Skip to content

Could you share your HPC jobs? #14

Open
doh16101 opened this issue Jan 20, 2024 · 5 comments
Open

Could you share your HPC jobs? #14

doh16101 opened this issue Jan 20, 2024 · 5 comments
Assignees

Comments

@doh16101
Copy link
Collaborator

Dear Luis,

Could you please share the HPC jobs you submitted to run the Bayesian Variational Inference but failed to execute? If you did not use Git to track it, could you please just give me read permission to see those code and the data in the scratch folder?

The code version I am talking about was this: 9388a46#diff-35df281ed874530b6cf6b4e0d3c4c3a4431dfcada9ec97875c73f57af5a4598e

Thanks!

@doh16101
Copy link
Collaborator Author

Luis replied to me in Whatsapp:
I'll send you the environment.

/gpfs/scratchfs1/hfp14002/lrm22005

This is the path that I gave you access.

I need to create the environment again in HPC, because I delete my entire anaconda to try to figure if the error was related with it. But I didn't try again.

/home/lrm22005/ML_Notebooks/Arrhytmia_GP
this is the path with the files, but still is not the last version. I need to reupload it.

@doh16101
Copy link
Collaborator Author

Dear @lrm22005 ,

HPC does not allow me to access your personal home folder. I think you should use Git to synchronize your HPC jobs. Could you please create an HPC branch in this repo and synchronize all your HPC jobs? Thanks!

(base) [doh16101@login4 Casseys_case]$ cd /home/lrm22005/ML_Notebooks/Arrhythmia_GP
-bash: cd: /home/lrm22005/ML_Notebooks/Arrhythmia_GP: Permission denied

@doh16101
Copy link
Collaborator Author

Dear @lrm22005 ,

I am able to run the code on my Linux server. I will check how to run it on my Google Colab.

/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 3 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
  warnings.warn(
Training:   0%|          | 0/50 [00:00<?, ?epoch/s]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:   2%|▏         | 1/50 [05:58<4:52:26, 358.09s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:   4%|▍         | 2/50 [09:28<3:36:53, 271.11s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:   6%|▌         | 3/50 [12:33<3:01:42, 231.97s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:   8%|▊         | 4/50 [14:30<2:23:03, 186.59s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  10%|█         | 5/50 [16:35<2:03:18, 164.41s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  12%|█▏        | 6/50 [18:56<1:54:36, 156.29s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  14%|█▍        | 7/50 [21:52<1:56:34, 162.65s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  16%|█▌        | 8/50 [25:10<2:01:51, 174.09s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  18%|█▊        | 9/50 [27:57<1:57:21, 171.75s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  20%|██        | 10/50 [30:18<1:48:17, 162.43s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  22%|██▏       | 11/50 [32:48<1:43:04, 158.57s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  24%|██▍       | 12/50 [34:50<1:33:24, 147.49s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  26%|██▌       | 13/50 [36:54<1:26:25, 140.15s/epoch]

@doh16101
Copy link
Collaborator Author

doh16101 commented Jan 23, 2024

Dear @lrm22005 ,

After fixing the tqdm error, I encountered a new error after finish one active learning cycle?

/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/torch/cuda/__init__.py:138: UserWarning: CUDA initialization: The NVIDIA driver on your system is too old (found version 11080). Please update your GPU driver by downloading and installing a new version from the URL: http://www.nvidia.com/Download/index.aspx Alternatively, go to: https://pytorch.org/ to install a PyTorch version that has been compiled with your version of the CUDA driver. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.)
  return torch._C._cuda_getDeviceCount() > 0
AF trial: 2 training subjects ['402', '410']
AF trial: 22 testing subjects ['301', '302', '305', '306', '307', '310', '311', '312', '318', '319', '320', '321', '322', '324', '325', '327', '329', '400', '406', '407', '409', '414']
AF trial: 10 unlabeled subjects ['405', '413', '415', '416', '420', '421', '422', '423', '408', '419']
Clinical trial: selected 7 UIDs for training ['050', '113', '090', '074', '028', '012', '106']
Clinical trial: selected 8 UIDs for testing ['077', '088', '003', '005', '017', '026', '075', '082']
Clinical trial: selected 60 UIDs for unlabeled ['002', '007', '011', '013', '020', '021', '022', '024', '027', '029', '030', '034', '035', '036', '037', '038', '039', '041', '042', '044', '045', '047', '049', '052', '053', '054', '055', '056', '057', '058', '062', '063', '064', '068', '069', '070', '073', '078', '080', '083', '084', '086', '087', '089', '091', '093', '094', '098', '099', '100', '101', '104', '108', '109', '110', '111', '112', '118', '119', '120']
Debug: your_computer_name localhost.localdomain
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/050_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/077_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/002_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/007_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/011_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/013_final_attemp_4_1_Dong.csv
Debug: len(train_loader) 1
/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 3 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
  warnings.warn(
Training:   0%|          | 0/50 [00:00<?, ?epoch/s]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:   2%|▏         | 1/50 [06:12<5:04:19, 372.63s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:   4%|▍         | 2/50 [09:06<3:24:21, 255.44s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:   6%|▌         | 3/50 [11:49<2:47:05, 213.30s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:   8%|▊         | 4/50 [13:44<2:13:57, 174.73s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  10%|█         | 5/50 [15:43<1:55:45, 154.35s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  12%|█▏        | 6/50 [17:40<1:43:56, 141.74s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  14%|█▍        | 7/50 [19:42<1:36:54, 135.23s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  16%|█▌        | 8/50 [21:53<1:33:52, 134.10s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
...
  _warn_prf(average, modifier, msg_start, len(result))
Training:  66%|██████▌   | 33/50 [1:37:50<53:25, 188.58s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
                                                               
Output is truncated. View as a [scrollable element](command:cellOutput.enableScrolling?fc552f71-ee87-468b-84ab-57fd72d6df17) or open in a [text editor](command:workbench.action.openLargeOutput?fc552f71-ee87-468b-84ab-57fd72d6df17). Adjust cell output [settings](command:workbench.action.openSettings?%5B%22%40tag%3AnotebookOutputLayout%22%5D)...
Early stopping triggered at epoch 34
Active Learning:   0%|          | 0/10 [00:30<?, ?iteration/s]

Error message:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
/mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/ss_main.py in line 85
     [82](file:///mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/ss_main.py?line=81)     print("Final Test Metrics:", results['test_metrics'])
     [84](file:///mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/ss_main.py?line=83) if __name__ == "__main__":
---> [85](file:///mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/ss_main.py?line=84)     main()

/mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/ss_main.py in line 50, in main()
     [47](file:///mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/ss_main.py?line=46) # Active Learning Iterations
     [48](file:///mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/ss_main.py?line=47) for iteration in tqdm(range(active_learning_iterations), desc='Active Learning', unit='iteration', leave=True):
     [49](file:///mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/ss_main.py?line=48)     # Perform uncertainty sampling to select new samples from the validation set
---> [50](file:///mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/ss_main.py?line=49)     uncertain_sample_indices = stochastic_uncertainty_sampling(model, likelihood, val_loader, n_samples=batch_size, n_batches=5)
     [52](file:///mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/ss_main.py?line=51)     # Update the training loader with uncertain samples
     [53](file:///mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/ss_main.py?line=52)     train_loader = update_train_loader_with_uncertain_samples(train_loader, uncertain_sample_indices, batch_size)

File /mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/active_learning/ss_active_learning.py:23, in stochastic_uncertainty_sampling(gp_model, gp_likelihood, val_loader, n_samples, n_batches, n_components)
     [21](file:///mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/active_learning/ss_active_learning.py?line=20) gp_likelihood.eval()
     [22](file:///mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/active_learning/ss_active_learning.py?line=21) uncertain_sample_indices = []
---> [23](file:///mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/active_learning/ss_active_learning.py?line=22) sampled_batches = random.sample(list(val_loader), n_batches)  # Randomly sample n_batches from val_loader
     [25](file:///mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/active_learning/ss_active_learning.py?line=24) with torch.no_grad():
     [26](file:///mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/active_learning/ss_active_learning.py?line=25)     for batch in sampled_batches:
     [27](file:///mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/active_learning/ss_active_learning.py?line=26)         # reduced_data = apply_tsne(batch['data'].reshape(batch['data'].size(0), -1), n_components=n_components)
     [28](file:///mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/BML_project/active_learning/ss_active_learning.py?line=27)         # reduced_data_tensor = torch.Tensor(reduced_data).to(device)

File [~/anaconda3/envs/CS330_torch/lib/python3.11/random.py:456](https://vscode-remote+ssh-002dremote-002b137-002e99-002e3-002e33.vscode-resource.vscode-cdn.net/mnt/r/ENGR_Chon/Dong/Python/B_ML_Project-Luis/B_ML_Project/~/anaconda3/envs/CS330_torch/lib/python3.11/random.py:456), in Random.sample(self, population, k, counts)
...
--> [456](file:///home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/random.py?line=455)     raise ValueError("Sample larger than population or is negative")
    [457](file:///home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/random.py?line=456) result = [None] * k
    [458](file:///home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/random.py?line=457) setsize = 21        # size of a small set minus size of an empty list

ValueError: Sample larger than population or is negative
Output is truncated. View as a [scrollable element](command:cellOutput.enableScrolling?1c4f7608-fccd-40a5-8448-d75902e8e173) or open in a [text editor](command:workbench.action.openLargeOutput?1c4f7608-fccd-40a5-8448-d75902e8e173). Adjust cell output [settings](command:workbench.action.openSettings?%5B%22%40tag%3AnotebookOutputLayout%22%5D)...

@doh16101
Copy link
Collaborator Author

doh16101 commented Jan 29, 2024

/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/torch/cuda/__init__.py:138: UserWarning: CUDA initialization: The NVIDIA driver on your system is too old (found version 11080). Please update your GPU driver by downloading and installing a new version from the URL: http://www.nvidia.com/Download/index.aspx Alternatively, go to: https://pytorch.org to install a PyTorch version that has been compiled with your version of the CUDA driver. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.)
  return torch._C._cuda_getDeviceCount() > 0
AF trial: 2 training subjects ['402', '410']
AF trial: 22 testing subjects ['301', '302', '305', '306', '307', '310', '311', '312', '318', '319', '320', '321', '322', '324', '325', '327', '329', '400', '406', '407', '409', '414']
AF trial: 10 unlabeled subjects ['405', '413', '415', '416', '420', '421', '422', '423', '408', '419']
Clinical trial: selected 7 UIDs for training ['050', '113', '090', '074', '028', '012', '106']
Clinical trial: selected 8 UIDs for testing ['077', '088', '003', '005', '017', '026', '075', '082']
Clinical trial: selected 60 UIDs for unlabeled ['002', '007', '011', '013', '020', '021', '022', '024', '027', '029', '030', '034', '035', '036', '037', '038', '039', '041', '042', '044', '045', '047', '049', '052', '053', '054', '055', '056', '057', '058', '062', '063', '064', '068', '069', '070', '073', '078', '080', '083', '084', '086', '087', '089', '091', '093', '094', '098', '099', '100', '101', '104', '108', '109', '110', '111', '112', '118', '119', '120']
Debug: your_computer_name localhost.localdomain
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/050_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/113_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/090_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/074_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/028_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/012_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/106_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/077_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/088_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/003_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/005_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/017_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/026_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/075_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/082_final_attemp_4_1_Dong.csv
Debug: len(train_loader) 14
/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 3 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
  warnings.warn(
Training:   0%|                                       | 0/50 [00:00<?, ?epoch/s]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:   2%|▌                         | 1/50 [25:35<20:53:50, 1535.31s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:   4%|█                         | 2/50 [48:55<19:24:26, 1455.55s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:   6%|█▍                      | 3/50 [1:02:25<15:09:30, 1161.07s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:   8%|█▉                      | 4/50 [1:18:19<13:47:31, 1079.39s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  10%|██▍                     | 5/50 [1:38:15<14:01:00, 1121.34s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  12%|██▉                     | 6/50 [1:59:32<14:21:03, 1174.16s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  14%|███▎                    | 7/50 [2:18:14<13:49:19, 1157.19s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  16%|███▊                    | 8/50 [2:37:24<13:28:22, 1154.81s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  18%|████▎                   | 9/50 [2:55:38<12:56:12, 1135.92s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  20%|████▊                   | 10/50 [3:04:37<10:34:25, 951.63s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  22%|█████▎                  | 11/50 [3:21:49<10:34:35, 976.30s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  24%|█████▌                 | 12/50 [3:40:49<10:49:53, 1026.15s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Training:  26%|█████▉                 | 13/50 [3:59:04<10:45:28, 1046.73s/epoch]/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
Early stopping triggered at epoch 14
Active Learning:   0%|                             | 0/1 [00:00<?, ?iteration/s]Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/050_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/113_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/090_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/074_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/028_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/012_final_attemp_4_1_Dong.csv
Debug: this file exists /mnt/r/ENGR_Chon/NIH_Pulsewatch_Database/Adjudication_UConn/final_attemp_4_1_Dong_Ohm/106_final_attemp_4_1_Dong.csv

Training:   0%|                                       | 0/10 [00:00<?, ?epoch/s]�[A/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))

Training:  10%|██▋                        | 1/10 [24:08<3:37:15, 1448.39s/epoch]�[A/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))

Training:  20%|█████▍                     | 2/10 [46:39<3:05:30, 1391.30s/epoch]�[A/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))

Training:  30%|███████▌                 | 3/10 [1:01:26<2:15:26, 1160.99s/epoch]�[A/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))

Training:  40%|██████████               | 4/10 [1:22:07<1:59:15, 1192.64s/epoch]�[A/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))

Training:  50%|████████████▌            | 5/10 [1:47:00<1:48:24, 1300.96s/epoch]�[A/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))

Training:  60%|███████████████          | 6/10 [2:08:06<1:25:55, 1288.87s/epoch]�[A/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))

Training:  70%|█████████████████▌       | 7/10 [2:32:09<1:06:58, 1339.39s/epoch]�[A/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))

Training:  80%|█████████████████████▌     | 8/10 [3:02:46<49:55, 1497.91s/epoch]�[A/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))

Training:  90%|████████████████████████▎  | 9/10 [3:30:20<25:46, 1546.52s/epoch]�[A/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))

Training: 100%|██████████████████████████| 10/10 [3:58:00<00:00, 1581.57s/epoch]�[A
Active Learning: 100%|████████████████| 1/1 [3:59:46<00:00, 14386.59s/iteration]�[A
Traceback (most recent call last):
  File "/mnt/r/ENGR_Chon/Dong/Github_private/Pulsewatch_labeling/BML_project/ss_main.py", line 148, in <module>
    main()
  File "/mnt/r/ENGR_Chon/Dong/Github_private/Pulsewatch_labeling/BML_project/ss_main.py", line 124, in main
    plot_comparative_results(gp_vs_kmeans_data, original_labels)
  File "/mnt/r/ENGR_Chon/Dong/Github_private/Pulsewatch_labeling/BML_project/utils_gp/visualization.py", line 65, in plot_comparative_results
    cm_gp = confusion_matrix(original_labels, gp_predictions)
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py", line 317, in confusion_matrix
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/metrics/_classification.py", line 86, in _check_targets
    check_consistent_length(y_true, y_pred)
  File "/home/doh16101/anaconda3/envs/CS330_torch/lib/python3.11/site-packages/sklearn/utils/validation.py", line 397, in check_consistent_length
    raise ValueError(
ValueError: Found input variables with inconsistent numbers of samples: [4775, 20]

I got this simple error outside the active learning. I will fix it later.
@lrm22005

Sign in to join this conversation on GitHub.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants