-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 29016d3
Showing
1 changed file
with
116 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# ME 3263\n", | ||
"## Laboratory # 0\n", | ||
"## Introduction to the Student t-test" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"We use statistics to draw conclusions from limited data. No measurement is exact. Every measurement you make has two types of uncertainties, *systematic* and *random*. *Systematic* uncertainties come from faults in your assumptions or equipment. \n", | ||
"*Random* uncertainties are associated with unpredictable (or unforeseen at the\n", | ||
"time) experimental conditions. These can also be due to simplifications of your\n", | ||
"model. Here are some examples for caliper measurements:\n", | ||
"\n", | ||
"In theory, all uncertainies could be accounted for by factoring in all physics\n", | ||
"in your readings. In reality, there is a diminishing return on investment\n", | ||
"for this practice. So we use some statistical insights to draw conclusions. " | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Mean and standard deviation\n", | ||
"\n", | ||
"If the same measurement is taken multiple times, then there should be some average value, the mean, $\\mu$. If there is an average value, then that means there is also a measure of deviation from the average value, standard deviation, $\\sigma$. The definitions for mean and standard deviation are as such\n", | ||
"\n", | ||
"$\\mu = \\sum_{i=1}^{N}\\frac{x_{i}}{N}$\n", | ||
"\n", | ||
"and\n", | ||
"\n", | ||
"$\\sigma^2 = \\frac{\\sum_{i=1}^{N}(x_{i}-\\mu)^2}{N}$,\n", | ||
"\n", | ||
"where $x_i$ is the $i^th$ measurement in a dataset called $x$ and $N$ is the number of data points. \n", | ||
"\n", | ||
"If you know the mean and standard deviation of a normally distributed data set, then you can predict the probability a given measurement will occur. \n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import matplotlib.pyplot as plt\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[<matplotlib.lines.Line2D at 0x77232c5850>]" | ||
] | ||
}, | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
}, | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VdW9//H3l4QEQoAACYMJIYxiGGQIAedapUW9Sp1BRQQEtVXbawdtbWur1WtttS1VW6iigAJqbZVrsQ44oCiQIHOYQhgSxoRAQELIcNbvj6T8cmMkBzjJPsPn9TznyRlWzvmunJNPdvZeey1zziEiIuGlmdcFiIhI4CncRUTCkMJdRCQMKdxFRMKQwl1EJAwp3EVEwpDCXUQkDCncRUTCkMJdRCQMRXv1womJiS4tLc2rlxcRCUnLly8vcs4lNdTOs3BPS0sjOzvbq5cXEQlJZrbdn3baLSMiEoYU7iIiYUjhLiIShhTuIiJhSOEuIhKGGgx3M5thZvvMbO3XPG5mNtXMcs1stZkNCXyZIiJyMvzZcn8RGHWCxy8DetdcpgB/Of2yRETkdDQY7s65RUDxCZqMBma5akuABDPrEqgCRUTChc/nePRfOeQXlzb6awVin3sykF/rdkHNfV9hZlPMLNvMsgsLCwPw0iIioWPqB5v52ydb+WRzUaO/ViDC3eq5r95Vt51z051zGc65jKSkBs+eFREJGx9u3MefFm7mmsHJjM3s2uivF4hwLwBqV5oC7ArA84qIhIX84lJ+MG8lZ3ZqzaNXD8Csvm3iwApEuM8Hbq0ZNTMCKHHO7Q7A84qIhLyyiiruenk5PueYNm4oLWOimuR1G5w4zMzmAt8AEs2sAHgIaA7gnPsrsAC4HMgFSoEJjVWsiEioeejNdazdeYjnbs2gW4dWTfa6DYa7c25sA4874HsBq0hEJEy8krWDV7Lz+d7FPbk0vVOTvrbOUBURaQRrCkr4xZvrOL9XIveNPLPJX1/hLiISYAdLy7nr5eUktoph6tjBRDVr/AOodXm2WIeISDiq8jnumbuCfYeO8eqd59C+VYwndSjcRUQC6Ml3N/LJ5iL+55oBDOqa4Fkd2i0jIhIgb6/ZzbMfbWFsZipjM1M9rUXhLiISAJv3HuZHr61icGoCv7oq3etyFO4iIqfrUFkFU2Yvp2VMNH+5eSix0U1zotKJKNxFRE6Dz+f473kryS8u5dmbh9C5bQuvSwIU7iIip2XqB5tZuGEfv/ivdDK7t/e6nOMU7iIip2jh+r388f3NXDMkmVvP6eZ1Of+Hwl1E5BTk7jvM9+etpH9yGx5ropkeT4bCXUTkJJUcrWDyrOW0aN6MaeMyaNHc+wOodekkJhGRk1Dlc9w7dwUFB0qZM3kEyQktvS6pXgp3EZGT8MQ7G/h4UyGPXt2fYWnBcwC1Lu2WERHx05srdzLt4zxuHp7KzcOD6wBqXQp3ERE/rCko4Sd/X01mWnseurKf1+U0SOEuItKAwsPHmDI7mw6tYnj2liHERAd/dGqfu4jICRyrrOK7Ly/nQGk5f7/zXBLjY70uyS8KdxGRr+Gc4+f/XEvWtgNMHTuY/sltvS7Jb8H/v4WIiEee/3Qrry0v4N5v9uKqs8/wupyTonAXEanHhxv38diC9Yzq15kfXNrH63JOmsJdRKSO3H2HuXfOCvp2bsNTN55NMw/WQD1dCncRkVoOHCln0sxsYptH8bfxGcTFhOahSYW7iEiNiiof3335C3YfLGPauKFBO7WAP0LzT5KISIA55/jV/HV8nrefJ68/m6Hd2nld0mnRlruICPDiZ9t4eekO7rioB9cOTfG6nNOmcBeRiPfBhr088lYO30rvxP3f7ut1OQGhcBeRiLZ+9yHumbOC9DPa8Mcxg0JyZEx9FO4iErH2HS5j0otZxLeI5rlbh4XsyJj6hE9PREROQllFFZNnLedAaQWv3XkOndu28LqkgPJry93MRpnZRjPLNbMH6nk81cw+NLMVZrbazC4PfKkiIoHh8zl++OoqVhcc5E9jBoXUnDH+ajDczSwKeAa4DEgHxppZep1mPwdedc4NBsYAzwa6UBGRQHnqvU38a81ufnpZX77Vr7PX5TQKf7bcM4Fc51yec64cmAeMrtPGAW1qrrcFdgWuRBGRwHktO5+nP8xlzLCuTL6gh9flNBp/9rknA/m1bhcAw+u0+RXwrpndA7QCLg1IdSIiAbQ4t4if/mMN5/dK5JHv9McsPEbG1MefLff6eu/q3B4LvOicSwEuB2ab2Vee28ymmFm2mWUXFhaefLUiIqdo457D3Dl7OT2T4nn2liE0jwrvwYL+9K4A6Frrdgpf3e0yCXgVwDn3OdACSKz7RM656c65DOdcRlJS0qlVLCJykvYdKmPii1m0jIlixoRhtGnR3OuSGp0/4Z4F9Daz7mYWQ/UB0/l12uwALgEws7OoDndtmouI544cq2TizCwOlJYz47ZhIT0Z2MloMNydc5XA3cA7wHqqR8WsM7OHzeyqmmY/BCab2SpgLnCbc67urhsRkSZV5XPcO3cFObsO8fRNobVM3uny6yQm59wCYEGd+35Z63oOcF5gSxMROXXOOX79v+tYuGEfj4zuxzf7dvK6pCYV3kcURCRiPffJVmZ9vp0pF/Zg3DlpXpfT5BTuIhJ25q/axaML1nPFgC48MCo8Znk8WQp3EQkrn20p4oevriSze3uevCE01z8NBIW7iISNDXsOcces5aR1aMXfxmXQonmU1yV5RuEuImFh18Gj3DYji7jYKGZOzKRtXPiPZT8RhbuIhLySoxXc9sIyjhyr5MUJmZwRIWPZT0TzuYtISDtWWcWUWdlsLTrCzAmZnNWlTcPfFAEU7iISsqp8jvteWcXSrcX8acwgzu31lVlPIpZ2y4hISPrPSUr/WrObBy8/i9GDkr0uKago3EUkJP35g1xmfb6dOy7sweQLw3de9lOlcBeRkPPy0u089d4mrhmSzP0RepJSQxTuIhJS/r12N794Yy3f7NuR3147MGJPUmqIwl1EQsaSvP3cO28lg7om8MxN4b/gxunQT0ZEQsK6XSVMnplNavs4Ztw2jJYxkXv2qT8U7iIS9LYVHWH8jCziW0Qza2ImCXExXpcU9BTuIhLU9pSUcfNzS/E5x+xJOvvUXwp3EQlaxUfKueX5pZQcrWDmhEx6dWztdUkhQ2eoikhQ+vJYJRNeWMaO4lJmTcxkQErkLJEXCNpyF5GgU1ZRxeSZ2azddYhnbxrCiB4dvC4p5CjcRSSoVFb5uGfuCj7P28/vrx/IpemRtfZpoCjcRSRo+HyOn7y+mvdy9vLrq/px9eAUr0sKWQp3EQkKzjkemr+Of3yxk/tG9mH8uWlelxTSFO4i4jnnHI+/vYHZS6onArvnm728LinkKdxFxHNTF+YybVEe40Z044HL+mKm+WJOl8JdRDz1t0V5/OH9TVw3NIVfX9VPwR4gCncR8czsJdt5dMF6rhjYRTM8BpjCXUQ88fryAn7xxlou6duRP9wwiCgFe0Ap3EWkyb21ehc//vsqzuvVgWduHkJMtKIo0PQTFZEm9e+1u/n+vJUM7daOv92aQYvmmrq3MSjcRaTJvJezl7vnrODslLa8MCGTuBhNb9VYFO4i0iQ+3LCP7768nH7JbXlxYibxsQr2xuRXuJvZKDPbaGa5ZvbA17S5wcxyzGydmc0JbJkiEsoWbSrkjpeWc2bn1syamEmbFs29LinsNfin08yigGeAkUABkGVm851zObXa9AZ+CpznnDtgZh0bq2ARCS2Lc4uYPCubnknxvDRpOG1bKtibgj9b7plArnMuzzlXDswDRtdpMxl4xjl3AMA5ty+wZYpIKPp8y34mzcwirUMrXr59uJbHa0L+hHsykF/rdkHNfbX1AfqY2WIzW2Jmo+p7IjObYmbZZpZdWFh4ahWLSEj4bEsRE1/MIqVdHC/dPpz2rRTsTcmfcK/vzAJX53Y00Bv4BjAWeM7MEr7yTc5Nd85lOOcykpKSTrZWEQkRn+X+J9hbMnfyCJJax3pdUsTxJ9wLgK61bqcAu+pp86ZzrsI5txXYSHXYi0iEWZxbxMSZWaS2j2PuFAW7V/wJ9yygt5l1N7MYYAwwv06bN4CLAcwskerdNHmBLFREgt+nm6u32Lu1b8WcySNIjFewe6XBcHfOVQJ3A+8A64FXnXPrzOxhM7uqptk7wH4zywE+BH7snNvfWEWLSPD5ZHMhk2Zm0T2xFXMmD1ewe8ycq7v7vGlkZGS47OxsT15bRAJr0aZCJs/Krgn2ETp42ojMbLlzLqOhdjpDVUROy8L1e7l9ZjY9kuIV7EFE4S4ip+ztNbu5Y/Zy+nZpzdzJGu4YTDS5g4ickjdX7uS+V1cxqGsCL0wYpikFgoy23EXkpL2anc8PXlnJsLR2mismSGnLXUROyktLtvPzN9ZyQe9Epo/LoGWM5mMPRgp3EfHb859u5ZG3crikb0eeuXmIFtoIYgp3EWmQc46pC3P5w/ubGNWvM1PHDtbSeEFO4S4iJ+Sc49F/ree5T7dyzZBknrh2INFRCvZgp3AXka9V5XM8+M81zMvKZ/w53Xjoyn40a1bfXIISbBTuIlKv8kof9726krdW7+aeb/bivpF9MFOwhwqFu4h8RVlFFXe9tJwPNxbys8v7MuXCnl6XJCdJ4S4i/8ehsgomz8xm2bZiHrt6ADcNT/W6JDkFCncROa7w8DHGz1jGpr2H+eONgxg9qO6iaxIqFO4iAsCO/aWMm7GUfYeO8dz4DL5xpta5D2UKdxEhZ9chxr+wjIoqH3MmD2dwajuvS5LTpHAXiXBL8/Zz+8xs4ltEM+f2c+jdqbXXJUkAKNxFIti76/Zw99wVpLRryexJw0lOaOl1SRIgCneRCDVv2Q5+9s81DEhuywsTMjUXe5hRuItEGOccf3h/M1MXbubCPkn85eYhtIpVFIQbvaMiEaSiyseD/1zDq9kFXD80hceuGUBzzRMTlhTuIhHiyLFKvjfnCz7aWMi93+zFf2s6gbCmcBeJAIWHjzHxxSzW7SrRWacRQuEuEua2Fh1h/Ixl7DtcxvRxGVya3snrkqQJKNxFwtiyrcVMmZ1NMzPmTh6hk5MiiMJdJEy9uXInP35tNSntW/LCbcPo1qGV1yVJE1K4i4QZ5xxPf5DLk+9tYnj39kwbN5SEOI1hjzQKd5EwUl7p46f/WMPrXxRwzeBk/ufaAcRGaxHrSKRwFwkTJaUV3PnScj7P288PLu3N9y/praGOEUzhLhIGthUdYeLMLPKLS3nqhrO5ZkiK1yWJxxTuIiHusy1F3PXSFzQzmD1pOCN6dPC6JAkCfp13bGajzGyjmeWa2QMnaHedmTkzywhciSLydeYs3cGtzy8jqXUsb3zvPAW7HNfglruZRQHPACOBAiDLzOY753LqtGsN3AssbYxCReT/q6zy8eiC9byweBsX9UnizzcNpk2L5l6XJUHEny33TCDXOZfnnCsH5gGj62n3CPAEUBbA+kSkjkNlFdw+K5sXFm9j4nndeX58hoJdvsKfcE8G8mvdLqi57zgzGwx0dc69FcDaRKSOrUVHuObZz/h0cxGPXT2AX16ZTrRmdZR6+HNAtb6xVO74g2bNgD8AtzX4RGZTgCkAqamauEjkZHy0cR/3zl1BVDNj1qRMzu2Z6HVJEsT8+ZNfAHStdTsF2FXrdmugP/CRmW0DRgDz6zuo6pyb7pzLcM5lJCUlnXrVIhHEOcdfP97CxBezSG4Xx/y7z1ewS4P82XLPAnqbWXdgJzAGuOk/DzrnSoDjnzQz+wj4kXMuO7ClikSeo+VV3P/6auav2sV/DezCE9cNJC5GI5ilYQ1+SpxzlWZ2N/AOEAXMcM6tM7OHgWzn3PzGLlIkEhUcKOWO2cvJ2X2In4w6k7su6qkzTsVvfm0COOcWAAvq3PfLr2n7jdMvSySyfZZbxN1zV1BR5WPG+GFc3Lej1yVJiNH/dyJBxDnHtEV5PPHvDfRIimfauKH0TIr3uiwJQQp3kSBxuKyCH722infW7eWKgV144tqBtIrVr6icGn1yRILApr2HuXP2crYXl/LzK85i0vndtX9dTovCXcRj/7tqF/e/vpq4mGjm3D6c4ZofRgJA4S7ikfJKH48tWM+Ln21jaLd2PHvzEDq1aeF1WRImFO4iHsgvLuXuOV+wqqCECeel8dPLziImWtMISOAo3EWa2Hs5e/nhqytxDv56yxBG9e/idUkShhTuIk2kosrH797ZyPRFefRPbsMzNw2hW4dWXpclYUrhLtIEdh08yj1zV7B8+wHGjejGg1ecRYvmWrhaGo/CXaSRvbNuD/e/vpqKSh9/HjuYK88+w+uSJAIo3EUaSVlFFY/+az2zl2xnQHJbpo4dTPdE7YaRpqFwF2kEm/ce5p65K9iw5zCTL+jOj7/dV6NhpEkp3EUCyDnH3GX5PPzWOlrFRPPChGFcfKYm/ZKmp3AXCZADR8p58I01LFizh/N7JfLUjWfTsbVOShJvKNxFAuCTzYX86LVVFB8p5/5Rfbnjwh40a6a5YcQ7CneR01BWUcUT/97IjMVb6dUxnufHD6N/cluvyxJRuIucqpxdh/jBKyvYtPdLbjs3jQcu66ux6xI0FO4iJ6nK53j+0zx+/84m2sY158UJw/iGDppKkFG4i5yEbUVH+NFrq8jefoBv9+vE/1wzkPatYrwuS+QrFO4ifvD5HLOXbOfxtzcQHWU8dcPZXD04WQtqSNBSuIs0IL+4lPtfX81nW/ZzUZ8kfnvtQDq31RBHCW4Kd5Gv4ZxjXlY+v3krB4DHrxnAjcO6amtdQoLCXaQe+cWl/PQfa/g0t4hzenTgiesG0rV9nNdlifhN4S5SS5XPMfOzbfzunY1ENTMe+U5/bs5M1QlJEnIU7iI1Nu89zE9eX82KHQe5+MwkHr16AGcktPS6LJFTonCXiFde6eOvH2/h6Q9yaRUbxR9vHMToQWdo37qENIW7RLSsbcX87B9r2LzvS648+wweujKdxPhYr8sSOW0Kd4lIB0vLefztDczLyic5oSXPj8/gkrM6eV2WSMAo3CWiOOd4Y+VOfvPWeg4erWDKhT34waW9iYvRr4KEF32iJWLkFX7JL95cy+Lc/QzqmsDsqweQfkYbr8sSaRQKdwl7peWV/PmDXJ77JI8WzaP4zXf6c5OGN0qY8yvczWwU8CcgCnjOOfd4ncfvA24HKoFCYKJzbnuAaxU5Kc45FqzZw2/+lcPukjKuHZLC/ZedqdWRJCI0GO5mFgU8A4wECoAsM5vvnMup1WwFkOGcKzWzu4AngBsbo2ARf+TuO8xD89exOHc/6V3a8Oexg8lIa+91WSJNxp8t90wg1zmXB2Bm84DRwPFwd859WKv9EuCWQBYp4q9DZRU8/UEuMz7dSlxMFA+P7sdNmalERzXzujSRJuVPuCcD+bVuFwDDT9B+EvB2fQ+Y2RRgCkBqaqqfJYo0rLLKxyvZ+Tz17iaKS8u5fmgKPxnVV2PWJWL5E+71HXVy9TY0uwXIAC6q73Hn3HRgOkBGRka9zyFyshbnFvHIWzls2HOYzLT2zLwyXeuYSsTzJ9wLgK61bqcAu+o2MrNLgQeBi5xzxwJTnsjXyyv8kscWbOD99Xvp2r4lf7l5CKP6d9a0ASL4F+5ZQG8z6w7sBMYAN9VuYGaDgWnAKOfcvoBXKVJL0ZfHmLpwM3OW7qBF8yjuH9WXCeelaXFqkVoaDHfnXKWZ3Q28Q/VQyBnOuXVm9jCQ7ZybD/wOiAdeq9lq2uGcu6oR65YIdORYJc99spXpi7ZQVuljzLCufP/S3hraKFIPv8a5O+cWAAvq3PfLWtcvDXBdIsdVVPl4JSufP76/maIvjzGqX2d+POpMeibFe12aSNDSGaoStHw+x4K1u3nqvU3kFR4ho1s7po0bwtBuGq8u0hCFuwQd5xwL1+/jyfc2sX73IXp3jGf6uKGMTO+kg6UiflK4S9BwzrE4dz+/f3cjK/MP0q1DHH+8cRBXnn0GUZoHRuSkKNwlKCzN289T721i6dZizmjbgsevGcC1Q1NorjNLRU6Jwl0845zjsy37+dPCzSzbWkxifCy/ujKdscNTiY3WsEaR06FwlybnnOPjTYVMXbiZL3YcpFObWB66Mp2xmakaqy4SIAp3aTI+n+P99Xt5+sNcVheUkJzQkke+05/rh6Yo1EUCTOEuje5YZRVvrtjFtEVb2FJ4hNT2cfz22gFcPTiFmGjtUxdpDAp3aTSHyyqYu2wHz3+6lb2HjpHepQ1Txw7m8v6dNQWvSCNTuEvA7S45yszPtvPy0u0cLqvk3J4d+N11Z3NB70SNUxdpIgp3CZgvdhxgxqdbeXvtHpxzjOrfmTsv6snAlASvSxOJOAp3OS0VVT7eXruHGZ9uZWX+QVrHRjPxvDRuPSeNru3jvC5PJGIp3OWU7D1Uxrxl+cxdtoM9h8pI6xDHr6/qx7VDU4iP1cdKxGv6LRS//eeko5eWbOfdnL1U+RwX9E7k0av7c/GZHWmmKQJEgobCXRp04Eg5/1ixk5eXbiev8AgJcc2ZdH53bspMJS2xldfliUg9FO5SryqfY3FuEa9k5/Peur2UV/kYnJrAk9efzRUDu+ikI5Egp3CX/yO/uJTXlhfw9+x8dpWUkRDXnJuGp3JDRlfSz2jjdXki4ieFu1BytIK31+zmnyt2snRrMWZwQe8kfnbFWYxM76RJvERCkMI9Qh2rrOLDDft4Y8UuPtiwj/IqHz0SW3HfyD5cOzSF5ISWXpcoIqdB4R5BKqp8LM4tYsGa3fx77R4OlVWSGB/LLSO68Z3BZzAgua3OIBUJEwr3MFde6WPxliIWrN7Nuzl7KTlaQXxsNN9K78Towcmc17OD5nkRCUMK9zB05Fgln2wu4r2cvbyXU72F3jo2mpHpnbhsQBcu6J2o0S4iYU7hHib2lJTx/vq9vL9+L59t2U95pY82LaK5NL0TVwzowvm9E3VgVCSCKNxDVEWVjxU7DrJoUyEfbypkzc4SAFLbxzFuRDcuPasTGWnttAapSIRSuIeQ/OJSFm0u5OONhXy+ZT+Hj1US1cwY1DWBn4w6k5FndaJXx3gdFBURhXsw211ylCV5+/l8y34+z9tPfvFRAJITWvJfZ3fhwt5JnNsrkbYtm3tcqYgEG4V7kHDOsX1/Kcu3HyBrWzFL8vazbX8pAG1aRDO8RwcmnNudC/sk0jNJW+cicmIKd48cLa9izc4Slm8/wPLtB1ix4wD7j5QD0LpFNMO7d+CWEd04p2cH+nZuQ5RmXBSRk6BwbwKl5ZXk7DrEmp0lrNlZwrqdh9i87zA+V/14j8RWXNy3I0NS2zG0Wzt6d4zX9LkicloU7gFU5XPsKC5l457DbNp7mI17D7Nxz2HyCr88HuSJ8bEMSG7Dt/p1YmBKAkNSE+gQH+tt4SISdvwKdzMbBfwJiAKec849XufxWGAWMBTYD9zonNsW2FKDx8HScvKKjrCt5pJXdIStRUfI3fclxyp9AJhB13Zx9OnUmssHdGFAclsGJLelU5tY7S8XkUbXYLibWRTwDDASKACyzGy+cy6nVrNJwAHnXC8zGwP8FrixMQpubJVVPoqPlLPnUBk7Dxxl58Hqy66arwUHjnKwtOJ4+2YGKe3iSEtsxbk9O9CnU2vO7NyaXh3jiYvRP0Yi4g1/0icTyHXO5QGY2TxgNFA73EcDv6q5/nfgaTMz55wLYK1+c85xrNLH0fIqSiuqOFpexaGyCkqOVnDoaPXXg6XVX4uPlFP05TEKD1dfikvLqVt1XEwUyQktOSOhJQNTEuiR2Iq0Dq1IS2xFavs4YqJ1opCIBBd/wj0ZyK91uwAY/nVtnHOVZlYCdACKAlFkba9m5TNt0RZ8Dip9Pny+6n3dlT5Hlc9HWYWPoxVVfj1XXEwU7VvFkBgfS9f2cQzp1o6k+FgSW8fSsXUsyQktSWnXkrYtm2tXioiEFH/Cvb5Uq7tF7k8bzGwKMAUgNTXVj5f+qnatYo4PDTx+MSMqqvpry5goWjSPIi4mipbNqy+xzZvRpmVz2ta6tGnRXFvcIhK2/An3AqBrrdspwK6vaVNgZtFAW6C47hM556YD0wEyMjJOaZfNyPROjEzvdCrfKiISMfzZdM0CeptZdzOLAcYA8+u0mQ+Mr7l+HfCBV/vbRUTEjy33mn3odwPvUD0UcoZzbp2ZPQxkO+fmA88Ds80sl+ot9jGNWbSIiJyYX2P1nHMLgAV17vtlretlwPWBLU1ERE6VjiiKiIQhhbuISBhSuIuIhCGFu4hIGFK4i4iEIfNqOLqZFQLbT/HbE2mEqQ2CnPocGdTnyHA6fe7mnEtqqJFn4X46zCzbOZfhdR1NSX2ODOpzZGiKPmu3jIhIGFK4i4iEoVAN9+leF+AB9TkyqM+RodH7HJL73EVE5MRCdctdREROIKjD3cxGmdlGM8s1swfqeTzWzF6peXypmaU1fZWB5Uef7zOzHDNbbWYLzaybF3UGUkN9rtXuOjNzZhbyIyv86bOZ3VDzXq8zszlNXWOg+fHZTjWzD81sRc3n+3Iv6gwUM5thZvvMbO3XPG5mNrXm57HazIYEtADnXFBeqJ5eeAvQA4gBVgHpddp8F/hrzfUxwCte190Efb4YiKu5flck9LmmXWtgEbAEyPC67iZ4n3sDK4B2Nbc7el13E/R5OnBXzfV0YJvXdZ9mny8EhgBrv+bxy4G3qV7JbgSwNJCvH8xb7scX5nbOlQP/WZi7ttHAzJrrfwcusdBe7LTBPjvnPnTOldbcXEL1ylihzJ/3GeAR4AmgrCmLayT+9Hky8Ixz7gCAc25fE9cYaP702QFtaq635asrvoUU59wi6lmRrpbRwCxXbQmQYGZdAvX6wRzu9S3Mnfx1bZxzlcB/FuYOVf70ubZJVP/lD2UN9tnMBgNdnXNvNWVhjcif97kP0MfMFpvZEjMb1WTVNQ5/+vwr4BYzK6B6/Yh7mqY0z5zs7/tJ8WuxDo8EbGHuEOJ3f8zsFiADuKhRK2p8J+yzmTUD/gDc1lQFNQF/3udoqnfNfIPq/84+MbP+zrmDjVxbY/Gnz2OBF51zT5rZOVSv7tZZlrkFAAABbklEQVTfOedr/PI80aj5Fcxb7iezMDcnWpg7hPjTZ8zsUuBB4Crn3LEmqq2xNNTn1kB/4CMz20b1vsn5IX5Q1d/P9pvOuQrn3FZgI9VhH6r86fMk4FUA59znQAuq52AJV379vp+qYA73SFyYu8E+1+yimEZ1sIf6flhooM/OuRLnXKJzLs05l0b1cYarnHPZ3pQbEP58tt+g+uA5ZpZI9W6avCatMrD86fMO4BIAMzuL6nAvbNIqm9Z84NaaUTMjgBLn3O6APbvXR5QbONp8ObCJ6qPsD9bc9zDVv9xQ/ea/BuQCy4AeXtfcBH1+H9gLrKy5zPe65sbuc522HxHio2X8fJ8NeArIAdYAY7yuuQn6nA4spnokzUrgW17XfJr9nQvsBiqo3kqfBNwJ3FnrPX6m5uexJtCfa52hKiIShoJ5t4yIiJwihbuISBhSuIuIhCGFu4hIGFK4i4iEIYW7iEgYUriLiIQhhbuISBj6f7mVGMyQphsvAAAAAElFTkSuQmCC\n", | ||
"text/plain": [ | ||
"<matplotlib.figure.Figure at 0x7735fea490>" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"x=np.linspace(0,1)\n", | ||
"y=x**2\n", | ||
"plt.plot(x,y)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 2", | ||
"language": "python", | ||
"name": "python2" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 2 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython2", | ||
"version": "2.7.13" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |