Skip to content

Update #11

Merged
merged 5 commits into from
Apr 5, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
1 change: 1 addition & 0 deletions HW6/.~lock.Primary_Energy_monthly.csv#
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
,ryan,fermi,31.03.2017 16:47,file:///home/ryan/.config/libreoffice/4;
86 changes: 86 additions & 0 deletions HW6/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
# Homework #6
## due 4/14 by 11:59pm


0. Create a new github repository called 'curve_fitting'.

a. Add rcc02007 and pez16103 as collaborators.

b. Clone the repository to your computer.


1. Create a least-squares function called `least_squares.m` that accepts a Z-matrix and
dependent variable y as input and returns the vector of best-fit constants, a, the
best-fit function evaluated at each point $f(x_{i})$, and the coefficient of
determination, r2.

```matlab
[a,fx,r2]=least_squares(Z,y);
```

Test your function on the sets of data in script `problem_1_data.m` and show that the
following functions are the best fit lines:

a. y=0.3745+0.98644x+0.84564/x

b. y=-11.4887+7.143817x-1.04121 x^2+0.046676 x^3

c. y=4.0046e^(-1.5x)+2.9213e^(-0.3x)+1.5647e^(-0.05x)


2. Use the Temperature and failure data from the Challenger O-rings in lecture_18
(challenger_oring.csv). Your independent variable is temerature and your dependent
variable is failure (1=fail, 0=pass). Create a function called `cost_logistic.m` that
takes the vector `a`, and independent variable `x` and dependent variable `y`. Use the
function, $\sigma(t)=\frac{1}{1+e^{-t}}$ where $t=a_{0}+a_{1}x$. Use the cost function,

$J(a_{0},a_{1})=\sum_{i=1}^{n}\left[-y_{i}\log(\sigma(t_{i}))-(1-y_{i})\log((1-\sigma(t_{i})))\right]$

and gradient

$\frac{\partial J}{\partial a_{i}}=
1/m\sum_{k=1}^{N}\left(\sigma(t_{k})-y_{k}\right)t_{k}$

a. edit `cost_logistic.m` so that the output is `[J,grad]` or [cost, gradient]

b. use the following code to solve for a0 and a1

```matlab
% Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 400);
% Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[theta, cost] = ...
fminunc(@(a)(costFunction(a, x, y)), initial_a, options);
```

c. plot the data and the best-fit logistic regression model

```matlab
plot(x,y, x, sigma(a(1)+a(2)*x))
```

3. The vertical stress under a corner of a rectangular area subjected to a uniform load of
intensity $q$ is given by the solution of the Boussinesq's equation:

$\sigma_{z} =
\frac{q}{4\pi}\left(\frac{2mn\sqrt{m^{2}+n^{2}+1}}{m^{2}+n^{2}+1+m^{2}n^{2}}\frac{m^{2}+n^{2}+2}{m^{2}+n^{2}+1}+sin^{-1}\left(\frac{2mn\sqrt{m^{2}+n^{2}+1}}{m^{2}+n^{2}+1+m^{2}n^{2}}\right)\right)$

Typically, this equation is solved as a table of values where:

$\sigma_{z}=q f(m,n)$

where $f(m,n)$ is the influence value, q is the uniform load, m=a/z, n=b/z, a and b are
width and length of the rectangular area and z is the depth below the area.

a. Finish the function `boussinesq_lookup.m` so that when you enter a force, q,
dimensions of rectangular area a, b, and depth, z, it uses a third-order polynomial
interpolation of the four closest values of m to determine the stress in the vertical
direction, sigma_z=$\sigma_{z}$. Use a $0^{th}$-order, polynomial interpolation for
the value of n (i.e. round to the closest value of n).

b. Copy the `boussinesq_lookup.m` to a file called `boussinesq_spline.m` and use a
cubic spline to interpolate in two dimensions, both m and n, that returns sigma_z.



Binary file added HW6/README.pdf
Binary file not shown.
22 changes: 22 additions & 0 deletions HW6/boussinesq_lookup.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
function sigma_z=boussinesq_lookup(q,a,b,z)
% function that determines stress under corner of an a by b rectangular platform
% z-meters below the platform. The calculated solutions are in the fmn data
% m=fmn(:,1)
% in column 2, fmn(:,2), n=1.2
% in column 3, fmn(:,2), n=1.4
% in column 4, fmn(:,2), n=1.6

fmn= [0.1,0.02926,0.03007,0.03058
0.2,0.05733,0.05894,0.05994
0.3,0.08323,0.08561,0.08709
0.4,0.10631,0.10941,0.11135
0.5,0.12626,0.13003,0.13241
0.6,0.14309,0.14749,0.15027
0.7,0.15703,0.16199,0.16515
0.8,0.16843,0.17389,0.17739];

m=a/z;
n=b/z;

%...
end
27 changes: 27 additions & 0 deletions HW6/cost_logistic.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
function [J, grad] = cost_logistic(a, x, y)
% cost_logistic Compute cost and gradient for logistic regression
% J = cost_logistic(theta, X, y) computes the cost of using theta as the
% parameter for logistic regression and the gradient of the cost
% w.r.t. to the parameters.

% Initialize some useful values
N = length(y); % number of training examples

% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of a.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
%



% =============================================================

end

15 changes: 15 additions & 0 deletions HW6/problem_1_data.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@

% part a
xa=[1 2 3 4 5]';
yb=[2.2 2.8 3.6 4.5 5.5]';

% part b

xb=[3 4 5 7 8 9 11 12]';
yb=[1.6 3.6 4.4 3.4 2.2 2.8 3.8 4.6]';

% part c

xc=[0.5 1 2 3 4 5 6 7 9];
yc=[6 4.4 3.2 2.7 2.2 1.9 1.7 1.4 1.1];

29 changes: 22 additions & 7 deletions lecture_16/lecture_16.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -20644,7 +20644,7 @@
},
{
"cell_type": "code",
"execution_count": 123,
"execution_count": 200,
"metadata": {
"collapsed": false
},
Expand Down Expand Up @@ -20793,24 +20793,38 @@
"</g>\n",
"<g color=\"black\" fill=\"none\" stroke=\"currentColor\" stroke-linecap=\"butt\" stroke-linejoin=\"miter\" stroke-width=\"0.50\">\n",
"</g>\n",
"\t<g id=\"gnuplot_plot_1a\"><title>gnuplot_plot_1a</title>\n",
"<g color=\"white\" fill=\"none\" stroke=\"currentColor\" stroke-linecap=\"butt\" stroke-linejoin=\"miter\" stroke-width=\"3.00\">\n",
"<g color=\"black\" fill=\"none\" stroke=\"currentColor\" stroke-linecap=\"butt\" stroke-linejoin=\"miter\" stroke-width=\"1.00\">\n",
"</g>\n",
"<g color=\"black\" fill=\"none\" stroke=\"currentColor\" stroke-linecap=\"butt\" stroke-linejoin=\"miter\" stroke-width=\"1.00\">\n",
"\t<path d=\"M80.2,121.7 L80.2,25.7 L246.0,25.7 L246.0,121.7 L80.2,121.7 Z \" stroke=\"black\"/></g>\n",
"\t<g id=\"gnuplot_plot_1a\"><title>data</title>\n",
"<g color=\"white\" fill=\"none\" stroke=\"black\" stroke-linecap=\"butt\" stroke-linejoin=\"miter\" stroke-width=\"3.00\">\n",
"</g>\n",
"<g color=\"black\" fill=\"none\" stroke=\"currentColor\" stroke-linecap=\"butt\" stroke-linejoin=\"miter\" stroke-width=\"3.00\">\n",
"\t<g onmousemove=\"gnuplot_svg.showHypertext(evt,'')\" onmouseout=\"gnuplot_svg.hideHypertext()\"><title> </title>\n",
"\t<use color=\"rgb( 0, 0, 255)\" transform=\"translate(71.9,289.8) scale(12.00)\" xlink:href=\"#gpPt5\"/></g>\n",
"\t<g fill=\"rgb(0,0,0)\" font-family=\"{}\" font-size=\"16.00\" stroke=\"none\" text-anchor=\"end\" transform=\"translate(246.0,55.7)\">\n",
"\t\t<text><tspan font-family=\"{}\">data</tspan></text>\n",
"\t</g>\n",
"</g>\n",
"<g color=\"black\" fill=\"none\" stroke=\"currentColor\" stroke-linecap=\"butt\" stroke-linejoin=\"miter\" stroke-width=\"3.00\">\n",
"\t<use color=\"rgb( 0, 0, 255)\" transform=\"translate(71.9,289.8) scale(12.00)\" xlink:href=\"#gpPt5\"/>\n",
"\t<use color=\"rgb( 0, 0, 255)\" transform=\"translate(138.1,283.6) scale(12.00)\" xlink:href=\"#gpPt5\"/>\n",
"\t<use color=\"rgb( 0, 0, 255)\" transform=\"translate(204.2,240.7) scale(12.00)\" xlink:href=\"#gpPt5\"/>\n",
"\t<use color=\"rgb( 0, 0, 255)\" transform=\"translate(270.4,217.2) scale(12.00)\" xlink:href=\"#gpPt5\"/>\n",
"\t<use color=\"rgb( 0, 0, 255)\" transform=\"translate(336.5,208.9) scale(12.00)\" xlink:href=\"#gpPt5\"/>\n",
"\t<use color=\"rgb( 0, 0, 255)\" transform=\"translate(402.7,124.6) scale(12.00)\" xlink:href=\"#gpPt5\"/>\n",
"\t<use color=\"rgb( 0, 0, 255)\" transform=\"translate(468.8,178.5) scale(12.00)\" xlink:href=\"#gpPt5\"/>\n",
"\t<use color=\"rgb( 0, 0, 255)\" transform=\"translate(535.0,92.8) scale(12.00)\" xlink:href=\"#gpPt5\"/>\n",
"\t<use color=\"rgb( 0, 0, 255)\" transform=\"translate(118.3,49.7) scale(12.00)\" xlink:href=\"#gpPt5\"/>\n",
"</g>\n",
"\t</g>\n",
"\t<g id=\"gnuplot_plot_2a\"><title>gnuplot_plot_2a</title>\n",
"\t<g id=\"gnuplot_plot_2a\"><title>best-fit</title>\n",
"<g color=\"black\" fill=\"none\" stroke=\"currentColor\" stroke-linecap=\"butt\" stroke-linejoin=\"miter\" stroke-width=\"3.00\">\n",
"\t<g fill=\"rgb(0,0,0)\" font-family=\"{}\" font-size=\"16.00\" stroke=\"none\" text-anchor=\"end\" transform=\"translate(246.0,103.7)\">\n",
"\t\t<text><tspan font-family=\"{}\">best-fit</tspan></text>\n",
"\t</g>\n",
"</g>\n",
"<g color=\"black\" fill=\"none\" stroke=\"currentColor\" stroke-linecap=\"butt\" stroke-linejoin=\"miter\" stroke-width=\"3.00\">\n",
"\t<path d=\"M71.9,298.7 L138.1,271.8 L204.2,244.9 L270.4,218.0 L336.5,191.0 L402.7,164.1 L468.8,137.2 L535.0,110.3 \" stroke=\"rgb( 0, 128, 0)\"/></g>\n",
"\t<path d=\"M91.4,97.7 L145.2,97.7 M71.9,298.7 L138.1,271.8 L204.2,244.9 L270.4,218.0 L336.5,191.0 L402.7,164.1 L468.8,137.2 L535.0,110.3 \" stroke=\"rgb( 0, 128, 0)\"/></g>\n",
"\t</g>\n",
"<g color=\"white\" fill=\"none\" stroke=\"rgb( 0, 128, 0)\" stroke-linecap=\"butt\" stroke-linejoin=\"miter\" stroke-width=\"2.00\">\n",
"</g>\n",
Expand Down Expand Up @@ -20851,6 +20865,7 @@
"a=A\\b\n",
"\n",
"plot(x,y,'o',x,a(1)+a(2)*x)\n",
"legend('data','best-fit','Location','NorthWest')\n",
"xlabel('Force (N)')\n",
"ylabel('velocity (m/s)')"
]
Expand Down