forked from rcc02007/ME3255F2017
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
10 changed files
with
372 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,186 @@ | ||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> | ||
<html xmlns="http://www.w3.org/1999/xhtml"> | ||
<head> | ||
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> | ||
<meta http-equiv="Content-Style-Type" content="text/css" /> | ||
<meta name="generator" content="pandoc" /> | ||
<title></title> | ||
<style type="text/css">code{white-space: pre;}</style> | ||
<style type="text/css"> | ||
div.sourceCode { overflow-x: auto; } | ||
table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode { | ||
margin: 0; padding: 0; vertical-align: baseline; border: none; } | ||
table.sourceCode { width: 100%; line-height: 100%; } | ||
td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; } | ||
td.sourceCode { padding-left: 5px; } | ||
code > span.kw { color: #007020; font-weight: bold; } /* Keyword */ | ||
code > span.dt { color: #902000; } /* DataType */ | ||
code > span.dv { color: #40a070; } /* DecVal */ | ||
code > span.bn { color: #40a070; } /* BaseN */ | ||
code > span.fl { color: #40a070; } /* Float */ | ||
code > span.ch { color: #4070a0; } /* Char */ | ||
code > span.st { color: #4070a0; } /* String */ | ||
code > span.co { color: #60a0b0; font-style: italic; } /* Comment */ | ||
code > span.ot { color: #007020; } /* Other */ | ||
code > span.al { color: #ff0000; font-weight: bold; } /* Alert */ | ||
code > span.fu { color: #06287e; } /* Function */ | ||
code > span.er { color: #ff0000; font-weight: bold; } /* Error */ | ||
code > span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */ | ||
code > span.cn { color: #880000; } /* Constant */ | ||
code > span.sc { color: #4070a0; } /* SpecialChar */ | ||
code > span.vs { color: #4070a0; } /* VerbatimString */ | ||
code > span.ss { color: #bb6688; } /* SpecialString */ | ||
code > span.im { } /* Import */ | ||
code > span.va { color: #19177c; } /* Variable */ | ||
code > span.cf { color: #007020; font-weight: bold; } /* ControlFlow */ | ||
code > span.op { color: #666666; } /* Operator */ | ||
code > span.bu { } /* BuiltIn */ | ||
code > span.ex { } /* Extension */ | ||
code > span.pp { color: #bc7a00; } /* Preprocessor */ | ||
code > span.at { color: #7d9029; } /* Attribute */ | ||
code > span.do { color: #ba2121; font-style: italic; } /* Documentation */ | ||
code > span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */ | ||
code > span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */ | ||
code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */ | ||
</style> | ||
<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> | ||
</head> | ||
<body> | ||
<h1 id="homework-5">Homework #5</h1> | ||
<h2 id="due-414-by-1159pm">due 4/14 by 11:59pm</h2> | ||
<p><strong>1.</strong> Create a new github repository called ‘05_curve_fitting’.</p> | ||
<ol style="list-style-type: lower-alpha"> | ||
<li><p>Add rcc02007 and zhs15101 as collaborators.</p></li> | ||
<li><p>Clone the repository to your computer.</p></li> | ||
</ol> | ||
<p><strong>2.</strong> Create a least-squares function called <code>least_squares.m</code> that accepts a Z-matrix and dependent variable y as input and returns the vector of best-fit constants, a, the best-fit function evaluated at each point <span class="math inline">\(f(x_{i})\)</span>, and the coefficient of determination, r2.</p> | ||
<div class="sourceCode"><pre class="sourceCode matlab"><code class="sourceCode matlab">[a,fx,r2]=least_squares(Z,y);</code></pre></div> | ||
<p>Test your function on the sets of data in script <code>problem_2_data.m</code> and show that the following functions are the best fit lines. Report the coefficient of determination in your README.</p> | ||
<ol style="list-style-type: lower-alpha"> | ||
<li><p>y=0.3745+0.98644x+0.84564/x</p></li> | ||
<li><p>y= 22.47-1.36x+0.28x^2</p></li> | ||
<li><p>y=4.0046e<sup>(-1.5x)+2.9213e</sup>(-0.3x)+1.5647e^(-0.05x)</p></li> | ||
<li><p>y=0.99sin(t)+0.5sin(3t)</p></li> | ||
</ol> | ||
<p><strong>3.</strong> Load the data from the <a href="https://github.com/cooperrc/stats_and_linear_regression/blob/master/compiled_data.csv">class dart experiment</a>. Show your work in a script with filename <code>dart_statistics.m</code> in your repository.</p> | ||
<ol style="list-style-type: lower-alpha"> | ||
<li><p>Which user (0-32) was the most accurate dart thrower e.g. mean(x)+mean(y) was closest to 0 cm?</p></li> | ||
<li><p>Which user (0-32) was the most precise dart thrower e.g. std(x)+std(y) was closest to 0 cm?</p></li> | ||
</ol> | ||
<p><strong>4.</strong> 100 steel rods are going to be used to support a 1000 kg structure. The rods will buckle when the load in any rod exceeds the <a href="https://en.wikipedia.org/wiki/Euler%27s_critical_load">critical buckling load</a></p> | ||
<p><span class="math inline">\(P_{cr}=\frac{\pi^3 Er^4}{16L^2}\)</span> <img src="./equations/buckle.png" alt="buckle" /></p> | ||
<p>where E=200e9 Pa, r=0.01 m +/-0.001 m, and L is the length of the rod which can only be controlled to 1% tolerance. Create a Monte Carlo model <code>buckle_monte_carlo.m</code> that predicts the mean and standard deviation of the buckling load for 100 samples with normally distributed dimensions r and L.</p> | ||
<p><code>[mean_buckle_load,std_buckle_load]=buckle_monte_carlo(E,r_mean,r_std,L_mean,L_std)</code></p> | ||
<ol style="list-style-type: lower-alpha"> | ||
<li><p>What is the mean_buckle_load and std_buckle_load for L=5 m?</p></li> | ||
<li><p>What length, L, should the beams be so that only 2.5% will reach the critical buckling load?</p></li> | ||
</ol> | ||
<p><strong>5.</strong> The drag coefficient for spheres such as sporting balls is known to vary as a function of the Reynolds number Re, a dimensionless number that gives a measure of the ratio of inertial forces to viscous forces:</p> | ||
<p><span class="math inline">\(Re = \frac{\rho V D}{\mu}\)</span> <img src="./equations/reynolds.png" alt="Reynolds" /></p> | ||
<p>where ρ= the fluid’s density (kg/m3), V= its velocity (m/s), D= diameter (m), and μ= dynamic viscosity (N⋅s/m2). The following table provides values for a smooth spherical ball:</p> | ||
<table> | ||
<thead> | ||
<tr class="header"> | ||
<th align="left">Re (x1e-4)</th> | ||
<th align="left">C_D</th> | ||
</tr> | ||
</thead> | ||
<tbody> | ||
<tr class="odd"> | ||
<td align="left">2</td> | ||
<td align="left">0.52</td> | ||
</tr> | ||
<tr class="even"> | ||
<td align="left">5.8</td> | ||
<td align="left">0.52</td> | ||
</tr> | ||
<tr class="odd"> | ||
<td align="left">16.8</td> | ||
<td align="left">0.52</td> | ||
</tr> | ||
<tr class="even"> | ||
<td align="left">27.2</td> | ||
<td align="left">0.5</td> | ||
</tr> | ||
<tr class="odd"> | ||
<td align="left">29.9</td> | ||
<td align="left">0.49</td> | ||
</tr> | ||
<tr class="even"> | ||
<td align="left">33.9</td> | ||
<td align="left">0.44</td> | ||
</tr> | ||
<tr class="odd"> | ||
<td align="left">36.3</td> | ||
<td align="left">0.18</td> | ||
</tr> | ||
<tr class="even"> | ||
<td align="left">40</td> | ||
<td align="left">0.074</td> | ||
</tr> | ||
<tr class="odd"> | ||
<td align="left">46</td> | ||
<td align="left">0.067</td> | ||
</tr> | ||
<tr class="even"> | ||
<td align="left">60</td> | ||
<td align="left">0.08</td> | ||
</tr> | ||
<tr class="odd"> | ||
<td align="left">100</td> | ||
<td align="left">0.12</td> | ||
</tr> | ||
<tr class="even"> | ||
<td align="left">200</td> | ||
<td align="left">0.16</td> | ||
</tr> | ||
<tr class="odd"> | ||
<td align="left">400</td> | ||
<td align="left">0.19</td> | ||
</tr> | ||
</tbody> | ||
</table> | ||
<ol style="list-style-type: lower-alpha"> | ||
<li>Create a function <code>sphere_drag.m</code> that outputs the drag coefficient based on the given table and an input Reynolds number using a spline interpolation of either linear (‘linear’), piecewise cubic (‘pchip’), or cubic (‘cubic’):</li> | ||
</ol> | ||
<p><code>[Cd_out]=sphere_drag(Re_in,spline_type)</code></p> | ||
<ol start="2" style="list-style-type: lower-alpha"> | ||
<li>Use the following physical constants to plot the drag force vs velocity for a baseball: ρ= 1.3 kg/m3, V= 4 - 40 (m/s), D= 23.5 cm, and μ=1.78e-5 Pa-s. Plot all three interpolation methods on a single plot. Show the plot in your README.</li> | ||
</ol> | ||
<p><strong>6.</strong> Evaluate the integral of the following function:</p> | ||
<p><span class="math inline">\(\int_{2}^{3}f(x) = \int_{2}^{3} 1/6x^3 + 1/2x^2+x dx\)</span></p> | ||
<ol style="list-style-type: lower-alpha"> | ||
<li><p>analytically</p></li> | ||
<li><p>with 1-point Gauss quadrature</p></li> | ||
<li><p>with 2-point Gauss quadrature</p></li> | ||
<li><p>with 3-point Gauss quadrature</p></li> | ||
<li><p>include the results in a table in your README</p></li> | ||
</ol> | ||
<table> | ||
<thead> | ||
<tr class="header"> | ||
<th align="left">method</th> | ||
<th align="left">value</th> | ||
<th align="left">error</th> | ||
</tr> | ||
</thead> | ||
<tbody> | ||
<tr class="odd"> | ||
<td align="left">analytical</td> | ||
<td align="left">…</td> | ||
<td align="left">0%</td> | ||
</tr> | ||
<tr class="even"> | ||
<td align="left">1 Gauss point</td> | ||
<td align="left">…</td> | ||
<td align="left">..%</td> | ||
</tr> | ||
<tr class="odd"> | ||
<td align="left">…</td> | ||
<td align="left">…</td> | ||
<td align="left">…</td> | ||
</tr> | ||
</tbody> | ||
</table> | ||
</body> | ||
</html> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
# Homework #5 | ||
## due 11/17 by 11:59pm | ||
|
||
|
||
### Problem 1 due 11/9 | ||
|
||
**1\.** Create a new github repository called '05_curve_fitting'. | ||
|
||
a. Add rcc02007 and zhs15101 as collaborators. | ||
|
||
b. Clone the repository to your computer. | ||
|
||
|
||
**2\.** Create a least-squares function called `least_squares.m` that accepts a Z-matrix and | ||
dependent variable y as input and returns the vector of best-fit constants, a, the | ||
best-fit function evaluated at each point $f(x_{i})$, and the coefficient of | ||
determination, r2. | ||
|
||
```matlab | ||
[a,fx,r2]=least_squares(Z,y); | ||
``` | ||
|
||
Test your function on the sets of data in script `problem_2_data.m` and show that the | ||
following functions are the best fit lines. Report the coefficient of determination in your README. | ||
|
||
a. y=0.3745+0.98644x+0.84564/x | ||
|
||
b. y= 22.47-1.36x+0.28x^2 | ||
|
||
c. y=4.0046e^(-1.5x)+2.9213e^(-0.3x)+1.5647e^(-0.05x) | ||
|
||
d. y=0.99sin(t)+0.5sin(3t) | ||
|
||
**3\.** Load the data from the [class dart | ||
experiment](https://github.com/cooperrc/stats_and_linear_regression/blob/master/compiled_data.csv). | ||
Show your work in a script with filename `dart_statistics.m` in your repository. | ||
|
||
a. Which user (0-32) was the most accurate dart thrower e.g. mean(x)+mean(y) was closest to 0 cm? | ||
|
||
b. Which user (0-32) was the most precise dart thrower e.g. std(x)+std(y) was closest to 0 cm? | ||
|
||
**4\.** 100 steel rods are going to be used to support a 1000 kg structure. The | ||
rods will buckle when the load in any rod exceeds the [critical buckling | ||
load](https://en.wikipedia.org/wiki/Euler%27s_critical_load) | ||
|
||
$P_{cr}=\frac{\pi^3 Er^4}{16L^2}$ | ||
 | ||
|
||
where E=200e9 Pa, r=0.01 m +/-0.001 m, and L is the length of the rod which can only be | ||
controlled to 1% tolerance. Create a Monte | ||
Carlo model `buckle_monte_carlo.m` that predicts the mean and standard deviation of the buckling load for 100 | ||
samples with normally distributed dimensions r and L. | ||
|
||
`[mean_buckle_load,std_buckle_load]=buckle_monte_carlo(E,r_mean,r_std,L_mean,L_std)` | ||
|
||
a. What is the mean_buckle_load and std_buckle_load for L=5 m? | ||
|
||
b. What length, L, should the beams be so that only 2.5% will reach the critical buckling | ||
load? | ||
|
||
**5\.** The drag coefficient for spheres such as sporting balls is known to vary as a | ||
function of the Reynolds number Re, a dimensionless number that gives a measure of the | ||
ratio of inertial forces to viscous forces: | ||
|
||
$Re = \frac{\rho V D}{\mu}$ | ||
 | ||
|
||
where ρ= the fluid’s density (kg/m3), V= its velocity (m/s), D= diameter (m), and μ= | ||
dynamic viscosity (N⋅s/m2). The | ||
following table provides values for a smooth spherical ball: | ||
|
||
|Re (x1e-4) | C_D | | ||
|---|---| | ||
|2 | 0.52| | ||
|5.8| 0.52| | ||
|16.8| 0.52 | | ||
|27.2|0.5| | ||
|29.9|0.49 | | ||
|33.9|0.44| | ||
|36.3 | 0.18| | ||
|40| 0.074 | | ||
|46|0.067 | | ||
|60|0.08 | | ||
|100| 0.12| | ||
|200| 0.16| | ||
|400| 0.19| | ||
|
||
a. Create a function `sphere_drag.m` that outputs the drag coefficient based on the given | ||
table and an input Reynolds number using a spline interpolation of either linear | ||
('linear'), | ||
piecewise cubic ('pchip'), or cubic ('cubic'): | ||
|
||
`[Cd_out]=sphere_drag(Re_in,spline_type)` | ||
|
||
b. Use the following physical constants to plot the drag force vs velocity for a baseball: | ||
ρ= 1.3 kg/m3, V= 4 - 40 (m/s), D= 23.5 cm, and μ=1.78e-5 Pa-s. Plot all three | ||
interpolation methods on a single plot. Show the plot in your README. | ||
|
||
**6\.** Evaluate the integral of the following function: | ||
|
||
$\int_{2}^{3}f(x) = \int_{2}^{3} 1/6x^3 + 1/2x^2+x dx$ | ||
|
||
a. analytically | ||
|
||
b. with 1-point Gauss quadrature | ||
|
||
c. with 2-point Gauss quadrature | ||
|
||
d. with 3-point Gauss quadrature | ||
|
||
e. include the results in a table in your README | ||
|
||
|method|value|error| | ||
|---|---|---| | ||
|analytical| ... | 0%| | ||
|1 Gauss point | ... | ..% | | ||
|... | ... | ... | | ||
|
||
|
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
P_{cr}=\frac{\pi^2 EI}{4L^2} | ||
|
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
\int_{2}^{3}f(x) = \int_{2}^{3} 1/6x^3 + 1/2x^2+x dx | ||
|
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
Re = \frac{\rho V D}{\mu} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
|
||
% part a | ||
xa=[1 2 3 4 5]'; | ||
ya=[2.2 2.8 3.6 4.5 5.5]'; | ||
|
||
% part b | ||
|
||
xb=[0 2 4 6 8 10 12 14 16 18]' | ||
yb=[21.5 20.84 23.19 22.69 30.27 40.11 43.31 54.79 70.88 89.48]'; | ||
|
||
% part c | ||
|
||
xc=[0.5 1 2 3 4 5 6 7 9]'; | ||
yc=[6 4.4 3.2 2.7 2.2 1.9 1.7 1.4 1.1]'; | ||
|
||
% part d | ||
|
||
xd=[0.00000000e+00 1.26933037e-01 2.53866073e-01 3.80799110e-01 5.07732146e-01 6.34665183e-01 7.61598219e-01 8.88531256e-01 1.01546429e+00 1.14239733e+00 1.26933037e+00 1.39626340e+00 1.52319644e+00 1.65012947e+00 1.77706251e+00 1.90399555e+00 2.03092858e+00 2.15786162e+00 2.28479466e+00 2.41172769e+00 2.53866073e+00 2.66559377e+00 2.79252680e+00 2.91945984e+00 3.04639288e+00 3.17332591e+00 3.30025895e+00 3.42719199e+00 3.55412502e+00 3.68105806e+00 3.80799110e+00 3.93492413e+00 4.06185717e+00 4.18879020e+00 4.31572324e+00 4.44265628e+00 4.56958931e+00 4.69652235e+00 4.82345539e+00 4.95038842e+00 5.07732146e+00 5.20425450e+00 5.33118753e+00 5.45812057e+00 5.58505361e+00 5.71198664e+00 5.83891968e+00 5.96585272e+00 6.09278575e+00 6.21971879e+00 6.34665183e+00 6.47358486e+00 6.60051790e+00 6.72745093e+00 6.85438397e+00 6.98131701e+00 7.10825004e+00 7.23518308e+00 7.36211612e+00 7.48904915e+00 7.61598219e+00 7.74291523e+00 7.86984826e+00 7.99678130e+00 8.12371434e+00 8.25064737e+00 8.37758041e+00 8.50451345e+00 8.63144648e+00 8.75837952e+00 8.88531256e+00 9.01224559e+00 9.13917863e+00 9.26611167e+00 9.39304470e+00 9.51997774e+00 9.64691077e+00 9.77384381e+00 9.90077685e+00 1.00277099e+01 1.01546429e+01 1.02815760e+01 1.04085090e+01 1.05354420e+01 1.06623751e+01 1.07893081e+01 1.09162411e+01 1.10431742e+01 1.11701072e+01 1.12970402e+01 1.14239733e+01 1.15509063e+01 1.16778394e+01 1.18047724e+01 1.19317054e+01 1.20586385e+01 1.21855715e+01 1.23125045e+01 1.24394376e+01 1.25663706e+01]'; | ||
yd=[9.15756288e-02 3.39393873e-01 6.28875306e-01 7.67713096e-01 1.05094584e+00 9.70887288e-01 9.84265740e-01 1.02589034e+00 8.53218113e-01 6.90197665e-01 5.51277193e-01 5.01564914e-01 5.25455797e-01 5.87052838e-01 5.41394658e-01 7.12365594e-01 8.14839678e-01 9.80181855e-01 9.44430709e-01 1.06728057e+00 1.15166322e+00 8.99464065e-01 7.77225453e-01 5.92618124e-01 3.08822183e-01 -1.07884730e-03 -3.46563271e-01 -5.64836023e-01 -8.11931510e-01 -1.05925186e+00 -1.13323611e+00 -1.11986890e+00 -8.88336727e-01 -9.54113139e-01 -6.81378679e-01 -6.02369117e-01 -4.78684439e-01 -5.88160325e-01 -4.93580777e-01 -5.68747320e-01 -7.51641934e-01 -8.14672884e-01 -9.53191554e-01 -9.55337518e-01 -9.85995556e-01 -9.63373597e-01 -1.01511061e+00 -7.56467517e-01 -4.17379564e-01 -1.22340361e-01 2.16273929e-01 5.16909714e-01 7.77031694e-01 1.00653798e+00 9.35718089e-01 1.00660116e+00 1.11177057e+00 9.85485116e-01 8.54344900e-01 6.26444042e-01 6.28124048e-01 4.27764254e-01 5.93991751e-01 4.79248018e-01 7.17522492e-01 7.35927848e-01 9.08802925e-01 9.38646871e-01 1.13125860e+00 1.07247935e+00 1.05198782e+00 9.41647332e-01 6.98801244e-01 4.03193543e-01 1.37009682e-01 -1.43203880e-01 -4.64369445e-01 -6.94978252e-01 -1.03483196e+00 -1.10261288e+00 -1.12892727e+00 -1.03902484e+00 -8.53573083e-01 -7.01815315e-01 -6.84745997e-01 -6.14189417e-01 -4.70090797e-01 -5.95052432e-01 -5.96497000e-01 -5.66861911e-01 -7.18239679e-01 -9.52873043e-01 -9.37512847e-01 -1.15782985e+00 -1.03858206e+00 -1.03182712e+00 -8.45121554e-01 -5.61821980e-01 -2.83427014e-01 -8.27056140e-02]'; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters