Permalink
Showing
with
7,820 additions
and 4,036 deletions.
- +27 −0 lecture_13/LU_naive.m
- +32 −28 lecture_13/lecture_13.aux
- +3,472 −3,769 lecture_13/lecture_13.ipynb
- +75 −75 lecture_13/lecture_13.log
- +40 −21 lecture_13/lecture_13.md
- +16 −14 lecture_13/lecture_13.out
- BIN lecture_13/lecture_13.pdf
- +152 −129 lecture_13/lecture_13.tex
- BIN lecture_13/lecture_13_files/lecture_13_24_1.pdf
- +121 −0 lecture_13/lecture_13_files/lecture_13_24_1.svg
- BIN lecture_13/lecture_13_files/lecture_13_29_0.pdf
- +141 −0 lecture_13/lecture_13_files/lecture_13_29_0.svg
- BIN lecture_13/lecture_13_files/lecture_13_36_0.pdf
- +1,887 −0 lecture_13/lecture_13_files/lecture_13_36_0.svg
- BIN lecture_13/lecture_13_files/lecture_13_36_1.pdf
- +1,857 −0 lecture_13/lecture_13_files/lecture_13_36_1.svg
- BIN lecture_13/octave-workspace
@@ -0,0 +1,27 @@ | ||
function [L, U] = LU_naive(A) | ||
% GaussNaive: naive Gauss elimination | ||
% x = GaussNaive(A,b): Gauss elimination without pivoting. | ||
% input: | ||
% A = coefficient matrix | ||
% y = right hand side vector | ||
% output: | ||
% x = solution vector | ||
[m,n] = size(A); | ||
if m~=n, error('Matrix A must be square'); end | ||
nb = n; | ||
L=diag(ones(n,1)); | ||
U=A; | ||
% forward elimination | ||
for k = 1:n-1 | ||
for i = k+1:n | ||
fik = U(i,k)/U(k,k); | ||
L(i,k)=fik; | ||
U(i,k:nb) = U(i,k:nb)-fik*U(k,k:nb); | ||
end | ||
end | ||
%% back substitution | ||
%x = zeros(n,1); | ||
%x(n) = Aug(n,nb)/Aug(n,n); | ||
%for i = n-1:-1:1 | ||
% x(i) = (Aug(i,nb)-Aug(i,i+1:n)*x(i+1:n))/Aug(i,i); | ||
%end |

Oops, something went wrong.