Skip to content

Add files via upload #3

Merged
merged 1 commit into from
Feb 22, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 72 additions & 0 deletions HPC_Cluster_Test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 29 16:22:11 2020
@author: jaych
"""
#%%
#print("test")
import time
start = time.time()
import tensorflow as tf
#assert tf.__version__ >= "2.0"

# Common imports
import numpy as np
import os
#import numpy as np
from numpy import loadtxt
from keras.models import Sequential
from keras.layers import Dense

# to make this notebook's output stable across runs
np.random.seed(42)

# To plot pretty figures
#%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
# mpl.rc('axes', labelsize=14)
# mpl.rc('xtick', labelsize=12)
# mpl.rc('ytick', labelsize=12)


#%%

dataset = loadtxt('pima-indians-diabetes.csv.txt', delimiter=',')
print(dataset.shape)
X = dataset[:,0:8]
y = dataset[:,8]

#%%
# define the keras model
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
#%%
model.fit(X, y, epochs=1000, batch_size=10)
#evaluate the keras model
_, accuracy = model.evaluate(X, y)
print('Accuracy: %.2f' % (accuracy*100))


model1 = Sequential()
model1.add(Dense(12, input_dim=8, activation='relu'))
model1.add(Dense(8, activation='relu'))
model1.add(Dense(1, activation='sigmoid'))

model1.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
#%%
model1.fit(X, y, epochs=3000, batch_size=10)
#evaluate the keras model
_, accuracy = model.evaluate(X, y)
print('Accuracy: %.2f' % (accuracy*100))



#%%
end = time.time()
print(f"Runtime of the program is {end - start}")
72 changes: 72 additions & 0 deletions HPC_Cluster_Test_long_runtime.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 29 16:22:11 2020
@author: jaych
"""
#%%
#print("test")
import time
start = time.time()
import tensorflow as tf
#assert tf.__version__ >= "2.0"

# Common imports
import numpy as np
import os
#import numpy as np
from numpy import loadtxt
from keras.models import Sequential
from keras.layers import Dense

# to make this notebook's output stable across runs
np.random.seed(42)

# To plot pretty figures
#%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
# mpl.rc('axes', labelsize=14)
# mpl.rc('xtick', labelsize=12)
# mpl.rc('ytick', labelsize=12)


#%%

dataset = loadtxt('pima-indians-diabetes.csv.txt', delimiter=',')
print(dataset.shape)
X = dataset[:,0:8]
y = dataset[:,8]

#%%
# define the keras model
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
#%%
model.fit(X, y, epochs=1000, batch_size=10)
#evaluate the keras model
_, accuracy = model.evaluate(X, y)
print('Accuracy: %.2f' % (accuracy*100))


model1 = Sequential()
model1.add(Dense(12, input_dim=8, activation='relu'))
model1.add(Dense(8, activation='relu'))
model1.add(Dense(1, activation='sigmoid'))

model1.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
#%%
model1.fit(X, y, epochs=3000, batch_size=10)
#evaluate the keras model
_, accuracy = model.evaluate(X, y)
print('Accuracy: %.2f' % (accuracy*100))



#%%
end = time.time()
print(f"Runtime of the program is {end - start}")
Loading