Permalink
@@ -0,0 +1,71 @@ | ||
# Linear Algebra Review | ||
## (Gauss Elimination) Suggested problems | ||
### No due date | ||
|
||
1. Solve for x when Ax=b for the following problems: | ||
|
||
a. $A=\left[ \begin{array}{cc} | ||
1 & 3 \\ | ||
2 & 1 \end{array} \right] | ||
b= | ||
\left[\begin{array}{c} | ||
1 \\ | ||
1\end{array}\right]$ | ||
|
||
a. $A=\left[ \begin{array}{cc} | ||
1 & 1 \\ | ||
2 & 3 \end{array} \right] | ||
b= | ||
\left[\begin{array}{c} | ||
3 \\ | ||
4\end{array}\right]$ | ||
|
||
a. $A=\left[ \begin{array}{cc} | ||
1 & 1 \\ | ||
2 & -2 \end{array} \right] | ||
b= | ||
\left[\begin{array}{c} | ||
4 \\ | ||
2\end{array}\right]$ | ||
|
||
b. $A=\left[ \begin{array}{ccc} | ||
1 & 3 & 1 \\ | ||
-4 & -9 & 2 \\ | ||
0 & 3 & 6\end{array} \right] | ||
b= | ||
\left[\begin{array}{c} | ||
0 \\ | ||
0 \\ | ||
0\end{array}\right]$ | ||
|
||
c. $A=\left[ \begin{array}{ccc} | ||
1 & 3 & 1 \\ | ||
-4 & -9 & 2 \\ | ||
0 & 3 & 6\end{array} \right] | ||
b= | ||
\left[\begin{array}{c} | ||
1 \\ | ||
-1 \\ | ||
-3\end{array}\right]$ | ||
|
||
d. $A=\left[ \begin{array}{ccc} | ||
1 & 3 & -5 \\ | ||
1 & 4 & -8 \\ | ||
-3 & -7 & 9\end{array} \right] | ||
b= | ||
\left[\begin{array}{c} | ||
1 \\ | ||
-1 \\ | ||
-3\end{array}\right]$ | ||
|
||
d. $A=\left[ \begin{array}{ccc} | ||
1 & 2 & -1 \\ | ||
2 & 2 & 2 \\ | ||
1 & -1 & 2\end{array} \right] | ||
b= | ||
\left[\begin{array}{c} | ||
2 \\ | ||
12 \\ | ||
5\end{array}\right]$ | ||
|
||
2. Calculate the determinant of A from 1a-g. |