-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
2,709 additions
and
284 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
# get data | ||
import pandas as pd | ||
import numpy as np | ||
import tensorflow as tf | ||
raw_data = pd.read_pickle("./data/raw_feature.pkl") | ||
X_train = pd.read_pickle("./data/X_train.pkl") | ||
y_train = pd.read_pickle("./data/y_train.pkl") | ||
X_test = pd.read_pickle("./data/X_test.pkl") | ||
y_test = pd.read_pickle("./data/y_test.pkl") | ||
|
||
# preprocess data | ||
from sklearn.preprocessing import StandardScaler,MinMaxScaler | ||
std = StandardScaler() | ||
train_shape = y_train.shape | ||
test_shape = y_test.shape | ||
y_train = std.fit_transform(np.reshape(y_train,(-1,y_train.shape[-2]*y_train.shape[-1]))) | ||
y_train = y_train.reshape(train_shape) | ||
y_test = std.transform(np.reshape(y_test,(-1,y_test.shape[-2]*y_test.shape[-1]))) | ||
y_test = y_test.reshape(test_shape) | ||
|
||
# gen dataset | ||
from numpy.lib.stride_tricks import as_strided | ||
|
||
def create_rolling_window(matrix,t): | ||
matrix_shape = matrix.shape | ||
return_length = matrix_shape[0] - t | ||
dataset = tf.data.Dataset.from_tensor_slices(matrix) | ||
windows = dataset.window(t,shift = 1,drop_remainder=True) | ||
windows = windows.take(return_length) | ||
windows = windows.flat_map(lambda window: window.batch(t)) | ||
|
||
|
||
return windows | ||
def create_result_ds(matrix,delay): | ||
dataset = tf.data.Dataset.from_tensor_slices(matrix) | ||
dataset = dataset.skip(delay) | ||
return dataset | ||
|
||
def combine_ds(ds1,ds2): | ||
combined_ds = tf.data.Dataset.zip(((ds1),ds2)) | ||
combined_ds = combined_ds.batch(batch_size=32) | ||
return combined_ds | ||
|
||
def gen_train_ds(X_train,y_train,step_len): | ||
X = create_rolling_window(y_train,step_len) | ||
y = create_result_ds(y_train,step_len) | ||
train_ds = combine_ds(X,y) | ||
return train_ds | ||
|
||
def gen_test_ds(X_test,y_test,step_len): | ||
X = create_rolling_window(y_test,step_len) | ||
y = create_result_ds(y_test,step_len) | ||
test_ds = combine_ds(X,y) | ||
return test_ds | ||
# gen dataset | ||
time_step = 48 | ||
train_ds = gen_train_ds(X_train,y_train,step_len=time_step) | ||
test_ds = gen_test_ds(X_test,y_test,step_len=time_step) | ||
|
||
class GenDs(object): | ||
def gen_train(time_step = 48): | ||
train_ds = gen_train_ds(X_train,y_train,step_len=time_step) | ||
return train_ds,std | ||
def gen_test(time_step = 48): | ||
test_ds = gen_test_ds(X_test,y_test,step_len=time_step) | ||
return test_ds |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from sklearn.metrics import mean_squared_error | ||
def compare_result(predict,real): | ||
assert(predict.shape == real.shape) | ||
original_shape = predict.shape | ||
predict_flatten = np.reshape(predict,(-1,original_shape[-2]*original_shape[-1])) | ||
real_flatten = np.reshape(real, (-1,original_shape[-2]*original_shape[-1])) | ||
|
||
|
||
# assert(np.array_equal(predict_flatten.reshape(original_shape), predict)) | ||
|
||
print(mean_squared_error(predict_flatten,real_flatten)) | ||
def plot_result(predict,real,batch =0,in_out = 0): | ||
|
||
vmin = min(predict[batch].min(), real[batch].min()) | ||
vmax = max(predict[batch].max(), real[batch].max()) | ||
|
||
cmap = 'viridis' | ||
fig, axs = plt.subplots(1, 3) | ||
|
||
axs[0].set_title("predict") | ||
axs[0].imshow(predict[batch,in_out,:,:],cmap = cmap,vmin = vmin,vmax = vmax) | ||
axs[1].set_title("real") | ||
axs[1].imshow(real[batch,in_out,:,:],cmap = cmap,vmin = vmin,vmax = vmax) | ||
axs[2].set_title("diff") | ||
axs[2].imshow(np.abs(predict[batch,in_out,:,:] - real[batch,in_out,:,:]), cmap = cmap,vmin = vmin,vmax = vmax) | ||
|
||
plt.show() | ||
def std_inverse(std,data): | ||
original_shape = data.shape | ||
try: | ||
data = data.copy() | ||
except Exception: | ||
pass | ||
inversed_data = std.inverse_transform(np.reshape(data,(-1,data.shape[-2]*data.shape[-1]))) | ||
inversed_data = inversed_data.reshape(original_shape) | ||
return inversed_data |
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,209 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# get data\n", | ||
"import pandas as pd\n", | ||
"import numpy as np\n", | ||
"import tensorflow as tf\n", | ||
"raw_data = pd.read_pickle(\"./data/raw_feature.pkl\")\n", | ||
"X_train = pd.read_pickle(\"./data/X_train.pkl\")\n", | ||
"y_train = pd.read_pickle(\"./data/y_train.pkl\")\n", | ||
"X_test = pd.read_pickle(\"./data/X_test.pkl\")\n", | ||
"y_test = pd.read_pickle(\"./data/y_test.pkl\")\n", | ||
"\n", | ||
"\n", | ||
"trip_avg_in = y_train.mean(axis = 0)[0]\n", | ||
"trip_avg_out = y_train.mean(axis=0)[1]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# preprocess data\n", | ||
"from sklearn.preprocessing import StandardScaler,MinMaxScaler\n", | ||
"std = StandardScaler()\n", | ||
"train_shape = y_train.shape\n", | ||
"test_shape = y_test.shape\n", | ||
"y_train = std.fit_transform(np.reshape(y_train,(-1,y_train.shape[-2]*y_train.shape[-1])))\n", | ||
"y_train = y_train.reshape(train_shape)\n", | ||
"y_test = std.transform(np.reshape(y_test,(-1,y_test.shape[-2]*y_test.shape[-1])))\n", | ||
"y_test = y_test.reshape(test_shape)\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# gen dataset\n", | ||
"from numpy.lib.stride_tricks import as_strided\n", | ||
"\n", | ||
"def create_rolling_window(matrix,t):\n", | ||
" matrix_shape = matrix.shape\n", | ||
" return_length = matrix_shape[0] - t \n", | ||
" dataset = tf.data.Dataset.from_tensor_slices(matrix)\n", | ||
" windows = dataset.window(t,shift = 1,drop_remainder=True)\n", | ||
" windows = windows.take(return_length)\n", | ||
" windows = windows.flat_map(lambda window: window.batch(t))\n", | ||
"\n", | ||
" \n", | ||
" return windows\n", | ||
"def create_result_ds(matrix,delay):\n", | ||
" dataset = tf.data.Dataset.from_tensor_slices(matrix)\n", | ||
" dataset = dataset.skip(delay)\n", | ||
" return dataset\n", | ||
"\n", | ||
"def combine_ds(ds1,ds2):\n", | ||
" combined_ds = tf.data.Dataset.zip(((ds1),ds2))\n", | ||
" combined_ds = combined_ds.batch(batch_size=32)\n", | ||
" return combined_ds\n", | ||
"\n", | ||
"def gen_train_ds(X_train,y_train,step_len):\n", | ||
" X = create_rolling_window(y_train,step_len)\n", | ||
" y = create_result_ds(y_train,step_len)\n", | ||
" train_ds = combine_ds(X,y)\n", | ||
" return train_ds\n", | ||
"\n", | ||
"def gen_test_ds(X_test,y_test,step_len):\n", | ||
" X = create_rolling_window(y_test,step_len)\n", | ||
" y = create_result_ds(y_test,step_len)\n", | ||
" test_ds = combine_ds(X,y)\n", | ||
" return test_ds" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# gen dataset\n", | ||
"time_step = 48\n", | ||
"train_ds = gen_train_ds(X_train,y_train,step_len=time_step)\n", | ||
"test_ds = gen_test_ds(X_test,y_test,step_len=time_step)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(16, 48, 2, 16, 8) (16, 2, 16, 8)\n", | ||
"38\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"count = 0\n", | ||
"for X,y in train_ds:\n", | ||
" print (X.shape,y.shape)\n", | ||
" count+=1\n", | ||
"print(count)\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 15, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n", | ||
"(32, 48, 2, 16, 8) (32, 2, 16, 8)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"\n", | ||
"for X,y in test_ds:\n", | ||
" print(X.shape,y.shape)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.2" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.