-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implemented the BVH algorithm to allow for much faster collision tests at the cost of having to compile the mesh
- Loading branch information
JoeBell
committed
Feb 20, 2025
1 parent
8583a0f
commit f923eac
Showing
1 changed file
with
178 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
from typing import Self, Literal | ||
import numpy as np | ||
from Raytrace.TriangleMesh import TriangleMesh, Ray | ||
|
||
# Adapted from https://jacco.ompf2.com/2022/04/13/how-to-build-a-bvh-part-1-basics/ | ||
class BVHAABB: | ||
min_pos:np.ndarray | ||
max_pos:np.ndarray | ||
def __init__(self): | ||
self.min_pos = np.array([np.nan]*3) | ||
self.max_pos = np.array([np.nan]*3) | ||
@staticmethod | ||
def from_array(triangles:np.ndarray) -> 'BVHAABB': | ||
out = BVHAABB() | ||
if triangles.size == 0: return out | ||
triangles = triangles.reshape((-1, 3)) | ||
out.min_pos = triangles.min(axis = 0) | ||
out.max_pos = triangles.max(axis = 0) | ||
return out | ||
def raytrace(self, ray:Ray) -> float: | ||
old_error_state = np.seterr(divide='ignore') | ||
t1 = (self.min_pos - ray.origin) * ray.inverse_direction | ||
t2 = (self.max_pos - ray.origin) * ray.inverse_direction | ||
np.seterr(**old_error_state) | ||
t = np.stack([t1, t2]) | ||
tmin:float = t.min(axis=0).max() | ||
tmax:float = t.max(axis=0).min() | ||
return tmin if tmax >= tmin and tmax > 0 else np.inf | ||
def grow(self, point:np.ndarray): | ||
self.min_pos = np.nanmin(np.stack([point, self.min_pos]), axis=0) | ||
self.max_pos = np.nanmax(np.stack([point, self.max_pos]), axis=0) | ||
def grow_aabb(self, other:Self): | ||
self.grow(other.min_pos) | ||
self.grow(other.max_pos) | ||
def area(self) -> float: | ||
e = self.max_pos - self.min_pos | ||
return e[0] * e[1] + e[1] * e[2] + e[2] * e[0] | ||
def __str__(self): | ||
return f'({float(self.min_pos[0])}, {float(self.min_pos[1])}, {float(self.min_pos[2])})#({float(self.max_pos[0])}, {float(self.max_pos[1])}, {float(self.max_pos[2])})' | ||
class BVHNode: | ||
aabb:BVHAABB | ||
left:Self | ||
right:Self | ||
start_index:int | ||
tri_count:int | ||
def get_subarray(self, triangles:np.ndarray) -> np.ndarray: | ||
return triangles[self.start_index:self.start_index + self.tri_count] | ||
def update_bounds(self, triangles:np.ndarray): | ||
self.aabb = BVHAABB.from_array(self.get_subarray(triangles)) | ||
def is_leaf(self) -> bool: | ||
return self.tri_count > 0 | ||
class BVHMesh(TriangleMesh): | ||
centroids:np.ndarray | ||
root:BVHNode | ||
node_count:int | ||
def __init__(self, *args, min_node_size = 2, **kwargs) -> None: | ||
super().__init__(*args, **kwargs) | ||
self.build_BVH(min_node_size) | ||
def build_BVH(self, min_node_size = 100) -> None: | ||
# calculate triangle centroids for partitioning | ||
self.centroids = self.triangles.sum(axis = 1) / 3 | ||
# assign all triangles to root node | ||
self.node_count = 1 | ||
self.root = root = BVHNode() | ||
root.start_index = 0 | ||
root.tri_count = self.triangles.shape[0] | ||
if root.tri_count == 0: return | ||
root.update_bounds(self.triangles) | ||
# subdivide recursively | ||
self.subdivide(root, min_node_size) | ||
def subdivide(self, node:BVHNode, min_node_size = 100) -> None: | ||
# determine split axis using SAH | ||
print(self.node_count, node.tri_count,end=' \r') | ||
if node.tri_count < min_node_size: return | ||
best_cost, axis, split_pos = self.find_best_split(node) | ||
if best_cost >= node.tri_count * node.aabb.area(): return | ||
# in-place partition | ||
i = node.start_index | ||
j = i + node.tri_count - 1 | ||
while i <= j: | ||
if self.centroids[i, axis] < split_pos: i += 1 | ||
else: | ||
self.triangles[[i,j]] = self.triangles[[j,i]] | ||
self.centroids[[i,j]] = self.centroids[[j,i]] | ||
j -= 1 | ||
# abort split if one of the sides is empty | ||
left_count = i - node.start_index | ||
if left_count == 0 or left_count == node.tri_count: return | ||
self.node_count += 2 | ||
# create child nodes | ||
node.left = left = BVHNode() | ||
left.start_index = node.start_index | ||
left.tri_count = left_count | ||
|
||
node.right = right = BVHNode() | ||
right.start_index = i | ||
right.tri_count = node.tri_count - left_count | ||
|
||
node.tri_count = 0 | ||
left.update_bounds(self.triangles) | ||
right.update_bounds(self.triangles) | ||
# recurse | ||
self.subdivide(left) | ||
self.subdivide(right) | ||
|
||
def raytrace(self, ray:Ray) -> float: | ||
return self.BVH_raytrace(ray) | ||
|
||
def BVH_raytrace(self, ray:Ray) -> float: | ||
node:BVHNode = self.root | ||
stack:list[BVHNode] = [] | ||
best:float = np.inf | ||
while 1: | ||
if node.is_leaf(): | ||
intersections = self.batch_triangle_ray_intersection(node.get_subarray(self.triangles), ray) | ||
intersections[intersections < 0] = np.inf | ||
best = min(best, np.min(intersections)) | ||
if len(stack) == 0: break | ||
node = stack.pop() | ||
continue | ||
child1, child2 = node.left, node.right | ||
dist1 = node.left.aabb.raytrace(ray) | ||
dist2 = node.right.aabb.raytrace(ray) | ||
if dist1 > dist2: | ||
dist1, dist2 = dist2, dist1 | ||
child1, child2 = child2, child1 | ||
if not np.isfinite(dist1): | ||
if len(stack) == 0: break | ||
node = stack.pop() | ||
else: | ||
node = child1 | ||
if np.isfinite(dist2): | ||
stack.append(child2) | ||
return best | ||
def find_best_split(self, node:BVHNode) -> tuple[float, int, float]: | ||
BINS = 8 | ||
axis:int = -1 | ||
split_pos:float = 0 | ||
best_cost:float = np.inf | ||
triangles:np.ndarray[tuple[int, Literal[3], Literal[3]], np.dtype[np.float32]] = node.get_subarray(self.triangles) | ||
centroids:np.ndarray[tuple[int, Literal[3]], np.dtype[np.float32]] = node.get_subarray(self.centroids) | ||
for axis_i in range(3): | ||
bounds_min = float(np.min(centroids[:,axis_i])) | ||
bounds_max = float(np.max(centroids[:,axis_i])) | ||
|
||
if bounds_min == bounds_max: continue | ||
# populate the bins | ||
scale:float = BINS / (bounds_max - bounds_min) | ||
bin_idx = ((centroids[:,axis_i] - bounds_min) * scale).astype(int) | ||
bin_idx[bin_idx > BINS - 1] = BINS - 1 | ||
bin_bounds = [BVHAABB.from_array(triangles[bin_idx == n]) for n in range(BINS)] | ||
bin_counts = [np.count_nonzero(bin_idx == n) for n in range(BINS)] | ||
# gather data for the 7 planes between the 8 bins | ||
left_area = np.zeros(BINS - 1, float) | ||
right_area = np.zeros(BINS - 1, float) | ||
left_count = np.zeros(BINS - 1, int) | ||
right_count = np.zeros(BINS - 1, int) | ||
left_aabb = BVHAABB() | ||
right_aabb = BVHAABB() | ||
left_sum = right_sum = 0 | ||
for i in range(BINS - 1): | ||
left_sum += bin_counts[i] | ||
left_count[i] = left_sum | ||
left_aabb.grow_aabb(bin_bounds[i]) | ||
left_area[i] = left_aabb.area() | ||
right_sum += bin_counts[BINS - 1 - i] | ||
right_count[BINS - 2 - i] = right_sum | ||
right_aabb.grow_aabb(bin_bounds[BINS - 1 - i]) | ||
right_area[BINS - 2 - i] = right_aabb.area() | ||
# calculate SAH cost for the 7 planes | ||
scale = 1. / scale | ||
for i in range(BINS - 1): | ||
cost:float = left_count[i] * left_area[i] + right_count[i] * right_area[i] | ||
if cost < best_cost: | ||
split_pos = bounds_min + scale * (i + 1) | ||
axis = axis_i | ||
best_cost = cost | ||
return best_cost, axis, split_pos |