Skip to content

pull #8

Merged
merged 10 commits into from
Apr 14, 2017
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
added lecture 19
rcc02007 committed Apr 4, 2017
commit 545ef3262fa6e61236b8aaa3d5394f9cebd3985e
Binary file modified lecture_17/octave-workspace
Binary file not shown.
67 changes: 34 additions & 33 deletions lecture_18/Newtint.m
Original file line number Diff line number Diff line change
@@ -1,33 +1,34 @@
function yint = Newtint_bak(x,y,xx)
% Newtint: Newton interpolating polynomial
% yint = Newtint(x,y,xx): Uses an (n - 1)-order Newton
% interpolating polynomial based on n data points (x, y)
% to determine a value of the dependent variable (yint)
% at a given value of the independent variable, xx.
% input:
% x = independent variable
% y = dependent variable
% xx = value of independent variable at which
% interpolation is calculated
% output:
% yint = interpolated value of dependent variable

% compute the finite divided differences in the form of a
% difference table
n = length(x);
if length(y)~=n, error('x and y must be same length'); end
b = zeros(n,n);
% assign dependent variables to the first column of b.
b(:,1) = y(:); % the (:) ensures that y is a column vector.
for j = 2:n
for i = 1:n-j+1
b(i,j) = (b(i+1,j-1)-b(i,j-1))/(x(i+j-1)-x(i));
end
end
% use the finite divided differences to interpolate
xt = 1;
yint = b(1,1);
for j = 1:n-1
xt = xt*(xx-x(j));
yint = yint+b(1,j+1)*xt;
end
function yint = Newtint(x,y,xx)
% Newtint: Newton interpolating polynomial
% yint = Newtint(x,y,xx): Uses an (n - 1)-order Newton
% interpolating polynomial based on n data points (x, y)
% to determine a value of the dependent variable (yint)
% at a given value of the independent variable, xx.
% input:
% x = independent variable
% y = dependent variable
% xx = value of independent variable at which
% interpolation is calculated
% output:
% yint = interpolated value of dependent variable

% compute the finite divided differences in the form of a
% difference table
n = length(x);
if length(y)~=n, error('x and y must be same length'); end
b = zeros(n,n);
% assign dependent variables to the first column of b.
b(:,1) = y(:); % the (:) ensures that y is a column vector.
for j = 2:n
for i = 1:n-j+1
b(i,j) = (b(i+1,j-1)-b(i,j-1))/(x(i+j-1)-x(i));
end
end
%b
% use the finite divided differences to interpolate
xt = 1;
yint = b(1,1);
for j = 1:n-1
xt = xt*(xx-x(j));
yint = yint+b(1,j+1)*xt;
end
631 changes: 471 additions & 160 deletions lecture_18/lecture_18.ipynb

Large diffs are not rendered by default.

Binary file added lecture_18/octave-workspace
Binary file not shown.
497 changes: 497 additions & 0 deletions lecture_19/.ipynb_checkpoints/lecture 19-checkpoint.ipynb

Large diffs are not rendered by default.

34 changes: 34 additions & 0 deletions lecture_19/Newtint.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
function yint = Newtint(x,y,xx)
% Newtint: Newton interpolating polynomial
% yint = Newtint(x,y,xx): Uses an (n - 1)-order Newton
% interpolating polynomial based on n data points (x, y)
% to determine a value of the dependent variable (yint)
% at a given value of the independent variable, xx.
% input:
% x = independent variable
% y = dependent variable
% xx = value of independent variable at which
% interpolation is calculated
% output:
% yint = interpolated value of dependent variable

% compute the finite divided differences in the form of a
% difference table
n = length(x);
if length(y)~=n, error('x and y must be same length'); end
b = zeros(n,n);
% assign dependent variables to the first column of b.
b(:,1) = y(:); % the (:) ensures that y is a column vector.
for j = 2:n
for i = 1:n-j+1
b(i,j) = (b(i+1,j-1)-b(i,j-1))/(x(i+j-1)-x(i));
end
end
%b
% use the finite divided differences to interpolate
xt = 1;
yint = b(1,1);
for j = 1:n-1
xt = xt*(xx-x(j));
yint = yint+b(1,j+1)*xt;
end
Loading