLUU5ETxZO/EpFRldApTmmMssrdyX6H4obQBgZFvsUtBQFFaUVTRa6FrcWHxbgFPsShRCgDXkKPwckBFEB5v7y/Hr7c/rH+VX5/Pib+Bj4Yfd19mH1P/Q383vyPPKt8vXzL/Zh+Xv9VgK1B0kNsxKQF30bIh45H5QeJBz6F0kSYAuqA6L7yvOm7K7mQ+Kv3xTfduCv43rode4r9Rn8uwKWCEENZxDVEXQRUQ+SC3kGVgCJ+W7yYOut5JXeQtnL1DXRdM5xzBHLOMrMycDJEsrKyv7Lz81f0NTTTNjb3YTkOOzT9Bz+xgd6EdMacCPwKgUxcDUNONE40Dc3NUoxXizVJg8hbBs7FrwRFg5YC3sJYQjaB60HnAdvB/QGDAarBNoCtQBw/kT8d/pN+QT5yfm2+8z+9AL7B5sNeBMxGV4eoiKsJUEnQSerJZsiTB4OGUQTXA3CB9sC/f5i/C77ZPvr/I3/AAPtBvEKrQ7MEQYUKhUeFeITjhFMDlgK9AVnAfL8y/gb9fnxae9g7cTrcOo76f7nlubr5PPiseA53qjbJdnZ1uzUftOk0l/So9JP0zHUDNWc1ZzVz9QG0yXQKswxx27BNLvotACv96lJpmGkmaQspzSsp7NVvezI/dUD5HDysAA7DpkaaiVuLoY1tDocPvo/nEBeQJw/rT7bPVw9TT22PYU+lD+vQJdBDkLYQcRAtD6ZO3w3dTKxLGUm0R80GccSvAw2B0kC+f05+vT2DfRh8dXuU+zR6VPn7eTA4vvgz99y3xTg2eHW5AjpWe6Y9H/7tgLdCYsQXBb7GiMerR+MH9cdwhqeFs8RywwJCP8DEAGM/6P/ZAG9BHkJQg+xFUwclSISKFksEi8FMBkvUizaJ+8h6xowEykLPwPO+yH1c+/k6n7nOeX445bj5uO85PDlZecJ6dfq1+wZ77LxufRA+E783ADYBRkLahCGFSIa8R2nIAYi4SEeIMIc6BfHEa8K/QIf+37zhOyN5uDhq94B3djcCt5d4IXjLef96qbu5fGM9IL2xvdw+Kz4s/jG+Cn5Fvq7+zL+fQGIBScKGA8MFK0YoxyiH2kh0CHIIF0euRocFtoQVAvvBQoB/fwF+kr42vej+Hn6GP0rAFcDOwZ+CNYJDQoDCbQGNQO0/mz5qPO67e7niuLI3czZqtZh1NzS+9GT0XbRd9Fw0UjR8dBv0NHPMs+2zoLOts5sz7DQf9LE1FrXDtqh3NTeaOAo4fDgst963W3azNbu0jzPKswqyqnJAst0ziHUBtz55a7xuP6RDKcaXCgaNVlAq0m9UGNVlFdsVypVI1HCS3tFwz4FOJ4x1ivdJsgilB8rHWUbERr8GPUX1RaBFe0THhImECIONgyICjoJZggZCFMIAgkICjkLZQxWDdwNzw0VDaULiQnfBtMDowCS/eL61Pic91v3HfjZ+Wr8mP8aA50GyglQDOkNZA6qDcALyAgBBb8Aafxt+Dr1NPOr8tjz0vaO+90BdgnwEdEalSO4K8AyRjj6O689VT0BO+M2SDGMKhgjVhusE28M5gU/AJT75Pcg9Sfz0PHx8F/w+e+r72vvPu83727vA/AR8bLy7/TJ9yv78f7pAtQGawpmDYIPiBBSEM4OBAwTCDADpP3B9+LxX+yG55bjteDy3j/edt5Y35jg3OHK4hDjZ+Kg4KXde9lI1EbOyMcuweG6RbW2sH2tzqvAq1CtXrC2tA+6GsCCxvjMO9MZ2XreWePM5/rrGfBl9B75e/6iBKwLlRNAHHsl+y5mOFlBcElKUJhVG1mxWlBaDlgXVK9OK0joQEQ5mTE0KlAjFh2YF9MSsg4TC8wHsASYAWT+//pn96bz1O8V7JHoc+Xf4vDgtN8n3zTftt974Efh3eEF4pDhYeBw3s/bqNg81eHR+s7tzCHM7cyUzz/U89qU4+HtevngBYgS2R48Kic0IjzXQRBFv0X8QwNALzrzMs4qSCLhGQwSKgt/BTQBV/7a/Jf8XP3o/vkAUgO8BQ0IKQoDDJ0N/w48EGURhxKrE84U4RXKFmYXihcNF8UVlBNqEEcMPgd6ATb7vPRj7oLob+N339Hcotvy267dq+Ci5D/pIO7k8i33rfoq/Yf+wf70/Vj8O/r49/T1kfQl9PP0JffF+r3/2QXJDCcUfRtTIjQouiyTL4kwhS+SLNknniE6GhQSmAkxAT75CvLS67XmveLg3/7d8NyE3Ivc2txS3d/df9473yrgaeEa41zlReji6y/wFvVy+g8ArgULC+EP8xMQFxoZBhriGdEYChfTFHwSVBCnDrMNpA2MDmYQEBNTFuQZaR2GIOEiKyQqJLoi1h+TGyYW3A8RCTACpvvW9Rfxq+2360brQux87q7xg/Wb+Zr9KgEGBP4F+Ab2BhEGeARnAiQA9/0e/M76J/o2+u/6MvzO/YP/CgEgAocCDgKbACf+w/qW9t7x4ezz52Xjgt+J3KXa7tlg2uPbSt5W4cDkPOiB60/udvDX8WbyLPJD8dLvCO4Y7DDqdugD5+LlC+Vp5NvjOuNc4h3hY98m3XPaaddC1EjR1M5GzQDNWc6Y0enWXd7e5zbzCgDkDTgcaSrZN/BDKE4UVmxbCF7uXUZbXladT4BHjj5NNTwsySNHHPMV5xAlDZMKBQlACAEIBwgWCP4HnQfiBssFZQTEAgUBQ/+X/RH8t/qE+Wn4TfcQ9pX0wfKA8M/tuOpX59njeOB53SXbxNmU2cHaZN194e3mfe3b9KH8XgScC+gR3hYwGqobOhvwGP8Utw9/CdACKvwE9tHw6OyJ6tHpveoq7dnwdfWa+uH/4gRICc0MRA+bEN0QLhDHDu4M9QoqCdUHMQdlB4IIgwpODbYQgxR0GEocyh/EIholvCauJwQo3ydoJ8wmNSbEJY4lmSXaJTcmhiaWJjImJyVKI38guxwIGIcSawz7BYf/ZPnm81fv7+vU6Q3pi+kj65TtivCp85P27/hz+ur6Ofph+IH10PGc7UHpI+Wj4RbfwN3N3UvfK+JD5kzr8PDK9nP8iQG4Bb4IdQrOCtsJwgfCBCcBRf1u+e31APPP8HDv3e7/7qrvqPC78afyNvNA863yefG074DtDuuY6Frmj+Rl4/7iZuOV5G/mwuhO68rt5+9e8e7xaPGx78bsu+i44/rdx9du0T7LfcVnwCW8zrhmtty0FLTnsyu0uLRxtUa2OrdiuOi5BLz6vhPDk8i2z6PYaOP37yD+kw3nHZUuDD+wTuxcN2kec1B6nX7/f5R+pHqQdNRs+WONWhhRE0jiP8w4+zJ7LjorDym+JwInkiYmJoIleCTsItEgLh4WG6cXAxRPEKcMJAnSBbECuf/X/Pf5A/fq86XwN+216UDmCONJ4ETeOd1k3fHe/OGI5nvspPO1+0sE9Qw4FZwcsiIdJ50pESp8KAIl6x+cGY4SRAtFBBH+E/md9eLz8/O79Qb5g/3LAm4I9w31EgoX6xloG24bBxpWF5MTCA8CCtIEwf8L+9r2SfNb8ATuKeyo6ljpFejC5k/lt+MJ4l/g39653R3dN90r3g3g4uKZ5gzrB/BE9Xb6T/+BA88GCAkTCuwJpwhxBoUDLAC2/G35lfZi9PTyUfJr8hrzJfRE9S32lfY79vD0nPJA7/nq/uWe4DfbMdb10ePOTM1ozVXPD9N02EXfK+e+7434JAEeCR8Q6BVQGk4d9B5rH/Me1h1mHO4atRnvGLsYJRkgGo0bPR32HnsgkyEOIsohtiDYHkccKxm5FS4SxQ64CzIJUAcbBogFeAW9BRkGTQYWBjkFigPsAFn93vih89jtyOe84QDc3NaI0izP3MyTyzrLpcuazNjNHs8x0OTQGtHO0BHQDM/3zRvNxsxGzd7OwdEN1sLbxeLd6rnz8/wYBrcOXRarHFchNCQ2JXQkJCKcHkQalBUKERwNNQqnCKsIWwquDX8SjhiGHwQnoC71Nag8bEIKR15KXkwPTYtM9Up4SD5FcUEvPZA4ojNnLt4oACPKHDsWXg9KCCIBGfpq81ntLegq5Ifhb+D04BDjoeZs6xzxSveD/U4DPQjrCwoOaw7/DNsJNgVm/9j4CvKB673lLuEx3gLdud1N4I7kLerC8NP33/5lBfMKKQ/AEZESlBHhDqkKNgXe/v/3+PAe6rzjCd4r2TLVH9Llz2zOnM1bzZXNQs5hzwDRNdMb1tDZbt4I5KLqMPKR+pID7gxQFlkfqSfhLrA01TgmO5U7LzocN50yBS20Jg8gdhk/E64N8ggdBS0CBAB0/j/9I/zg+j/5Gfde9BPxWO1i6Xnl8uEm32rdB9023hHhm+W16yXzlvuhBNQNuBbbHt0lbitdL5QxHTIbMcwufSuIJ0cjDR8kG8AXARXuEnoRgxDYD0EPgg5lDcALeAmCBukCy/5R+rT1L/H87E7pTOYM5JHiyuGV4cHhFeJV4kbiuOGK4K7eKdwX2aXVENKfzpvLSsnlx5bHc8h6ypDNh9Ef1g3bAeCu5NLoPOzS7o/wi/Hz8QnyGfJ48nbzWfVT+IH84AFVCKQPexd1HyQnFy7lMzQ4xDpuOy86IjeAMp0s3iWzHo8X2hDvChQGcQIVAPH+2f6S/80AOwKIA2oEpQQQBJcCPQAb/VX5IfW78F7sQOiO5Gnh4t763Knb2dpy2lraedrE2jfb3NvL3CXeEeC64kbm0epp8An3lP7WBogPThjBIHMo/C7+MzA3YTiDN6s0EDAIKgcjkRs3FIYNAggbBCECQwKJBNMI3Q5EFo0eLyecL003yj2zQsRF2kb1RTJDyj4LOVAy+CpjI+UbxRQ4DmAISgP3/lX7UPjP9bvzBfKl8J/vAO/e7lLvdfBe8hb1m/jZ/KsB2wYiDDIRtBVUGckb1xxXHDwalRaLEWALbAQW/cX15e7U6N/jPOAD3jHdpd0l32ThCOSz5gzpxeqm64vrb+pk6JnlTeLQ3nbbktht1j3VJtUt1kLYOdvT3sHir+ZI6kDtW+908Hzwgu+t7TzrfujK5Xvj6OFW4fnh7uM257jrQ/GT91b+NAXVC+sRNBeBG7ge1CDmIQ0idiFTINUeJx1oG6wZ8hcrFjsU+xE+D9oLqgeWApv8wfUt7hXmvd141Z7NgsZ0wLC7YbiYtk+2ZrepudK8lcCgxKrIdMzUz7TSG9Um1wfZAdtj3XrgkOTd6YbwlPjxAW4Muxd0IyQvTzp5RDNNIFT+WKlbH1x/WgRXBVLoSx1FEz4yN9MwNyuIJtMiDyAaHsAcxxvsGvMZqRjpFqEU0RGODvsKRwenA1IAeP09+7r59fjl+G/5bfqv+wX9QP43/9D/AADK/0P/jP7S/UL9C/1R/S3+pf+qARwExQZgCZ8LMQ3MDTENNgvMBwEDA/0d9rXuRedS4GLa9NV00zLTXtUA2vfg/+mv9IIA5Aw2Gd0kSi8EOK8+E0MYRc1EYUIcPls4hDEEKkAikxpGE5EMlQZfAe/8NPkY9oLzXPGV7ybuEO1e7CHsa+xQ7dzuEPHh8zT33vql/kQCcgXhB00JfAlJCKQFmgFQ/Ab2Eu/Z58vgVNrd1LrQKs5OzSrOoNB21FvZ6d615FHqWO9383H2JfiQ+M73Efaj89rwEe6h69bp7OgH6THqWexZ7/Xy5PbX+oH+nAH2A20F+QWpBaQEIQNkAbv/a/63/c/90f7BAI4DDwcICy4PMRPAFpAZZhsZHJYb4hkWF2MTBQ9CCmMFrABW/Ir4YPXc8u3wc+9F7i7t/+uL6rLoY+ah44DgJt3H2Z/W79Pz0dzQzdDV0ezT9Na72gDfdOPJ57Lr8O5U8cjyUPMJ8yryAfHo7z/vZe+w8GDznvd0/csEcA0RF0UhlyuINaA+ckalTP1QXFPEU1hSVU8PS+lFS0CcOjU1YTBVLCkp4SZlJY0kICTfI40j8CLcITMg6x0OG7QXBBQwEGoM4wjGBS4DKwG5/8X+L/7P/XT98vwh/OX6M/kN94v00/EX75DseuoM6XDov+gA6iHs+e5K8sn1Hfnu++n9xv5W/oD8S/nb9HHvZ+km4yPd0NeY09LQus9t0ObS+tZg3LPifOk38GH2gvsz/ykBOQFc/6r7YfbY73rowOAm2SHSHcxtx1HE7sJNw2PFDskfzmDUlduF4/3r1fTs/SsHhBDqGVIjrSziNdE+TEceTwVWvFv+X4xiMmPPYVle4FiOUatIlT68M50ouR2ME4IK8wIc/Rb53fZL9hz39vhy+yD+lABxAm0DVQMYAsP/e/yE+DH03+/u67foguaG5dvlgedb6jTuxPK397L8XQFvBasI6wofDFIMogs/CmcIWgZZBJkCRQFzACYATADBAFQBywHqAXgBSgBD/ln7mvcp8zruEen640XfO9sY2AzWK9V41dvWJ9kf3Hvf7eIq5u/oB+tT7MTsZuxT67jpzefL5e3jYeJM4b7gtuAd4c/hmeJE45jjY+OD4ungnN6824PYPNVE0gDQ1c4dzyTRHNUY2wvjxuz49zUEARHQHRUqSjX8Ps9GhkwGUFdRn1AjTjtKS0W/P/s5WjQkL4gqoSZuI9ogvR7nHB8bMRnvFjgU/BA8DQsJiQTj/0r77/YC86Tv6uzc6m7ph+gF6Lvnfucm55XmueWT5DXjw+Fv4HTfFN+L3xDhyOPD5/zsUvON+l8CbgpTEqgZESA/JfooKCvKKwQrEilKJhAj0R/4HOUa5BklGr0bnB6UIlknhyyuMVY2CzpoPBo97zvROMwzEC3kJKob0hHRBx3+HfUr7YrmYeHB3Z/b3tpO27bc2t5+4W7kgOeW6qDtmfCF82v2VPlE/Dn/IwLtBHEHggnwCogLHguSCdIG4gLd/fT3bvGk6v7j5N2/2OrUsNI/0qnT4Nay29Th4Ohg8Nf3x/7BBGgJewzYDX8NkwtVCB8EW/98+vP1J/Ju7wTuB+5670DyJPbe+hcAeAWpCl0PWhN5FqkY8hltGkUarBnZGAEYTBfZFrEWzRYVF2IXgBc6F1wWuBQvErMOTAoUBTz/Afmr8ovs6uYM4iPeTtuV2enYJNkN2l3bxtz63bPet97f3RvcdNkG1gXSsc1VyT3FsMHpvhO9Q7x6vKS9l78hwgTFBMjpyorNz8+z0UvTv9RH1inYr9oi3r7irugF8Lj4ngJ1DdwYYCSCL8A5nUKvSaBOPFFuUUlPAEvmRGg9ATU3LIwjeRtjFJkOTAqRB2AGmQYICGwKfg33EJgUKhiKG6IeayHsIzYmXChyKogspC6+MMUymjQVNgg3RTehNv40STKGLskpPSQeHrYXWBFZCwoGrgF3/n78xPsu/Ir9kP/pATkEJQZbB5oHugavBIwBgP3T+OTzG+/n6q3nxuVz5djm9umw7sb03PuDA0ALkhIBGSMeqCFbIyYjFiFXHSwY7hEFC9cDy/w59mnwjuvC5wnlU+N/4mDixuKA42TkU+U45g/n3+e66Lfp8ep97GruvPBo81T2WvlI/Of+/ABVAscCOAKiABT+sfq19mbyGu4m6tvmgORH40rjiOTj5iDq7e3q8aj1vfjE+mv7evrY943zw+3H5v3e39bzzr7HvcFcvey6oLqJvJXAk8Y4ziPX5+AV60L1D/8vCG4QrRflHSMjhic0K1kuHTGiM/w1MDgzOu07Oz3yPec98zz5Ous3zjO5LtYoYCKcG9gUYA56CF8DNv8N/N/5jfjk96L3fPci90v2ufRC8s/uZuoi5Tnf8die0prMPMfTwp2/xb1cvVy+p8ALxEnIGM0x0lLXSdzy4EDlPekF7cXwtfQS+RT+5gOmClkS6BojJMAtYjecQPxID1BxVdFY9lnKWFdVyk9wSK8/ADbnK+chfBgSEPwIcAOK/0H9dPzs/F/+ewDrAmAFlwdZCYcKDwv2CkwKLgm7BxYGWQSaAuAAKf9l/X/7XPnh9vfzlPC47Hfo8uNe3/vaEtfu09fRCtGw0d7Tjted3M7iz+k48Zr4gv+FBUkKig0fDwQPUw1GCjQGhgGy/C/4bPTJ8Yzw3PDB8h/2u/pAAEgGYQwWEv8WwBoYHeAdEh3EGigXhxI6DaAHGgIB/Z34JvW/8nDxL/Hf8VXzYPXM92n6D/2k/xgCbwSzBvcIVgvmDboQ2hNAF9gagR4KIjsl1yeiKWkqBipmKIkliSGXHPYW+RD7ClsFbQB7/Lj5PPgH+Pf41fpP/QUAkwKTBKsFlQUiBEIBCP2g91jxkuq+41Hdvddk05fQh89G0MfS29Y53IDiRekV8IH2Kfy8AAYE7AVtBqQFwgMGAbr9Kvqb9k3zbPAV7lLsHutm6gzq8en26QTqDOoQ6hzqTOrF6rPrQe2V78ry7vb2+8QBJwjXDn0VuRsrIXUlSChpKbMoISbJId8brhSWDAIEYPsa847rCOW738HbG9mu10/XwtfH2B3ai9vm3BXeFN/039ng9eGD48Dl4ugR7WXy2/hWAKMIdBFoGhMjByvXMSc3rTo7PMQ7VzknNX0vvShVIboZXBKgC9gFPAHp/d77APsc+/H7Lv2E/qf/VABeAKf/KP7u+xr52PVg8ujup+vJ6G7mqeR849zitOLm4lXj4+N+5BvlwOWA5nrn2ejM6oDtH/HE9Xj7LQLACfURdxrjIswqvjFRNyY7+jylPB86iDUgL0YndR41FRcMqgNu/Mr2DPNa8bjxBfT+90T9ZgPsCVgQOxY1G/weZyFnIg0igiAEHuAaZhfoE60Q8A3YC3gK0QnPCVEKLws4DEMNKA7PDioPOA8ID7EOUQ4FDuoNEg6DDjYPEhDyEKUR7xGZEWoQOQ7pCnUG7gB/+mTz8+uJ5I7dY9dj0tTO6MyxzCbOHdFT1XDaDuC/5Rvrxu928/z1SPdm94P24/Tc8tLwJ+867lfutO9t8n32wvv8AdkI8Q/ZFiMdbiJpJtkonym6KEImaCJzHbIXfhErCwUFS/8n+rH17vHQ7jvsDOob6ELmZeRy4mTgRN4p3DPaiNhN16PWn9ZJ15XYZtqM3Mje0OBY4hPjweIx4UbeAtp91O/NpsYDv3a3cLBiqq6lo6J3oUOiAaWQqbOvGrdqv0PISNEp2qbilurp8aT45f7VBK8KqhD7FssdLyUpLaM1bT5FR9lPzlfHXnBkgWjKajRrxWmfZgFiP1y8VeZOKEjkQW08ADi9NKwytTGrMU0yTDNWNBg1TDW5NDszxDBcLSApPSTtHm0Z+xPODhIK5AVRAlT/3PzL+v74VPer9fDzGfIr8D3ubuzs6ufpjukJ6nXr2+0v8VD1A/r//ukDYAgFDH4Ohw/wDqcMuwhdA9v8nPUa7tnmXuAg24XX1tU41q3YEd0b42bqdfK/+rUC1QmnD9ATERZPFo8U9xDLC2EFIf509sbudefT4B3bfNYD07TQf89Nz//Pd9Gb01bWn9lz3dfh1eZ37MHysfk2ATMJeBHJGdohWSnuL0g1HTk2O3E7xjlKNisxsio9IzYbDBMsC/kDwv27+AD1jPI98drwFPGT8fvx9PE48ZPv7exN6dTkwd9n2irVcdCkzB/KKcnwyYXM2dC+1u3dCOak7lL3pf86B8cNEhMBF5IZ3RoRG2kaLRmiFw0WoxSLE9oSkBKdEt8SLhNbEzgToBJ4EbQPWg2ACkkH4wOBAFj9lPpV+K/2ovUb9fT0/fT39KP0xPMp8q3vRez45+riVN2D18/Rm8xFyCPFecN0wyjFh8hpzYvTldoi4sXpF/G592L93gEYBRYH+gf8B2cHjwbJBWYFpwW5BrIIjgsxD2YT7Bd0HK8gUyQiJ/IosClgKSIoKSa7Iychwh7aHLEbehtPHC8eAiGZJK4o8ywNMak0djc2Ob45+DjoNqczZC9ZKswkAx9BGb0Tog4JCvcFZAI4/1D8hvm39sTznPA67a3pEOaN4ljfqNy02qnZp9m62tvc6d+x4+znRuxn8PnzrvZL+K34y/e99bbyBO8K6zjnAOTQ4Qfh6uGh5DPpf+9D9xwAkgkbEyccKiSoKjwvnjGpMV4v4Sp1JHgcXBOcCbX/GvY27V3lzN6p2QHW0NP90mfT5tRQ14HaWd7A4qfnBe3T8gv5ov+FBpcNrxSWGwkiwCduLMovkzGYMb4vAix+JmgfEBfbDUIEwvrX8fXpgOO+3trb3Nqq2w3eseEx5hzrAPB29CX4zfpL/Jr81/s1+gL4mfVa86LxxvAD8YDySvVN+Vz+MwR+Ct4Q8xZkHOYgQiRYJiQnuSY/JfIiFyD4HNsZ/RaNFKgSVRGKECoQDBAAENEPUw9gDuEM0Qo5CDYF8AGY/mH7fvgZ9k30JvOb8pHy3fJF84jzZPOe8gXxeu726onmWuGo28LVA9DIymzGPsN6wUHBncJ4xaLJ1c631ObaAOGm5o3reu9Q8gz0yPS19Br0SPOY8l3y3/JU9Nf2bPr4/kcEEQr/D64VwRrhHsghRCM/I78h4h7gGgEWmRACC5EFjwA3/K74AvYt9BTzi/Jd8lLyNPLY8SDx/+9/7rrs3Oob6bfn7eb35gHoJupv7c3xH/cv/bsDfQonEXUXLR0iIj4mfSnwK7Yt/S75L9sw0TH7Mmk0FzbuN8M5Xjt9PNo8NjxeOjE3pjLRLOElIR7wFb4NBAY5/8f5BvYy9Gj0n/ar+jwA6gY1DpMVeRxjIuAmnCldKhMpyyW4ICgafRIpCqIBWfm08QjrkuV24cHeZ91L3UHeFeCQ4n/ltugQ7Hjv3/JA9pz59fxJAJIDwga7CVwMdQ7WD0oQow++DYcK/wU+AHb57fEB6iDivNpL1DfP28t4yjDLA87O0knZFOGy6Z3ySfstA9YJ4w4WElMToBIoEDQMJQdrAXz7yfW58J/ss+kS6Lvnkehj6uzs4e/y8tf1VvhE+ov7Lfw+/OT7UPu8+lz6Y/rz+iH87P1CAAAD9QXmCJQLxw1MD/8PzQ+3DtAMOwoqB9MDcAA4/VH62ffX9UL0/fLZ8Z/wEO/y7A/qQ+Z94cPbNdUIzorGFb8NuNex0axLqX+njKd2qSStY7LpuF3AYMiT0J3YOuA3537tEfMN+KH8DwGfBZkKPhC9FjEemybfL8g5B0Q+TgFY42B9aHZuiHKMdHJ0TnJMbrJo1mEaWuRRkUl2QdU52jKbLBknQSLvHfkZMhZuEo4OfAo1BscBUP33+O/0a/Ge7q3ss+u166jsau7K8IjzW/b5+Bz7ivwZ/bT8W/sm+UP27fJr7wrsEem95j3lqeQE5TfmGuhx6vbsYO9o8dXyfvNR81byr/CW7ljsT+rb6FboD+lB6wvvbvRJ+1sDSgyjFecekSckLy81WzlsO0o7/zi4NMEufCddH98Wfg6qBsL/EPrC9e7yjvGH8avywfSK98f6P/7CAS0FaQhpCywOsxADEx4V/xaZGNQZkRqoGu4ZORhlFVkREAyWBQ/+tvXa7N7jLds202bMG8eewx3CqMIpxWvJGc/F1fDcEuSl6jLwVPTF9mD3JfY58+LugumO44Td49ci06HPrM1sze3OF9K41obcJ+M26lHxHPhJ/p0D+AdLC6ANEQ/HD/APvQ9aD+kOfw4jDs4Naw3dDAQMwQr7CKMGuwNVAJT8p/jO9EvxYu5S7EzrcuvM7E/v1/Io9/n78AC1BfAJUg2iD7gQjBArD78MiAnUBfsBWP48++v4l/dX9yr49PmD/JX/2QICBsII2QoaDHEM4QuJCp4IaAY5BGkCSwEmASsCdwQICMAMZxKuGDcfmyVyK10wDzRONv42HTbHMzEwoityJv0gnhulFlQS2A5HDJ8KyQmaCd4JVgrGCvcKvgoBCrcI6QaxBDQCpP8t/QD7P/kE+FP3I/dY98f3P/iG+Gj4tvdQ9in0R/HH7dnpv+XF4T3edNuw2STZ79kV3H7f/ONG6Qbv2fRe+jf/FQPDBSEHLgcDBtgD9ACz/XD6ifdO9f3zvfOX9Hf2Lvl1/PL/QwMHBuIHiwjNB5QF6AHy/PL2R/Ba6aDijdyK1/HTBtLw0bzTWteh3FPjIuu888n89wUBD60Xzx9MJxUuKTSIOTk+PkKURTBI/0nlSsBKbknNRsdCTz1tNj0u8CTNGjAQgQUx+7DxZ+mw4s3d4trz2eTaeN1V4Q3mJesg8IX07vcM+q76yfly9+Tzc++M6qnlRuHZ3crbZdva3DfgZuU07E70Tv2/BisQHhkwIQ0oeS1QMYszNzR4M4AxiC7NKoYm5CEJHQ0Y+hLPDYUIDwNl/YP3b/E+6w/lD9922X/UaNBozarLSstNzKDOGdJ41mfbheBr5bPp/+wE75Dvie746//n4OLx3JjWQdBaykTFUcG8vqO9Cr7Wv9nC0MZry1vQUtUP2mPeNOKB5WDo+eqF7UXwe/Nh9yT83QGPCB8QXRj/IKwpADKWOQ1AEkVoSOxJlkl9R9RD5D4HOaQyHyzaJSggSRtlF4sUtBLAEYERuhEsEpoSzxKjEv8R3xBOD2sNXQtSCXkH+wX4BIEElAQjBQsGIQcxCAQJagk6CV0IzQabBOoB8f7y+zv5GPfP9Zn1m/bj+GP88gBSBi0MIxLNF8YctiBZI4IkIiRJIiQf+RojFggREgyjBxEEnAFnAHgAtgHsA84G/gkXDbMPdhEUEloRMQ+dC8EG2gA7+j7zS+zD5f7fQtvD15vVytQ81cbWMdk/3K7fQOPD5hHqE+3D7ynyWfRu9oP4tPoR/aL/YQI8BRIIuwoIDc0O4g8sEJ8PQg4wDJoJvgbqA24BnP+6/gD/jABnA3gHiAxJElUYOh5/I7AnaCpVK0cqLSccIk0bGRP1CWQA9/Y37qPmpuCN3IPakNqW3FngguWl607yB/lh//oEiwngDOMOlQ8PD3wNEwsQCK4EIwGZ/Sv66vbV8+TwBe4k6zDoHOXp4Z/eVdsu2FPV8tI50UzQRtAx0QHTmdXC2DncqN+44g7lWOZW5t3k3OFj3aDX29B6ye/BurpZtEKv2qtsqiarFK4isxu6s8KHzCrXLOIl7bj3mwGiCrMS0BkTIKIlsCpyLxk0yjiaPYtCiEdqTPdQ7VQCWPBZe1p3WdBWilLFTLlFuD0jNWUs7SMkHGQV9g8GDKoJ1whtCTIL4A0kEasUKBhYGwceFiB6IToibSI0IrkhIyGVICcg5B/EH7Ufkh8yH2Ie9RzBGq4XrxPRDjIJBQOO/Bz2A/CV6hzm0OLV4Dbg4uCv4lzll+gF7EfvB/L78/D0zvSX827xkO5P6w3oM+Un40Piz+L25MfoLu759Nn8ZgUuDrYWiB43JW8q8y2kL4IvrS1bKtolhCC2Gs8UIQ/vCWkFqgG3/n/85frB+eb4KPhi93r2YvUd9LjyTfH97+ruNO7x7S3u5O4D8Gfx3vIy9CX1f/UP9bPzXPEQ7u3pJeX+38na3dWP0S3O8csAy2fLEs3Uz2fTdNeV22PffeKS5Gfl3eT24tXfv9sO1zbSs80BypbH1sYJyFnLy9BC2H7hI+y+99AD1w9TG9Ml+y6JNlg8X0CwQnRD5UJHQeQ+ATzaOJ81czJnL34ssin0JjIkXSFsHl8bPxgjFSgSdA8sDXQLZwoQCm4KaQvXDH0OEBA+EbIRHBE4D9kL6AZtAI/4kO/R5cPb59HCyNDAg7oythq0U7TVtnO75MHFyaPSBtx15YPu1PYo/lQEUAkrDQsQKBLBExoVbxbyF8IZ6BtbHvoglyP3JdonAik8KWIoYyZFIyUfNhq7FAYPawlABND/Vfz2+cL4sPid+VT7kP0AAFkCTgSjBSsGzwWQBIMC0/+2/G/5QvZw8zDxqO/v7gXv2u9L8SzzRvVl91r5//o//Bb9lP3X/Q3+bP4s/4EAlQKABUUJ0Q32EnUY+h0oI54nACv+LF0t/SvcKBck6x2uFswOuwb3/vT3F/Kw7e7q4+l96ovswe+98xP4UfwNAOsCpgQRBR8E4AGA/kH6dvV88LHra+f144bhQOAv4Efha+Nu5hrqN+6O8vH2O/tW/zgD5QZqCtcNPxGuFCoYrBseH14iPiWHJ/8oaymeKHQm3yLnHa8XcBB5CCwA9Pc88G/p5+Pp36DdGN093t3gq+RJ6UjuO/O392L7+f1U/2v/VP5E/If5e/aG8w3xbO/t7sHv+vGN9VD6+/80BpEMohL8Fz0cGx9gIPQf3x1BGlUVaQ/UCPYBKvvB9ADvGOop5jvjSeE/4P7fZuBV4bHiZuRr5sDobuuA7gXyB/aG+nj/wQQ3Cp0PqhQLGWocdR7iHn0dJRrbFLoN/wQE+zjwH+VD2i7QYMdFwDC7ULi1t0i507wBwm3IoM8m14zecuWN66zwvPTI9/H5cvuQ/Jn91/6LAOcCBwbvCY0OtxM0Gb0eBiTIKMIsxC+xMYEyQzIYMTUv1iw+KqsnVCVhI+gh6iBWIAUgxh9dH4seGB3WGqcXgxN1DqIIQQKa+/30vu4v6ZbkJ+EE3zfesd5O4NjiDOai6VLt2/AK9Lv24fiC+rb7o/x7/XH+tv9uAbMDhwbaCYUNUBH1FCYYlhr+Gygc8RpUGGQUVA9wCRoDwfza9tfxHe7966rrOu2d8KT1APxJAwoLxBL4GTcgIyV5KBQq8SkqKPckpSCRGyAWtRCrC04H2ANpAQ4AvP9UALABnQPoBWAI3QpDDYEPkxF/E1EVGRfmGMAapByEHkUgviG+Ig4jdSLCIM0dgxnjEwgNIgV9/HXzdOrt4VDaAtRWz4XMqsvAzKDPBNSO2c3fR+aC7BDykvbG+Yf70Pu/+o74jvUh8q/uoOtN6QDo5+cT6Xnr7+4y8+73wPxGASMFBQivCfsJ4AhtBsoCM/7w+FLzqe0+6E7jBd9827nYsdZJ1V7UyNNg0wXToNIm0pvRDtGX0FjQcND+0BXSvNPs1YzYcdtm3irhe+MY5czlcuX743Hh+t3V2VrV7tAGzRLKgcisyNfKKM+g1R/eYugL9KAAng16Gq4mxDFaOytDFUkUTUVP4k84T6RNhEs2SQtHQUUCRFxDSUOoQ0xE+kRyRXpF30R+Q0ZBPD53OiA2bzGgLPQnpiPjH8wcbxrDGK4XBheVFh4WZhU5FG0S7Q+1DNcIegTV/yj7vfbY8rnvkO157HvshO1u7/3x6/Tn96H60fw6/rT+Lf6r/E36RPfR80Lw4uz66cfndOYV5qjmFOgs6rPsZO/38Sn0x/Wu9tH2PvYa9Z/zF/LV8C/wcvDb8ZP0pvgC/nUEtQtdE/gaCyIaKLcshS9DMNEuMCuEJREeNhVlCx0B3vYi7Vbk0tzX1orS9s8Oz7HPrtHN1NHYgd2q4iToz+2a83j5ZP9YBU8LOhEBF4EcjCHrJWAprSuXLO8rkyl6JbAfXxjID0QGP/ws8ofow99H2GHSSM4OzKbL48x5zwfTHddH2xTfI+In5PHkc+S/4gfgmtzb2DnVJdIN0ErPItC90iPXO93R5JXtJvcXAfoKaBQGHYwkzCqvLzgzfzWtNvg2mDbHNbY0izNbMi0x+S+pLiAtOyvcKOclUCIUHkMZ+xNmDrgIKQPx/T35MvXk8VPvau0F7O/q6umz6AvnvuSo4bjd+9iS07rNwscLwvm887hTtmO1UrY1uf29fMRmzFjV3d526Kfx//keAcEGwgobDeoNZQ3fC7gJWQcpBYYDuwL8AmUE8waLCvkO+hNAGXoeXiOqJzAr0y2OL3AwmjA4MH8vpy7hLVItFS0vLZYtMS7XLlgvgi8mLx0uUSy7KWgmeCIdHpQZIhUOEZcN8go/CYwIzgjiCZILlg2fD1YRbhKhEr8Rrg9rDBEI0QLw/MD2nfDg6trly+Hh3i/drtxB3bTew+Ak44flqOdM6U3qnOpC6l/pJejZ5sXlMuVj5YrmxOgW7GXwgPUb+9gAUQYYC8sOEhGuEXsQdQ24CH8CIfsG86Xqe+L82pLUks84zKbK38rNzELQAdW92irh+ufn7rj1QvxnAhwIXA0rEpMWmhpCHoUhVCSVJigo6CixKGEn5CQzIV4chxboD88InQG8+pn0nu8q7IXq3Oo+7ZTxqPcj/5IHdhA/GWQhZSjXLWsx9TJuMvMvxSs+JtAf9hgvEvALngaDAtD/kf62/hIAYgJPBX0IjwsuDhYQExEJEfYP7A0QC5cHvQO//9X7MPjx9Cry3e/+7XPsHuve6ZLoJeeK5cLj3eH33zXew9zN23nb4tsV3QvfqeHC5BfoXetA7nHwpvGl8Urwie116TzkJt6S1+3Qqso8xQfBYL6AvYK+X8HzxfvLHdPx2gbj7+pJ8sX4K/5gAmkFZAeICB0JeAnsCcgKSwyiDt8R+RXOGiUgsiUfKw8wLTQuN9c4BzmzN+o00zCnK7AlPB+bGBcS7gtPBlcBEP1z+Wv23POl8ajvze0I7Fvq2eig59zmvuZ55zzpKexV8L31SPzGA/MLeBTxHPckJSwhMqI2eDmOOus5tDcmNJMvWireJIAflBpeFgkTqhA3D5IOhQ7PDicPRg/tDu0NKwymCXMGvwLK/t/6Uvdx9IPyvfE88gP0/Pb0+qP/sAS5CVwOPRIQFZ4WzBabFSoTrw94C+EGTQIe/qr6O/gA9xP3cvgA+4v+zwJ/B0gM2hDtFEsYyhpYHPIcpxyRG9QZlRf2FBQSAQ/CC1IIowSfADD8QPfF8cDrQ+Vy3oTXwNB4ygfFxcABvvy84L25wHbF48uv02/couXA7jr3kP5PBCII1wldCc4GZgKE/J71Ou7n5i3gh9pX1uTTUdOh1LPXSdwO4p7oje9x9uz8qwJ4By4LxQ1HD9QPmA/IDpgNOQzTCoEJUQhDB0kGUQVBBAEDgAGz/5z9S/vc+Hb2RfR58j3xtfD18P/xwfMW9sP4gPv7/d7/2AClABX/DfyT98nx7+pf44bb3tPlzBHHy8JmwBTA6sHZxbHLJtPV203lGO/F+OwBPQqBEZoXixxtIHIj2yXxJ/wpPSzjLg4ywTXqOWA+5EIvR+5K002XTwNQ8k5bTEpI5kJqPB41WC1uJbEdaRbNDwIKFgUGAbv9Efvc+O/2H/VN82PxXu9K7UHraOnv5wHny+Zq5+/oV+uL7mHymvbu+gv/ngJgBRMHkAfGBsMEqwHC/Vf5z/SQ8ADteepE6Y7pbOvS7pjze/klADQHQQ7oFNIauh92I/QlPSd1J9ImmSUXJJciWSGPIFcgtiCZIdYiMiRjJRwmESYBJb0iKh9IGjQUIQ1cBUD9L/WR7cbmH+Ha3B3a8dhH2ffaxd1o4Y3l4ukc7vzxUfX+9/r5S/sG/Ez8P/wC/LD7XPsK+7P6QPqS+YT48Pa09Lnx+O166V/k2N4o2Z/TlM5bykTHjcVdxcTGssn7zVjTa9nI3/vlk+ss8HTzOPVi9QH0RvGC7R7plORm4BPdDtuz2kHc1t9q5dPsxPXX/5EKchXzH5op+zHCOLc9vkDXQR5Bwz4GOy82ijBdKukjYB3qFp4Qigq1BB//yvm49Pjvm+u+54bkHOKp4FLgM+Fa48PmUevW8A33nf0hBDIKZg9eE8wVehZRFVgSuQ27B78AOvmq8Y/qYuSH30zc3tpK23rdOeE25g7sU/KT+Gf+dQN8B1cK+gt6DAQM2QpJCakHSwZ1BWAFLQbkB3YKvw2HEYsVgRklHTcgiiIAJJQkVCRjI/MhQCCLHhIdChyaG9UbvRw8Hi0gWiKGJHEm2yeTKHIoZSdtJZ8iIB8lG+gWpxKcDvMKzgc5BSsDjAEwAOL+Y/13++34nfV18XrsyeaW4Cja19MBzgXJOMXiwjHCOsPzxTXKvM8v1iTdK+TT6rnwiPUF+RH7rPvz+hz5c/ZN8wrwAe2C6sbo9OcY6CLp7epD7d/vdvLD9If2lvfZ9073DvZG9DfyLvB77m7tTu1S7pvwNPQN+QL/1wVFDfsUpRz0I6QqgzBuNVo5TDxaPqc/XECkQKVAekA0QNE/RT9xPjA9WDu/OEE1yDBPK+Mkqh3bFb8NrAX+/Qz3J/GP7G3pz+em58jo8erI7enw6/Np9gz4kvjX99L1nvJ07qbpneTK36Lbk9j31hPXCNna3GfibOmL8VD6PAPNC4UT9xnKHsMhwyLKIfcegBqtFNUNUQZ8/qP2C+/p52Lhh9th1uvRG87oykjIOMa9xOPDusNYxNPFOsiTy9jP8NSy2uHgMedJ7cryVveW+kb8NPxO+qD2WfHG6lDjd9vG083MFccXwzPBp8GPxN7JYtHJ2qXlcvGo/bwJMBWXH6AoFDDfNQs6vDwrPp8+Zz7NPRU9cDz+O8o7yDvbO9c7iTu6Oj056jatM4QvgSrLJJceKBjHEbsLRgaeAeX9K/tr+Yv4Yfi3+E756vlT+l/68/kG+aT37fUN9Dzyt/C3727v/+958djzAffE+uP+EQMCB2oKBw2nDi8PnQ4EDZUKkAdFBAwBPf4j/P369PoW/Fb+jAF7BdEJMw5CEqgVGBhdGVwZFBihFTwSLg7UCY4FvQG2/rv8+fuC/Ej+IwHVBA0JbA2UESkV3xd7GdoZ8xjZFrMTvw9HC5kGBALR/Tf6XfdW9SD0pPO98zv06vSW9RP2QfYQ9oH1pfSd85Tyu/FD8VbxFPKM8771kvjh+3X/DQNmBjsJVguJDMAM+AtJCt4H9QTYAdf+PvxU+kr5QPk5+h78v/7UAQgF+wdLCqELtwtcCoAHLgOV/f32yO9q6FzhFdsD1n3SwtDv0ADTzdYU3HjiienR8Nr3OP6QA54HOgpZCwsLegnjBpAD1P/7+1D4DPVc8lbwAe9S7jLuge4b797vrvB28Szy0vJy8xr03vTL9ez2Pfiw+SX7cPxa/aD9Av1B+yv4oPOX7SPmd93g08nJsL8gtqyt3qYzog+gtaBFpLKqyrM0v3bMAds06m/5FQieFZohtivEM7o5rj3VP3ZA6j+NPrk8vzrdOD83+DUKNWE03TNUM50yjzEPMA8ujyuiKGwlGyLmHgUcrBkGGDEXNxcPGJ4ZthsfHpYg2yKuJN4lSSbfJagkvyJQIJYd1RpQGEUW5hRUFJoUqxVlF5EZ6BsbHtgf1SDRIKMfNB2NGcwUKg/yCHwCKPxQ9kTxRu1/6vzotOh/6SPrVO3A7xHy/PNB9bn1UfUW9CnyxO8y7cbq1eit55DnqOgH66HuUfPW+Nz+AAXcCggQKxT7FkcY+RcYFsUSOg7ECLoCefxY9qfwpet750Dk8uF94L/fid+q3/PfOuBi4F3gK+Db34ffU99i39jfzeBQ4l3k4Oa06aTsc+/d8Z/zgfRW9Afzk/AW7b/o1+O23r/ZVtXb0Z/P3s65zzXSONaM2+Ph3egS8Bj3jv0iA5wH3grpDNsN7A1qDbEMIQwXDOIMwA7QERkWfxvMIa8oyS+tNuw8IkL2RSdIjkgiR/RDMz8iORYyayp/Iq0aQBN2DHcGWQEf/bj5Cvfz9FDz/vHl8PPvI+957gLu0e347YXufu/e8JDycfRP9uz3B/lZ+aX4uvZ6893u+ugC4kPaItIWyp/CQLxvt5W0+7POtRO6qcBKyZHT/d4A6wH3bgLFDJcVlxyYIZQkpyUMJRgjMiDIHEgZFhaEE88RGRFrEbQSzhSBF48atR20IFgjeyUFJ/MnTygwKLYnBCc7JnQlvyQdJIEj0SLoIZwgwR4xHNAYjhR0D5kJLgNz/Lb1T++W6d/kb+F63xrfTuD74uvm0utT8Qr3kfyKAagFsAiDChsLjwoOCdoGQgSYAS3/Rf0U/Lf7Mvxx/Ub/dAGwA6wFGAe2B1IH1QU9A6b/P/tQ9i3xMuy55xLkfOEj4BXgSOGW48Hmfupz7kjyqPVM+AP6svpZ+hP5Eveb9AHynu/G7cfs3ewx7tLwuPTE+cP/cAaDDa4UqRs0Ih4oRi2fMSk18zcTOqU7wzyCPek99z2aPbQ8HjurOC01fjCFKjcjoxruEFcGMvvk7+Dkm9qI0QvKc8T3wKq/gcBOw8THgM0N1PDaruHX5xLtHPHR8zD1VPV09Nvy5fDv7lTtYOxQ7EPtP+8u8uD1EPpr/pYCOgYHCb0KMwtbCj0I/gTXABT8B/cI8mntc+lf5lHkWuNz44fkb+b96P7rQO+Y8uf1F/kh/Ar/3wGyBJYHmgrBDQQRThR4F1EanBwZHoYerR1jG5QXRBKTC7oDEvsB8gPpluA42VnTVc9tzb7NQtDO1BbbsOIe69jzUvwMBJcKoA/zEn0UUxSmEsUPEwz9B/IDXACU/dz7Xfsk/CH+KgEDBWMJ9Q1qEnkW5RmCHDoeCB/5HiceuRzVGqQYRhbSE1URzA4rDF0JSQbVAu/+jfq09XzwC+ua5Wzg0NsV2IXVXtTO1OnWq9rx34DmBO4V9kT+HAYyDSYTsBehGusbnxvrGRgXgROMD6ILKAhxBb8DOAPoA74FkAgiDCgQURRQGN4bxx7pIDsiyiK6Ij4ilSEAIb8gBSH1IZ0j8yXVKAwsUC9NMq00HTZZNis1ejJELqUo0iEZGtURbAlIAcn5QvP17Qnqjud65qvm7Of76ZHsZe828s30BffI+BL67vpz+8H79fsu/H387Pxz/f39aP6J/jD+LP1W+5L41/Qw8MDqweR93lHYoNLLzS7KFcizxyDJVMwo0VbXf94y5vTtR/W4++UAhwR0BqUGNQVdAnL+2/kK9XLwfOyD6cfnb+d/6ODqX+6y8oH3bvwXASsFYgiMCo4LaQszChMIQgX/AYv+H/vu9xv1tvLD8DHv5e2+7JPrQ+qw6Mzmk+QS4mTfsNwk2u/XQNY61fbUe9W81pvY69pw3enfFOK346PkvuQE5I3ihuA43vjbK9o32XzZS9vg3ljksevF9E//6AoZF1cjFC/HOflCRkptT09S71J3US9Od0nAQ4Q9OTdOMRos4SfHJNgiASIZIuUiISSEJccmsCcUKNgn9iZ6JYIjMyG9Hk0cDhofGJUWdRW1FD8U9BOwE04TrxK9EXMQ1w4ADRYLSAnOB94GqQZSB+sIcQvIDrwSBBdFGxofHiLsIzIksCJGH+8ZyxIYCjIAjfWo6grgN9akzbHGpMGivq29qr5hwYHFrcqB0JnWndxD4lnnwut5747yI/Vl94P5rPsF/qMAiwOuBukJBw3MD/IRNxNhE0QSzA/6C+oG0gD++cnynOvf5PneQdr91lnVaNUg113a5t5v5KbqMfG99wL+xAPeCDsN2hDKEyYWDxioGQ0bUxyCHZIebx/2H/4fWR/eHWkb5xdWE8oNbAd7AEn5LvKO68XlKeH63WLcbdwK3gnhIOXw6Qrv/fNZ+L/75P2X/sz9lPsj+Mnz6+786XXlyOFY33LeR9/o4UPmKexO81L7xgM7DEEUeBuPIU4mmClmK80r8SoHKU0m/yJYH4gbshfqEzcQkQzqCC0FQwEf/bf4D/Q571Xqi+UN4Q/dwtlP19PVV9XT1SjXJdmI2wbeTeAR4hDjF+MM4vDf3twQ2dPUi9CjzIrJqMdTx83IOMyU0cHYfeFs6x32DwHFC8QVoh4NJtEr2y84MhQztzJ6McEv9C1wLIcrcitULDIu9TBvNF84dzxjQNJDfUYpSLNIC0g3RlJDhT8HOxM25DCtK5omxiFAHQUZCBUzEW0NmwmqBZEBVv0H+cf0wvAs7TzqKOgY5yrnZei66gLuAPJj9sv60/4UAjUE6gQABGMBHv1b92Xwneh54HfYFdHIyvPF3sK0wX7CIsVpyQHPh9WL3KDjXOpo8H/1evlK/Pz9sf6h/gv+Nf1g/MT7iPvD+3X8jP3l/lEAmwGPAv8CygLiAUsAIf6P+9X4OvYN9JbyF/LC8rD05vdP/LsB6weKDj4VqRt0IVQmDyqCLKEteS0pLOQp5yZ1I84fLBy6GJcVzBJSEBUO8wvICW8HyATAAVf+mPqo9rvyEO/x66npeuib6C/qQO278XH3GP5RBasMsBPnGeQeTSLkI4gjPSEoHY4X0BBhCb0BZfrK81DuQurL5/Tmque46dTsn/C09K34LPzh/pMAIgGGANT+MfzY+A31GfFC7cfp1+aV5BDjR+Ir4qPijuPN5ELm2OeC6UHrH+0t74TxOvRj9wb7IP+ZA00I/wxqETsVHRi8GdIZJxieFDcPEAho/5n1F+tn4BbWrsyvxIa+grrQuHm5YbxIwdTHk88F2KvgCum38F/3zfznALYDXgUXBi4G9QW9BdAFaAarB6YJTQx/DwUTnhYAGuAc/x4mIDYgIR/zHMsZ2xVhEaQM7Ad5A4b/Ovyt+ej34faA9qf2Mvf99+748vkG+zP8kP0+/2YBMwTHBz8MoxHpF/QeiyZmLio2cz3ZQ/tIhUw3Tu1NoUtvR5FBXjpCMrgpQCFWGWcSzAzBCGEGpwVrBm0IUQuzDiUSPxWmFxAZTxlPGBkW0hKyDgIKFgU+AMn78vfn9Lzyc/H28B3xtvGE8lDz5vMe9OPzMPMW8rXwPO/h7eDsbOyx7Mztw++K8v/16/kK/g4CqQWNCHoKQAvGCggJGwYrAnf9Rvjr8rPt6OjD5Grh8d5T3XrcPNxm3L7cDt0l3eLcM9we27rZM9jC1qjVKNWC1ebWdNk03RTi6Odv7lL1MfylAk0I1Az6D5gRphE8EI8N8QnFBXwBi/1c+k/4qveW+B37J/96BMYKpBGgGEUfIyXWKRMtpi53Lo4sCykmJCgeYxctENcIqgHh+qP0CO8Z6s/lGeLi3hXcoNl315vVE9Ty0k/SRNLp0k7UeNZb2d7c0OD25AXpq+yW73nxFvJD8fHuLusl5iPgi9nV0obMI8csww/BHsGOw23Ioc/u2PTjOvA0/U4K+BauIgAtnDVOPAhB3EP4RKREOUMVQZc+FjzXOQw4zjYhNvE1GDZmNqQ2mjYZNv80OTPHMLotNCpkJn4iuh5KG1cY/RVHFC4TmhJmEmESWRIZEncRUhCaDlEMiwlsBiYD8/8O/a76APkg+Bj42vhE+h78Jf4IAHoBMALsAYcA8/06+oj1H/Bc6qfkct8s2znY69Z51/rZZN6J5CDsxfQA/lIHPhBOGB4fZST1J78p0yleKKEl7CGYHfsYZRQWEDsM6wgpBuMD9gE3AHb+gvw6+oP3WfTI8O7s++gn5bPh397j3OzbFdxk3cvfJOM658vrivAt9W35Ef3w//QBIAOKA1gDwAL+AVEB7wADAagB5AKmBMkGFglLCx0NQw59DpcNdAsMCHUD2f1696vwx+kt4zfdMdhS1LvRcdBi0F/RKdNz1ezXRNo43JXdQN433pPdhdxU21Da1dk42sTbsd4e4w3pYfDe+C4C6guYFb0e4yagLaEyqzWjNo41jTLeLdInyiArGVwRuAmRAiX8m/YK8nXu0usI6v7olui36E/pVurL67XtIfAc86/23PqY/8oESgrfD0MVJRo1HiMhqSKVIssgTB01GMURUwpSAkD6pPID7NTme+M84jjjbOas66vy+voXBHQNgBavHo0lvCr/LT8vhi4CLP0n1iL7HN0W6RB+C+oGYgP/AMX/mv9VAMMBpQO/BdoHygl0C8kMzQ2ODigPtw9aECkRMxJ5E+8UeRbvFyIZ3RntGScZbRevFPUQVwwEBzoBQ/ts9QXwUuuL59HkMuOe4vDi7uNO5b3m5ud96EPoDufN5I7hd93L2N7TE8/UyoTHfcUCxTzGOMnhzQXUVNtu4+LrPvQU/AEDvQgTDfIPYhGJEaQQAg/7DOgKGwnbB1kHsQfmCOMKgQ2IELcTzhaPGccbVR0pHkgeyh3WHKEbYxpVGakYhBj9GBYavRvRHSEgcCKCJBkmBCccJ1AmoSQlIgMfdRu6FxcUzBAODgUMwQo/CmQKAQvXC50MBg3KDKsLgAkzBssBaPxB9qLv5+hw4p/cyNcz1AzSaNE+0mrUrte82zjgw+QE6a7sh+9v8V/ya/LA8Z7wU+8x7ontnu2j7rPw0PPe96j85QE9B04MuBAhFEMW7BYEFpETsw+jCrAENf6U9yvxVOtW5mbio98U3qrdR966387hTOT95rTpUOy77u/w7/LF9IP2Nvjp+Z37Rv3M/goA0gDxADAAYv5g+x33nfEA64PjettR04PLk8QEv02707ncuo2+5MS2zbHYY+U9850B3w9fHYYp2jP8O7VB8kTJRXBEPEGUPO02vjB1KnMkBR9dGpYWsBOUER4QGw9XDp0NxAysC0UKkQidBocEcgKDAOL+qv3x/Lv8Af2t/aD+sf+0AIUBBAIeAtEBLAFPAGz/u/5//vn+XwDeAowGaQtXESIYfB8GJ1Mu8zR5OoY+z0AmQXs/3juANrAv0SdYH7wWdQ7sBncAUfuY90v1TPRj9Eb1nvYT+FH5Evoh+mX52vea9dDyve+o7ODpq+dH5t3lguYz6NXqN+4X8in2Hfql/X4AdgJuA14DVQJ2APf9FfsV+D31x/Lh8KnvKe9W7xjwRfGt8hv0YPVU9t729vam9gn2SvWf9EH0avRM9Qn3svlD/Z4BlQbjCzgROxaYGgAeNyASIYUgmx5+G20XuhLFDfEImwQUAZ3+Vv1L/WX+dgA5A1YGcAknDCYOJw/5DogN2woVB3ECPf3R94vyw+3E6cnm8ORC5Kjk+OXw50PqnOyr7iTw0fCM8EnvFu0W6oHmnuK43iDbG9jm1afUdNRK1RDXnNm23B7gkOPN5qLp5uuD7XLuve5+7tTt5ezV68PqwunZ6P/nIecc5svkBeOl4JPdx9lM1UXQ78qaxafAhbyjuWu4PLlZvOrB9MlV1Mbg4O4d/uQNlR2MLDI6BUajT8tWZFt9XUldHVtkV5pSP03RR79CZT4EO8E4pjedN4A4EjoQPDI+N0DjQQtDlUN1Q7NCX0GWP3Y9HDuhOBU2fTPQMAAu8yqPJ7gjWx9vGvcUCg/NCHgCTPyS9pbxnu3j6ozpqeku6/btv/Ez9uj6cP9YAzoGvgelB9EFQQIb/Z/2Le825zjfsdcY0dPLMchgxnDGT8jNy6HQbdbL3FPjo+lo72T0b/h++5397P6g//L/IQBqAPoA8AFZAysFSweNCbgLjw3WDlgP8A6KDSUL2QfSA03/kfru9bPxJO5669vpVenj6Wfrse2E8Jnzq/Z4+cj7df1s/q3+Sv5n/TL83/qi+af4Dfjl9yr4xfiN+Uz6xPqy+tz5FPg89U/xYeyh5lbg2dmS0+7NWMkuxrrELcWcx/fLEtKj2UvimOsV9U3+1wZeDqMUhhkDHTIfRCB8ICggmR8bH+4ePR8eIJAhdyOmJdwn0ylAK98rdyvjKRMnECP5HQYYfBGuCvADmf3t9yrzdO/e7GLr5+pE60Xsr+1J7+HwT/J781v09vRj9cD1MPbZ9tj3QPkV+039yP9aAs0E3wZSCOwIgQj2BkoEkgD++9X2bvEx7ITnzeNj4YfgXuHx4yPoue1b9Jr7+gL7CSEQ/xRBGK8ZOBnrFvsSvA2WBwUBifqc9LDvH+wp6u/pcuuU7hzzvfgb/9IFhAzYEoMYTh0XIc0jdiUlJvclECWUI6EhUh+2HNIZpRYnE04PEwt3BoMBUPwB98vx7uyw6FrlMuNw4j/jsuW/6UTvAfae/awFtw0/Fc0b9yBoJOslayX2Ir8eFRlkEicL4AMS/S/3mfKS70Hupe6f8PLzSPg9/WECTQeeCwUPShFREhUSsBBNDioLjgfBAwcAmvyf+TD3TvXr8+ryI/Js8Zzwku867pHspeqX6JXm3OSr40Hj2OOZ5Z3o5uxe8tn4FQDCB4QP/RbUHbkjbijMK8EtVS6kLd4rPSkGJncizB4yG8YXkBSJEZUOjQtCCIUELQAd+0f1t+6O5wXgaNgR0WXKxcSOwAu+cL3XvjfCasctziLW2t7b56zw2fgCAN0FPQoUDXIOhQ6SDewL8Qn+B2YGbAVABfYFiQfdCb8M7A8ZE/sVTBjRGWUa8xmDGC4WIROYD9gLJgjBBOEBqv8w/nL9XP3L/ZD+dP9BAMYA3gBxAHj/+/0X/PH5ufef9dDzcvKZ8UvxevEG8r/yavPG85Pzm/K28M/t6+kp5b/f+9k71OjOa8onx23FeMVnxzjLxdDN1/Dfvei18Vn6MALUCPcNaREcEyQTtREeD8ELDQhyBFcBGf/3/Rv+kP9AAgMGkgqeD8wUxBkzHtYheyQHJnUm1CVFJPUhGh/sG58YXhVJEnQP5QyXCn8IigapBNAC+wA2/5H9Lvw2+9n6Rvul/BX/ogJHB+EMORMCGtkgUif6LGMxKzQFNcAzTTDCKlcjZxprEO8FivvS8VfpkuLi3YTbjNvq3Wnitehg8O/43wGxCvMSRhpkICMldShnKhsrwyqcKeMn0yWZI1ghHx/wHLsaZxjTFeAScg94C+4G4gF0/NH2N/Ho6yznRONo4MDeYd5G31bhY+Qq6F/srvDF9Fv4M/sn/Sb+Nv51/RT8U/p5+M72k/X/9DL1OvYN+Iv6f/2oAL0DdQaLCMsJEQpUCZ4HFAXvAXj+/frQ9zv1e/O48v/yR/Ro9iT5LPwj/6oBaQMSBG0DXAHf/RP5MfOL7ITlid4H2GTS9M33ypDJxcl9y4fOmdJc13DcduEW5gjqF+0m7y/wQ/CG7ynuaOx+6qToB+fH5fTki+R95Kzk8+Qr5S/l5OQ55C7j0+FH4LjeWt1l3BHcitzv3U/goePK55nszvEf9z783wDDBLsHrwmfCqgK/wnvCNIHCQf2Bu8HOwoGDl4TMBpMImErBjXDPhhIhlCaV/VcVWCWYbdg2V09WTtTPUy2RBk9zjUvL30p3yRhIfIebR2YHC8c7BuKG80ajBmtFy0VGhKWDs0K9AZDA+z/GP3k+l35gvg/+Hj4BvnA+YH6Jvuc+9n75PvQ+7v7y/sm/O/8Pv4cAIICUQVYCFML7w3UD6cQFxDjDd8JAQRc/CXzteh/3QvS8sbLvCi0iq1VqcynDKkIrYyzQbyyxlfSnd7u6sH2ngEmCxcTUBnOHaogFCJMIpwhTCCiHtccFBtyGfgXoBZWFQEUhxLRENEOiAwAClYHsAQ/AjYAyv4l/mb+nP+/AbYEUghRDGYQPhSGF/AZQBtMGwIaaBefE98OcAmoA+H9cPif86vvtuzN6uLpz+lc6kPrN+zt7CLtpOxU6yzpP+a34tLe3Nop1wnUyNGf0LPQD9Kk1ErYw9y/4eXm3OtR8P3zsPZS+Oj4j/h+9wD2avQX813yifLQ81P2Ffr+/tgEXQsxEvEYNx+oJPIo3itHLSctkSuuKLwkBiDaGooVXRCOC0kHpAOmAEL+X/zZ+o35VvgY98L1UPTK8kjx6e/U7i/uGe6r7uvv0PE89P/22/mF/K/+DABdAG//KP2J+bH02+5c6JzhE9s71YvQa80szAPNAtAY1RDcmeRF7pn4DwMnDWwWeh4MJfspPy3yLkgvjC4ULUAraynjJ+cmniYXJ0coCyowLHMujDA2MjAzTDNqMoAwmS3SKVslayBAGxgWKBGdDJMIFwUnArP/nv3J+xH6WfiP9qr0svK78OfuY+1f7Ansiez77WbwwPPk95z8mQGGBgALqA4mETMSoRFeD3cLGwaY/1D4vPBd6bPiNd1E2SnXB9fi2JXc2uFR6ILv6fYD/k8EZQnvDLcOqw7VDGIJlwTO/mj4z/Fl64HlaOBM3EfZXNd/1pLWb9fs2OLaL92934LifeW76FDsUPDQ9Nv5df+NBQkMuBJdGbEfZSUsKr8t6C+AMHov5SznKMAjxR1YF+IQywpyBSYBHf5z/Cj8If0o//MBMQWECJgLIA7jD78QqxC4Dw4O6wuYCWQHnAWDBEsEEgXZBowJ/AzlEPcU2Rg2HL8eNiBzIGYfHB24GXcVpBCVC6EGGgJD/kz7TvlH+B74oPiL+ZD6Xfuk+yP7qPkZ93bz1+5r6XfjTN1C17HR68wxybPGi8W7xTHHxslEzW7RA9bG2oDfCeRG6Crsuu8B8xP2Bvnq+8n+oAFdBN8G+QhxCgoLhgqyCGUFkAA5+oTysukd4DjWg8yFw8a7wLXXsVWwYLH5tPi6FsPozPDXnuNg76z6AgUCDmQVAxveHhMh2yGFIW0g8x50HT8ckRuTG1Mcxx3SH0Qi4yRxJ7MpdSuTLPospyysKyoqSyhDJkUkfyIWISMgqx+pHwMgmSBAIcwhFSL7IWohXiDmHh0dMBtSGboXnhYrFn4WoReKGRYcDR8lIgclWCe/KO0opyfLJFMgWRoXE+IKJQJb+QPxmemK4y7fwNxX3OjdQ+Ec5gvsmfJE+ZH/DAVaCTYMfA0oDVQLNwgdBGD/YPp89QrxT+196qzo4ecK6APpneqj7ODuI/FI8zb15fZZ+KT54Por/KD9V/9ZAaYDKwbJCFMLkg1MD0sQXhBlD1ENKAoJBigBzftM9gHxSex46NXljeS35ErmIun/7I7xavYq+2X/uwLkBKsF+wTdAnf/CPvm9XTwGOs35ifiLt923RPd+N0C4PfikOZ76mjuD/I09bD3cfmA+vb6Afvc+sX6/Pq0+xT9L//+AWgFOQkvDfoQRBS7FhUYGxiqFrgTWQ+3CRQDxfsm9JnsfOUh38jZntW30hHRktAR0VjSK9RN1ovYudq83IfeIOCY4QzjnuRu5pnoL+s07pvxRPUG+aj87f+aAnsEaAVOBTEELgJ8/2X8SvmR9qf07vO99E73w/sVAiIKnxMkHjIpPDStPvdHmk8xVXNYPFmQV5VTlU3yRSU9rTMMKrogIRiQEEAKSwWwAVn/Gf64/fn9n/50/0oACQGhARQCcALLAj4D4gPKBP0FeQcqCfUKrwwsDjkPrA9iD0QOUQyWCTcGaAJq/oX6BPcs9DXySPF08bHy3/TF9xr7iP6xAUEE7AV5BskF3APNANf8TfiU8x/vYOvC6KHnPui76hnvN/XQ/IMF3w5hGIMhySnDMBs2lzkbO686dDiqNKAvsilCI6kcORYwELkK6QW/ASv+C/s4+If10/L+7/nswelm5gTjwt/M3FLafdhs1zPX0tc52Ufbzd2Q4FTj3eX053TpR+pp6u/p/ujO557mtOVS5a/l9OYy6WHsYPD09M/5kv7WAjkGXgj8COEH+wRXACT6q/JS6o3h3tjB0KzJA8QQwAC+372evwzD5cfUzXrUett94jvpge8x9UP6xf7VAqAGVQoiDi0SjhZLG1ggkiXHKrkvHzS0NzQ6bDs8O5c5jDZCMvQs8iaVID0aRhQBD7AKfweEBbgEAQUuBgAILwpyDIQOLBBAEacRXhFyEAAPLw0uCygJQweaBTkEHAMtAksBRwDw/hX9jvpB9yfzTu7f6BbjRd3K1wvTa89DzdrMX87f0UjXZd7h5k7wK/rrAwYN+xRdG9sfRSKRItkgWR1rGH4SDwydBaT/jfqu9kH0YfMO9Cv2gfnM/boC+Qc7DToSvxamGtsdXCA0InkjRiS1JNskyCR/JPkjJiPuITYg4x3hGigXuxKwDS4IaQKo/DH3UvJU7nLr1umU6aXq5+wd8PbzD/j8+1H/qgG3AjsCHABg/Cz3xvCQ6f7hj9rD0w/O2Mlpx+3GbMjMy9PQLNdv3inm5O0z9bj7KwFiBUwI9wmJCj0KWwkzCBEHOwbmBTUGNwfiCB4Lvw2SEF0T7BUQGKcZoBr6GscaJBo8GTwYVReuFmYWjBYgFxEYPBlzGoMbMxxTHLkbTRoJGP0UTREvDegIxAQSARr+F/wy+3v76fxY/4sCNQb5CXUNShAmEscSBxLdD10MuQc9Akv8TPaw8OLrOuj/5VnlUebS6Kjsh/EP99f8bwJ2B5ILgA4YEEsQJQ/LDHQJZwXuAFP81ves8/bvw+wN6r/ntOXB47nhdd/X3NLZaNaz0tzOGsuyx+nEBsNDws3CvMQQyLHMcdIM2S7gfOeY7ir15vqR/wcDPAU6BiEGIgV4A2QBKP/3/P76VfkG+AT3N/Z89aj0k/Md8jHwz+0I6wToAOVH4i7gDt853/bgduTP6ffwxvnyAxgPvBpWJlkxPjuNQ+VJBU7OT0ZPl0wLSAZC/DprM88rmiQsHswYpRTEERwQgg+9D4UQixGFEjETWxPgErIR2A9nDYQKWgcbBPIACf55+1T5m/dH9kX1f/Td80vzv/I48sPxevGE8Q7ySfNi9YD4uPwMAmoIoQ9rF2wfNSdRLkc0pjgPOzw7BTloNIctqSQ2Gq8OqAK99oTrieE+2fvS8M4rzZPN7s/n0xTZAN835Urr3PCl9Xf5QfwM/vb+Mv/9/pn+Q/4y/ov+ZP++AIkCpwTqBiQJIwu8DNINUQ47Dp8NnQxiCx8KCglRCBwIgwiMCSoLQQ2hDxESUxQoFlcXthcqF7AVVxNHELgM7gg4BeABLP9R/XL8mPy1/Z//FwLQBG4Hlwn1CkALRwrxB0YEaP+T+SDzcez25RjgO9ut16bVP9Vx1hnZ9tyx4eXmKOwP8T71aPha+vn6S/pr+I/1+/EA7u7pE+aw4vTf/d3R3GDcjNwn3f7d296P3/bf+t+Y39/e79303Cbcu9vp29vcrd5o4QDlVOkw7lHzbPgw/VEBkQS/Br4HjAc7BvYD+ACL/fr5lfaf81Hxzu8k70zvKvCP8ULzBPWa9s/3f/iY+CD4MvcA9sv04POO8yH02fXh+E79FAMQCgASixpGI78rgjMjOks/uUJKRP5D9UFtPr85VjSnLicpQyRZIK0daRyWHCEe2iB8JLIoHS1gMSM1HjgZOvQ6pTo1OcI2djOFLyMrgybQISkdohhDFAcQ4gvEB6ADbP8n+9v2ovKg7gTrAujQ5Z/kleTI5Tjoz+tc8Jr1LvuwALQFzwmhDNwNUQ3sCsEGAwEK+kTyN+py4oPb8NUn0nvQG9EQ1DrZV+AB6b3y/vw0B9MQXhlsILMlBilbKsQpbyedI6AeyhhyEuILWQUH/wj5afMp7jzpk+Qd4M7bo9el0+nPjcy7yaDHacY/xj7Hc8nbzFnRwtbU3EHjsenN70D1wvke/TP/+/+K/wn+ufvm+OT1B/Oa8Nru7u3n7bvuSfBb8qv07PbR+BT6fvrw+WH45vWu8gHvOOu35+XkI+PE4gPkA+fE6yjy9fnTAl4MIRanH4AoTjDFNrU7CD/GQBJBIUA4PqQ7sjinNbkyEDC9Lbsr9ilGKH8mayTdIa0ewxoXFrYQwApmBOb9g/eE8Srsquco5LjhVeDm30PgMuF14sjj8eS95Qvmy+UF5dLjXuLh4Jrfxt6f3k3f6uB149vm8Opz7xn0jPh4/JD/lAFdAtoBFwA7/YL5P/XQ8Jbs8Ogu5o/kOOQy5Wnnruq87j3z0/cf/Mz/lAJLBNsEUATPApgA/P1a+xT5ifcJ99D3Avqn/acC0wjiD3sXOx++JqUtnzNsOOU7+T2wPiY+ijwVOgQ3ljMCMHUsDindJeMiFyBmHbsaARgoFSsSEQ/rC9kIBAaZA8UBsQB5ACoBvAIRBfUHHws6DuMQuhJkE5MSFBDNC8cFL/5N9YzrbOF710vOZsZJwFK8w7q0uxa/tMQ0zCHV794M6ePy7PuwA9YJIw5+EPAQoQ/SDNYICwTV/oz5hPT97yfsG+nj5njlx+S65DXlJeZ55y3pROvM7dnwf/TU+OL9qwMiCikRjhgSIGcnOC4vNPo4UzwHPvo9KjyxOMUzry3QJo4fVRiJEYQLhwa7Ai8A0/55/uP+v/+0AGsBlAHwAFj/vfwt+dH06u/K6szlT+Gq3SXb9dky2trbzt7V4qLn2OwX8v72OfuD/q0ApwF2AT0AMf6X+8H4/vWa89Px1fC18HPx+PIZ9Z33RPrK/PL+iABsAY0B8ACv//H97Pva+fj3efaH9Tr1mfWV9g/41/mz+2f9t/5v/2n/lP7v/JH6pPdg9Ajx5O046z7pH+jy57boVOqd7FTvLfLa9BD3jPgh+bT4SPf49Pvxmu4x6yDoyOWC5JPkKuZX6Q3uIPRH+yQDTAtKE60aECEhJqcphSu/K3Uq4CdNJBggnRs3FzUT1Q87DXcLfgowCloKvgobCzALxgq1CegHXgUsAnz+gvqB9rzydu/o7D3rkOrn6jfsY+5A8Zv0P/j4+5r/BgMqBgUJogsYDogQEhPTFd4YOxzdH6cjaSfjKsktzS+hMAQwxS3MKSAk5RxiFPgKJAFx92/usOa04Ojcltvn3NbgOufB7/j5VAU6EQsdLSgVMlM6k0CkRHpGKkbmQ/k/vjqXNOYtBidDINkZ7xOZDtoJowXhAXj+T/tR+HL1s/Ib8L/ttesb6gnpkOi66H7pyepz7EzuFvCT8YHyqvLj8RfwRu2H6QzlHOAO20bWJ9ITz1rNOM3RziXSGddv3dDk0uz79M781gOrCfwNkxBcEWIQ0A3qCQoFlf/y+YX0o++N62zoTuYm5dHkGOW35Wnm5+b55nPmQeVk4/TgHt4c2zXYstXX09zS69IY1F7Wo9m53WDiT+c27MzwzvQN+Gn62vtu/Ef8mPud+pb5xfhe+Iv4Yvnm+gf9n/9+AmoFJQh2Ci0MKQ1cDcwMkwvdCeMH5QUmBOECRwJ3AnsDRwW4B5kKpg2TEBUT5RTMFakVbxQxEhoPawt8B60DYwAA/tT8HP37/nICaAegDcMUaxwgJGwr3TERN706sDzbPEw7LzjKM3IujCh6IpscPxelEvMONwxoCmcJBgkMCTwJXwlFCc0I6AeZBvQEHwNHAaH/YP6w/bP9ev4DAD0CBAUlCGULhw5PEYoTEhXRFcYVARWiE9cR1Q/RDf0LgApwCdAIkQiOCJIIXQipBzQGwgMtAGT7bfVy7rXmk9551uXOU8g5w/+/7743wN/DyMmw0THbzuX28BH8igbbD5EXWB38IHEiyyE/Hx8bzBW2D0sJ9gIT/ev3sfOC8GLuRO0J7Yvtnu4X8NLxs/Op9a33w/nz+0r+zgCGA2sGaglkDC4PlRFdE04UMxTjEkgQXgw9BxIBJfrL8m7reeRX3mrZ/tVL1GbUSdbK2aLecuTL6jPxNPdg/F4A7wLzA2sDeQFe/nD6GPbG8ent5OoI6Y7okOkL7OHv2fSl+uwAUwd/DSAT+RfgG8IepCCcIdIhdyHBIOAf/R40Ho8dBh2CHNsb4hpkGTAXHxQYEBQLIQVn/hv3iO8C6OPggdop1RrRfc5gzb3Nc89L0gLWRtrH3jXjUOfj6s/tCvCe8ajyUfPL80n0+PT79WX3Nvlb+6/9/v8JApEDWgQyBPgCpQBI/Qz5NPQb7ybqxOVi4mHgEeCm4Tbltur78bf6hwT2DoMZryMFLR81tTuWQLdDKEUVRcRDhkG5PrY70ThLNlM0ATNUMjUyejLsMk0zYDPsMscx1S8OLX0pPiV8IGsbRRY/EYgMRQiIBFUBn/5K/DH6J/gD9p7z3vC47THqYuZ04preFdsj2AHW39Te1AnWUtiV25bfB+SP6NDsbPAV8430r/Rz8/DwWu396Dvkgd8929nXrtX91OvVe9iP3OjhLejz7r71F/yIAbMFTQgtCUcIswWpAXv8jPZL8C7qoeQD4KLcsNpI2mvbAN7e4cvmiOzR8mv5HgDEBj4NfxOBGUcf1yQ3KmcvXjQLOU89A0H5QwBG6EaMRtBErkEzPYQ33TCNKfIhdRp+E3ANnwhJBZADdwPiBJUHOQtjD54TbxdkGhwcTBzIGogXpRJZDPoE9/zF9OHsweXK30zbedhi1/vXGdp13brhhuZz6yPwRfSY9/T5Sfub+wX7sPnP95j1QPPv8MXuz+wN62/p2ecq5j7k9uE93wvcbNh81GrQdMzhyADGGsR0wz7El8aGyvXPttaE3gjn3++h+OkAXQi1Dr0TWxePGXAaKhr4GB0X3hR6EiUQAg4hDH4KBAmOB+4F8wNwAUT+W/q49XXww+rn5DbfD9rS1drSc9HT0RPUMNgF3k7lr+219uP/ugjCEJEX1xxeIBMiBCJdIGYdfBkFFW8QHwxxCKoF+QNzAxQEvQU+CFsLzw5XErUVuRhCGz8dtB6zH1kgzSA0IbQhaCJeI5ckBCaIJ/woMSr5KigrnipHKSInQSTJIO8c8hgZFaoR5Q76DAcMEwwNDckOChGAE9AVoRefGIMYHxddFEgQCAviBDT+aff78F3r++Yt5C/jHuT25ozrmPG5+HcAVQjTD3oW5xvNH/8hbyIuIWoeaBp8FQUQYQrmBN//f/vo9yL1IvPK8fHwZPDx72vvre6h7UDskeqq6KvmuOT54o7hkeAO4ATgY+AN4d3ho+I142njJeNZ4gvhVN9f3Wfbs9mO2EPYENkm253ecuOG6Z7wYvhpAD4IYw9jFdYZbBz0HF4bvhdQEmwLhQMh+83yEutx5FHfAtyt2l7b+91L4v7nsO719V79hgQWC8sQeBUKGYIb+RySHXsd4xz3G9oaohlYGPYWaRWWE1wRnQ5BCzoHiQJD/Yv3lfGj6/3l7uC63JzZu9cr1+fX0Nm03ErgP+Q46Nzr2u7y8Pjx2/Gj8HHuf+sW6IvkNuFr3nHcftuw2w7dh9/y4hbnrOts8A71VfkT/S8AqQKTBBUGZgfJCH8KxQzND7ITexgTHksk2yprMZU37zwXQbNDg0RhQ0RARjuhNKksySN7GjsRhgjKAGH6i/Vv8hHxW/Eg8x32Avp7/jcD7AdfDGUQ5xPfFlgZaRsvHckeVCDiIXwjGyWuJhcoLynOKcwpByltJ/gktSHEHVYZqRQFELML+AcNBR0DOQJdAmgDJgVLB4EJaAumDOoM9QuhCegF4QDE+uLzo+x/5fLectlm1SLT2NKZ1FTY0t3A5K/sJPWY/YkFhAwlEiYWXhjEGG8XjxRrEFkLtAXX/xL6qvTR76LrJuhU5RLjQOG331Te+tyX2yfatNhT1yfWVdUF1VvVctZW2AXba95j4rrmNuuV75fzB/e4+ZT7l/zS/Gz8nPuk+s/5YPmX+aD6k/xt/xIDTQfRC0MQPBRXFzgZlBk3GA8VKRC0CQACefmZ8Orn9d852SLUAtEL0ErRqdTw2crgzeiB8Wn6DgMICwASuBcNHPkejCDrIEsg6R4CHc8agBg3FgcU9RH5DwAO9QvDCVgHrgTLAcX+vPvf+GT2g/R082LzbfSg9vH5PP5KA9AIdQ7WE5QYUxzLHsYfKB/yHEQZUxRvDvUHSQHS+ur03u/m6x/pjecZ55jnyuhq6izsy+0O79Dv/u+f79Duw+227PPrwOtf7ALuyPC49Lz5p/81BhEN2xMwGrQfGCQgJ60ouyhiJ9YkYCFcHSwZMRXGETYPsw1aDSgOARCxEvIVcBnUHMgfASJFI2wjZiI5IAMd8Bg4FBwP3AmwBMn/Rvs496Lzd/Ch7QTrg+gH5oHj7uBc3uTbrNnl18LWdNYk1+zY1NvM367kPOok8AT2dvsPAHQDVgWABd0DdwB++zz1Hu6h5k7fsNhI04fPwc0qztDQndVX3KTkFe4p+FsCLgwuFf0cXCMkKFMr/yxaLaYsMStNKUknZyXbI8YiNiIkInkiFCPMI3ck7iQWJd0kQiRPIxsixSBxH0MeVx2/HIAckRzVHCQdSx0RHTwcmRoDGGUUvQ8lCsoD8Pzm9Qzvv+hZ4yXfXNwb22XbHd0M4OPjQui/7O/wcvT29kP4PPjl9mH07vDi7KPonOQ14c7er90G3uTfOOPS52jtmfP2+QsAawWyCZIM1A1iDUALjgeHAnb8sPWS7nXnpuBo2unURdCHzKjJlsc6xnnFPMVzxRrGN8fbyB/LJc4J0ujW0NzB46vrZvS4/VIH2xDvGSkiKymkLlYyIDT6M/0xXS5mKXgjAB1sFiUQiArdBVIC+//M/qL+Rf9pAMIB/wLXAxQEkwNIAkMAqv22+q/35fSl8jXxy/CG8W7zcfZi+gH/+gP2CJkNjhGOFGoWBxdnFqgU/RGtDgoLawcmBIMBu//v/if/UwBPAt8EvAeXCiQNHw9QEJUQ4g9CDtULzghuBf4Bx/4M/AX62fie+FT56vo//SQAaQPYBkQKiA2OEEwTzBUfGGYawBxQHy4iaCX8KNEsvjCFNNw3bjrkO+47SjrLNl4xEioVIbcWYgub/+7z8Ogx3y3XS9HOzdXMV84k0unXNt+F50jw7fjtANYHTQ0VERQTURPwESwPVwvIBtwB6vw8+A70iPC/7bPrWOqV6UvpWeml6RvqsOpo603sdu357vHwcfOD9ib6Rv7CAmkH/gs7ENkTlRY3GJUYnxdaFeQRdQ1XCOUCg/2Q+Gj0VPGI7xzvCvAw8lD1FPka/fgASASvBuUHuwckBi8DDP8E+nf00e6B6fPkgeFz3/HeCOCj4o/mgesb8fP2nfy1AeQF5wiWCuIK2AmdB2gEfwAw/MT3gPOa7zvsdelJ56flcuSF47ji5uHw4MbfZN7Y3Dnbr9lj2IXXPNeo19vY1NqA3bngSeTt513rUO6F8Mnx+/EV8SbvWezw6D7loeF83i3cBNtB2wbdXOAq5T/rTvL5+dYBfAmFEJwWgBsLHzYhFSLWIb8gJR9hHc0buxprGgYbnRwmH4Eidia+KgwvEjOHNjM57zqsO3Q7Zjq2OKU2fjSKMg4xPTA9MBgxxDIeNe838zraPVVAGkLqQplCEEFRPnE6njUVMBsq+yP+HWEYVhP5DlULYQgABgoETgKYALj+hvzp+dv2Y/Oe77Tr2OdB5CThrt7+3CLcEdyw3NHdNt+W4KnhKeLf4abgcN5M22fXBdOCzkjKysZ4xLTDzsT5x0XNntTK3WzoDfQbAAAMIBfnINcoiy7DMV8yaDAKLI8lWx3jE6MJF/+w9NXq1OHo2TTTx82cyaTGxMThw+HDrcQ3xnrIdsswz67T9Nj+3rvlEe3U9Mn8rAQvDAET1BhkHXwg/iHiIT4gQR0xGWkUTw9PCtIFMgK4/5H+zf5dABUDrQbICv0O4BILFicY8hhJGCUWoxL8DYUIowLJ/Gf35vKh79btqu0h7yDyb/a++6wB0wfJDS4TsRcWGzodFR6zHTwc4hnlFocTBxCaDGgJiQYBBMcBw//S/dD7mvkS9yv04fBD7XPpm+Xz4bbeINxi2qTZ+tlm29LdFuH45DHpdu158fb0t/eY+Yz6n/rz+cH4Tffn9d/0ffT89IL2HPm7/DcBTwavC/YQvxWrGWccsx1rHYgbIxhwE78NcAfwALD6F/V+8CvtSevj6uvrNe6A8X711fku/jgCtQV2CGYKhgvuC8oLUQvDCl4KWwrkChIM6w1eEEcTdBamGZscEx/WILohqiGlIL0eHBz6GJoVRBI/D8YMCgsnCiMK7wpoDFoOhhCmEncUvhVKFgEW1xTbEioQ9AxwCd0FdAJp/9384/p5+Yb44vdW96T2jfXW81bx9O2y6arkEd812XbTPs77yRfH6cW1xp/JqM6u1W7eg+hz87H+qgnUE6scyCPdKMIrcCwGK8En+CIVHY4W1Q9aCXwDhf6p+gH4kPZD9vX2efia+iP95/+9Ao4FSAjnCmsN3Q9BEpkU3xYEGe4adhxwHasd+BwrGycY3xNdDsAHQAAs+OLv0Odn4BTaONUh0gDR6NHK1HLZj9+35mzuKPZl/akDjwjMCzYNyQyjCgIHPwLJ/BP3mPHE7PTobeZW5bjlfOdy6lTuzvKD9xv8RQDBA2MGFgjcCMwIEAjcBmsF9wO0AsoBUAFNAbgBdwJlA1gEJQWjBbYFTgVsBCADiwHc/0T++vwy/BP8uPwm/k4ADgMwBm0Jdwz+DrQQWRHAENAOjQsTB5YBY/vP9DzuCeiN4g7evtq12O/XTdia2Y/b2d0j4B/iieMz5AjkC+Ne4Tff49y52hTZTtix2HXauN194qfo/e8u+NcAjAndEWEZvh+uJAYotinLKWso0CVGIh0eqhk4FQgRRw0TCnEHWAWuA1ACFwHf/4n+Bf1S+3/5rfcK9s70M/R09MD1PPj2++cA9QbsDYUVbx1OJccshzNFOc49A0HfQnND5UJsQUs/xDwbOoU3KzUhM2cx5i96Lu0sByuMKEwlIyEDHPMVFw+rBwAAePh78XTrw+a644/iW+MV5pTqjPCZ90D//AZIDqUUphn2HF8ezx1UGxwXcRGzCk0Dr/tE9GvtcueO4tzeYtwL27PaKdsz3JfdIt+n4AjiNuMs5PXkouVJ5v7m0ufO6O7pJOtY7GftLO6B7kbuZe3Y66zpAOcK5A7hYN5W3EvbjNtX3dXgD+bw7ED1q/6/CPoSzxyuJRItiTK+NXs2tTSEMCoqBSKQGFUO5wPS+ZTwl+go4nPdgNo72W/Z1doT3c3fpeJK5XjnAunP6dzpPOkQ6IXmzeQX443hTeBo39/ep96o3sPe2N7I3nve6N0S3Q3c+9oM2njZedlK2hfcAt8Y407ohe6D9QD9owQNDOASxRhyHbcgeiK/IqMhXx89HJkY0BRAET0OBwzJCpUKYQsIDVQP+xGuFB0X/hgbGk0ajBnnF4YVqhKgD8MMawrqCIUIaQmpCzsP+xOoGfAfbya/LHgyQDfPOvE8kD2yPHY6EjfQMgMuACkcJJwfuBuSGDYWmxSlEyoT9RLQEogS8xH1EIQPpA1sCwAJjwZIBFwC8QAiAPn/aQBZAZoC8QMbBdQF3QUBBR0DJAAi/DT3lfGL62zljt9G2uDVlNKG0L/PMdCx0QbU4tb12ezcf9904afiDeO14sjhheA53zze5d2C3lLgfOMM6PDt9/TW/CwFiw18FY8cXSKXJgQpjik9KDolyCBCGxEVpQ5rCMYCCv5w+hr4E/dH95L4vfqH/awA7AMPB+YJVAxNDs8P5xCpESsSgxLAEugS9RLWEnASnxE9ECcOPwt1B8kCUP0w96bw/umP47Xdy9gg1fHSZNKD0zfWTtp430/lXesp8Tv2KPqe/Gb9bPzA+Zb1Q/A26vDj+d3X2ATV5NK80rHUwtjK3oPmiu9s+acDvA0vF5UfmiYALKgvizG7MV8wqi3ZKScl0R8HGvATqQ1DB8UANvqV8+vsRea633HZl9NnziHKBcdRxTnF3cZNyn7PS9Z13qjnffGB+z0FQQ4pFqIcdiGKJOUlqSUSJHMhKB6WGhwXCxSlERIQXw+BD1EQlxENE2QUVRWdFQ8VjxMgEdkN7QmhBUgBPf3W+WD3GfYn9pX3U/o1/vgCSgjNDR4T4hfMG6EePiCcIMsf9h1bG0IY/RTaER8PAg2nCxwLVgs4DJMNKw+/EBAS5RIUE4ISJxESD2AMPwnkBYgCZf+m/Gz6yvi79yz3+vbz9uP2lPbW9YX0j/L1783sQumP5fzh195q3PnauNrE2yLeveFk5tHrq/GR9xz97QG0BTQITgn7CFcHmAQKAQz9AflR9VfyX/Cb7yPw7vHZ9KX4//yFAdUFjQlZDPkNRg40DdcKWwcGAyz+LPln9Dbw5+yz6rzpDeqV6zPusPHN9UX61f5BA1oHAgsoDs4QBRPmFJEWJBi8GWkbMh0OH+cgnCIDJPAkNyW2JFcjFSH/HTca8xV4ERMNFgnPBYADWAJwAsMDMwaCCV4NYBEbFR4YAhpvGioZFRY1EbUK3gIa+uPwxOdH3/HXMtJhzrPMPM3nz37Uqtr/4QHqLPIE+hQB/wZ/C2kOsQ9kD6gNtArKBjICNP0M+PHyCe5u6SzlR+G63X7akdf01LDS2tCOz/DOJ89Z0KjSJ9bb2rXgjucr7zz3YP8rBzIOCBRSGMYaNhuUGfEVfhCNCYQB3fgW8LDnH+DF2enUttE20FPQ3dGL1AjY9dv437/jCueu6Zvr2eyI7drtEO5w7j7vtPD88i32Rfoq/6sEigp2EB4WLxtjH4UidCQnJbEkOiMCIVUeiRvzGOIWmRVFFf4VxBd/GgMeFCJsJsIq0S5dMjo1TzeXOB85CDl8OK831jYgNrE1oDXwNZI2ZzdBOOY4HDmpOF03FzXGMXMtOChGIt0bShXbDt4IlQMz/9T7fPkY+Hz3afeS96T3T/dM9mT0e/GN7bToJ+M03TzXqtHtzGnJdcdQxxrJ1Mxb0m/Zs+G46v/zC/1gBZcMXBJ1FsgYWRlJGM4VMxLLDe0I6gMK/4H6c/bw8vPvae0z6yzpL+ce5eLiduDg3Tnbo9hM1mfUJNOv0ibTm9QK12Dad94b4w7oD+3e8Ub2G/pI/cr/sgEmA1kEiQX2BtwIbAvDDusS0BdIHQ8jzSgfLpoy2TWDN1M3IjXoMMEq6iLAGbkPWgUz+8vxo+kh44/eFNy020zdmuA/5cvqwfCk9gD8cACnA3MFvQWNBAECUf68+ZD0F++Z6VLkb98P20LXCNRY0SPPWc3sy9LKD8qtycDJZMq2y9bN2dDM1K3ZZt/P5a3stPOM+tkAQgZyCikNPA6dDVsLpwfLAi39QveI8YDsnuhF5r3lMOej6vnv9fY9/2MI7xFkG0wkQiz2MjU46DsXPuQ+hz5GPXA7VDk3N1E1xTOjMuMxaDEIMY0wvi9kLlMscCmxJSMh6Rs3FlIQhwolBXYAvPwg+r34k/iM+Xv7JP48AXcEiActCjEMdA3oDZgNoww3C44J5Qd6BoEFIQVvBWsGAggOClsMrA6/EFcSQRNZE48S5hB4DnELDAiNBDoBVf4T/Jf68/kc+vX6SfzV/Ur/WgC8ADMAmv7f+xP4X/MI7mfo5eLx3ffZVtdb1jXX9tmN3sbkUezG9Kr9ewa8DvYVyBvrHzQimSIuISUexRliFF0OFAjcAQL8uvYp8l7uU+v16CTnvOWZ5JvjrOLF4ejgJeCW31vflt9i4NXh9eO55gjquO2P8U31q/hk+z79C/6x/TD8nfkl9gvyoO0/6ULlAOK936ze5d5i4APjj+a06hfvVPMK9+X5pPsg/FH7TPlI9pLyj+6t6l/nEOUZ5L7kJedS6yXxYvitAJwJshJ0G2kjKipmL+QyjDRiNIkyOS++Km4lpB+1GfETlg7TCcMFcwLe//X9pPzV+3P7c/vP+4z8uP1m/6gBlAQzCIUMehHvFrIcfiICKOUsyzBeM1c0gDO/MBYspSWuHYkUpgqDAKT2g+2S5Svfi9rO1+7WxNcK2mTdY+GX5Y/p6exW76LwtvCb73ntjuot57TjguDz3VTc3duv3NHeMOKg5ubrt/HG98X9bwORCAYNvRC8ExgW9Bd6GdgaNxy3HWcfSiFMI0wlGid7KDUpDinXJ3ElzyH9HB0XZhAkCa0BX/qV86Tt0ehO5TPjgOIc49nkeOes6irupvHe9KP31vlv+3n8E/1p/a79Gf7Z/hIA2QEtBPkGEwpBDTwQuBJsFBgVjhS2EpQPRQsEBiQACfoi9N/urOrh58Lmc+f66Tfu7/PH+lECFgqVEVoY+x0nIqokbSV5JPYhJR5ZGfETUA7UCNADhf8f/LX5RvjA9//31vgV+ov7EP2F/tf/AgEOAgsDEAQ0BYoGHAjqCeQL7Q3ZD3YRihLcEjsSgxCgDZcJgwSZ/iD4dfH+6iPlSuDJ3OPawdpr3Mzfq+S66o/xuPi7/yMGjQuoD0ASQhO7EtgQ3Q0oCh0GJgKl/uz7N/qn+T/64/tb/loBhAR2B80JMQtbCxsKXgcrA6X9BPeX77bnwN8O2PPQs8p/xXTBnL7vvFW8sLzava+/E8LuxDXI6MsO0LfU8tnN30/mcu0h9Tb9egWqDXQVgRx8IhknFypQK7IqTChJJPAenxjFEdoKWASt/jb6N/fY9Rv25vf6+gP/lwNFCJoMKxChEr4TYBOIEVQOAwrmBGX/6Pna9Jzwfe2z61zrd+zq7oLy+/YG/E4BiAZrC8QPbxNfFpkYMxpSGyAcyhx3HUQeRB92IMwhJyNfJEUlqSViJVEkZSKjHyIcEBioEzQPBgttB7IEEQOwAp4D0QUlCV0NKhIwFw8caCDnI0cmXCcQJ2sliiKiHvcZ1hSND2YKngVhAcf9z/pm+Gb2nvTW8tjwde6P6xnoIOTF30Hb39b30uPP+s2KzcnO1tGx1jndMOU67ub3tAEiC68T5xptIAIkhCX2JHgiTR7LGFoSbAtwBND94ffq8hfvfewY69HqhOsA7RPvjPFA9BH36vnH/Kn/nQKzBfkIeAwtEA0U/BfTG10fYSKhJOUl/iXLJEEibB5vGYYT/ww5Bpn/hPlW9FzwzO2+7Cvt7e7D8VH1K/nd/PX/CQLGAvIBc/9Q+7X16u5T52Pfl9dp0EnKksWIwkzB38EjxN7HusxY0kvYLN6a40fo+OuL7vrvVPC972jukux56ljoYua45HDjjuIG4sLho+GK4Vfh9eBY4ITfiN6E3Z/cCtzy24bc5d0j4ELjL+fE68zwA/Yd+9H/2gMBByQJNQpDCnYJCwhVBrIEgwMlA+kDCgapCcgOSRXvHGIlNi7xNhg/NUbgS8tPxVG+UclPGUz8RtdAHDpBM7Us3SYHImceFRwMGy0bQhwFHiggXCJXJNwlwSbsJlwmICVYIzIh3B6IHGAagxgBF9wVAhVYFLcT8RLbEVEQNw6ECz4IgQR1AFf8ZPjj9BTyLvBW75zv+vBP82b29Pmi/RIB6APQBYgG4wXOA1UAn/vp9Yfv2uhG4i/c7dbE0uXPZs5BzlnPfNFp1NfXftsc333igOUY6FDqRewp7jTwpPKy9Y75U/4FBJMKyhFjGQEhOSiZLrMzIzeZOOA34DSkL1coRR/PFG0Jnv3j8bbmgtyd00PMlcaawkDAX7/Dvy/BZcMqxk7Jq8wr0MPTdddM21LfluMb6ODs1PHd9tL7gQC3BDoI3Ap2DPMMUwysCikIDAWmAVP+cfta+Vz4sPh1+qz9NgLYBzwO9hSPG40hfSb8Kb8rnCuIKaAlICBlGeERFQqFArH7CPbj8X3v7+4w8BfzX/eq/JACogh0DqcT7RcNG+scgR3iHDQbqxiBFfQRPA6JCvwGqgOXAL/9Eft4+OH1PfOF8L/t/epe6ArmMeQD467iVuMP5dvnqOtN8I31G/ucALQFCgpLDTkPrg+bDhMMQghuA/H9L/iU8oXtWelW5qPkTuRD5VPnN+qU7QnxMPSw9j34o/jM97/1o/K47lXq3uXA4WPeItxH2wLcZd5m4tvnhu4Q9hr+PgYdDmAVxBsZIUclTyhFKk8rnytsK+wqUCq8KUgp+SjIKKEoZyj5JzgnCyZmJEkiyB8DHSkadRckFXITkxKtEtQTBBYgGfYcOyGaJa8pGC14L38w9C+2LcMpNSREHTwVgAx3A5D6LfKl6jnkEd8626XYLNeU1pjW69ZF12nXKddt1jXVl9O/0evPYc5qzUzNPs5m0NHTddgp3rHkuuvm8tL5GwBtBYUJNgxwDT8NzAtXCTAGtgJK/0X8+Pme+F74Qvk++yz+0wHwBTUKVQ4LEh8VZxfOGFIZAxkAGG8WgBReEjAQEg4UDDgKcwiwBtIEvAJTAIr9WfrQ9g3zRO+y66ToZ+ZJ5YvlXefZ6vrvoPaK/lsHpBDhGYwiISoqMEY0NDbVNS8zby7lJ/sfMxcXDjMFCv0J9ofwt+yr6lPqf+vj7SLx0/SJ+OL7h/42AMYAJgBi/pb79fe88y7vjOoR5u7hRd4p25/YoNYd1QPUPdO90n3SgdLX0pjT4tTY1pvZQt3b4WHnve3A9Cz8qwPjCmwR5RbzGk0dwR08HMgYjxPcDA8Fn/wJ9NDrbORD3qbZxtay1VvWkdgN3HLgW+Vk6izvZvPa9mr5FPvy+zX8IfwE/C/87vx//gsBpwRJCc8O/xSLGxkiSyjGLTcyXzUTN0I39DVJM3UvvCpsJdIfORrhFPsPqAv1B+AEVwJAAH7+7/x9+xz6yviW95z2A/b79bH2U/gC+9D+uAOmCWgQuxdIH68mii12Mxw4NTuWPC08BjpNNkYxSyvBJBcethf6ETANiQkcB+MFvQVxBrUHNwmjCqkLDAygC1EKJgg/BdEBIf5++jj3mvTh8jXyqPIx9K325PmM/UwBzwS9B84JywqWCigJlgYNA8/+Kfpy9f/wHe0L6vTn6+bt5t/nk+nM60buuvDo8pn0qfUD9qn1sPQ783nxou/q7YLskOsp61PrBOwf7Xzu7u9D8U/y7fIK86LyxfGU8ELvCe4s7ejsc+3y7nfx9/RQ+Ub+gwOnCEUN7hBAE+gTrhJ3D0wKXAP2+oPxh+eO3SrU5MsyxXLA372SvXu/asMNyfrPuNfE36Ln3u4Y9Qn6hv2A/wIANP9J/YT6MPeR8+vvc+xT6aTmdOTH4pfh3OCQ4K7gPeFJ4ujjNeZQ6VftY/KB+K7/1QfMEFUaHSTCLds2+z69RcdK103DToRNM0oHRVg+kjYzLr8ltR2KFp0QMAxnCUIIoAhCCtMM7A8iEwsWSRiTGbcZohhfFhMT/g5vCsAFTgFv/Wf6a/iX9+v3Ufma+4j+0AEoBUYI6grnDCEOkg5LDmwNKAy1ClEJMQiEB2gH6gcFCaAKkwysDrEQaxKnEz0UFxQwE5URZw/TDBAKWQfnBOkCgQG9AJgA+QCyAYkCOAN6Aw0DvAFj//b7g/cy8kTsC+br30vaktUa0i3Q+c+T0e3U3tkh4FnnIO8E95z+hQVzCzEQphPUFdkW6hZMFk8VQRRsEwsTRRMqFLAVtxcKGmQcdx74H50gLyCIHpobcBcuEg0MVwVk/on3G/Fm66Lm8+Jn4PXefd7R3rXf6uAx4lLjJuSR5I3kJ+R5463i8+F84XXhAeI04xHliOd36q/t8/AF9Kf2ovjP+Rn6f/kX+A32nPMN8a3ux+yf62XrN+wa7vXwnfTL+C39ZgEeBQAIzQlaCpoJnweYBNIArvyb+A71ePI98ajx6fML+Pn9dwUuDqkXZiHYKnUzvzpLQMlDB0X1Q6JAPDsHNFsrmyEsF3AMwQFr96ntpuR+3ELV986eyTjFx8FTv+i9mL14vp7AGsT1yCjPntYt35jojfKt/IoGuA/HF1ceGSPXJXsmDSW7Ic8csBbXD8oIDgIh/G73RvTc8j7zVvXu+LL9OQMQCb4O0xPuF8YaLxwbHJ4a5xc+FPoPfAsnB1MDSgBC/lX9if3H/uQAqAPQBhYKOA0AEEgS+hMVFaoV2BXIFasVrhX3FaMWvRc/GRMbEh0LH8QgBSKZIlgiJyEAH/MbIhi/EwwPUQrWBd8BoP49/MX6L/pc+hj7Ivwt/ez9GP52/d77QPmk9S3xFOyj5jPhHty911nULNJX0d/RrtOS1kXacN6z4rHmEuqR7P7tRO5r7ZbrAun/5ejiHOD23cXcw9wS3rngoeSb6WLvofX8+xUCmgdDDOAPVhKnE+kTShMFEmMQqw4iDQMMdwuWC2MMzQ2yD+URMhRiFkUYthmfGvsa1hpOGo8Zyxg6GBAYdxiMGVgb0h3bIEQkzyczKykuajC/Mf4xFDEFL+0r/Sd2I6Ye3RloFYsRdA4/DOwKYgpvCs8KMAs5C5YK/Qg2BiICwfwu9qPuc+YF3svVOM67x7DCXL/pvVy+nMBtxHrJWc+U1bHbPuHW5SzpDeti6zfqrucH5I/fotqb1dPQmswuybzGXMUTxdfFjscYylHNFtFJ1dTZqd7E4yXp0u7O9Bj7pAFcCBsPrRXPGzchlSWbKAEqkykwJ9EikhypFG8LVQHh9qLsLOMK27bUj9DUzpzP2NJR2K/ffOgy8kD8FgYxDyEXlB1XIlklrCaAJhsl1yIUIDMdixpjGO8WSRZzFlkX0xiuGqwckx4sIEwh2iHNIS0hFSCqHhodlhtKGlsZ4BjgGFMZIBohGyYc/Rx3HWkduhxfG2EZ3Bb9EwERLA7ECwsKNwltCbwKGw1lEGEUwhgsHUAhnSTwJvQnfSd6JfUhFh0cF1wQNQkLAkD7J/UC8PzrJel058bm4+aK523oRunV6enpaulU6L7m1+Te4iHh8N+c32jgh+IS5gjrS/Gg+LUAJgmEEV0ZRSDeJd0pFCxuLPUqzCcvI2gdzxa7D4AIaAGu+nj02e7V6VzlV+Gm3Szaz9aB00DQGs0ryprHmcVcxBPE6cT4xkrK0s5x1PDaCeJq6bzwpvfd/SEDSQdDChYM4gzdDE0MgAvHCmwKrAqwC4kNLRB3EywX/xqVHpMhoCNyJNQjrCH7HeIYnxKGCwAEe/xo9S3vIeqC5nDk7OPZ5PzmA+qM7S3xf/Qi98j4O/lf+DX22vKD7nbpCOSR3mnZ3tQu0YfOAM2ezFHN/c560ZnUMNgX3C7gYuSq6AjthfEu9g/7MACPBR4LvxBGFnsbHSDkI48m4ieyJ+kliyK3HakXuBBNCeIB+foK9Yjwy+0Q7XLu5vE99yL+JwbKDnoXpx/MJnYsTTAeMtcxjC9zK+IlQh8JGLMQtQl1A0b+Yfrh98f2+vZN+IP6Vv2AAMID5gbECUUMZQ4rEK0RBhNSFKwVJBfBGH0aQxz1HWsfeSD3IMAgvh/rHVIbExhhFH0QtAxVCa4GBAWJBFoFewfVCjQPUBTLGT8fQCRrKGUr7izaLB4rzicXI0EdphapD7MIIgJK/Gb3nfP38GXvve7F7jbvw+8l8B7wg+887kvsyOni5tfj8eB83r3c8ds+3LXdTeDh4zjoAe3h8Xj2ZfpV/Qb/Tf8Z/nX7ifeT8uLs0ubE4BLbDtb30fnOKM2CzO/MR85X0OTSt9We2HLbGt6P4NbiBOU054fpG+wK71/yGfYi+ln+iAJ0BtkJdAwMDnQOlA1pCw4ItAOl/jv52/Py7uTqCein5ubm0+hZ7EnxV/ck/kMFSQzLEnEY9BwsIAsipSInItUgAx8OHVEbHRqzGTwaxRtAHoIhSCVAKQgtQDCMMp0zOzNFMbctpihFItkatxI+CswBu/lX8tvrcOYo4gHf69zG22zbs9t13JXd/N6j4Iviv+RQ51Pq1e3e8Wr2Y/ulAP0FKQveD80TrBY7GEkYvhaaE/oOGQlJAvD6gfNz7DnmOeHA3QPcEdzc3S/hvOUb69fwdPZ8+4f/QQJ7AyADQgET/uT5GvUq8JDrwOch5QXkpOQU503rKvFo+LQArAnoEgUcpSR9LFMzADlzPa5AvkK+Q8pDAUN7QUo/dTz8ONc0+i9WKuYjqBysFA8M/wK++Zjw4+f+3z/Z99Nk0K7O4s7x0KvUx9nm35jmZO3T83j59/0MAZUCjAIKAUr+mfpZ9vPxze1J6rLnQeYQ5iHnVul+7FTwh/TF+ML8OgACA/4ELgaoBpcGMwbABYAFsgWGBhwIfAqXDUYRURVtGUkdkyD+IkwkUyQBI1wghxy6F0MSegy9BmkB0vw4+cr2nvWx9ej2Fvn++1n/4AJSBnUJHww4DrsPsxA5EXARgRGQEb0RGxKvEm0TOxTvFFgVQBV0FMkSJBB7DNwHbAJn/Bj22+8Q6hXlP+HS3vjdwN4Y4dLko+kp7/T0jfp//2MD5wXRBgkGlgOi/3H6XvTV7UbnHuG+23PXcdTP0oXScNNU1eXXy9qs3TPgG+Iv41PjhOLV4HHektuA2ITV5tLl0LPPb88l0M/RWNSa12vbm9//43Po3ewy8XL1q/n1/WoCJgdBDMQRrhfqHVMksyrHMEM22Do9PjRAkkBBP0k8zDcIMlErDySyHK0Vag9ECn8GQASNA0oEPAYOCVYMow+AEoAUTBWkFGUSkA5JCdIChvvS8y7sFOXy3iba9daH1ebV/dea23bgOeaE7PbyNvn3/v8DLAhtC8cNUQ8tEIYQiBBaEB0Q5w/AD6cPjw9nDxgPkQ7IDboMdgsVCr8IqAcHBxYHCggLCi8NeBHOFv0cvSOtKmExYzc/PI0/9kA9QEY9FzjbMNsngR1KEsAGc/vn8JXn3t8E2irWUNRY1AnWFtkk3dbh0ubI63zwxfST+On73v6VAT4EBAcOCnYNRRFzFeEZXR6pInomgyl9KygsWiv8KBEltx8kGaIRjQlGATT5sfEP64rlSeFX3qrcH9yD3JjdGd/E4F/ivePD5GfltOXE5b3lzeUj5ujmPOgv6sDs3O9d8xD3t/oS/uIA9AIgBFUElQP8Abj/Cf07+p73gPUi9LbzVfT/9Zj46Puk/24D4gaaCToLdwsgCiEHhQJ9/FL1aO015Tnd79XKzyvLVshxx4HIZ8vqz7PVXtx645XqSPE39x38zf8zAlcDVANYApsAXP7X+0H5xvaB9IDywvA679Ptd+wP643p7Ocy5nbk2OKD4angeeAg4cDiauUc6cHtLvMl+Vr/dgUnCxkQCRTGFjgYZBhnF3wV8xIrEIsNegtUCmIK1wvFDiATuxhKH28mty2qNNU6zj9CQ/lE2kTwQmQ/fjqdNC0uoiduIfQbhhdcFJISJRL3EtIUbBdzGpAdbiDGImEkGyXnJMwj5SFcH2IcLRnyFd0SDhCZDYMLwwlFCPAGpwVSBN4CRAGL/8b9Ffyk+qH5Pfmf+eX6Gv00ABQEgwg0DcsR4hUSGfkaRhu8GTsWxRB9CakAqvb66yHhrdYpzRDFyL6Yuqa487hfu6i/dMVZzOHTmdsW4/3pDPAX9Q75+/v7/T3/+P9kALcAFwGfAVUCLQMLBMMEJAX5BBEERwKH/8z7K/fN8fDr3OXn32farNX70YnPdM7Bzl3QINPN1h3bv99o5M/ovewM8KvynvT/9fb2uveG+JP5Ffsv/ff/awN4B/gLthByFeoZ4B0fIYMj+SSFJUMlXyQWI64hcCCfH3MfESCFIcUjqib3KV0tfjD7Mnc0ojRBMzQweSstJY0d8BTDC34CnvmW8c/ql+Ug4n7goOBV4lTlPemh7RDyHfZp+aj7pfxK/Jr6svfG8xjv9+mv5I7f09qz1lHTvdD8zgHOuc0MzuHOJdDM0dTTRtYx2azcz+Ct5VXrw/Hn+JwAqwjKEKEY0B/0JbAqty3MLs8twCq8JQMf8Bb2DZQEVPu38jbrMuXw4JTeIN5y30ziVuYo61TwbPUQ+vP93QC8ApUDiwPcAtUBzgAiACQAGQEwA34G/gqPEPkW7h0WJRIshTIeOJk8yT+VQf5BGUEPPxQ8ZjhDNOMveCskJ/4iCh9EG5sX+RNKEH0MiQhyBEsAM/xS+N30CfIK8ArvJO9i8Lby+vXx+U3+rQKtBucJ/QuiDKIL5QhzBHb+NfcR73/mAN4S1i3PuMn/xS/EVsRcxgzKFc8T1ZbbLOJs6Pvtk/IL9lX4gPm0+S35NPga9yz2rfXU9cH2f/gD+y/+0gG1BZgJQQ19ECYTKRWDFkYXkxeVF4AXhxfXF5MYyxl+G5kd8x9VIn8kKiYSJ/wmvCU7I3YfhhqYFO8N3Aa4/974ofJJ7QvpBuY+5KPjDeRE5QXnC+kT6+LsUe5I78jv5e/G75/vre8t8FXxTvMw9vn5j/7DA04J3A4NFIEY4hvnHV4eMB1kGiIWqxBYCpUD1PyF9g/xx+zp6ZLowehS6gftjPB89Gn46/uh/j0AiQBr/+T8Evks9HruVOgU4hTcpdYL0nfOBszCyqbKmst/zTLQjtN018vbg+CZ5Qzr5PAo99z9+gRyDCQU3xtiI18qfzBpNcU4STq9OQI3FTIVK0Ii+RewDPAAT/Vb6p7gjdiA0q/OK83fzZTQ89SO2ufgf+fZ7YrzO/iz+9j9sf5h/ib9Tvsy+S33k/Wp9KH0k/WA91D61f3RAf8FFArMDewQSxPQFHsVXBWWFFoT3hFcEAgPEA6QDZgNJg4pD4UQFBKwEzIVfRZ/FzUYqxj9GFIZ2hnIGkscih6cIYMlLSpxLw81tjoKQKpEN0heSt9KlElzRpNBKDuFMxErRCKZGYsRhQrgBNgAif7r/dr+DwEyBNgHkQvvDpIRKhOEE4cSOBC5DEIIHQOf/R/47PJO7nTqfedt5TPkquOe49TjDeQP5KvjwuJG4T7fwtz52RfXVNTn0QDQxc5KzpDOiM8R0fvSENUX19jYKNrr2hTbsNrc2cnYt9fs1rHWSdfr2Lrbw9/75D3rS/LW+YAB6gizD4UVHBpJHfkeNB8ZHuAb0hhBFYIR4w2oCv8HBAa2BAAEuAOlA4MDEAMOAk8Auf1F+gv2OvEW7PTmNOIz3kzbxtnV2Y/b7N7E49XpwfAa+Gr/OAYVDKIQmBPLFC4U1RHtDbwImQLp+wz1ZO5D6O7ild5S2y7ZHtgN2NnYYdqE3CffOOKs5Ybpy+2J8sr3k/3hA6YKwBEAGSYg5ybxLPExmDWnN/A3YDb+MvQthicUIBEY/g9fCLMBavzY+DX3lvfr+fz9dQPmCdAQqRfsHSIj6Sb9KDspoydaJKEf1RlhE7oMUwaVANn7W/hE9pz1U/ZB+C370/7oAioHWQtHD9MS7RWXGN4a2hymHlsgDyLLI44lRyfbKCIq8SoXK2wqzygrJoEi4R1zGG0SEgyxBZf/DfpR9Y/x3O437YPsj+wY7c7tWu5t7sDtHuxu6a/lAOGa28/VAtCiyh7G28IxwV7BgcOax4nNC9XH3U7nJ/HY+u0DBAzREiIY5RsjHgEfvB6bHfEbDho6GLAWlBX4FNUUDxV7FeAVAhanFZ0UvxL7D1MM3gfEAj/9jPfz8bTsCugf5A7h3t6D3eDczdwX3Y3dAN5M3lreJt6+3ULd3tzN3Ejdid7A4A3ke+j+7XP0nfssA8QKABJ7GNkdzyEpJM4kwSMkITMdQBirEtwMOgchAt79pPqN+Jr3r/ea+Bv65fur/Sb/GwBlAPX/0P4Y/f/6yfi/9iz1UfRi9H71qvfR+sP+OQPeB0wMHhD2EoEUghTVEnYPewoaBJ/8ZvTc62zjf9ty1JHOEcoQx5XFk8XnxmbJ3cwW0eDVFNuT4EvmNexS8qj4Pv8VBikNaBSwG9QimCm4L+s06jh1O1w8hTvuOLE0Bi8+KMIgCBmREdkKUgVbATb/Af+6ADkEMwlAD+QVlRzLIgQo0iviLQIuIyxdKOkiGxxhFDMMDgRp/Kz1KfAa7JnppOgf6dfqiO3l8J70afgG/EL//QEqBMgF5gacBwYIPQhYCGMIYAhFCP8HcweDBhMFDANiABr9R/kO9aXwUOxZ6AzlsOKD4azhP+My5mPqk+9u9Yz7fwHXBisLIg58DxYP\" type=\"audio/wav\" />\n",
" Your browser does not support the audio element.\n",
" </audio>\n",
" "
],
"text/plain": [
"<IPython.lib.display.Audio object>"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"all_freqs_added = np.sum(np.array([100*np.sin(f*2*np.pi*tsig) for f in frequencies]), axis=0)\n",
"Audio(data=all_freqs_added, rate=r)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}