Skip to content

ldm13006/04_linear_algebra

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

04_linear_algebra

Homework 4

#Problem 2

Part A Outputs

  • norm2_H4 = 1.5002
  • normf_H4 = 1.5097
  • norm1_H4 = 2.0833
  • normi_H4 = 2.0833
  • norm2_H5 = 1.5671
  • normf_H5 = 1.5809
  • norm1_H5 = 2.2833
  • normi_H5 = 2.2833

Part B Outputs

  • norm2_H4i = 1.0341e+04
  • normf_H4i = 1.0342e+04
  • norm1_H4i = 13620
  • normi_H4i = 13620
  • norm2_H5i = 3.0414e+05
  • normf_H5i = 3.0416e+05
  • norm1_H5i = 413280
  • normi_H5i = 413280

Part C Outputs

  • H4_cond2 = 1.5514e+04
  • H4_condf = 1.5614e+04
  • H4_cond1 = 2.8375e+04
  • H4_condi = 2.8375e+04
  • H5_cond2 = 4.7661e+05
  • H5_condf = 4.8085e+05
  • H5_cond1 = 9.4366e+05
  • H5_condi = 9.4366e+05

Problem 3 Function chol_tridiag

  • function [d,u] = chol_tridiag(e,f)
  • %Function takes two vectors as inputs and
  • %calculates the Cholseky factorization of
  • %the tridiagonal matrix, where e is off-
  • %diagonal vector and f is diagonal vector
  • n = length(f);
    
  • d = zeros(1,n);
    
  • u = zeros(1,n-1);
    
  • d(1) = sqrt(f(1));
    
  • u(1) = e(1)/d(1);
    
  • for i = 2:n-1
    
  •     d(i) = sqrt(f(i)-u(i-1)^2);
    
  •     u(i) = e(i)/d(i);
    
  • end
    
  • d(n) = sqrt(f(n)-u(n-1)^2);
  • end
  • %Outputs two vectors, diagonal of upper
  • %matrix (d) and off-diagonal of upper
  • %matrix (u)

Problem 4 Function solve_tridiag

  • function x = solve_tridiag(d,u,b)
  • %This function solves Ax = b with the
  • %diagonal and off-diagonal of the Cholesky
  • %and Diagonal matrices d and u, respectively
  • n = length(d);
    
  • x = zeros(1,n);
    
  • y = zeros(1,n);
    
  • for i = 1:n
    
  •     if i == 1
    
  •     y(1) = b(1)/d(1);
    
  •     else
    
  •     y(i) = (b(i)-u(i-1)* y(i-1))/d(i);
    
  •     end
    
  • end
    
  • for i = fliplr(1:n)
    
  •     if i == n
    
  •         x(i) = y(i)/d(i);
    
  •     else
    
  •         x(i) = (y(i)-u(i)* x(i+1))/d(i);
    
  •     end
    
  • end
    
  • end

Problem 5 Outputs

  • For all k's = 1000, x = 29.2841 and Error = 29.2841
  • For k2 = 1000e12, x = Error = 1.1291e+13
  • For k2 = 1000e-12, x = Error = 9.0010e+12

Problem 6 Outputs

  • x = [0.0392,0.0687,0.0833,0.0981]

Problem 7 Outputs

  • ans = [40.522,14.409,2.569]

Problem 8 Table of Outputs

# of Segments Largest Load (N) Smallest Load (N) # of Eigen Values
5 1.1756 0.6180 2
6 1.2000 0.6212 3
10 1.2361 0.6257 7
  • As the segment length approaches zero, there would be no eigen values

About

Homework 4

Resources

Stars

Watchers

Forks

Releases

No releases published

Languages