Skip to content
Permalink
842cba168a
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
165 lines (120 sloc) 4.14 KB

Homework #3

Hand calculations due 10/18 by 11:59 pm

The following problems should be worked out by hand. You can check your work with Matlab/Octave. Upload a pdf of the completed calculations into a github repository called '03_review_1-10'. Then, submit your repo link to https://goo.gl/forms/h6OMBURAZ6bJB2xG2

  1. Use the Newton-Raphson method to approximate when f(x)=0. Start with an initial guess of $x_{0}=0$.

    $f(x)=e^{-x}-x^{3}$

    a. Compute the first 3 iterations and calculate the approximate error for each.

    b. Compare the exact derivative to the derivative used in the modified secant for $\delta x=0.1$ and $\delta x=0.001$ at $x_{0}$.

  2. A simple computer is being assembled with 5-bits of storage for each integer.

    a. How many different integers can be stored with 5 bits?

    b. If we want the maximum number of positive and negative integers, what is the largest and smallest integer we can store with 5 bits?

  3. Convert the following binary numbers to base-10 in two ways, 1- the exact conversion, and 2- the conversion if only 4 digits are saved after addition/subtraction

    a. 1.001

    b. 100.1

    c. 1.001 + 100.1

    d. 1000 - 0.0001

  4. In Problem 3c-d what kind of error is introduced by limiting the number of digits stored?

  5. Solve the following problems with matrix A:

    $A=\left[ \begin{array}{ccc} 4 & 6 & 2 \ 0 & 2 & 6 \ 1 & 2 & 1\end{array} \right]$

    a. Compute the LU-decomposition

    b. Solve for x if $Ax=b$ and $b=\left[\begin{array}{c} 1\2\1\end{array}\right]$

  6. Solve the following problems with matrix A:

    $A=\left[ \begin{array}{ccc} 4 & -2 & 1\ -2 & 4 & -2\ 1 & -2 & 2\end{array} \right]$

    a. Compute the Cholesky factorization of A

    $C_{ii}=\sqrt{a_{ii}-\sum_{k=1}^{i-1}C_{ki}^{2}}$

    $C_{ij}=\frac{a_{ij}-\sum_{k=1}^{i-1}C_{ki}C_{kj}}{C_{ii}}$.

    b. Find the determinant of A, |A|.

    c. Find the inverse of A, $A^{-1}$

7.Determine the lower (L) and upper (U) triangular matrices with LU-decomposition for the following matrices, A. Then, solve for x when Ax=b:

a. $A=\left[ \begin{array}{cc} 1 & 3 \ 2 & 1 \end{array} \right] b= \left[\begin{array}{c} 1 \ 1\end{array}\right]$

a. $A=\left[ \begin{array}{cc} 1 & 1 \ 2 & 3 \end{array} \right] b= \left[\begin{array}{c} 3 \ 4\end{array}\right]$

a. $A=\left[ \begin{array}{cc} 1 & 1 \ 2 & -2 \end{array} \right] b= \left[\begin{array}{c} 4 \ 2\end{array}\right]$

b. $A=\left[ \begin{array}{ccc} 1 & 3 & 1 \ -4 & -9 & 2 \ 0 & 3 & 5\end{array} \right] b= \left[\begin{array}{c} 2 \ 0 \ 0\end{array}\right]$

c. $A=\left[ \begin{array}{ccc} 1 & 2 & 3 \ -4 & -3 & 2 \ 0 & 3 & 5\end{array} \right] b= \left[\begin{array}{c} 1 \ -1 \ -3\end{array}\right]$

d. $A=\left[ \begin{array}{ccc} 1 & 3 & -5 \ 1 & 4 & -8 \ -3 & -7 & 9\end{array} \right] b= \left[\begin{array}{c} 1 \ -1 \ -3\end{array}\right]$

d. $A=\left[ \begin{array}{ccc} 0 & 2 & -1 \ 2 & 5 & 2 \ 1 & -1 & 2\end{array} \right] b= \left[\begin{array}{c} 2 \ 3 \ 5\end{array}\right]$

  1. Calculate the determinant of A from 1a-g.

  2. Determine the Cholesky factorization, C, of the following matrices, where

    $C_{ii}=\sqrt{a_{ii}-\sum_{k=1}^{i-1}C_{ki}^{2}}$

    $C_{ij}=\frac{a_{ij}-\sum_{k=1}^{i-1}C_{ki}C_{kj}}{C_{ii}}$.

    a. A=$\left[ \begin{array}{cc} 3 & 2 \ 2 & 1 \end{array} \right]$

    a. A=$\left[ \begin{array}{cc} 10 & 5 \ 5 & 20 \end{array} \right]$

    a. A=$\left[ \begin{array}{ccc} 10 & -10 & 20 \ -10 & 20 & 10 \ 20 & 10 & 30 \end{array} \right]$

    a. A=$\left[ \begin{array}{cccc} 21 & -1 & 0 & 0 \ -1 & 21 & -1 & 0 \ 0 & -1 & 21 & -1 \ 0 & 0 & -1 & 1 \end{array} \right]$

  3. Verify that $C^{T}C=A$ for 3a-d