Skip to content
Permalink
bb8f47ef31
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
202 lines (181 sloc) 4.66 KB
# ME3255_Final_Project
# Part A
```matlab
function [w] = membrane_solution3(T,P)
% T = Tension (microNewton/micrometer)
% P = Pressure (MPa)
od = ones(8,1);
od(3:3:end) = 0;
k = -4*diag(ones(9,1))+diag(ones(9-3,1),3)+diag(ones(9-3,1),-3)+diag(od,1)+diag(od,-1);
y = -(10/4)^2*(P/T)*ones(9,1);
w = k\y;
% Solves for displacement (micrometers)
% Output w is a vector
% Solution represents a 2D data set w(x,y)
[x,y] = meshgrid(0:10/4:10,0:10/4:10);
z = zeros(size(x));
z(2:end-1,2:end-1) = reshape(w,[3 3]);
surf(x,y,z)
title('Membrane Displacement')
zlabel('Displacement (micrometer)')
% Membrane displacement is shown on chart
end
```
# Part B
```matlab
% Part B Script
[w] = membrane_solution3(0.006,0.001);
```
![](https://github.uconn.edu/ltd13002/ME3255_Final_Project/blob/master/Part%20B/PartBFigure.png)
# Part C
```matlab
function [w] = membrane_solution(T,P,n)
% T = Tension (microNewton/micrometer)
% P = Pressure (MPa)
% n = # of interior nodes
od = ones(n^2-1,1);
od(n:n:end) = 0;
k = -4*diag(ones(n^2,1))+diag(ones((n^2)-n,1),n)+diag(ones((n^2)-n,1),-n)+diag(od,1)+diag(od,-1);
y = -(10/(n+1))^2*(P/T)*ones(n^2,1);
w = k\y;
% Solves for displacement (micrometers)
% Output w is a vector
% Solution represents a 2D data set w(x,y)
[x,y] = meshgrid(0:10/(n+1):10,0:10/(n+1):10);
z = zeros(size(x));
z(2:end-1,2:end-1) = reshape(w,[n n]);
surf(x,y,z)
title('Membrane Displacement')
zlabel('Displacement (micrometer)')
% Membrane displacement is shown on chart
end
```
# Part D
```matlab
% Part D Script
[w] = membrane_solution(0.006,0.001,10)
```
![](https://github.uconn.edu/ltd13002/ME3255_Final_Project/blob/master/Part%20D/PartDFigure.png)
# Part E
```matlab
function [pw_se,w]=SE_diff(T,P,n)
E = 1; %TPa Units may need to be changed
v = .31; %Poissons ratio
t = .3; %nm
h = 10/(n+1); %nm
w = membrane_solution(T,P,n);
z = zeros(n+2);
z(2:end-1,2:end-1) = reshape(w,[n n]);
num = n + 1;
wbar = zeros(num);
for i = 1:num
for j = 1:num
wbar(i,j) = mean([z(i,j),z(i+1,j),z(i,j+1),z(i+1,j+1)]);
end
end
pw = sum(sum(wbar.*h^2.*P));
dwdx = zeros(num);
dwdy = zeros(num);
for i = 1:num
for j = 1:num
dwdx(i,j) = mean([z(i+1,j)-z(i,j),z(i+1,j+1)-z(i,j+1)]);
dwdy(i,j) = mean([z(i,j+1)-z(i,j),z(i+1,j+1)-z(i+1,j)]);
end
end
se = E*t*h^2/(2*(1-v^2))*sum(sum(0.25.*dwdx.^4+.25.*dwdy.^4+0.5.*(dwdx.*dwdy).^2));
pw_se = pw-se;
```
# Part F
```matlab
n=[3,20:5:40];
P=0.001; %MPa
T = zeros(1,length(n));
ea = zeros(1,length(n));
for i = 1:length(n)
[T(i), ea(i)] = tension_sol(P,n(i));
end
```
```matlab
function [T,ea] = tension_sol(P,n)
y =@(T) SE_diff(T,P,n);
[T,fx,ea,iter]=bisect(y,.01,1);
```
```matlab
function [root,fx,ea,iter]=bisect(func,xl,xu,es,maxit,varargin)
% bisect: root location zeroes
% [root,fx,ea,iter]=bisect(func,xl,xu,es,maxit,p1,p2,...):
% uses bisection method to find the root of func
% input:
% func = name of function
% xl, xu = lower and upper guesses
% es = desired relative error (default = 0.0001%)
% maxit = maximum allowable iterations (default = 50)
% p1,p2,... = additional parameters used by func
% output:
% root = real root
% fx = function value at root
% ea = approximate relative error (%)
% iter = number of iterations
if nargin<3,error('at least 3 input arguments required'),end
test = func(xl,varargin{:})*func(xu,varargin{:});
if test>0,error('no sign change'),end
if nargin<4||isempty(es), es=0.0001;end
if nargin<5||isempty(maxit), maxit=50;end
iter = 0; xr = xl; ea = 100;
while (1)
xrold = xr;
xr = (xl + xu)/2;
iter = iter + 1;
if xr ~= 0,ea = abs((xr - xrold)/xr) * 100;end
test = func(xl,varargin{:})*func(xr,varargin{:});
if test < 0
xu = xr;
elseif test > 0
xl = xr;
else
ea = 0;
end
if ea <= es || iter >= maxit,break,end
end
root = xr; fx = func(xr, varargin{:});
```
```matlab
function re = Rel_error (T)
re = zeros(1,length(T)-1);
for i = 2:length(T)
re(i-1)= abs(T(i)-T(i-1))/T(i-1);
end
```
|number of nodes|Tension (uN/um)| rel. error|
|---|---|---|
|3 |0.0489 |n/a|
|20|0.0599|22.6%|
|25|0.0601|0.27%|
|30|0.0602|0.15%|
|35|0.0602|0.09%|
|40|0.0603|0.06%|
# Part G
```matlab
P = linspace(.001,.01,10);
n = 20;
T = zeros(1,length(P));
wmax = zeros(1,length(P));
for i = 1:length(P)
T(i) = tension_sol(P(i),n);
w = membrane_solution(T(i),P(i),n);
wmax(i) = max(w);
end
clf
setDefaults
x = wmax';
y = P';
Z=x.^3;
a=Z\y;
x_fcn=linspace(min(x),max(x));
plot(x,y,'o',x_fcn,a*x_fcn.^3)
title('Pressure vs Maximum Deflection')
xlabel('Maximum Deflection (um)')
ylabel('Pressure (MPa)')
print('Part g','-dpng')
```
![part g](./Part G/Part g.png)