Skip to content

test update #2

Merged
merged 4 commits into from
Jan 25, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions HW1/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -55,3 +55,7 @@
vii. Paste this into the Homework #1 Google form reponse.
(https://goo.gl/forms/jINjsioRLwQOiYtl2)[https://goo.gl/forms/jINjsioRLwQOiYtl2]

![Step 9](g9.png)

viii. Click on the gear for "Settings" then "Collaborators" on the left menu. Add
`rcc02007` (Ryan C. Cooper) as a collaborator.
Binary file added HW1/g9.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,11 +19,11 @@ matlab/octave functions and programming best practices.

**Instructor**: Prof. Ryan C. Cooper (ryan.c.cooper@uconn.edu)

**Office hours**: Fridays 10am-12pm in Engineering II room 315
**Office hours**: Mon 2:30-4:30pm and Thur 11am-1pm in Engineering II room 315

## Teaching Assistants:
- Graduate: **TBD**
- Office hours: 2 hours / week in office **TBD**
- Graduate: Peiyu Zhang <peiyu.zhang@uconn.edu>
- Office hours: 2 hours / week

**Prerequisite:** CE 3110, MATH 2410Q

Expand Down
Binary file added lecture_01/lecture_01_notes.pdf
Binary file not shown.
174 changes: 174 additions & 0 deletions lecture_02/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@

# Solution to Form #1


```octave
[1,2,3]*[1;2;3]
```

ans =

14




```octave
[1,2,3]*[1;2;3]=?
```


```octave

```

# The first source of error is roundoff error
## Just storing a number in a computer requires rounding


```octave
fprintf('realmax = %1.20e\n',realmax)
fprintf('realmin = %1.20e\n',realmin)
fprintf('maximum relative error = %1.20e\n',eps)

```

realmax = 1.79769313486231570815e+308
realmin = 2.22507385850720138309e-308
maximum relative error = 2.22044604925031308085e-16



```octave
s=1;
for i=1:1000
s=s+eps/10;
end
s==1
```

ans = 1


# Freefall Model (revisited)
## Octave solution (will run same on Matlab)

Set default values in Octave for linewidth and text size


```octave
%plot --format svg
```


```octave
set (0, "defaultaxesfontname", "Helvetica")
set (0, "defaultaxesfontsize", 18)
set (0, "defaulttextfontname", "Helvetica")
set (0, "defaulttextfontsize", 18)
set (0, "defaultlinelinewidth", 4)
```

Define time from 0 to 12 seconds with `N` timesteps
function defined as `freefall`


```octave
function [v_analytical,v_terminal,t]=freefall(N)
t=linspace(0,12,N)';
c=0.25; m=60; g=9.81; v_terminal=sqrt(m*g/c);

v_analytical = v_terminal*tanh(g*t/v_terminal);
v_numerical=zeros(length(t),1);
delta_time =diff(t);
for i=1:length(t)-1
v_numerical(i+1)=v_numerical(i)+(g-c/m*v_numerical(i)^2)*delta_time(i);
end
% Print values near 0,2,4,6,8,10,12 seconds
indices = round(linspace(1,length(t),7));
fprintf('time (s)|vel analytical (m/s)|vel numerical (m/s)\n')
fprintf('-----------------------------------------------\n')
M=[t(indices),v_analytical(indices),v_numerical(indices)];
fprintf('%7.1f | %18.2f | %15.2f\n',M(:,1:3)');
plot(t,v_analytical,'-',t,v_numerical,'o-')
end

```


```octave
[v_analytical,v_terminal,t]=freefall(120);
```

time (s)|vel analytical (m/s)|vel numerical (m/s)
-----------------------------------------------
0.0 | 0.00 | 0.00
2.0 | 18.76 | 18.82
4.0 | 32.64 | 32.80
6.1 | 40.79 | 40.97
8.0 | 44.80 | 44.94
10.0 | 46.84 | 46.93
12.0 | 47.77 | 47.82



![svg](output_13_1.svg)


# Types of error
## Freefall is example of "truncation error"
### Truncation error results from approximating exact mathematical procedure

We approximated the derivative as $\delta v/\delta t\approx\Delta v/\Delta t$

Can reduce error by decreasing step size -> $\Delta t$=`delta_time`

## Another example of truncation error is a Taylor series (or Maclaurin if centered at a=0)

Taylor series:
$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^{2}+\frac{f'''(a)}{3!}(x-a)^{3}+...$

We can approximate the next value in a function by adding Taylor series terms:

|Approximation | formula |
|---|-------------------------|
|$0^{th}$-order | $f(x_{i+1})=f(x_{i})+R_{1}$ |
|$1^{st}$-order | $f(x_{i+1})=f(x_{i})+f'(x_{i})h+R_{2}$ |
|$2^{nd}$-order | $f(x_{i+1})=f(x_{i})+f'(x_{i})h+\frac{f''(x_{i})}{2!}h^{2}+R_{3}$|
|$n^{th}$-order | $f(x_{i+1})=f(x_{i})+f'(x_{i})h+\frac{f''(x_{i})}{2!}h^{2}+...\frac{f^{(n)}}{n!}h^{n}+R_{n}$|

Where $R_{n}=\frac{f^{(n+1)}(\xi)}{(n+1)!}h^{n+1}$ is the error associated with truncating the approximation at order $n$.

The $n^{th}$-order approximation estimates that the unknown function, $f(x)$, is equal to an $n^{th}$-order polynomial.

In the Freefall example, we estimated the function with a $1^{st}$-order approximation, so

$v(t_{i+1})=v(t_{i})+v'(t_{i})(t_{i+1}-t_{i})+R_{1}$

$v'(t_{i})=\frac{v(t_{i+1})-v(t_{i})}{t_{i+1}-t_{i}}-\frac{R_{1}}{t_{i+1}-t_{i}}$

$\frac{R_{1}}{t_{i+1}-t_{i}}=\frac{v''(\xi)}{2!}(t_{i+1}-t_{i})$

or the truncation error for a first-order Taylor series approximation is

$\frac{R_{1}}{t_{i+1}-t_{i}}=O(\Delta t)$


1. digital representation of a number is rarely exact

2. arithmetic (+,-,/,\*) causes roundoff error


```octave
fprintf('%1.20f\n',double(pi))
fprintf('%1.20f\n',single(pi))
```

3.14159265358979311600
3.14159274101257324219



```octave

```
Loading